+ All Categories
Home > Documents > Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ......

Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ......

Date post: 14-Jul-2018
Category:
Upload: hatram
View: 227 times
Download: 0 times
Share this document with a friend
686
Aurora Reference Guide Version X-2006.09, September 2006
Transcript
Page 1: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference GuideVersion X-2006.09, September 2006

Page 2: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

ii

Copyright Notice and Proprietary InformationCopyright © 2006 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy DocumentationThe license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of __________________________________________ and its employees. This is copy number __________.”

Destination Control StatementAll technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them.

DisclaimerSYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync, Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill, PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC Expert, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision, DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express, Frame Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSIMplus, HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT, Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice, TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.ARM and AMBA are registered trademarks of ARM Limited.All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Aurora Reference Guide, X-2006.09

Page 3: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Chapters in this Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Contacting the Synopsys Technical Support Center . . . . . . . . . . . . . . . . . . . . xx

1. Aurora Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Initial Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Measurement Output Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Internal Versus External Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

MOS/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

BSIM/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Extraction Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

BSIM2/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

BSIM3/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii

Page 4: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

BSIM3v3/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

MOS9/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

DIODE/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

BJT/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

VBIC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

JCAP/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

RESISTOR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

CNL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

JFET/SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iv

Page 5: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Star-Hspice MOSFET Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Common Parameters for Level 2, 3, 13, 28, and 47 . . . . . . . . . . . . . . . . . . . . 90

MOSFET Diode Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

MOS Gate Capacitance Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 96

Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Level 2 Specific Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Level 3 Specific Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Level 13 (BSIM) Specific Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Level 28 Specific Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Level 47 (BSIM3 Version 2.0) Specific Model Parameters. . . . . . . . . . . . . . . . 113

Level 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters . . . . . . . 117

LWP Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Level 54 (BSIM4) Variables, Targets and Model Parameters. . . . . . . . . . . . . . 139

BSIM4 Juncap2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

LWP Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

BSIM3v3 WPE Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Level 50 (Phillips MOS9) Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Level 55 (EPFL-EKV) Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Level 57 (BSIM3SOI PD) Variables and Model Parameters . . . . . . . . . . . . . . 184

Level 59 (BSIM3SOI FD) Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Level 60 (BSIM3SOI DD) Model Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 211

Level 61 (RPI Amorphous Silicon TFT) Model Parameters . . . . . . . . . . . . . . . 222

Level 62 (RPI Polysilicon TFT) Model Parameters . . . . . . . . . . . . . . . . . . . . . 228

Level 63 (Phillips MOS11) Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 233

Level 63 B (Phillips MOS11 with binning scaling rules) Model Parameters. . . 243

Level 64 (HISIM) Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Level 66 (HVMOS) Variables and Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Level 69 PSP100 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

v

Page 6: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

PSP100.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Model Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Source- and Drain-Bulk Junction Model Parameters . . . . . . . . . . . . . . . . . . . . 293

Star-Hspice Bipolar Transistor Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

HSBJT L 1-2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

HSBJT L 4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

HSBJT L 9 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

HSBJT L 6 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

HSBJT L 8 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

HSBJT L 11 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Star-Hspice JFET Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

HSJFET L 1-3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

HSJFET L 7 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Star-Hspice Diode HSDIODE L 1,3 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

HSDIODE L 2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

MOS/EXTSPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Level Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

BSIM/EXTSPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Targets for HSPICE Modified BSIM Model (level = 28) . . . . . . . . . . . . . . 355

BSIM3V3/EXTSPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

vi

Page 7: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

BSIM4/EXTSPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

BJT/EXTSPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

JCAP/EXTSPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Response Surface Methodology (RSM) Model . . . . . . . . . . . . . . . . . . . . . . . . 360

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

3. Input Statement Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Input Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Input Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Numerical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Numerical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Component Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Examples of Numerical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Character Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Examples of Character Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Statement Format Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Parameter Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Syntax of Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Model Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

vii

Page 8: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Assigned Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

SIMULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Command String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Secondary Target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Weight and Error Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

MACRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

LANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

SCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

SETTARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Data Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Character String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Table Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Data Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

SCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

BYPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

viii

Page 9: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Data Selection and Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

INCLUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

EXCLUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

WEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

GETVALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

SEPARATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

FIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

DFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

EXTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

DEXTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

COUPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

OPTIMIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Results Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

REVERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

ix

Page 10: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

GSAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

SPSAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

PRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

PLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

PLOT.2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

CONTOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

PLOT.3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

3D.SURFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

SUMMARIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

WRTPAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Documentation and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

TITLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

x

Page 11: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

HELP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Nested Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Repeated Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Template Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

INTERACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

BATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

I.PRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

I.SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

IF.END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Loop Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Loop Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

L.MODIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

L.END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

ASSIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

xi

Page 12: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

IGNORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

3D.SURFACE - on p. -461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

ALIAS - on p. -399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

ASSIGN - on p. -511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

BATCH - on p. -494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

BYPASS - on p. -400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

CALL - on p. -488. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

COMMENT - on p. -483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

CONTOUR - on p. -450. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

CONTROL - on p. -426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

COUPLE - on p. -425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

DATA - on p. -402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

DEFINE - on p. -474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

ECHO - on p. -520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

ELSE - on p. -501. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

END - on p. -477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

EXCLUDE - on p. -409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

EXTRACT - on p. -422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

FIX - on p. -419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

GETVALUE - on p. -412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

GSAVE - on p. -430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

HELP - on p. -486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

IF - on p. -499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

IF.END - on p. -502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

IGNORE - on p. -522. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

INCLUDE - on p. -407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

INITIALIZE - on p. -474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

INTERACTIVE - on p. -493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

I.PRINT - on p. -495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

I.SAVE - on p. -497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

xii

Page 13: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

LABEL - on p. -463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

LANG - on p. -391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

L.END - on p. -510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

L.MODIFY - on p. -508. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

LOOP - on p. -502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

MACRO - on p. -390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

MODEL - on p. -382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

OPTIMIZE - on p. -427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

OPTION - on p. -484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

PLOT - on p. -434. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

PLOT.2D - Page A-444. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

PLOT.3D - Page A-452. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

PRINT - on p. -432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

RETURN - on p. -521. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

REVERT - on p. -428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

SAVE - Page A-430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

SCALE - Page A-399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

SCS - on p. -392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

SELECT - on p. -405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

SEPARATE - on p. -416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

SETTARG - on p. -393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

SIMULATOR - on p. -383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

SKIP - on p. -401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

SPSAVE - on p. -431. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

STOP - Page A-522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

SUMMARIZE - on p. -469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

TABLE - on p. -394. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

TARGET - on p. -385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

TITLE - on p. -482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

VARIABLE - on p. -396. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

WEIGHT - on p. -410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

WRTPAR- on p. -473. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

4. S-Parameters Key Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Derivations of Key Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

S-parameters to h-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Obtaining β from h-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Obtaining fT from β versus Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

xiii

Page 14: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Excess Phase, PTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

Correcting τF for Resistances and Capacitances . . . . . . . . . . . . . . . . . . . . . . 600

Relationship of Large Signal τF to Small Signal τF . . . . . . . . . . . . . . . . . . . . . 603

Base Resistance Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

h-Parameter Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

y-Parameter Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

Aurora Model Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Model Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Arithmetic Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Outline of a Simple Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Subroutine Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Local Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Reporting Errors in the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Assigning Values to Parameter Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Using Model Code from a Circuit Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Calculation Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Parameter Storage and Use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Modeling Series Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Debugging and Testing a New Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Creating a Model Initialization File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

Initializing the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Verifying Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Command-Line Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Format File Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Command-Line Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Conversion Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Command-Line Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

xiv

Page 15: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

Format File Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

List of Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

xv

Page 16: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contents

xvi

Page 17: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

About this Reference Manual

This guide covers all reference materials useful for using Aurora.

Chapters in this Guide

Related Publications

For additional information about Aurora, see

About this Reference Manual

Includes conventions, related publications, and customer support information.

Chapter 1 Presents an overview of Aurora.

Chapter 2 Describes simulation supported in Aurora.

Chapter 3 Lists and defines all program statements.

Chapter 4 Describes the key derivations of equations for S-parameters.

Appendix A Describes the Aurora model interface.

Appendix B Details the Medici-to-Aurora data conversion.

Appendix C Describes the Aurora data conversion utility.

Appendix D Details the Taurus-to-Aurora data conversion.

Appendix E Describes the Aurora parameter sorting utility.

Appendix F Describes the Aurora environment variables.

xvii

Page 18: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ Synopsys Online Documentation (SOLD), which is included with the software for CD users or is available to download through the Synopsys Electronic Software Transfer (EST) system

■ Documentation on the Web, which is available through SolvNet at http://solvnet.synopsys.com

■ You might also want to refer to the documentation for the following related Synopsys products: HSPICE, and the Synopsys TCAD suite.

For information using the GUI, discussion of strategies, and extensive examples of parameter extraction and optimization, see the Aurora User Guide.

Conventions

The following conventions are used in Synopsys documentation.

Table 1 Documentation Conventions

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax, such as object_name. (A user-defined value that is not Synopsys syntax, such as a user-defined value in a Verilog or VHDL statement, is indicated by regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in Synopsys syntax and examples. (User input that is not Synopsys syntax, such as a user name or password, is indicated by regular text font bold.)

[ ] Denotes optional parameters, such as pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as low | medium | high(This example indicates that you can enter one of three possible values for an option: low, medium, or high.)

xviii

Page 19: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Customer Support

Customer support is available through SolvNet online customer support and through contacting the Synopsys Technical Support Center.

Accessing SolvNetSolvNet includes an electronic knowledge base of technical articles and answers to frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide range of Synopsys online services including software downloads, documentation on the Web, and “Enter a Call to the Support Center.”

To access SolvNet:

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a Synopsys user name and password, follow the instructions to register with SolvNet.)

If you need help using SolvNet, click SolvNet Help in the Support Resources section.

_ Connects terms that are read as a single term by the system, such as set_annotated_delay

Control-c Indicates a keyboard combination, such as holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the Edit menu and choosing Copy.

Table 1 Documentation Conventions

Convention Description

xix

Page 20: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical Support Center in the following ways:■ Open a call to your local support center from the Web by going to http://

solvnet.synopsys.com (Synopsys user name and password required), then clicking “Enter a Call to the Support Center.”

■ Send an e-mail message to [email protected].■ Telephone your local support center.

Call (800) 245-8005 from within the continental United States.

Call (650) 584-4200 from Canada.

Find other local support center telephone numbers at http://www.synopsys.com/support/support_ctr.

xx

Page 21: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

11Aurora Overview

This chapter introduces the Aurora optimization program for fitting analytical models to data.

Aurora is a general purpose optimization program for fitting analytical models to data. Although Aurora is designed to extract parameters for circuit simulation models, it is also useful for analyzing measured data and for the development of new models. Aurora fits a model to a set of data points by adjusting one or more parameters of the model. Each data point gives the measured (or simulated) value of a target, at specified values of the variables.

While parameters may have physical interpretations ascribed to a device, for the purposes of Aurora, parameters are considered properties of a model. Variables, on the other hand, are properties of the data used by the model. The entire set of data points known to Aurora is defined as input data. The entire set of input data, or some subset of the data, may be selected for use with Aurora.

General Features

The primary purpose of Aurora is to extract model parameters for circuit simulators such as SPICE. Given a set of measured device characteristics, Aurora extracts model parameters that produce a least-squares fit to the data. The accuracy of this fit is limited only by the accuracy of the model. Aurora ensures that the extracted parameters have accurate and repeatable values. The standard output includes sensitivities of the fit to each parameter and estimates of how the values of the parameters depend on one another.

The optimization algorithm is independent of the model being fit. Empirical fitting factors are fit as easily as physical model parameters, and parameters may be fit over a range of device geometries or temperatures. The ability to fit ratios of currents allows direct optimization of device gains and conductances critical to analog applications.

1

Page 22: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The Aurora GUI uses icons to represent measurements, data, optimization steps, and plotting steps. As a user, you drag and drop the icons to piece together a series of measurements, optimization or plotting steps, and data. All tasks are represented graphically by a tree-like structure composed of icons connected horizontally and/or vertically (see Figure 1).You can choose icons from a pre-drawn palette of Synopsys TCAD icons, or alternatively, you can draw customized icons.

Figure 1 Aurora GUI

The Aurora measurement GUI (Figure 2) measures six types of devices: MOS, bipolar, diode, capacitor, resistor, and inductor. These devices are represented by a schematic symbol, with each node having appropriate sweep variables clearly available for editing. Aurora measures current or voltage at one or more capacitance-related targets, such as C, D, G, or Q.

Usually, a GUI controls the parameter optimization process. You can also add commands from a batch file or interactively from a terminal. Using an interactive graphics tool, you can plot calculated and measured characteristics in a variety of combinations.

2

Page 23: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The input data to Aurora consists of tables of independent and dependent variables, such as current vs. voltage. The input processing accommodates most data files with little or no modification. Input data is obtained from numerical device simulation and by direct measurement of devices. Previewing measured data is convenient, and information provided in the summary of fit is useful in locating bad data points or failures in the devices or measurements.

You may view multiple plots on a single page (overlaying) or on multiple pages for flexibility in creating camera ready plots for presentations. You may also save and reload plot attributes without re-specifying each time.

Figure 2 Aurora Measurement GUI

Although many standard device models from the SPICE circuit simulator are built into Aurora, complete instructions are also provided for adding models. You need only provide a FORTRAN-callable subroutine containing the model equations. The equations are checked using the plotting features of the program, and changes are evaluated quickly by extracting new parameters.

3

Page 24: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Input Files

Aurora requires, at most, three types of input files: a strategy input file, one or more data input files, and an initial parameter file. Most input files need no editing because they are controlled by the GUI. The initial parameter file may be edited to adjust initial guesses, lower bounds, and upper bounds, or to add parameters. A complete parameter optimization in the form of data files, optimization steps, and the initial parameter file is saved in a large binary file.

Initial Parameter File

The initial parameter file specifies initial values and lower and upper bounds for the model parameters. It is a text file that may be created or modified with any text editor. Each line of the initial parameter file contains the name of a parameter, an initial value, a lower bound, and an upper bound, all separated byspaces only. The bounds are not required, but should be specified for parameters to be optimized. The initial value may be omitted if the bounds are also omitted. Parameters to be optimized may be indicated by placing an asterisk “*” before the parameter name. Lines beginning with a dollar sign “$” are treated as comments and ignored.

Measurement Output Files

Aurora creates two measurement output files:

1. Measurement data file. Aurora automatically creates a single ASCII output file with a test plan name specified in the measurement window and a file extension of .dat.

2. Measurement results file. The last measurement results can be found in the ASCII file measure.out. Each time you execute a single test within a test plan, this file is overwritten.

Internal Versus External Models

Aurora includes standard built-in models taken from Berkeley SPICE and models (MOSFET Level 2, 3, 13, 28, 47, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 63 and 64, BJT Level 1, 2, 4, 6, 8, 9, 11 and 12, JFET Level 1, 2, 3 and 7, Diode Level 1, 2 and 3) from Star-HSPICE. These are hard coded into Aurora as

4

Page 25: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

subroutines. When the optimizer runs, it sends terminal voltages to a model subroutine and receives drain current (for MOS) as the model output.

Many sites use commercial circuit simulators instead of Berkeley SPICE. In these cases, the circuit simulator models may or may not be 100% compatible with those of Berkeley SPICE. In addition, some commercial circuit simulators have proprietary models that do not exist in Berkeley SPICE and are not fully documented. By using Aurora in the external circuit simulator mode, you can exercise the models directly within the circuit simulator and bypass the built-in Aurora models.

When Aurora operates in external circuit simulator mode, the overall effect is identical to, but slower than, the internal mode operation. In the external mode, the optimized models will match the circuit simulation models. You can also extract parameters for proprietary models. However, Aurora runs much slower (perhaps 20 times) in this mode because of increased overhead.

5

Page 26: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

6

Page 27: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

22Model Descriptions

Describes Aurora built-in models for parameter extraction.

Introduction

Aurora contains several built-in models for extracting SPICE parameters for different devices. Models are provided for the following devices:■ MOSFET ■ Bipolar transistors■ Diodes■ Junction capacitances ■ JFET devices ■ Response Surface Methodology (RSM) for fitting quadratic response

surfaces

Aurora supports user-defined models.

The program also works with all available SPICE circuit simulator models by invoking the following external SPICE circuit simulators during execution:■ STAR-HSPICE ■ SABER■ Berkeley SPICE■ Eldo■ PSPICE■ Spectre

Aurora also supports user-defined SPICE simulators through its external SPICE simulators interface. To utilize this feature, at least one SPICE circuit

Aurora Reference Guide 7X-2006.09

Page 28: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

simulator must be present on your computer system. Currently, all SPICE models for MOSFETs, bipolar transistors, and junction capacitors can be accessed through Aurora.

MOS/SPICE Model

The maximum number of model parameters is 900. Aurora contains multiple built-in models for MOS transistors. The first three of these are lumped together as one model named MOS/SPICE, an enhanced version of the MOS model in the SPICE circuit simulator (Version 2G.6). Levels 1 through 3 of the model are included.

The enhancements allow for: ■ Extraction of effective channel width and source/drain series resistance ■ Smoothing of the SPICE Level 2 mobility reduction equation ■ Modeling the dependence of mobility on substrate bias

8 Aurora Reference GuideX-2006.09

Page 29: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

Variables

The MOS/SPICE model uses 12 variables:

DescriptionVD, VG, VS, and VB are the voltages on the drain, gate, source, and bulk terminals, respectively. Any of these terminals may be used as a reference by leaving its voltage at the default value of zero. W and L are channel length and width expressed in meters. T is temperature, in degrees Celsius. DEVID distinguishes data from different devices. Similarly, REGION distinguishes data from the same device, but from different device behavior regions.

Table 1 VARIABLES OF THE MOS/SPICE MODEL

NAME Description Default Units

vd Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Gate Width 1.0 meters

L Gate Length 1.0 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares 1 squares

NRS Number of source diffusion squares 1 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

Aurora Reference Guide 9X-2006.09

Page 30: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

PolarityThe model recognizes both N-channel and P-channel devices, depending on the value of POLARITY. For n-channel devices (POLARITY = +1), the drain current and the gate and drain voltages are normally positive, while the source current and substrate voltage are negative. For p-channel devices (POLARITY = -1), the voltages and currents have the opposite signs.

Targets

Four primary targets are defined for the MOS/SPICE model:

These targets represent the currents entering the drain, gate, source, and bulk terminals of the device. Note that the gate and bulk currents calculated by the MOS/SPICE model are always zero. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

Parameters

The parameters of the MOS/SPICE model are listed in Table 3 with their default values and units.

Table 2 Targets of the MOS/SPICE Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-15

IG Current entering gate terminal Amps 1 × 10-15

IS Current entering source terminal Amps 1 × 10-15

IB Current entering substrate terminal Amps 1 × 10-15

10 Aurora Reference GuideX-2006.09

Page 31: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

DescriptionThe LEVEL parameter selects one of three models:

1. Level 1 selects a simple Shichman-Hodges model; nonzero output conductance is specified by the LAMBDA parameter

2. Level 2 is a “physical” model. Second-order effects include:

a. Mobility reduction (UCRIT, UEXP, USM and USUB)

b. Channel-length modulation (LAMBDA or NEFF)

c. Subthreshold conduction (NFS)

d. Short-channel effect (XJ)

e. Narrow-channel effect (DELTA)

f. Velocity saturation (VMAX)

3. Level 3 is a semi-empirical model incorporating second-order effects similar to the level 2 model. Level 3 uses the same parameters, with the following exceptions:

a. KAPPA is used instead of NEFF or LAMBDA to specify channel-length modulation

b. THETA is used instead of UCRIT and UEXP for mobility reduction

Drain-induced barrier lowering is modeled by ETA. The parameters used by only one or two of the models are noted in the table.

Default ValuesEach parameter has a default value, with the exceptions of KP, GAMMA, PHI, VTO, and TOX, which are treated specially if not specified.■ KP is calculated from UO and TOX.■ GAMMA is calculated from NSUB and TOX.■ PHI is calculated from NSUB.■ VTO is calculated from NSS, TPG, TYPE, GAMMA, and PH.

The default value for TOX is 100nm for levels 2 and 3; for level 1, TOX is not used unless specified.

For level 1, the calculation of KP, VTO, GAMMA, and PHI will occur only if TOX is specified.

Aurora Reference Guide 11X-2006.09

Page 32: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

The calculation of VTO, GAMMA, and PHI will only occur if NSUB is given a

value greater than the intrinsic carrier concentration in silicon ( ).

Nonstandard ParametersThe parameters DW, USM, TYPE, TNOM, USUB, R, RSH, RD, and RS are nonstandard.

Channel Width DW models the difference between the mask channel width and the effective electrical channel width.

Smoothing USM is a smoothing factor for the level 2 mobility reduction equation. A value of zero produces no smoothing, while a value of 1.0 gives maximum smoothing. A value greater than 0.1 is recommended. Use of the USM parameter eliminates the discontinuity in the transconductance produced by the UCRIT and UEXP parameters. This speeds the optimization process and reduces the chance of finding a local minimum. The effect of USM on the modeled transistor characteristics is small.

Channel Models TYPE should be +1 for N-channel models, and -1 for P-channel. For P-channel devices, the sign of VTO is reversed (i.e., VTO is negative for enhancement transistors).

Temperature TNOM specifies the temperature for which the parameters are given.

Substrate Bias USUB models the sensitivity of the carrier mobility to changes in the substrate bias; values between one and two are typical, while a value of zero turns the effect off.

Resistance Parameters R, RSH, RD, and RS model the resistance in series with the source and drain. R assumes that the resistance is evenly divided between the source and drain

1.45 1010× cm

3⁄

12 Aurora Reference GuideX-2006.09

Page 33: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

components. The resistance is calculated by dividing R by the effective channel width.

Table 3 Parameters for the MOS/SPICE Model

Name Description Default Units Notes

TYPE +1 for n-channel, -1 for p-channel 1.0

LEVEL Selects level 1, 2, or 3 1.0

VTO Zero-bias threshold voltage 0.0 Volts 1

KP Gain constant for W/L=1 2 × 0-5 Amps/Volt2 2

GAMMA Body-effect coefficient 0.0 Volts1/2 3

PHI Bulk Fermi level times two 0.6 Volts 3

LAMBDA Simple output conductance model 0.0 1/Volts 4

TOX Gate oxide thickness 10-7 meters 5

NSUB Substrate doping 0.0 1/cm3

NSS Used to calculate VTO 0.0 1/cm2

NFS For subthreshold 0.0 1/cm2 6

TPG Used to calculate VTO 1.0

XJ Short-channel effect on Vth 0.0 meters 6

LD Leff = Lmask - 2*LD 0.0 meters

UO Low-field mobility 600.0 cm2/V-sec

UCRIT Mobility reduction 104 Volts/cm 7

UEXP Mobility reduction 0.0 7

UTRA NOT USED

Aurora Reference Guide 13X-2006.09

Page 34: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/SPICE Model

VMAX Velocity saturation 0.0 meters/sec 6

NEFF Output conductance factor 1.0 7

DELTA Narrow-channel effect on Vth 0.0 6

THETA Mobility reduction 0.0 1/Volts 8

ETA DIBL output conductance 0.0 8

KAPPA Output conductance factor 0.2 8

DW Nonstandard: Weff = Wmask - DW 0.0 meters

R Nonstandard: R = RS × W = RD × W 0.0 Ω-meters

USM Nonstandard: mobility smoothing 0.0 7

RSH Drain and source diffusion sheet resistance 0.0 Ω/square

RD Drain resistance 0.0 W

RS Source resistance 0.0 W

TNOM Nominal temperature 27.0 °C

USUB Nonstandard: Effect of VB on mobility 0.0 6

1. May be calculated from NSS, TOX, TPG, TYPE, GAMMA, and PHI. (See text.)

2. May be calculated from UO and TOX. (See text.)

3. May be calculated from NSUB and TOX. (See text.)

4. Levels 1 and 2 only.

5. Default used for levels 2 and 3 only. (See text.)

6. Levels 2 and 3 only.

7. Level 2 only.

8. Level 3 only.

Table 3 Parameters for the MOS/SPICE Model

Name Description Default Units Notes

14 Aurora Reference GuideX-2006.09

Page 35: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

Sheet Resistance The sheet resistance parameter RSH requires the specification of the number of squares for the drain (variable NRD) and the number of squares for the source (variable NRS). The resistance is calculated by multiplying the sheet resistance by the number of squares.

Source and Drain RD and RS model the source and drain diffusion resistances as lumped element resistors.

Multiple If more than one resistance parameter type (i.e., R, RSH, or RD and RS) is defined, the MOS/SPICE model will use the resistance parameters in the following order:

1. R

2. RSH

3. RD and RS

If R is specified, RSH, RD, and RS will be ignored; and if RSH is specified, RD, and RS will be ignored.

The UTRA parameter is included for historical reasons. It is not used in the SPICE version 2G.6 or in the MOS/SPICE model in Aurora.

BSIM/SPICE Model

Aurora includes the Berkeley Short-Channel IGFET Model (BSIM 1.0) for modeling MOS transistors. This model, named BSIM/SPICE, is a modified BSIM model from the SPICE circuit simulator (Version 3b1). The semi-empirical BSIM model attempts to replace complex, physically-based models with empirical equations, without sacrificing accuracy. Because of its empirical design, the BSIM/SPICE model is well-suited for characterizing fabrication processes. The model extracts size-independent parameters used in SPICE to verify circuit designs.

Aurora Reference Guide 15X-2006.09

Page 36: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

Extraction Procedures

The BSIM/SPICE model provides two different extraction procedures for obtaining size-independent parameters:■ The direct method makes it possible for all size-independent parameters to

be obtained simultaneously in a single extraction step.■ The indirect extraction method is a two-step optimization process, where a

set of size-dependent parameters is first extracted from the I-V values for each geometry. When the parameters for a family of different sized MOSFETs have been obtained, these values are resubmitted to Aurora as target values, and size-independent parameters are then extracted.

The indirect method is strongly recommended. Model enhancements enable the extraction of both lumped element source/drain resistances and source/drain diffusion sheet resistance.

16 Aurora Reference GuideX-2006.09

Page 37: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

Variables

The BSIM/SPICE model uses 11 variables:

DescriptionThe BSIM/SPICE model variables are similar in function to the MOS/SPICE model variables. VD, VG, VS, and VB are the voltages on the drain, gate, source, and bulk terminals, respectively. W and L are the gate width and length expressed in meters. NRD and NRS are the number of squares for the drain and source diffusion regions. The device identification number DEVID distinguishes data from different devices. Similarly, REGION distinguishes data from the same device but from different regions of transistor behavior.

PolarityThe POLARITY variable specifies whether the device is n-channel or p-channel. If POLARITY is set to +1 (i.e., for an n-channel transistor), the drain

Table 4 Variables of the BSIM/SPICE Model

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

NRD Number of drain diffusion squares 1.0 squares

NRS Number of source diffusion squares 1.0 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

Aurora Reference Guide 17X-2006.09

Page 38: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

terminal current and the drain and gate voltages are positive, while the source current and substrate voltage are negative. If POLARITY is set to -1 (i.e., for a p-channel transistor), the data has the opposite signs.

Targets

Twenty-three targets are used in the BSIM/SPICE model:

Table 5 Targets of the BSIM/SPICE Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1× 10-15

IG Current entering gate terminal Amps 1× 10-15

IS Current entering source terminal Amps 1× 10-15

IB Current entering substrate terminal Amps 1× 10-15

TVFB Flat-band voltage Volts 100

TPHI Surface inversion potential Volts 100

TK1 Body effect coefficient Volts0.5 100

TK2 Drain/source depletion charge sharing coefficient 100

TETA Zero-bias drain-induced barrier lowering (DIBL) coefficient

100

TX2E Sensitivity of DIBL effect to substrate bias 1/Volts 100

TX3E Sensitivity of DIBL effect to drain bias at VDS = VDD 1/Volts 100

TX2MZ Sensitivity of mobility to substrate bias at VDS = 0 cm2/V2-sec 100

TU0 Zero-bias transverse-field mobility degradation coefficient

1/Volts 100

TX2U0 Sensitivity of TU0 to substrate bias 1/Volts2 100

TMUS Mobility at zero substrate bias and VDS = VDD cm2/V-sec 100

18 Aurora Reference GuideX-2006.09

Page 39: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

DescriptionThe first four targets represent the currents entering the drain, gate, source, and substrate terminals of the device. Gate and bulk currents in the BSIM/SPICE model are always zero. Minimum is the smallest absolute value of the target for which relative error is used. For smaller values, absolute error is used.

The remaining targets are used by the BSIM/SPICE model to extract size-independent parameters using the indirect method. Once the size-dependent parameters of each MOSFET have been extracted and stored in an input data file, the values can be reread into Aurora as targets. From these target values, a set of size-independent device parameters is obtained.

The parameters for the BSIM/SPICE model are listed in Table 6. Parameters denoted with “*” in the L/W column have associated length and width parameters, indicated by L and W, respectively. For example, the entry for VFB

TX2MS Sensitivity of TMUS to substrate bias cm2/V2-sec 100

TX3MS Sensitivity of TMUS to drain bias at VDS = VDD cm2/V2-sec 100

TU1 Zero-bias velocity saturation coefficient μm/Volt 100

TX2U1 Sensitivity of TU1 to substrate bias μm/Volt 100

TX3U1 Sensitivity of TU1 to drain bias at VDS = VDD μm/Volt 100

TN0 Zero-bias subthreshold slope coefficient 100

TNB Sensitivity of subthreshold slope to substrate bias 1/Volts 100

TND Sensitivity of subthreshold slope to drain bias 1/Volts 100

Table 5 Targets of the BSIM/SPICE Model (Continued)

Name Description Units Minimum

Aurora Reference Guide 19X-2006.09

Page 40: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

indicates that the flatband voltage is actually described by three parameters: VFB plus the length and width factors LVFB and WVFB.

Table 6 Parameters for the BSIM/SPICE Model

Name L/W

Symbol Description Units

VFB * VFB Flat-band voltage Volts

PHI * φs Surface inversion potential Volts

K1 * K1 Body effect coefficient Volts0.5

K2 * K2 Drain/source depletion charge sharing coefficient

ETA * h Zero-bias drain-induced barrier lowering (DIBL) coefficient

X2E * ηB Sensitivity of DIBL effect to substrate bias 1/Volts

X3E * ηD Sensitivity of DIBL effect to drain bias at VDS = VDD 1/Volts

MUZ MUZ Zero-bias mobility cm2/V-sec

X2MZ * μZB Sensitivity of MUZ to substrate bias at VDS = 0 cm2/V2-sec

U0 * U0Z Transverse-field mobility degradation coefficient 1/Volts

X2U0 * U0B Sensitivity of U0 to substrate bias 1/Volts2

MUS * μS Mobility at zero substrate bias and VDS = VDD cm2/V-sec

X2MS * μSB Sensitivity of MUS to substrate bias cm2/V2-sec

X3MS * μSD Sensitivity of MUS to drain bias at VDS = VDD cm2/V2-sec

U1 * U1Z Zero-bias velocity saturation coefficient μm/Volt

X2U1 * U1B Sensitivity of U1 to substrate bias μm/Volt2

X3U1 * U1D Sensitivity of U1 on drain bias at VDS = VDD μm/Volt2

20 Aurora Reference GuideX-2006.09

Page 41: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

Unlike other models in Aurora, the BSIM/SPICE model does not rely on default parameter values. To ensure the validity of the extracted parameters, the model requires that all parameters be initialized prior to optimization by using an initial parameter file that gives values for each parameter.

Threshold Voltage Parameters VFB, PHI, K1, K2, ETA, X2E, and X3E determine the threshold voltage of the device.

Width Difference DL and DW are the differences between the mask and effective electrical lengths and widths, respectively.

N0 * no Zero-bias subthreshold slope coefficient

NB * nB Sensitivity of subthreshold slope to substrate bias 1/Volts

ND * nD Sensitivity of subthreshold slope to drain bias 1/Volts

DL DL Channel shortening μm

DW DW Channel narrowing μm

RSH RSH Drain and source diffusion sheet resistance Ω/square

RD RD Lumped drain resistance W

RS RS Lumped source resistance W

TOX tox Gate oxide thickness μm

TEMP T Temperature at which parameters were measured °C

VDD VDD Measurement bias range Volts

SENS SENS Device-size sensitivity

Table 6 Parameters for the BSIM/SPICE Model

Name L/W

Symbol Description Units

Aurora Reference Guide 21X-2006.09

Page 42: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/SPICE Model

Mobility The electron/hole mobility of the device is determined by MUZ, X2MZ, MUS, X2MS, and X3MS. U0 and X2U0 account for the carrier mobility degradation due to scattering and vertical field intensity.

Velocity U1, X2U1, and X3U1 compensate for free carrier velocity saturation at high lateral electric fields.

Oxide Thickness The oxide thickness TOX determines the gate capacitance of the device under extraction.

Subthreshold N0, NB, and ND determine the MOSFET’s subthreshold behavior.

Source and Drain Parameters RSH, RD, and RS extract source and drain resistances.

Length and Width The value of SENS determines if the BSIM/SPICE Aurora model will use the Lparm and Wparm parameters. If SENS is fixed at 0, the model will ignore the length and width factors, while if SENS is set at 1, the model will use them.

Parameters Calculated from ParametersThe BSIM/SPICE model allows for certain parameters to be calculated from other parameters. If either PHI or K1 is undefined, the extraction of the other parameter will result in the undefined parameter value being calculated. If K1 is undefined and PHI is extracted,

(1)

If PHI is undefined and K1 is extracted,

(2)

Device ResistancesTwo choices are provided for the extraction of device resistances:

K12qεsiniexp

φsq kT⁄( )

Cox------------------------------------------------=

φs 2kTq

------logCoxK1( )2

2qεsini----------------------=

22 Aurora Reference GuideX-2006.09

Page 43: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM2/SPICE Model

■ Either RSH or RD and RS should be undefined while the other is extracted. ■ If RSH is specified, RD and RS are ignored, and the drain and source

resistances are calculated, respectively, as and ,

BSIM2/SPICE Model

The Berkeley BSIM2 model, named BSIM2/SPICE, represents an enhanced version of the original Berkeley BSIM model.

Variables

The BSIM2/SPICE model uses 12 variables:

Table 7 Variables of the BSIM2/SPICE Model

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Gate Width 1.0 meters

L Gate Length 1.0 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares 1.0 squares

NRS Number of source diffusion squares 1.0 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

NRD RSH⋅ NRS RSH⋅

Aurora Reference Guide 23X-2006.09

Page 44: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM2/SPICE Model

Targets

Forty-one targets are used in the BSIM2/SPICE model:

Table 8 Targets of the BSIM2/SPICE Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-15

IG Current entering gate terminal Amps 1 × 10-15

IS Current entering source terminal Amps 1 × 10-15

IB Current entering substrate terminal Amps 1 × 10-15

TVFB Flat-band voltage Volts 100

TPHI Surface potential Volts 100

TK1 Body effect coefficient Volts0.5 100

TK2 Nonuniform doping effect 100

TETA0 Drain-induced barrier lowering coefficient at VBS = 0 100

TETAB Sensitivity of ETA to VBS 1/Volts 100

TMU0 Low field mobility cm2/V2-sec 100

TMU0B Sensitivity of MU to VBS cm2/V-sec 100

TMUS0 Saturation region mobility cm2/V-sec 100

TMUSB Sensitivity of MUS to VBS cm2/V2-sec 100

TMU30 Empirical parameter to model the output resistance cm2/V2-sec 100

TMU3B Sensitivity of MU3 to VBS cm2/V3-sec 100

TMU3G Sensitivity of MU3 to VGS cm2/V3-sec 100

24 Aurora Reference GuideX-2006.09

Page 45: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM2/SPICE Model

TMU40 Empirical parameter to model the output resistance cm2/V3-sec 100

TMU4B Sensitivity of MU4 to VBS cm2/V4-sec 100

TMU4G Sensitivity of MU4 to VGS cm2/V4-sec 100

TMU20 Empirical parameter to model the output resistance 100

TMU2B Sensitivity of MU2 to VBS 1/Volts 100

TMU2G Sensitivity of MU2 to VGS 1/Volts 100

TUA0 First order mobility reduction due to vertical field at VBS = 0

1/Volts 100

TUAB Sensitivity of UA to VBS 1/Volts2 100

TUB0 Second order mobility reduction due to vertical field at VBS = 0

1/Volts2 100

TUBB Sensitivity of UB to VBS 1/Volts3 100

TU10 Velocity saturation at VDS = VDD and VBS = 0 1/Volts 100

TU1B Sensitivity of U1 to VBS 1/Volts2 100

TU1D Sensitivity of U1 to VDS 1/Volts2 100

TN0 Subthreshold swing 100

TNB Sensitivity of N to VBS 1/Volts 100

TND Sensitivity of N to VDS 1/volts 100

TVOF0 Threshold voltage offset in the subthreshold region Volt 100

TVOFB Sensitivity of VOF to VBS 100

TVOFD Sensitivity of VOF to VDS 100

Table 8 Targets of the BSIM2/SPICE Model (Continued)

Name Description Units Minimum

Aurora Reference Guide 25X-2006.09

Page 46: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM2/SPICE Model

Parameters

The parameters for the BSIM2/SPICE model are listed in Table 9.

TAI0 Hot-electron induced output resistance degradation coefficient

100

TAIB Sensitivity of AI to VBS 1/Volts 100

TBI0 Hot-electron induced output resistance degradation coefficient

Volts 100

TBIB Sensitivity of BI to VBS 100

TVGHI Upper bound of the transition region Volts 100

TVGLO Lower bound of the transition region Volts 100

Table 9 Parameters of the BSIM2/SPICE Model

Name L/W Symbol Description Units

VFB * VFB Flat-band voltage Volts

PHI * φs Surface potential Volts

K1 * K1 Body effect coefficient Volts0.5

K2 * K2 Nonuniform doping effect

ETA0 * η0 Drain-induced barrier lowering coefficient at VBS = 0

ETAB * ηB Sensitivity of ETA to VBS 1/Volts

MU0 μ0 Low field mobility cm2/V-sec

MU0B * μ0B Sensitivity of MU to VBS cm2/V2-sec

Table 8 Targets of the BSIM2/SPICE Model (Continued)

Name Description Units Minimum

26 Aurora Reference GuideX-2006.09

Page 47: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM2/SPICE Model

MUS0 * μsat0 Saturation region mobility cm2/V-sec

MUSB * μsatB Sensitivity of MUS to VBS cm2/V2-sec

MU30 * μ30 Empirical parameter to model the output resistance cm2/V2-sec

MU3B * μ3B Sensitivity of MU3 to VBS cm2/V3-

sec

MU3G * μ3G Sensitivity of MU3 to VGS cm2/V3-

sec

MU40 * μ40 Empirical parameter to model the output resistance cm2/V3-

sec

MU4B * μ4B Sensitivity of MU4 to VBS cm2/V4-

sec

MU4G * μ4G Sensitivity of MU4 to VGS cm2/V4-

sec

MU20 * μ20 Empirical parameter to model the output resistance

MU2B * μ2B Sensitivity of MU2 to VBS 1/Volts

MU2G * μ2G Sensitivity of MU2 to VGS 1/Volts

UA0 * Ua0 First order mobility reduction due to vertical field at VBS = 0

1/Volts

UAB * UaB Sensitivity of UA to VBS 1/Volts2

UB0 * Ub0 Secondary order mobility reduction due to vertical field at VBS = 0

1/Volts2

Table 9 Parameters of the BSIM2/SPICE Model (Continued)

Name L/W Symbol Description Units

Aurora Reference Guide 27X-2006.09

Page 48: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM2/SPICE Model

UBB * UbB Sensitivity of UB to VBS 1/Volts3

U10 * U10 Velocity saturation at VDS = VDD and VBS = 0 1/Volts

U1B * U1B Sensitivity of U1 to VBS 1/Volts2

U1D * U1D Sensitivity of U1 to VDS 1/Volts2

N0 * n0 Subthreshold swing

NB * nB Sensitivity of N to VBS 1/Volts

ND * nD Sensitivity of N to VDS 1/Volts

VOF0 * Voffset0 Threshold voltage offset in the subthreshold region Volts

VOFB * VoffsetB Sensitivity of VOF to VBS

VOFD * VoffsetD Sensitivity of VOF to VDS

AI0 * Ai0 Hot-electron induced output resistance degradation coefficient

AIB * AiB Sensitivity of AI to VBS 1/Volts

BI0 * Bi0 Hot-electron induced output resistance degradation coefficient

Volts

BIB * BiB Sensitivity of BI to VBS

VGHI * Vghigh Upper bound of the transition region Volts

VGLO * Vglow Lower bound of the transition region Volts

TOX Tox Oxide thickness μm

DL DL Channel shortening μm

DW DW Channel Narrowing μm

Table 9 Parameters of the BSIM2/SPICE Model (Continued)

Name L/W Symbol Description Units

28 Aurora Reference GuideX-2006.09

Page 49: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

BSIM3/SPICE Model

The Berkeley BSIM3 model, named BSIM3/SPICE, although it bears the same name as previous BSIM models, it is not related to them. This model is quite different from BSIM and BSIM2.

Variables

The BSIM3/SPICE model uses 12 variables:

VDD VDD Drain supply voltage Volts

VGG VGG Gate supply voltage Volts

VBB VBB Body supply voltage Volts

RS Rs Source resistance W

Table 10 Variables of the BSIM3/SPICE Model

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares 1.0 squares

Table 9 Parameters of the BSIM2/SPICE Model (Continued)

Name L/W Symbol Description Units

Aurora Reference Guide 29X-2006.09

Page 50: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

Targets

Four primary targets are defined for the BSIM3/SPICE model:

These targets represent the currents entering the drain, gate, source, and bulk terminals of the device. Note that the gate and bulk currents calculated by the BSIM3/SPICE model are always zero. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

NRS Number of source diffusion squares 1.0 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

Table 11 Targets of the BSIM3/SPICE Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-15

IG Current entering gate terminal Amps 1 × 10-15

IS Current entering source terminal Amps 1 × 10-15

IB Current entering substrate terminal Amps 1 × 10-15

Table 10 Variables of the BSIM3/SPICE Model

Name Description Default Units

30 Aurora Reference GuideX-2006.09

Page 51: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

Parameters

The parameters for the BSIM3/SPICE model are listed in Table 12.

Table 12 Parameters for the BSIM3/SPICE Model

Name Description Default Units Notes

VTH0 Zero-bias threshold voltage 0.7 Volts

K1 First body factor 0.53 Volts1/2

K2 Second body factor -0.0186

K3 Narrow width body factor 80.0

W0 Narrow width parameter 2.5e-6 meters

NLX Lateral nonuniform doping coefficient 1.74e-7 meters

DVT0 1st coefficient for short-channel effect on Vth 2.2

DVT1 2nd coefficient for short-channel effect on Vth 0.53

DL Channel length reduction on one side 0.0 meters

DW Channel width reduction on one side 0.0 meters

UA 1st order mobility degradation coefficient 2.25e-9 m/V

UB 2nd order mobility degradation coefficient 5.87e-19 (m/V)2

UC Body effect of mobility degradation coefficient 0.0465 1/Volts

VSAT Saturation velocity at TEMP = TNOM 9.58e6 cm/sec 1

RDSW Series resistance per unit width 0.0 Ω-m

NFACTOR Subthreshold swing coefficient 1.0

CDSC Drain/source channel coupling capacitance coefficient

2.4e-4 F/m2

PCLM Channel length modulation coefficient 1.3

Aurora Reference Guide 31X-2006.09

Page 52: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

PDIBL1 1st DIBL coefficient 0.39

PDIBL2 2nd DIBL coefficient 0.0086

DROUT L dependent coefficient of DIBL effect in Rout 0.56

PSCBE1 1st substrate current body effect coefficient 4.24e8 V/m

PSCBE2 2nd substrate current body effect coefficient 1.0e-5 V/m

A0 Bulk charge effect coefficient 0.1, 0.9 2

A1 1st nonsaturation factor 0, 0.2 1/V 2

A2 2nd nonsaturation factor 1.0, 0.02 1/V 2

TOX Gate oxide thickness 1.5e-8 meters

XJ Short-channel doping correction 0.15e-6 meters

NPEAK Peak doping concentration near interface 1.7e17 1/cm3 1

NSUB Substrate doping concentration 2.0e15 1/cm3 1

SUBTHMOD Subthreshold model selector 2

SATMOD Saturation model selector 2

VOFF Subthreshold offset voltage -0.11 Volts

VDD Maximum drain voltage 5.0 Volts

VGLOW Lower bound subthreshold transition region -0.12 Volts

VGHIGH Upper bound subthreshold transition region 0.12 Volts

VFB Flat-band voltage -1.0 Volts

PHI Surface potential in strong inversion * Volts 3

Table 12 Parameters for the BSIM3/SPICE Model (Continued)

Name Description Default Units Notes

32 Aurora Reference GuideX-2006.09

Page 53: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

GAMMA1 1st order body effect coefficient near interface * Volts1/2 3

GAMMA2 2nd order body effect coefficient in bulk * Volts1/2 3

XT Doping depth parameter 1.55e-7 meters

VBM Maximum applied body bias (negative) -5.0 Volts

VBX Vbs at which depl. width = XT * Volts 3

VBI Built-in voltage * Volts 3

U0 Mobility at TEMP = TNOM 670,250 cm2/V/sec 1,2

U0TEMP Mobility at other than TNOM u0 cm2/V/sec 1

VSATTEMP Saturation velocity at other than TNOM vsat cm/sec 1

EM Critical channel E-field 4.1e7 Volts/meter

LDD Total LDD region length 1.0e-7 meters

ETA Effective drain volt. coefficient due to LDD 0.3

LITL Characteristic length * meters 3

ALPHA Early volt. fitting parameter (used only for SATMOD = 1)

1.9

KT1 1st Vth temperature coefficient 0.3 Volts

KT2 2nd Vth temperature coefficient for Vbs dependence

0.03

UA1 Temperature coefficient for UA 4.31e-9 m/V

UB1 Temperature coefficient for UB -7.61e-18 (m/V)2

UC1 Temperature coefficient for UC -0.056 1/Volts

Table 12 Parameters for the BSIM3/SPICE Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 33X-2006.09

Page 54: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

AT Saturation velocity temperature coefficient 3.3e4 m/sec

RSH Drain and source diffusion sheet resistance 0.0 Ω/square 4

RD Drain resistance 0.0 W 4

RS Source resistance 0.0 W 4

TYPE +1 for n-channel, -1 for p-channel 1.0 4

TEMP Temperature at which parameters were measured

27.0 °C

TNOM Nominal reference temperature 27.0 °C

DVT2 Body bias coefficient of short-channel effect on Vth

-0.032 1/Volts 5

KETA Body bias coefficient of the bulk charge effect -0.047 1/Volts 5

BULKMOD Bulk charge model selector 1 5

ETA0 DIBL coefficient in subthreshold region 0.08 5

ETAB Body bias coefficient for subthreshold DIBL effect -0.07 1/Volts 5

DSUB DIBL coefficient exponent in subthreshold region drout 5

CIT Capacitance due to interface trapped charge 0.0 F/m2 5

UTE Mobility temperature exponent -1.5 5

NGATE Polygate doping concentration 1/cm3 5,6

KT1L KT1 channel length dependence coefficient 0.0 Volts meter 5

K3B Body bias dependence of K3 0.0 5

Table 12 Parameters for the BSIM3/SPICE Model (Continued)

Name Description Default Units Notes

34 Aurora Reference GuideX-2006.09

Page 55: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3/SPICE Model

Resistance ParametersParameters R, RSH, RD, and RS model the resistance in series with the source and drain. R assumes that the resistance is evenly divided between the source and drain components. The resistance is calculated by dividing R by the effective channel width.

Sheet The sheet resistance parameter RSH requires the specification of the number of squares for the drain (variable NRD) and the number of squares for the source (variable NRS). The resistance is calculated by multiplying the sheet resistance by the number of squares.

Source and Drain RD and RS model the source and drain diffusion resistances as lumped element resistors.

CDSCB Body bias dependence of Cdsc 0.0 Coul/V/m2 5

PVAG Parasitic resistance factor 0.0 5

RDS0 Contact resistance 0.0

VERSION Flag for which BSIM3 version number 2.0 4,7

1. Units shown are for Version 2.0 and later. Units are different for Version 1.0.

2. First default number shown is for N-channel, second is for P-channel.

3. The * shown in the default column means that these parameters are calculated from other model parameters when no explicit value is given.

4. Extra BSIM3 parameters used by Aurora, not part of BSIM3 model in Berkeley SPICE.

5. New parameters that only apply for BSIM3, Version 2.0 and later. Not applicable to BSIM3, Version 1.0.

6. The parameter NGATE is both a parameter and a flag. If not given explicitly, no poly gate doping calculation is made.

7. There are two possible version numbers to date (as of June, 1994); 1.0 and 2.0. If you select 1.0, Aurora will do the calculations using the Version 1.0 formulation.

Table 12 Parameters for the BSIM3/SPICE Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 35X-2006.09

Page 56: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

Given that the BSIM3 model has the parameter RDSW, it is unlikely that the extra Aurora parameters R, RSH, RD, and RS will be needed.

If more than one resistance parameter type (i.e., R, RSH, or RD and RS) is defined, the MOS/SPICE model will use the resistance parameters in the following order of precedence:

1. R

2. RSH

3. RD and RS

If R is specified, RSH, RD, and RS will be ignored; if RSH is specified, RD, and RS will be ignored.

Note:

Some of the model parameters listed above for BSIM3 are not mentioned explicitly in the Berkeley BSIM3 documentation; some of the default values listed above also do not match the Berkeley documentation. This documentation is based on the Berkeley SPICE BSIM3 source code, not the Berkeley documentation.

BSIM3v3/SPICE Model

The model represents the Aurora internal implementation of the Berkeley BSIM3 version 3.1 (BSIM3v3.1) model.

To use this model in the batch mode, define the name of the model as model31.

Variables

The BSIM3 version 3 model uses 17 variables:

Table 13 Variables of the BSIM3/SPICE Model

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

36 Aurora Reference GuideX-2006.09

Page 57: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

VB Substrate voltage 0.0 Volts

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares 1.0 squares

NRS Number of source diffusion squares 1.0 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

AS Source diffusion area 0 m2

AD Drain diffusion area 0 m2

PS Source diffusion perimeter 0 m

PD Drain diffusion perimeter 0 m

NQSMOD Flag for NQS Model (currently not used in Aurora<Text:Helv 11 Plain>)

0

Table 13 Variables of the BSIM3/SPICE Model

Name Description Default Units

Aurora Reference Guide 37X-2006.09

Page 58: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

Targets

Ten primary targets are defined for the BSIM3 version 3 model:

These targets represent the currents entering the drain, gate, source, and bulk terminals of the device.

Note:

The gate and bulk currents calculated by the BSIM3 version 3 model are always zero. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

Table 14 Targets of the BSIM3/SPICE Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-17

IG Current entering gate terminal Amps 1 × 10-17

IS Current entering source terminal Amps 1 × 10-17

IB Current entering substrate terminal Amps 1 × 10-17

VON Threshold voltage V 1 × 10-17

CGG Intrinsic Gate overlap capacitance Farads/m 1 × 10-17

CGC Intrinsic Gate to channel overlap capacitance Farads/m 1 × 10-17

CGB Intrinsic Gate to body overlap capacitance Farads/m 1 × 10-17

CGD Intrinsic Gate to drain overlap capacitance Farads/m 1 × 10-17

CGS Intrinsic Gate to source overlap capacitance Farads/m 1 × 10-17

38 Aurora Reference GuideX-2006.09

Page 59: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

Parameters

The parameters for the BSIM3 version 3 model are listed in Table 15.

Table 15 Parameters for the BSIM3 version 3 Model

Name Description Default Units

VTH0 Zero-bias threshold voltage 0.7 Volts

K1 First body factor 0.53 Volts1/2

K2 Second body factor -0.0186

K3 Narrow width body factor 80.0

K3B Body effect coefficient of K3 0

W0 Narrow width parameter 2.5e-6 meters

NLX Lateral nonuniform doping coefficient 1.74e-7 meters

DVTOW First coefficient of narrow width effect on Vth at small L 0 1/meters

DVT1W Second coefficient of narrow width effect on Vth at small L 5.3e+06 1/meters

DVT2W Body-bias coefficient of narrow width effect on Vth at small L

-0.032 1/Volts

DVT0 1st coefficient for short-channel effect on Vth 2.2

DVT1 2nd coefficient for short-channel effect on Vth 0.53

DVT2 Body-bias coefficient of short-channel effect on Vth -0.032 1/Volts

VBM Maximum applied body bias in Vth calculation -3 Volts

U0 Mobility at TEMP = TNOM 670(NMOS)

,250(PMOS)cm2/V/sec

UA 1st order mobility degradation coefficient 2.25e-9 m/V

Aurora Reference Guide 39X-2006.09

Page 60: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

UB 2nd order mobility degradation coefficient 2.0e-19 (m/V)2

UC Body effect of mobility degradation coefficient 1.0e-9 1/Volts

VSAT Saturation velocity at TEMP = TNOM 8.0e4 cm/sec

A0 Bulk charge effect coefficient for channel length 8.0e-2

AGS Gate bias coefficient of Abulk 0.0 1/Volts

B0 Bulk charge effect coefficient for channel width 0.0 meter

B1 Bulk charge effect width offset 0.0 meter

KETA Body-bias coefficient of the bulk charge effect 0.0 1/Volt

A1 1st nonsaturation factor 0, 0.2 1/V

A2 2nd nonsaturation factor 1.0, 0.02 1/V

RDSW Series resistance per unit width 0.0 Ω-m

PRWG Gate bias effect coefficient of RDSW 0 1/Volts

PRWB Body effect coefficient of RDSW 0 Volt-1/2

WR Width offset from Weff for Rds calculation 1.0

WINT Width offset fitting parameter from I-V without bias 0.0 meters

LINT Length offset fitting parameter from I-V without bias 0.0 meters

DWG Coefficient of Weff’s gate dependence 0.0 meters/Volts

DWB Coefficient of Weff’s substrate body bias dependence 0.0 meters/

Volts-1/

2

VOFF Offset voltage in the subthreshold region at large W and L 0.0 Volts

Table 15 Parameters for the BSIM3 version 3 Model (Continued)

Name Description Default Units

40 Aurora Reference GuideX-2006.09

Page 61: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

NFACTOR

Subthreshold swing coefficient 1.0

ETA0 DIBL coefficient in subthreshold region 0.08

ETAB Body bias coefficient for subthreshold DIBL effect -0.07 1/Volts

DSUB DIBL coefficient exponent in subthreshold region drout

CIT Capacitance due to interface trapped charge 0.0 F/m2

CDSC Drain/source channel coupling capacitance 2.4e-4 F/m2

CDSCD Drain bias sensitivity of CDSC 0 F/Vm2

CDSCB Body-bias sensitivity of CDSC 0 F/Vm2

PCLM Channel length modulation coefficient 0.0001

PDIBLC1 1st output resistance DIBL effect correction parameter 1e-05

PDIBLC2 2nd output resistance DIBL effect correction parameter 1e-06

PDIBLCB Body effect coefficient on DIBL correction parameters -0.001 1/V

DROUT L dependent coeff. of DIBL effect in Rout 1e10

PSCBE1 1st substrate current body effect coefficient 5e8 V/m

PSCBE2 2nd substrate current body effect coefficient 1.0e-10 V/m

PVAG Gate dependence of Early voltage 0.0

DELTA Effective Vds parameter 0.01 V

NGATE Poly gate doping concentration 0 cm-3

ALPHA0 First parameter of impact ionization 0 m/V

BETA0 Second parameter of impact ionization 30 V

Table 15 Parameters for the BSIM3 version 3 Model (Continued)

Name Description Default Units

Aurora Reference Guide 41X-2006.09

Page 62: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

RSH Source drain sheet resistance 0.0 Ω/square

JS Source drain junction saturation current per unit area 1.E-4 A/m2

XPART Charge partitioning rate flag 0

CGSO Non LDD region source-gate overlap capacitance per channel length

calculated F/m

CGDO Non LDD region drain-gate overlap capacitance per channel length

calculated F/m

CGBO Gate bulk overlap capacitance per unit channel length 0.0 F/m

CJ Bottom junction capacitance per unit area 5e-4 F/m2

MJ Bottom junction capacitance grating coefficient 0.5

MJSW Source/drain junction capacitance grading coefficient 0.33

CJSW Source/drain side junction capacitance per unit area 5e-10 F/m

PB Bottom built-in potential 1.0 V

PBSW Source/drain side junction built-in potential 1.0 V

CGS1 Light doped source-gate region overlap capacitance 0.0 F/m

CGD1 Light doped drain-gate region overlap capacitance 0.0 F/m

CKAPPA Coefficient for lightly doped region overlap capacitance 0.6 F/m

CF Fringing field capacitance calculated F/m

CLC Constant term for the short channel model 0.1E-6 meter

CLE Exponential term for the short channel model 0.6

DLC Length offset fitting parameter from C-V LINT meter

Table 15 Parameters for the BSIM3 version 3 Model (Continued)

Name Description Default Units

42 Aurora Reference GuideX-2006.09

Page 63: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

DWC Width offset fitting parameter from C-V WINT meter

ELM Elmore constant of the channel 5

WL Coefficient of length dependence for width offset 0.0 mWln

WLN Power of length dependence of width offset 1.0

WW Coefficient of width dependence for width offset 0.0 mWwn

WWN Power of width dependence of width offset 1.0

WWL Coefficient of length and width cross term for width offset 0.0 mWwn+

Wln

LL Coefficient of length dependence of length offset 0.0 mLln

LLN Power of length dependence for length offset 1.0

LW Coefficient of width dependence for length offset 0.0 mLwn

LWN Power of width dependence for length offset 1.0

LWL Coefficient of length and width cross term for length offset 0.0 mLwn+Ll

n

TNOM Temperature at which the parameters are extracted 27 C

UTE Mobility temperature exponent -1.5

KT1 Temperature coefficient for threshold voltage -0.11 V

KT1L Channel length dependence of the temperature coefficient for threshold voltage

0.0 V*m

KT2 Body bias coefficient of Vth temperature effect 0.022

UA1 Temperature coefficient for UA 4.31E-9 m/V

UB1 Temperature coefficient for UB -7.61E-18 (m/V)2

Table 15 Parameters for the BSIM3 version 3 Model (Continued)

Name Description Default Units

Aurora Reference Guide 43X-2006.09

Page 64: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

UC1 Temperature coefficient for UC -5.6E-11 m/V2

AT Temperature coefficient for saturation velocity 3.3E4 m/sec

GAMMA1 Body effect coefficient near the surface calculated V1/2

GAMMA2 Body effect coefficient in the bulk calculated V1/2

VBX Vbs at which the depletion region width equals XT calculated V

XT Doping depth 1.55e-7 m

LMIN Minimum channel length 0.0 m

LMAX Maximum channel length 1.0 m

WMIN Minimum channel width 0.0 m

WMAX Maximum channel width 1.0 m

TYPE +1 for n-channel, -1 for p-channel 1.0

TOX Gate oxide thickness 2.5e-8 m

XJ Junction depth 2.0e-7 m

NCH Channel doping concentration 1.7e17 cm-3

NSUB Substrate doping concentration 6e16 cm-3

MOBMOD Mobility model selector 1

CAPMOD Flag for short channel capacitance model 1

NQSMOD Flag for NQS model 0

CAPEVAL Flag for computing capacitance (Aurora specific) 0

Table 15 Parameters for the BSIM3 version 3 Model (Continued)

Name Description Default Units

44 Aurora Reference GuideX-2006.09

Page 65: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

Sheet ResistanceThe sheet resistance parameter RSH requires the specification of the number of squares for the drain (variable NRD) and the number of squares for the source (variable NRS). The resistance is calculated by multiplying the sheet resistance by the number of squares.

LWP Terms BSIM3 version 3.1 implemented in Aurora<Text:Helv 11 Plain> also includes the Length, Width, and Product terms for each of the parameters. The LWP terms determine the length, width, and cross-term (LxW) dependence of each of the parameters. Table 16 illustrates the LWP terms for the parameters available with Aurora.

Table 16 Length, Width, and Cross-Term Dependent Parameters

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

CDSC LCDSC WCDSC PCDSC

CDSCB LCDSCB WCDSCB PCDSCB

CDSCD LCDSCD WCDSCD PCDSCD

CIT LCIT WCIT PCIT

NFACTOR LNFACTOR WNFACTOR PNFACTOR

XJ LXJ WXJ PXJ

VSAT LVSAT WVSAT PVSAT

AT LAT WAT PAT

A0 LA0 WA0 PA0

AGS LAGS WAGS PAGS

A1 LA1 WA1 PA1

A2 LA2 WA2 PA2

KETA LKETA WKETA PKETA

Aurora Reference Guide 45X-2006.09

Page 66: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

NSUB LNSUB WNSUB PNSUB

NPEAK LNPEAK WNPEAK PNPEAK

NGATE LNGATE WNGATE PNGATE

GAMMA1 LGAMMA1 WGAMMA1 PGAMMA1

GAMMA2 LGAMMA2 WGAMMA2 PGAMMA2

VBX LVBX WVBX PVBX

VBM LVBM WVBM PVBM

XT LXT WXT PXT

K1 LK1 WK1 PK1

KT1 LKT1 WKT1 PKT1

KT1L LKT1L WKT1L PKT1L

KT2 LKT2 WKT2 PKT2

K2 LK2 WK2 PK2

K3 LK3 WK3 PK3

K3B LK3B WK3B PK3B

W0 LW0 WW0 PW0

NLX LNLX WNLX PNLX

DVT0 LDVT0 WDVT0 PDVT0

DVT1 LDVT1 WDVT1 PDVT1

DVT2 LDVT2 WDVT2 PDVT2

Table 16 Length, Width, and Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

46 Aurora Reference GuideX-2006.09

Page 67: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

DVT0W LDVT0W WDVT0W PDVT0W

DVT1W LDVT1W WDVT1W PDVT1W

DVT2W LDVT2W WDVT2W PDVT2W

DROUT LDROUT WDROUT PDROUT

DSUB LDSUB WDSUB PDSUB

VTH0 LVTH0 WVTH0 PVTH0

UA LUA WUA PUA

UA1 LUA1 WUA1 PUA1

UB LUB WUB PUB

UB1 LUB1 WUB1 PUB1

UC LUC WUC PUC

UC1 LUC1 WUC1 PUC1

U0 LU0 WU0 PU0

UTE LUTE WUTE PUTE

VOFF LVOFF WVOFF PVOFF

DELTA LDELTA WDELTA PDELTA

RDSW LRDSW WRDSW PRDSW

PRWG LPRWG WPRWG PPRWG

PRWB LPRWB WPRWB PPRWB

PRT LPRT WPRT PPRT

Table 16 Length, Width, and Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

Aurora Reference Guide 47X-2006.09

Page 68: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3v3/SPICE Model

ETA0 LETA0 WETA0 PETA0

ETAB LETAB WETAB PETAB

PCLM LPCLM WPCLM PPCLM

PDIBLC1 LPDIBLC1 WPDIBLC1 PPDIBLC1

PDIBLC2 LPDIBLC2 WPDIBLC2 PPDIBLC2

PDIBLCB LPDIBLCB WPDIBLCB PPDIBLCB

PSCBE1 LPSCBE1 WPSCBE1 PPSCBE1

PSCBE2 LPSCBE2 WPSCBE2 PPSCBE2

PVAG LPVAG WPVAG PPVAG

WR LWR WWR PWR

DWG LDWG WDWG PDWG

DWB LDWB WDWB PDWB

B0 LB0 WB0 PB0

B1 LB1 WB1 PB1

ALPHA0 LALPHA0 WALPHA0 PALPHA0

BETA0 LBETA0 WBETA0 PBETA0

ELM LELM WELM PELM

CGSL LCGSL WCGSL PCGSL

CGDL LCGDL WCGDL PCGDL

CKAPPA LCKAPPA WCKAPPA PCKAPPA

Table 16 Length, Width, and Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

48 Aurora Reference GuideX-2006.09

Page 69: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

Note:

Some of the model parameters listed in the BSIM3v3 documentation may not be present in the list given above. For a complete list of parameters, refer to the BSIM3v3 manual (Feb., 1997) from the University of California, Berkeley. Some of the default values listed above also do not match the Berkeley documentation. This documentation is based on the Berkeley SPICE BSIM3 source code, not the Berkeley documentation.

Note:

The internal “BSIM3v3” model represents an obsolete version of the model (v. 3.1). We strongly recommend using the internal HSPICE L 49 or HSPICE L 53 models that represent the latest version (3.3) and are fully compatible with the Star-HSPICE and Berkeley SPICE circuit simulators. The external BSIM3v3 model is ok to be used with external simulators. When using external simulators with the HSPICE Level 49 or 53 models, the external BSIM3v3 model is used in order to provide the link with the circuit simulator.

MOS9/SPICE Model

The MOS Model 9 is a compact MOS model from Phillips Semiconductor intended for simulation of circuit behavior with emphasis on analog applications. The model focuses on all the transistor-action-related quantities: nodal currents, and charges, noise-power spectral densities, and weak-avalanche currents. The model equations are based on the gradual channel approximation, with a number of first-order corrections for small-size effects.

CF LCF WCF PCF

CLC LCLC WCLC PCLC

CLE LCLE WCLE PCLE

VFBCV LVFBCV WVFBCV PVFBCV

Table 16 Length, Width, and Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

Aurora Reference Guide 49X-2006.09

Page 70: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

The continuity of derivatives of currents and charges at the device operation boundaries have been given significant emphasis.

Variables

The MOS9/SPICE model uses 12 variables:

Table 17 Variables of the MOS9/SPICE Model

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares 1.0 squares

NRS Number of source diffusion squares 1.0 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

50 Aurora Reference GuideX-2006.09

Page 71: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

Targets

Four primary targets are defined for the MOS9/SPICE model:

These targets represent the currents entering the drain, gate, source, and bulk terminals of the device.

Parameters

The parameters for the MOS9/SPICE model are listed in Table 19.

Table 18 Targets of the MOS9/SPICE Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-15

IG Current entering gate terminal Amps 1 × 10-15

IS Current entering source terminal Amps 1 × 10-15

IB Current entering substrate terminal Amps 1 × 10-15

Table 19 Parameters for the MOS9/SPICE Model

Name Description Default Units

VTH0 Zero-bias threshold voltage 0.8 V

BET Gain factor 1.0e-4 A V-2

THE

1

Coefficient of mobility reduction due to gate-induced field

0.1 V-1

THE2 Coefficient of mobility reduction due to back-bias

0.05 V-1/2

K High-back-bias body factor 0.5 V1/2

KO Low-back-bias body factor 0.0 V1/2

VSBX Transition voltage for the dual-k-factor model 0.6 V

Aurora Reference Guide 51X-2006.09

Page 72: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

GAMOO Coefficient of drain induced threshold shift at zero gate drive

3.0e-5

MO Factor of the subthreshold slope 0.4

ZET1 Weak inversion correction factor 2.0

ETAGAM Exponent of the back-bias dependence of GAMOO

2.0

ETAM Exponent of the back-bias dependence of MO

2.0

VSBT Limiting dependence of Vbs for MO and GAMOO

100.0 V

GAM1 Coefficient of drain induced threshold shift for large gate drive

4.0e-3 V(1-ETADS)

ALP Factor of the channel-length modulation 1.0e-2

VP Characteristic voltage of channel-length modulation

6.8 V

THE3 Coefficient of mobility reduction due to lateral field

0.0 V-1

ETADS Exponent of the Vds dependence of GAM1 0.6

A1 Factor of the weak-avalanche current 20.0

A2 Exponent of the weak-avalanche current 34.0 V

A3 Factor of the drain-source voltage above which weak avalanche occurs

1.0

TR Reference temperature 27.0 C

PHIBR Reference built-in voltage 0.65 V

Table 19 Parameters for the MOS9/SPICE Model (Continued)

Name Description Default Units

52 Aurora Reference GuideX-2006.09

Page 73: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

LER Effective channel length of the reference transistor

4.0e-5 m

WER Effective channel width of the reference transistor

0.0 m

LVAR Difference between the actual and the drawn gate length

0.0 m

LAP Effective channel length reduction per side due to lateral diffusion of source/drain dopant ions

0.0 m

WVAR Difference between actual and programmed field-oxide opening

0.0 m

WOT Effective reduction of channel width per side due to lateral diffusion of the channel-stop dopant ions

0.0 m

SENS Use W, L, and T factors? 0.0

STVT0 Coefficient of Temperature dependence of VT0

0.0 VK-1

SLVTO Coefficient of the length dependence of VTO 0.0 Vm

SL2VTO Second coefficient of the length dependence of VTO

0.0 Vm2

SLK Coefficient of the length dependence of K 0.0 V-1/2m

SWK Coefficient of width dependence of K 0.0 V-1/2m

SLKO Coefficient of length dependence of KO 0.0 V1/2m

SLVSBX Coefficient of length dependence of VSBX 0.0 Vm

SWVSBX Coefficient of width dependence of VSBX 0.0 Vm

Table 19 Parameters for the MOS9/SPICE Model (Continued)

Name Description Default Units

Aurora Reference Guide 53X-2006.09

Page 74: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

SLTHE1R Coefficient of length dependence of THE1 for the reference transistor.

0.0 V-1m

SWTHE1 Coefficient of width dependence of THE1 0.0 V-1m

SLTHE2R Coefficient of length dependence of THE2 for the reference transistor

0.0 V-1/2m

SWTHE2 Coefficient of width dependence for THE2 0.0 V-1/2m

SLTHE3R Coefficient of length dependence of THE3 for the reference transistor

0.0 V-1m

SWTHE3 Coefficient of width dependence of THE3 0.0 V-1m

SLGAM1 Coefficient of length dependence of GAM1 0.0 V(1-

ETADS)m

SWGAM1 Coefficient of width dependence of GAM1 0.0 V(1-

ETADS)m

ETAALP Exponent of the length dependence of ALP 0.0

SLALP Coefficient of length dependence of ALP 0.0 mETAALP

SWALP Coefficient of width dependence of ALP 0.0 m

SLGAMOO Coefficient of length dependence of GAMOO 0.0 m2

SLMO Coefficient of length dependence of MO 0.0 m1/2

ETAZET Exponent of the length dependence of ZET1 0.5

SLZET1 Coefficient of length dependence of ZET1 0.0 mETAZET

SLA1 Coefficient of length dependence of A1 0.0 m

SWA1 Coefficient of width dependence of A1 0.0 m

SLA2 Coefficient of length dependence of A2 0.0 Vm

Table 19 Parameters for the MOS9/SPICE Model (Continued)

Name Description Default Units

54 Aurora Reference GuideX-2006.09

Page 75: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS9/SPICE Model

Note:

Some of the model parameters listed in the MOS MODEL 9 documentation may not be present in the list given above. For a complete list of the model parameters available with the MOS MODEL 9, refer to the MOS MODEL 9, level 902, June 1995 from Phillips Research Laboratories.

SWA2 Coefficient of width dependence of A2 0.0 Vm

SLA3 Coefficient of length dependence of A3 0.0 m

SWA3 Coefficient of width dependence of A3 0.0 m

ETABET Exponent of the temperature dependence of BETA

1.0

STTHE1R Coefficient of the temperature dependence of THE1 for the reference transistor

0.0 V-1K-1

STLTHE1 Coefficient of the temperature dependence of the length dependence of THE1

0.0 V-1mK-1

STTHE2R Coefficient of the temperature dependence of THE2 for the reference transistor

0.0 V-1/2K-1

STLTHE2 Coefficient of the temperature dependence of the length dependence of THE2

0.0 V-1/2mK-1

STTHE3R Coefficient of the temperature dependence of THE3 for the reference transistor

0.0 V-1m

STLTHE3 Coefficient of the temperature dependence of the length dependence of THE3

0.0 V-1mK-1

STMO Coefficient of the temperature dependence of MO

0.0 K-1

STA1 Coefficient of the temperature dependence of A1

0.0 K-1

Table 19 Parameters for the MOS9/SPICE Model (Continued)

Name Description Default Units

Aurora Reference Guide 55X-2006.09

Page 76: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsDIODE/SPICE Model

Note:

Aurora also includes the HSPICE version of MOS9 (Level 50) as an internal model. We recommend using the internal HSPICE version of the model.

DIODE/SPICE Model

Aurora contains a built-in model for diodes. This model, named DIODE/SPICE, is the diode model in the SPICE circuit simulator, version 2G.6.

Variables

The DIODE/SPICE model uses five variables:

VD is the applied voltage (forward bias) on the diode terminals (anode to cathode). AREA is a scale factor for the current. T is the temperature, in degrees Celsius. DEVID, the device identification number, distinguishes data from different diodes. Similarly, REGION distinguishes data from the same device, but from different regions of behavior.

Table 20 Variables of the DIODE/SPICE Model

Name Description Default Units

VD Applied diode voltage 0.0 Volts

AREA Area scale factor 1.0

T Temperature 27.0 °C

DEVID Device identification 0

REGION Device behavior region 0

56 Aurora Reference GuideX-2006.09

Page 77: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsDIODE/SPICE Model

Targets

Six primary targets are defined for the DIODE/SPICE model:

ID and IR are the currents entering the anode and cathode terminals of the transistor, respectively. ID = - IR will always obtain; that is, ID is the forward current of the diode, and IR is the reverse current.

Parameters

The parameters used by the DIODE/SPICE model are listed in Table 22 with their default values and units. The parameters IS, N, BV, and IBV control the basic model, which is valid at moderate currents. EG and XTI control the temperature dependence of the model. RS is the series resistance of the diode. In SPICE, GMIN is not a model parameter but an Options parameter that adds a small conductance in series (large resistance in parallel) with all devices. It is used to aid convergence in circuit simulation. Synopsys TCAD does not recommend using it here.

Table 21 Targets of the DIODE/SPICE Model

Name Description Units Minimum

ID Current entering anode terminal Amps 1× 10-15

IR Current entering cathode terminal Amps 1 × 10-15

C Capacitance Farads 1 × 10-18

Q Stored charge Couls 1 × 10-15

GD Computed conductance Mhos 1 × 10-15

VI Intrinsic junction voltage Volts 1 × 10-15

Table 22 Parameters for the DIODE/SPICE Model

Name Description Default Units Notes

IS Diode saturation current 1 × 10-16 Amps

Aurora Reference Guide 57X-2006.09

Page 78: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsDIODE/SPICE Model

ISL Alias for IS (SABER specific parameter) - Amps

ISR Recombination saturation current 0 Amps

N Emission coefficient 1.0

NL Alias for N (SABER specific parameter) 1.0

NR Recombination emission coefficient 2.0

IKF Knee current 0 Amps 1

RS Diode series resistance 0 W

BV Reverse breakdown voltage 1 × 1010 Volts

IBV Current at breakdown voltage 1× 10-3 Amps

EG Activation energy 1.11 Volts

XTI Saturation current temperature exponent 3.0

TCV Breakdown voltage temperature coefficient 0.0 1/°C

TRS Series resistance temperature coefficient 0.0 1/°C

GMIN Minimum conductance 1 × 10-12 Mhos

CJO Zero-bias capacitance 0.0 Farads 2

VJ Built-in voltage 1 Volts 2

MJ Grading coefficient 0.5 2

FC Forward-bias capacitance coefficient 0.5 2

TT Transit time 1e-8 s 2

TNOM Nominal temperature 27.0 °C

Table 22 Parameters for the DIODE/SPICE Model

Name Description Default Units Notes

58 Aurora Reference GuideX-2006.09

Page 79: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsDIODE/SPICE Model

1. A zero value means IKF infinite.

2. AC model parameter.

Aurora Reference Guide 59X-2006.09

Page 80: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

BJT/SPICE Model

This model, named BJT/SPICE, is an enhanced version of the BJT model in the SPICE circuit simulator, version 2G.6. The enhancements allow for different base and collector resistances to be extracted in the forward and reverse modes of operation. The model also includes the Kull quasi-saturation extension.

Variables

The BJT/SPICE model uses 13 variables:

Table 23 Variables of the BJT/SPICE Model

Name Description Default Units

VB Base voltage undefined Volts

VC Collector voltage undefined Volts

VE Emitter voltage 0.0 Volts

VS Substrate voltage 0.0 Volts

VCB Collector-base voltage undefined Volts

IBS Forced base current undefined Amps

ICS Forced collector current undefined Amps

AREA Area scale factor 1.0

T Temperature 27.0 °C

MODE -1 for reverse mode +1

POLARITY -1 for pnp +1

DEVID Device identification 0

REGION Device behavior region 0

60 Aurora Reference GuideX-2006.09

Page 81: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

DescriptionVB, VC, VE, and VS are the applied voltages on the base, collector, emitter, and substrate terminals, respectively. VCB is the collector-base voltage, and is an extra variable in Aurora (VCB = VC-VB). Any of these terminals may be used as a reference by leaving its voltage at the default value of zero. IBS is the value of the sourced base current. If IBS is defined, a sourced base current is assumed, and VB is ignored. ICS is the value of the sourced collector current. If ICS is nonzero, a sourced collector current is assumed, and VC is ignored. AREA is a scale factor for the current. T is the temperature, in degrees Celsius. MODE = -1 specifies that the collector and emitter terminals have been interchanged for reverse mode measurements; MODE = +1 represents the forward mode. DEVID, the device identification number, distinguishes data from different transistors. Similarly, REGION distinguishes data from the same device but from different regions of behavior.

Note:

For versions of Aurora prior to 2002.2 only a nonzero IBS value forced a base current. IBS=0 has been enabled starting with Aurora 2002.2 in order to account for open base characterization.

Note:

In Aurora it is ok to use VB and VC instead of VCB, when VCB=0 (sweeping VB and VC together: VB=VC). However, it is not ok to use VB and VC when VBC is constant, but nonzero. In such a case, VCB must be used.

PolarityPOLARITY specifies the polarity of the input data. For npn devices, POLARITY is +1. In this case, a positive base-to-emitter voltage will forward-bias the base-to-emitter junction. If POLARITY is -1, the voltages and currents are assumed correct for pnp transistors. In this case, a negative base-to-emitter voltage is required to forward-bias the base-to-emitter junction.

Aurora Reference Guide 61X-2006.09

Page 82: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

Targets

Seven primary targets are defined for the DC part of the BJT/SPICE model:

DescriptionIC, IB, and IE are the currents entering the collector, base, and emitter terminals of the transistor. VBM is the measured base voltage, and is normally used when the base current is sourced (IBS ≠ 0). RBE is the effective base resistance calculated by the model. RBE may be a function of the applied bias. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

For normal forward operation, IC and IB are positive for npn transistors (POLARITY = +1) and negative for pnp transistors (POLARITY = -1).

The cut-off frequency (FT) is defined as a target for the AC part of the BJT/SPICE model. TAUF, the forward transit time is no longer used for AC parameter extraction. It is maintained for compatibility with older versions only.

Table 24 Targets of the BJT/SPICE Model

Name Description Units Minimum

IC Current entering collector terminal Amps 1 × 10-15

IB Current entering base terminal Amps 1 × 10-15

IE Current entering emitter terminal Amps 1 × 10-15

VBM Measured base voltage Volts 1 × 10-6

RBE Effective base resistance W 1 × 10-6

TAUF Forward transit time sec 1 × 10-6

FT Cutoff frequency Hz 1 x 10-6

VIBC Internal base-collector voltage V 1 × 10-15

ISUB Current entering substrate terminal Amps 1 × 10-15

62 Aurora Reference GuideX-2006.09

Page 83: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

Parameters

The parameters used by the BJT/SPICE model are listed in Table , p. -64 with their default values and units.

Description The parameters IS, BF, NF, VAF, BR, NR, and VAR control the basic model, which is valid at moderate currents. ISE, NE, ISC, and NC reduce the gain at low currents, while IKF and IKR reduce the gain at high currents. RC and RE are the collector and emitter resistances. The base resistance may depend on the bias. RB is the base resistance at low currents. If RBM is nonzero, the base resistance decreases to a minimum value of RBM at high currents. IRB, if specified, is the current at which the base resistance decrease takes effect. XTB, EG, and XTI control the temperature dependence of the model.

Options ParametersIn SPICE, GMIN is not a model parameter, but an OPTIONS parameter that adds a small conductance in series (large resistance in parallel) with all devices. It is used to aid convergence in circuit simulation. Synopsys TCAD does not recommend using it here.

Reverse Mode Extension ParametersThe parameters RBR, IRBR, RBMR, and RCR are extensions to the SPICE BJT model. These are analogous to RB, IRB, RBM, and RC, but are used in the reverse mode of operation (i.e., (VC — VE) ⋅

and MODE = -1). If any of these parameters are not specified, the corresponding forward mode parameter is used in both forward and reverse modes. None of these parameters is used if RBR is less than or equal to 0.

AC BJT/SPICE ParametersThe parameters TF, XTF, VTF, ITF, and PTF are AC BJT/SPICE parameters associated with S-parameter measurements. All of these, except PTF, are used during optimization to fit to the target FT. Parameter PTF is obtained usingS-parameter analysis. Additional junction capacitance parameters are also available in the BJT model.

POLARITY 0<

Aurora Reference Guide 63X-2006.09

Page 84: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

Quasisaturation Extension ParametersThe parameters RCO, GAMMA, VO, and QCO are part of the Kull quasisaturation model extension to the Gummel-Poon model. This model is fully compatible with the Star-Hspice BJT Level 2 model and with the PSPICE BJT model. The parameter NK, introduced by Garwacky, also partly accounts for quasisaturation effects. It should normally be set to 0.5.

Table 25 Parameters of the BJT/SPICE Model

Name Description Default Units Notes

IS Collector saturation current 1 × 10-16 Amps

BF Forward beta 100.0

NF Forward current exponent 1.0

VAF Forward Early voltage 0.0 Volts 1

IKF Forward high-current beta roll-off 0.0 Amps 1

ISE Forward low-current beta roll-off coefficient

0.0 Amps 1

NE Forward low-current beta roll-off exponent 1.5

BR Reverse beta 1.0

NR Reverse current exponent 1.0

VAR Reverse Early voltage 0.0 Volts 1

IKR Reverse high-current beta roll-off 0.0 Amps 1

NK Exponent for high current roll-off 0.5 2

ISC Reverse low-current beta roll-off coefficient

0.0 Amps 1

NC Reverse low-current beta roll-off exponent 2.0

RB Low-current base resistance 0.0 W 1

64 Aurora Reference GuideX-2006.09

Page 85: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

IRB Ib for base resistance reduction 0.0 Amps 1

RBM High-current base resistance 0.0 W 1

RE Emitter series resistance 0.0 W 1

RC Collector series resistance 0.0 W 1

XTB Temperature coefficient of beta 0.0

EG Band-gap energy 1.11 Volts

XTI Temperature coefficient of mobility 3.0

GMIN Minimum conductance 1 × 10-12 Mhos

RBR Low-current base resistance W 3

IRBR Ib for base resistance reduction Amps 3

RBMR High-current base resistance W 3

RCR Collector series resistance W 3

TF Ideal forward transit time 0.0 sec

XTF Transit time bias dependence term 0.0

VTF Transit time Vbc dependence term 1 × 1030 Volts

ITF Transit time dependence on Ic 0.0 Amps

PTF Excess phase at cut-off frequency 0.0 deg

CJE Base-emitter junction zero bias depletion capacitance

0 F

VJE Base-emitter junction built-in voltage 1 V

MJE Base-emitter junction grading coefficient 0.5

Table 25 Parameters of the BJT/SPICE Model

Name Description Default Units Notes

Aurora Reference Guide 65X-2006.09

Page 86: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBJT/SPICE Model

CJC Base-collector junction zero bias depletion capacitance

0 F

VJC Base-collector junction built-in voltage 1 V

MJC Base-collector junction grading coefficient 0.5

XCJC Base-collector capacitance partition coefficient.

1

CJS Substrate junction zero bias depletion capacitance

0 F 4

VJS Substrate junction built-in voltage 1 V 4

MJS Substrate junction grading coefficient 0.5 4

FC SPICE forward bias capacitance coefficient

0.5

TR Reverse transit time 0 s 4

RCO Collector epilayer unmodulated resistance 0 W 2, 5

GAMMA Collector epilayer coefficient 0 2

VO Collector epilayer carrier velocity saturation voltage

0 V 2

NEPI Epilayer current emission coefficient (Star-HSPICE only)

1 6

QCO Epitaxial charge factor 0 C 2, 4

TREF Nominal temperature 27.0 °C

1. The default value disables the associated effect.

2. Added for Star-Hspice and PSPICE compatibility.

3. Defaults to value of corresponding forward parameter.

Table 25 Parameters of the BJT/SPICE Model

Name Description Default Units Notes

66 Aurora Reference GuideX-2006.09

Page 87: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

VBIC Model

The VBIC BJT model version 1.1.5 is available in Aurora. The implementation includes self-heating support.

Variables

The VBIC model uses 15 variables:

4. Not used in Aurora<Text:Helv 11 Plain> 2000.4

5. In the Star-Hspice Level 2 model, the RC parameter is used instead of RCO.

6. Available in Star-Hspice only.

Table 26 Variables of the VBIC Model

Name Description Default Units Notes

VB Base voltage undefined Volts major

VC Collector voltage undefined Volts major

VE Emitter voltage 0.0 Volts major

VS Substrate voltage 0.0 Volts major

VCB Collector-base voltage undefined Volts major

IBS Forced base current undefined Amps major

ICS Forced collector current undefined Amps major

Aurora Reference Guide 67X-2006.09

Page 88: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

DescriptionVB, VC, VE, and VS are the applied voltages on the base, collector, emitter, and substrate terminals, respectively. VCB is the collector-base voltage, and is an extra variable in Aurora (VCB = VC-VB). Any of these terminals may be used as a reference by leaving its voltage at the default value of zero. IBS is the value of the sourced base current. If IBS is defined, a sourced base current is assumed and VB is ignored. ICS is the value of the source collector current. If ICS is nonzero, a source collector current is assumed and VC is ignored. AREA is a scale factor for the current. T is the temperature, in degrees Celsius. MODE = -1 specifies that the collector and emitter terminals have been interchanged for reverse mode measurements; MODE = +1 is the normal case. DEVID, the device identification number, distinguishes data from different transistors. Similarly, REGION distinguishes data from the same device but from different regions of behavior.The FREQ and Z0 variables are introduced in Aurora 2003.03 to support S-parameter analysis.

Note:

For versions of Aurora prior to 2002.2 only a nonzero IBS value forced a base current. IBS=0 has been enabled starting with Aurora 2002.2 in order to account for open base characterization.

FREQ Frequency 0.0 Hz major

AREA Area scale factor 1.0

T Temperature 27.0 °C

MODE -1 for reverse mode +1

POLARITY -1 for pnp +1

DEVID Device identification 0

REGION Device behavior region 0

Z0 Characteristic impedance 50 ohm

Table 26 Variables of the VBIC Model

Name Description Default Units Notes

68 Aurora Reference GuideX-2006.09

Page 89: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

Note:

In Aurora it is ok to use VB and VC instead of VCB, when VCB=0 (sweeping VB and VC together: VB=VC). However, it is not ok to use VB and VC when VBC is constant, but nonzero. In such a case, VCB must be used.

PolarityPOLARITY specifies the polarity of the input data. For npn devices, POLARITY is +1. In this case, a positive base-to-emitter voltage will forward-bias the base-to-emitter junction. If POLARITY is -1, the voltages and currents are assumed correct for pnp transistors. In this case, a negative base-to-emitter voltage is required to forward-bias the base-to-emitter junction.

Aurora Reference Guide 69X-2006.09

Page 90: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

TargetsTable 27 Targets of the VBIC Model

Name Description Units Minimum

IC Current entering collector terminal Amps 1 × 10-15

IB Current entering base terminal Amps 1 × 10-15

IE Current entering emitter terminal Amps 1 × 10-15

ISUB Substrate current Amps 1 × 10-15

RBE Effective base resistance W 1 × 10-6

TAUF Forward transit time sec 1 × 10-6

FT Cutoff frequency Hz 1 x 10-6

FTAPRX Approximated cutoff frequency Hz 1 x 10-6

GAIN AC gain 1 x 10-6

GAINAPRX Approximated AC gain 1 x 10-6

VBM Measured bas voltage V 1 × 10-17

VIBC Internal base-collector voltage V 1 × 10-17

CAPBE Junction capacitance

CAPBC Junction capacitance

S11R Real part of S11 1 × 10-17

S11I Imaginary part of S11 1 × 10-17

S12R Real part of S12 1 × 10-17

S12I Imaginary part of S12 1 × 10-17

70 Aurora Reference GuideX-2006.09

Page 91: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

DESCRIPTION

IC, IB, IE, and ISUB are the currents entering the collector, base, emitter, and substrate terminals of the transistor. RBE is the effective base resistance calculated by the model. RBE may be a function of the applied bias. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

For normal forward operation, IC and IB are positive for npn transistors (POLARITY = +1) and negative for pnp transistors (POLARITY = -1).

The cut-off frequency (FT) is defined as a target for the AC part of the VBIC model. The S parameters and y parameters (real and imaginary part) are also

S21R Real part of S21 1 × 10-17

S21I Imaginary part of S21 1 × 10-17

S22R Real part of S22 1 × 10-17

S22I Imaginary part of S22 1 × 10-17

Y11R Real part of y11 1 × 10-17

Y11I Imaginary part of y11 1 × 10-17

Y12R Real part of y12 1 × 10-17

Y12I Imaginary part of y12 1 × 10-17

Y21R Real part of y21 1 × 10-17

Y21I Imaginary part of y21 1 × 10-17

Y22R Real part of y22 1 × 10-17

Y22I Imaginary part of y22 1 × 10-17

Table 27 Targets of the VBIC Model

Name Description Units Minimum

Aurora Reference Guide 71X-2006.09

Page 92: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

available as targets. The value of the frequency (FREQ) must be greater than 0 in order for the model to calculate the S and y parameters.

Table 28 Parameters of the VBIC model

Name Description Default Units Notes

IS Transport saturation current 1.0e-16 A

IBEI Forward ideal base emitter saturation current 1.0e-18 A

NEI Forward ideal base emitter current exponent 1.0 -

WBE Base emitter peripheral current coefficient 1.0 -

NF Forward current exponent 1.0 -

VEF Forward Early voltage 20.0 V

IKF Forward knee current 2.0e-5 A

IBEN Forward non ideal base emitter saturation current 0.0 A

NEN Forward non ideal base emitter current exponent 2.0 -

IBCI Reverse ideal base collector saturation current 1.0e-16 A

NCI Reverse ideal base collector current exponent 1.0 -

NR Reverse current exponent 1.0 -

VER Reverse Early voltage 20.0 V

IKR Reverse knee current 1.0 A

IBCN Reverse non ideal base collector saturation current 0.0 0.0

NCN Reverse non ideal base collector current exponent 2.0 -

RBX Extrinsic base resistance 500.0 W

RBI Intrinsic base resistance 50.0 W

RE Emitter series resistance 2.0 W

72 Aurora Reference GuideX-2006.09

Page 93: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

RCX Extrinsic collector resistance 0.0 W

RCI Intrinsic collector resistance 0.0 W

GAMM Collector epilayer coefficient 0.0 -

HRCF Collector epilayer high current coefficient 1.0 -

VO Collector epilayer saturation velocity voltage 100.0 V

QCO Collector epilayer charge coefficient 0.0 -

ISP Parasitic transport saturation current 0.0 A

WSP Parasitic peripheral current coefficient 1.0 -

NFP Parasitic current exponent 1.0 -

IBEIP Parasitic forward ideal saturation current 0.0 A

IBENP Parasitic forward non ideal saturation current 0.0 A

IBCIP Parasitic reverse ideal saturation current 0.0 A

NCIP Parasitic reverse ideal current exponent 1.0 -

IBCNP Parasitic reverse non ideal saturation current 0.0 A

NCNP Parasitic reverse non ideal current exponent 2.0 -

IKP Parasitic knee current 0.0 A

RBP Parasitic resistance 0.0 W

RS Substrate series resistance 0.0 W

TF Ideal forward transit time 1.0e-11 s

TR Ideal reversed transit time 0.0 s

XTF Transit time bias dependence coefficient 3.0 -

ITF Transit time dependence on Ic 1.0e-3 A

Table 28 Parameters of the VBIC model (Continued)

Aurora Reference Guide 73X-2006.09

Page 94: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

VTF Transit time vbc dependence coefficient 0.0 V

QTF Transit time base width dependence 0.0 -

TD Excess phase at cut-off frequency 0.0 s

KFN Flicker-noise coefficient 0.0 -

AFN Flicker-noise exponent 1.0 -

BFN Flicker-noise 1/f dependence 1.0 -

CBEO Base-emitter overlap capacitance 0.0 F

CBCO Base-collector overlap capacitance 0.0 F

CJE Base-emitter zero-bias depletion capacitance 1.0e-15 F

PE Base-emitter built-in potential 0.8 V

ME Base-emitter-junction exponential factor 0.5 -

AJE Base-emitter capacitance selector -0.5 -

CJC Base-collector zero-bias depletion capacitance 1.0e-15 F

CJEP Base-collector extrinsic depletion capacitance 0.0 F

PC Base-collector built-in potential 0.8 V

MC Base-collector-junction exponential factor 0.5 -

AJC Base-collector capacitance selector -0.5 -

CJCP Zero-bias collector-substrate capacitance 1.0e-15 F

PS Substrate-junction built-in potential 0.8 V

MS Substrate-junction exponential factor 0.5 -

AJS Collector-substrate capacitance selector -0.5 -

FC Forward-bias depletion capacitor coefficient 0.5 -

Table 28 Parameters of the VBIC model (Continued)

74 Aurora Reference GuideX-2006.09

Page 95: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsVBIC Model

AVC1 Base-collector weak avalanche first coefficient 0.0 -

AVC2 Base-collector weak avalanche second coefficient 0.0 -

XRE RE Temperature coefficient 0.0 -

XRB RBX RBITemperature coefficient 0.0 -

XRC RCX RCI Temperature coefficient 0.0 -

XRS RS RP Temperature coefficient 0.0 -

XVO VO Temperature coefficient 0.0 -

EA IS activation energy 1.12 V

EAIE IBEI activation energy 1.12 V

EAIC IBCI IBEIP activation energy 1.12 V

EAIS IBCIP activation energy 1.12 V

EANE IBEN activation energy 1.12 V

EANC IBCN IBENP activation energy 1.12 V

EANS IBCNP activation energy 1.12 V

XIS IS temperature coefficient 3.0 -

XII Ideal currents temperature coefficient 3.0 -

XIN Non ideal currents temperature coefficient 3.0 -

TNF NF temperature coefficient 3.0 -

TAVC AVC2 temperature coefficient 3.0 -

RTH Thermal resistance 0.0 -

CTH Thermal capacitance 0.0 -

TNOM Nominal temperature 27.0 oC

Table 28 Parameters of the VBIC model (Continued)

Aurora Reference Guide 75X-2006.09

Page 96: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsJCAP/SPICE Model

NOTES:

The parameters RTH and CTH account for self-heating effect.

The parameter FTMODE is an Aurora specific parameters. If it is set to 1, it enables calculus of the FT target.

JCAP/SPICE Model

Aurora contains a built-in model for junction capacitors. This model, named JCAP/SPICE, is like the MOS source/drain capacitance model in the SPICE circuit simulator, version 2G.6. Voltage-dependent area and perimeter components are modeled, with separate capacitances and grading factors for each component.

Variables

The JCAP/SPICE model uses five variables:

VR is the applied reverse bias on the capacitor. A and P are the area and the perimeter of the capacitor; the units of A and P must agree with those of the

FTMODE FT calculus selector 0.0 - 1

LEVEL Star-HSpice model selector - -

Table 29 Variables of the JCAP/SPICE Model

Name Description Default Units

VR Applied reverse bias 0.0 Volts

A Area 1.0 meters2

P Perimeter 0.0 meters

T Temperature 27.0 °C

DEVID Device identification 0.0

Table 28 Parameters of the VBIC model (Continued)

76 Aurora Reference GuideX-2006.09

Page 97: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsJCAP/SPICE Model

parameters CJ and CJSW. T is the measurement temperature, in degrees Celsius. DEVID distinguishes between data points having values identical to the other four variables.

Targets

Four primary targets are defined for the JCAP/SPICE model:

CT is the total capacitance, while CTP is the capacitance due to the perimeter. QT is the total stored charge, and QTP is the charge stored by the perimeter component. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

Parameters

The parameters used by the JCAP/SPICE model are listed in Table 31, with their default values and units. CJ is the capacitance per unit area at zero bias; PB and MJ are the built-in potential and grading coefficient, respectively. CJSW, PBP, and MJSW are the corresponding parameters for the perimeter capacitance. FC determines the forward bias at which the model departs from the theoretical reverse-bias characteristic; the actual forward bias is given by

for the perimeter). DW is the difference between the mask line width and the electrical line width. The effective perimeter is reduced by

, and the effective area is reduced by .

Table 30 Targets of the JCAP/SPICE Model

Name Description Units Minimum

CT Total junction capacitance Farads 1 × 10-18

QT Total stored charge Coulombs 1 × 10-18

CTP Perimeter capacitance Farads 1 × 10-18

QTP Perimeter charge Coulombs 1 × 10-18

FC PB⋅ FC PBP⋅

4 DW⋅ P DW 2 DW–⁄ 2⋅

Aurora Reference Guide 77X-2006.09

Page 98: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsRESISTOR Model

. Parameters PBP, DW, and FC are extra parameters added to Aurora; they may not be available in your version of SPICE.

Note:

If PBP is undefined, PB is used instead.

RESISTOR Model

Aurora 2001.4 contains a Length, Width and Temperature-dependent RESISTOR model. The model is compatible with the Star-HSPICE WIRE model. Currently, it does not use AC model parameters.

Table 31 Parameters for the JCAP/SPICE Model

Name Description Default Units Notes

CJ Zero-bias area capacitance 0.0 F/meter2

CJSW Zero-bias perimeter capacitance 0.0 F/meter

PB Area built-in voltage 0.8 Volts

PBP(PBSW) Perimeter built-in voltage 0.8 Volts 1

MJ Area grading coefficient 0.5

MJSW Perimeter grading coefficient 0.33

FC Forward-bias break factor 0.5

DW Decrease in effective line width 0.0 meters

CK Offset capacitance 0.0 F

AA Smoothing capacitance selector (VBIC capacitance model)

-0.5

78 Aurora Reference GuideX-2006.09

Page 99: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsRESISTOR Model

Variables

The RESISTOR model uses five variables:

V is the applied bias on the resistor. W and L are the width and the length of the resistor. T is the measurement temperature, in degrees Celsius. DEVID distinguishes between data points having values identical to the other four variables.

Targets

Four primary targets are defined for the RESISTOR model:

Table 32 Variables of the RESISTOR Model

Name Description Default Units

V Applied bias 0.0 Volts

L Length 1.0 micron

W Width 1.0 micron

T Temperature 27.0 °C

DEVID Device identification 0.0

REGION Device region 0.0

Table 33 Targets of the RESISTOR Model

Name Description Units Minimum

I Current Amps 1 × 10-18

R Total resistance. Ohm 1 × 10-18

Aurora Reference Guide 79X-2006.09

Page 100: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCNL Model

Parameters

The parameters used by the RESISTOR model are listed in the following table

Note:

If RSH is positive, the effective resistance R = RSH*(L-DL)/(W-DW). Otherwise, R = RES.

CNL Model

A nonlinear capacitor model specific to the Saber circuit simulator.

Table 34 Parameters for the RESISTOR Model

Name Description Default Units Notes

RES Effective resistance 0.0 Ohms

RSH Sheet resistance 0.0 Ohm/square

DL Decrease in effective line width 0.8 m

DW Decrease in effective line width 0.8 m 1

RK Offset resistance 0.0 Ohms

TC1R First order temperature coefficient 0.0

TC2R Second order temperature coefficient

0.0 meters

TREF Reference temperature 0.0 F

80 Aurora Reference GuideX-2006.09

Page 101: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCNL Model

Variables

The CNL model uses five variables:

VPM is the applied bias on the capacitor. VMBIAS is an external control voltage. T is the measurement temperature, in degrees Celsius. DEVID distinguishes between data points having values identical to the other four variables.

Targets

Four primary targets are defined for the CNL model:

Table 35 Variables of the CNL Model

Name Description Default Units

VPM Applied bias 0.0 Volts

VMBIAS External bias 0.0 meters2

T Temperature 27.0 °C

DEVID Device identification 0.0

REGION Device behavior region 0

Table 36 Targets of the CNL Model

Name Description Units Minimum

C Total capacitance Farads 1 × 10-18

Q Total stored charge Coulombs 1 × 10-18

Aurora Reference Guide 81X-2006.09

Page 102: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsJFET/SPICE Model

Parameters

The parameters used by the CNL model are listed in Table 37 with their default values and units.

Note:

For more info, please see the Saber manual.

JFET/SPICE Model

Aurora contains a built-in model for junction field-effect transistors (JFETs). This model, named JFET/SPICE, is an enhanced version of the JFET model in the SPICE circuit simulator, version 2G. The enhancements include more useful geometry dependence (width and length instead of area) and the ability to specify a gate series resistance.

Variables

The JFET/SPICE model uses nine variables:

Table 37 Parameters for the CNL Model

Name Description Default Units Notes

TYPE Indicates direction 0 1

1. TYPE <= 0 is equivalent to TYPE = DECR for Saber; TYPE = 1 is equivalent to TYPE = INCR for Saber

CMAX Maximum capacitance - F

CMIN Minimum capacitance 0.0 F

VREF Reference voltage 2.0 Volts

C0 Capacitance at VPM=VREF - F

C0 Zero-bias capacitance - F

C0VREF Zero-bias capacitance

for VMBIAS= VREF

0 F

82 Aurora Reference GuideX-2006.09

Page 103: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsJFET/SPICE Model

DescriptionVD, VG, and VS are the applied voltages on the drain, gate, and source, respectively. W and L are the relative width and length of transistor. The ratio of these parameters is equivalent to the AREA parameter in SPICE. T is the measurement temperature, in degrees Celsius. DEVID distinguishes data from different transistors. Similarly, REGION may be used to distinguish data from the same transistor but from different regions of device behavior.

PolarityPOLARITY specifies the polarity of the input data. For n-channel devices, POLARITY is +1, and a positive voltage will forward-bias the gate-to-source junction. For p-channel devices, POLARITY is -1, and a negative voltage will forward-bias the gate-to-source junction.

Table 38 Variable of the JFET/SPICE Model

Name Description Default Units

VD Applied drain bias 0.0 Volts

VG Applied gate bias 0.0 Volts

VS Applied source bias 0.0 Volts

W Relative channel width 1.0

L Relative channel length 1.0

T Temperature 27.0 °C

POLARITY -1 for p-channel +1

DEVID Device identification 0

REGION Device behavior region 0

Aurora Reference Guide 83X-2006.09

Page 104: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsJFET/SPICE Model

Targets

Three primary targets are defined for the JFET/SPICE model:

These represent the currents entering the drain, gate, and source terminals of the device. The drain and source currents are scaled by W/L, while the gate current is scaled by

. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

For normal, forward-mode operation, ID is positive and IS negative for n-channel transistors (POLARITY = +1); the signs are reversed for p-channel devices (POLARITY = -1).

Parameters

The parameters used by the JFET/SPICE model are listed in Table 40, with their default values and units. The pinch-off voltage VTO and the gain coefficient BETA specify the drain-source current, while LAMBDA determines the output conductance in saturation. The drain and source series resistances (RD and RS) are scaled by the reciprocal of the relative device width, while the gate series resistance RG is scaled by the reciprocal of the area. IGSAT is the

Table 39 Targets of the JFET/SPICE Model

Name Description Units Minimum

ID Current entering the drain terminal Amps 1 × 10-15

IG Current entering the gate terminal Amps 1 × 10-15

IS Current entering the source terminal Amps 1 × 10-15

W L⋅

84 Aurora Reference GuideX-2006.09

Page 105: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice MOSFET Models

saturation current of the gate-channel diode, and GMIN is the minimum conductance of the gate-channel diode.

Star-Hspice MOSFET Models

Starting with version 3.3, Aurora supports Star-Hspice MOSFET models through the Common Model Interface (CMI). This allows using Star-Hspice models as built-in models for Aurora. The Aurora CMI interface supports HSPICE Level 2, 3, 13, 28, 47, 49, 50, 53, 54, 55, 57 and 59 models. Compatibility is provided for the HSPICE specific parameters and additional HSPICE specific parameters are now included.

Starting with the 1999.4 version of Aurora, a more efficient CMI model calling is introduced. By this feature, CMI model evaluation is three times faster, compared to previous versions of Aurora.

The following two tables illustrate the variables and targets available for each of these models.

Table 40 Parameters of the JFET/SPICE Model

Name Description Default Units Notes

VTO Pinch-off voltage -2.0 Volts

BETA Gain coefficient 1 × 10-4 Amps/Volt2

LAMBDA Output conductance coefficient 0.0 1/Volts

IGSAT Gate saturation current 1 × 10-14 Amps

RD Drain series resistance 0.0 W 1

1. RD and RS are scaled by 1/W.

RS Source series resistance 0.0 W 1

RG Gate series resistance 0.0 W 2

2. RG is scaled by 1/(w · l).

GMIN Minimum gate conductance 1 × 10-12 mhos

Aurora Reference Guide 85X-2006.09

Page 106: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice MOSFET Models

Note:

For further information on Star-Hspice CMI Models refer to “Adding Proprietary MOS Models” in the Star-Hspice-XO User Guide.

Note:

For further information on the variables, targets, and parameters used in the Star-Hspice models, refer to the Star-Hspice User’s Manual.

Variables

The Aurora CMI Interface supports the following variables for each of the Star-Hspice embedded models:

Table 41 Variables for the Star-Hspice Embedded Models

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares for resistance calculation

(undefined) squares

NRS Number of source diffusion squares for resistance calculation

(undefined) squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

86 Aurora Reference GuideX-2006.09

Page 107: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice MOSFET Models

Note:

The minor variables AS, AD, PS, PD, NRS, and NRD are undefined by default, in order to allow compatibility with the HSPICE specific parameters for drain and source resistance calculus (ACM, HDIF, LDIF, etc.). For the Level 54 model only, NRD and NRS default to 1.

AS Source diffusion area (undefined) m2

AD Drain diffusion area (undefined) m2

PS Perimeter of the source junction including the channel edge

(undefined) m

PD Perimeter of the drain junction including the channel edge

(undefined) m

M Multiple device option. MOSFET channel width, diode leakage, capacitors, and resistors are altered by this parameter. Simulates multiple parallel devices.

1.0

RDC additional drain resistance due to contact resistance

0.0 ohm

RSC Additional source resistance due to contact resistance

0.0 ohm

DELVTO Zero bias threshold voltage shift 0.0

DTEMP Device temperature difference from circuit temperature

0.0

GEO Source/drain sharing selector for ACM=3 0.0

DEVMODE Device mode 1

Table 41 Variables for the Star-Hspice Embedded Models (Continued)

Name Description Default Units

Aurora Reference Guide 87X-2006.09

Page 108: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice MOSFET Models

Targets

The primary targets available through the Star-Hspice interface are:

Table 42 Targets of the Star-Hspice Embedded Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-17

IBS Substrate source-junction leakage current Amps 1 × 10-17

IBD Substrate drain-junction leakage current Amps 1 × 10-17

ISUB Substrate current Amps 1 × 10-17

VON Turn-on voltage V 1 × 10-17

SATVD Saturation voltage (VDSAT) V 1 × 10-17

CAPGS Meyer’s gate capacitance (dQg/dVgs+cgso) Farads/m 1 × 10-17

CAPGD Meyer’s gate capacitance (dQg/dVds+cgdo) Farads/m 1 × 10-17

CAPGB Meyer’s gate capacitance (dQg/dVgs+cgbo) Farads/m 1 × 10-17

CAPBS Substrate source-junction capacitance Farads/m 1 × 10-17

CAPBD Substrate drain- junction capacitance Farads/m 1 × 10-17

QBS Substrate source-junction charge Coulombs 1 × 10-17

QBD Substrate drain-junction charge Coulombs 1 × 10-17

QG Gate charge Coulombs 1 × 10-17

QD Drain charge Coulombs 1 × 10-17

QS Source charge Coulombs 1 × 10-17

CGGB Intrinsic gate input capacitance Farads 1 × 10-17

88 Aurora Reference GuideX-2006.09

Page 109: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice MOSFET Models

CGSB Intrinsic gate-channel transcapacitance Farads 1 × 10-17

CGDB Intrinsic gate-drain transcapacitance Farads 1 × 10-17

CBGB Intrinsic body-gate transcapacitance Farads 1 × 10-17

CBSB Intrinsic body-source transcapacitance Farads 1 × 10-17

CBDB Intrinsic body-drain transcapacitance Farads 1 × 10-17

CDGB Intrinsic drain-gate transcapacitance Farads 1 × 10-17

GD Drain conductance mho 1 × 10-17

GS Source conductance mho 1 × 10-17

GBD Substrate drain junction-conductance mho 1 × 10-17

GBS Substrate source junction-conductance mho 1 × 10-17

IB Current entering substrate (bulk) terminal Amps 1 × 10-17

IG Current entering gate terminal Amps 1 × 10-17

WEFF Effective channel width m 1 × 10-17

LEFF Effective channel length m 1 × 10-17

BETAZERO μ0CoxWeff/Leff Amps/V2 1 × 10-17

BETAEFF μeffCoxWeff/Leff Amps/V2 1 × 10-17

UEFF Effective mobility (μeff) m2/vs 1 × 10-17

ISOURCE Current entering source terminal Amps 1 × 10-17

BULKFACT Bulk factor 1 × 10-17

Table 42 Targets of the Star-Hspice Embedded Model (Continued)

Name Description Units Minimum

Aurora Reference Guide 89X-2006.09

Page 110: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

Parameters

The parameters associated with Star-Hspice models Levels 2, 3, 13, 28, and 47 are split into two categories: a common parameter set and a model specific parameter set.

Common Parameters for Level 2, 3, 13, 28, and 47

The following tables provide parameter information for:■ MOSFET diode model parameters■ MOS gate capacitance model parameters■ Noise■ Temperature

SUBTHSLP Subthreshold slope 1 × 10-17

CAPGC Gate to channel capacitance Farads/m 1 × 10-17

VID Intrinsic drain voltage V 1 × 10-17

VIS Intrinsic source voltage V 1 × 10-17

VIRD Voltage drop on the drain resistance V 1 × 10-17

VIRS Voltage drop on the source resistance V 1 × 10-17

Table 42 Targets of the Star-Hspice Embedded Model (Continued)

Name Description Units Minimum

90 Aurora Reference GuideX-2006.09

Page 111: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

MOSFET Diode Model Parameters

Table 43 DC Model Parameters

Name (Alias) Units Default

Description

ACM 0 Area calculation method

JS amp/m2 0 Bulk junction saturation currentJSscaled = JS/SCALM2 – for ACM=1, unit is amp/m andJSscaled = JS/SCALM.

JSW amp/m 0 Sidewall bulk junction saturation currentJSWscaled = JSW/SCALM.

IS amp 1e-14 Bulk junction saturation current. For the option ASPEC=1, default=0.

N 1 Emission coefficient

NDS 1 Reverse bias slope coefficient

VNDS V -1 Reverse diode current transition point

Table 44 Capacitance Model Parameters

Name (Alias) Units Default Description

CBD F 0 Zero bias bulk-drain junction capacitance. Use only when CJ and CJSW are 0.

CBS F 0 Zero bias bulk-source junction capacitance. Use only when CJ and CJSW are 0.

CJ F/m2 579.11 μF/m2 Zero-bias bulk junction capacitance: CJscaled = CJ/

SCALM2 – for ACM=1 the unit is F/m and CJscaled = CJ/SCALM

– default for option ASPEC=0 isCJεsi q NSUB⋅ ⋅

2 PB⋅-----------------------------------⎝ ⎠

⎛ ⎞ 1 /=

Aurora Reference Guide 91X-2006.09

Page 112: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

CJSW F/m 0 Zero-bias sidewall bulk junction capacitanceCJSWscaled =CJSW/SCALM

– default = 0

CJGATE F/m CSJW Zero-bias gate-edge sidewall bulk junction capacitance (ACM=3only)CJGATEscaled=CJGTE/SCALM

Default = CJSW for HSPICE releases later than H9007D.Default = 0 for HSPICE releases H9007D and earlier, or if CJSW is not specified.

FC 0.5 Forward-bias depletion capacitance coefficient (not used)

MJ 0.5 Bulk junction grading coefficient

MJSW 0.33 Bulk sidewall junction grading coefficient

NSUB 1/cm3 1.0e15 Substrate doping

PB V 0.8 Bulk junction contact potential

PHP V PB Bulk sidewall junction contact potential

TT s 0 Transit time

Table 45 Drain and Source Resistance Model Parameters

Name (Alias) Units Default Description

RD ohm/sq 0.0 Drain ohmic resistance. This parameter is usually lightly doped regions’ sheet resistance for ACMŠ = 1.

LRD ohm/m 0 Drain resistance length sensitivity. Use this parameter with automatic model selection in conjunction with WRD and PRD to factor model for device size.

WRD ohm/m 0 Drain resistance width sensitivity.

Table 44 Capacitance Model Parameters (Continued)

Name (Alias) Units Default Description

92 Aurora Reference GuideX-2006.09

Page 113: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

PRD ohm/m2 0 Drain resistance product (WxL) sensitivity.

RS ohm/sq 0.0 Source ohmic resistance. This parameter is usually lightly doped regions’ sheet resistance for ACMŠ = 1.

LRS ohm/m 0 Source resistance length sensitivity. Use this parameter with automatic model selection in conjunction with WRS and PRS to factor model for device size.

WRS ohm/m 0 Source resistance width sensitivity.

PRS ohm/m2 0 Source resistance product (WxL) sensitivity.

RSH (RL) ohm/sq 0.0 Drain and source diffusion sheet resistance

Table 46 MOS Geometry Model Parameters

Name (Alias) Units Default Description

HDIF m 0 Length of heavily doped diffusion, from contact to lightly doped region (ACM=2, 3 only)HDIFscaled = HDIF ⋅ SCALM

LD m Lateral diffusion into channel from source and drain diffusion.

If LD and XJ are unspecified, LD default=0.0.

When LD is unspecified, but XJ is specified, LD is calculated from XJ. LD default=0.75 ⋅ XJ.

For Level 4 only, lateral diffusion is derived from LD⋅XJ.LDscaled = LD ⋅ SCALM

LDAC m This parameter is the same as LD, but if LDAC is included in the .MODEL statement, it replaces LD in the Leff calculation for AC gate capacitance.

LMLT 1 Length shrink factor

LREF m 0 Channel length reference LREFscaled = LREF ⋅ SCALM

Table 45 Drain and Source Resistance Model Parameters

Name (Alias) Units Default Description

Aurora Reference Guide 93X-2006.09

Page 114: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

LDIF m 0 Length of lightly doped diffusion adjacent to gate (ACM=1, 2)LDIFscaled = LDIF ⋅ SCALM

WD m 0 Lateral diffusion into channel from bulk along width WDscaled = ΩΔ ⋅ SCALM

WDAC m 0 This parameter is the same as WD, but if WDAC is included in the .MODEL statement, it replaces WD in the Weff calculation for AC gate capacitance.

WMLT 1 Diffusion layer and width shrink factor

WREF m 0 Channel width referenceWREFscaled = WREF ⋅ SCALM

XL m 0 Accounts for masking and etching effectsXLscaled = XL ⋅ SCALM

XW m 0 Accounts for masking and etching effectsXWscaled = XW ⋅ SCALM

XJ m 0 Metallurgical junction depth

XJscaled = XJ ⋅ SCALM

Table 47 Common Threshold Voltage Parameters

Name (Alias) Units Default Description

GAMMA V1/2 0.527625

Body effect factor. If GAMMA is not set, it is calculated from NSUB.

NGATE cm3 Polysilicon gate doping, used for analytical model only.

Undoped polysilicon is represented by a small value. If NGATE ≤ 0.0, it is set to 1e+18.

NSS 1/cm2 1.0 Surface state density

Table 46 MOS Geometry Model Parameters

Name (Alias) Units Default Description

94 Aurora Reference GuideX-2006.09

Page 115: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

Note:

All the Common Threshold Voltage Parameters may not be applicable to the Level 13 model.

PHI V 0.576036

Surface potential. NSUB default=1e15.

TPG 1.0 Type of gate material, used for analytical model onlyLevel4 TPG default=0 where TPG = 0 al-gateTPG = 1 gate type same as source-drain diffusion

TPG

= -1 fate type opposite to source-drain diffusion

VTO V Zero-bias threshold voltage

DERIV 1 Derivative method selector

DERIV=0: analytic

DERIV=1: finite difference

Table 48 Impact Ionization Model Parameters

Name (Alias) Units Default Description

ALPHA 1/V 0.0 Impact ionization current coefficient

LALPHA μm/V 0.0 ALPHA length sensitivity

WALPHA μm/V 0.0 ALPHA width sensitivity

VCR V 0.0 Critical voltage

LVCR μm.V 0.0 VCR length sensitivity

WVCR μm.V 0.0 VCR width sensitivity

IIRAT 0.0 Portion of impact ionization current that goes to source

Table 47 Common Threshold Voltage Parameters

Name (Alias) Units Default Description

Aurora Reference Guide 95X-2006.09

Page 116: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

MOS Gate Capacitance Model Parameters

Table 49 Basic Gate Capacitance Parameters

Name (Alias) Units Default

Description

CAPOP 2.0 Capacitance model selector

COX (CO) F/m2 3.453e-4

Oxide capacitance. If COX is not input, it is calculated from TOX. The default value corresponds to the TOX default of

1e-7:COXscaled = COX/SCALM2

TOX m 1e-7 Represents the oxide thickness, calculated from COX when COX is input. The program uses the default if COX is not specified. For TOX>1, the unit is assumed to be Angstroms. There can be a level-dependent default that overrides. See specific level in Chapter “MOSFET Models” of the Star-Hspice User’s Manual.

Table 50 Gate Overlap Capacitance Model Parameters

Name (Alias) Units Default Description

CGBO F/m 0.0 Gate-bulk overlap capacitance per meter channel length. If CGBO is not set but WD and TOX are set, then CGBO is calculated.

CGBOscaled = CGBO/SCALM

CGDO F/m 0.0 Gate-drain overlap capacitance per meter channel width. If CGDO is not set but LD or METO and TOX are set, then CGDO is calculated.CGDOscaled = CGDO/SCALM

CGSO F/m 0.0 Gate-source overlap capacitance per meter channel width. If CGSO is not set but, LD or METO and TOX are set, then CGSO is calculated.CGSOscaled = CGSO/SCALM

96 Aurora Reference GuideX-2006.09

Page 117: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

METO m 0.0 Fringing field factor for gate-to-source and gate-to-drain overlap capacitance calculation METOscaled = METO ⋅ SCALM

Table 51 Meyer Capacitance Parameters CAPOP=0, 1, 2

Name (Alias)

Units Default Description

CF1 V 0.0 Modified MEYER control for transition of Cgs from depletion to weak inversion for CGSO (only for CAPOP=2)

CF2 V 0.1 Modified MEYER control for transition of Cgs from weak to strong inversion region (only for CAPOP=2)

CF3 1.0 Modified MEYER control for transition of Cgs and Cgd from saturation to linear region as a function of vds (only for CAPOP=2)

CF4 50.0 Modified MEYER control for contour of Cgb and Cgs smoothing factors

CF5 0.667 Modified MEYER control capacitance multiplier for Cgs in saturation region

CF6 500.0 Modified MEYER control for contour of Cgd smoothing factor

CGBEX 0.5 Cgb exponent (only for CAPOP=1)

Table 50 Gate Overlap Capacitance Model Parameters

Name (Alias) Units Default Description

Aurora Reference Guide 97X-2006.09

Page 118: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

Noise

Note:

Refer to the Star-Hspice User’s Manual for further information on the noise parameters

Table 52 Charge Conservation Parameters CAPOP=4

Name (Alias) Units Default Description

XQC 0.5 Coefficient of channel charge share attributed to drain; its range is 0.0 to 0.5. This parameter applies only to CAPOP=4 and some of its level-dependent aliases.

XPART 1.0 Selector for gate capacitance charge-sharing coefficient

Table 53 Noise Parameters

Name (Alias) Units Default Description

AF 1.0 Flicker noise exponent

KF 0.0 Flicker noise coefficient. Reasonable values for KF are in the

range 1e-19 to 1e-25 V2F.

NLEV 2.0 Noise equation selector

GDSNOI 1.0 Channel thermal noise coefficient (use with NLEV=3)

98 Aurora Reference GuideX-2006.09

Page 119: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsCommon Parameters for Level 2, 3, 13, 28, and 47

Temperature

Note:

The Level 47 model uses TNOM instead of TREF.

Table 54 Miscellaneous Parameters

Name (Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

QFLAG 0.0 Flag for charge/cap computing

Aurora Reference Guide 99X-2006.09

Page 120: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 2 Specific Model Parameters

Level 2 Specific Model Parameters

Table 55 Basic Model Parameters

Name (Alias) Units Default Description

ECRIT V/cm 0.0 Critical electric field for carrier velocity saturation. From Grove:

electrons 6e4holes 2.4e4

Use zero to indicate an infinite value. ECRIT is preferred over VMAX because the equation is more stable. ECRIT is estimated as: ECRIT = 100 ⋅ (VMAX / UO)

KP A/V2 2.0e-5 Intrinsic transconductance. If KP is not specified and U0 and TOX are entered, KP is calculated from KP =

U0 ⋅ COX

LAMBDA V-1 0.0 Channel length modulation

NEFF 1.0 Total channel charge (fixed and mobile) coefficient

VMAX m/s 0.0 Maximum drift velocity of carriers. Use zero to indicate an infinite value.

Table 56 Effective Width and Length Parameters

Name (Alias) Units Default Description

DEL m 0.0 Channel length reduction on each side: DELscaled = DEL ⋅ SCALM

Table 57 Threshold Voltage Parameters

Name (Alias) Units Default Description

DELTA 0.0 Narrow width factor for adjusting threshold

LND μm/V 0.0 ND length sensitivity

ND V-1 0.0 Drain subthreshold factor

100 Aurora Reference GuideX-2006.09

Page 121: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 2 Specific Model Parameters

N0 0.0 Gate subthreshold factor. Typical value=1.

NFS cm-2⋅V-1 0.0 Fast surface state density

WIC 0.0 Subthreshold model selector

WND μm/V 0.0 ND width sensitivity.

WN0 μm 0.0 N0 width sensitivity

Table 58 Mobility Parameters

Name (Alias) Units Default Description

MOB 0.0 Mobility equation selector. This parameter can be set to MOB=0 or MOB=7. If set to MOB=7, the model is changed, which also affects the channel length calculation.

Note: MOB=7 operates as a flag. It invokes the channel length modulation and mobility equations of MOSFET Level 3.

THETA V-1 0.0 Mobility modulation. THETA is used only when MOB=7 is set. A typical value in this application is THETA=5e-2.

UCRIT V/cm 1.0e4 Critical field for mobility degradation, UCRIT. The parameter is the limit at which the surface mobility UO begins to decrease in accordance with the empirical relation given later.

UEXP 0.0 Critical field exponent in the empirical formula which characterizes surface mobility degradation

UO cm2/(V·s)

600 (N)

250 (P)

Low-field bulk mobility. This parameter is calculated from KP, if KP is inputted.

Table 57 Threshold Voltage Parameters

Name (Alias) Units Default Description

Aurora Reference Guide 101X-2006.09

Page 122: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 3 Specific Model Parameters

Level 3 Specific Model Parameters

UTRA 0.0 Transverse field coefficient

Note: SPICE does not use UTRA. HSPICE uses it if it is supplied, but issues a warning because UTRA can hinder convergence.

Table 59 Basic Model Parameters

Name (Alias) Units Default Description

KAPPA V-1 0.2 Saturation field factor. This parameter is used in the channel length modulation equation.

KP A/V2 2.0e-5 Intrinsic transconductance parameter. If this parameter is not specified and UO and TOX are entered, KP is calculated from KP = ΥΟ ⋅ COX

VMAX (VMX) m/s 0.0 Maximum drift velocity of carriers. Use zero to indicate an infinite value.

Table 60 Effective Width Length Parameters

Name (Alias) Units Default Description

DEL m 0.0 Channel length reduction on each side DELscaled = DEL ⋅ SCALM

Table 61 Threshold Voltage Parameters

Name (Alias) Units Default Description

DELTA 0.0 Narrow width factor for adjusting threshold

ETA 0.0 Static feedback factor for adjusting threshold

Table 58 Mobility Parameters

Name (Alias) Units Default Description

102 Aurora Reference GuideX-2006.09

Page 123: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 13 (BSIM) Specific Model Parameters

Level 13 (BSIM) Specific Model Parameters

LND μm/V 0.0 ND length sensitivity

LN0 μm 0.0 N0 length sensitivity

ND V-1 0.0 Drain subthreshold factor

N0 0.0 Gate subthreshold factor (typical value=1)

NFS cm-2⋅V-1 0.0 Fast surface state density

WIC 0.0 Subthreshold model selector

WND μm/V 0.0 ND width sensitivity

WN0 μm 0.0 N0 width sensitivity

Table 62 Mobility Parameters

Name (Alias) Units Default Description

THETA V-1 0.0 Mobility degradation factor

UO cm2/(V⋅s)

600(N) 250(P)

Low field bulk mobility. This parameter is calculated from KP, if KP is specified.

Table 63 Transistor Process Parameters

Name (Alias) Units Default Description

BINFLAG - 0 Uses Wref, Lref when set > 0.9 (Aurora specific)

DL0 μm 0.0 Difference between drawn poly and electrical

Table 61 Threshold Voltage Parameters

Name (Alias) Units Default Description

Aurora Reference Guide 103X-2006.09

Page 124: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 13 (BSIM) Specific Model Parameters

DW0 μm 0.0 Difference between drawn diffusion and electrical

DUM1 0.0 Dummy (not used)

DUM2 0.0 Dummy (not used)

ETA0 0.0 Linear vds threshold coefficient

LETA mm 0.0 Length sensitivity

WETA μm 0.0 Width sensitivity

K1 V1/2 0.5 Root-vsb threshold coefficient

LK1 V1/2⋅μm 0.0 Length sensitivity

WK1 V1/2⋅μm 0.0 Width sensitivity

K2 0.0 Linear vsb threshold coefficient

LK2 μm 0.0 Length sensitivity

WK2 μm 0.0 Width sensitivity

MUS cm2/(V⋅s) 600 High drain field mobility

LMS

(LMUS)μm⋅cm2/(V⋅s)

0.0 Length sensitivity

WMS

(WMUS)μm⋅cm2/(V⋅s)

0.0 Width sensitivity

MUZ cm2/(V⋅s) 600 Low drain field first order mobility

LMUZ μm⋅cm2/(V⋅s)

0.0 Length sensitivity

WMUZ μm⋅cm2/(V⋅s)

0.0 Width sensitivity

Table 63 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

104 Aurora Reference GuideX-2006.09

Page 125: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 13 (BSIM) Specific Model Parameters

N0 0.5 Low field weak inversion gate drive coefficient (a value of 200 for N0 disables weak inversion calculation)

LN0 0.0 Length sensitivity

WN0 0.0 Width sensitivity

NB0 0.0 Vsb reduction to low field weak inversion gate drive coefficient

LNB 0.0 Length sensitivity

WNB 0.0 Width sensitivity

ND0 0.0 Vds reduction to low field weak inversion gate drive coefficient

LND 0.0 Length sensitivity

WND 0.0 Width sensitivity

PHI0 V 0.7 Two times the Fermi potential

LPHI V⋅μm 0.0 Length sensitivity

WPHI V⋅μm 0.0 Width sensitivity

TOXM

, (TOX)

μm, (m) 0.02 Gate oxide thickness (TOXM or TOX > 1 is interpreted as Angstroms)

U00 1/V 0.0 Gate field mobility reduction factor

LU0 μm/V 0.0 Length sensitivity

WU0 μm/V 0.0 Width sensitivity

U1 μm/V 0.0 Drain field mobility reduction factor

LU1 μm2/V 0.0 Length sensitivity

WU1 μm2/V 0.0 Width sensitivity

Table 63 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

Aurora Reference Guide 105X-2006.09

Page 126: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 13 (BSIM) Specific Model Parameters

VDDM V 50 Critical voltage for high drain field mobility reduction

VFB V -0.3 Flatband voltage

LVFB V⋅μm 0.0 Length sensitivity

WVFB V⋅μm 0.0 Width sensitivity

X2E 1/V 0.0 Vsb correction to linear vds threshold coefficient

LX2E μm/V 0.0 Length sensitivity

WX2E μm/V 0.0 Width sensitivity

X2M cm2/

(V2⋅s)

0.0 Vsb correction to low field first order mobility

LX2M μm⋅cm2/

(V2⋅s)

0.0 Length sensitivity

WX2M μm⋅cm2/

(V2⋅s)

0.0 Width sensitivity

X2MS cm2/

(V2⋅s)

0.0 Vbs reduction to high drain field mobility

LX2MS μm⋅cm2/

(V2⋅s)

0.0 Length sensitivity

WX2MS μm⋅cm2/

(V2⋅s)

0.0 Width sensitivity

X2U0 1/V2 0.0 Vsb reduction to gate field mobility reduction factor

LX2U0 μm/V2 0.0 Length sensitivity

WX2U0 μm/V2 0.0 Width sensitivity

Table 63 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

106 Aurora Reference GuideX-2006.09

Page 127: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 13 (BSIM) Specific Model Parameters

X2U1 μm/V2 0.0 Vsb reduction to drain field mobility reduction factor

LX2U1 μm2/V2 0.0 Length sensitivity

WX2U1 μm2 / V2 0.0 Width sensitivity

X3E 1/V 0.0 Vds correction to linear vds threshold coefficient

LX3E μm/V 0.0 Length sensitivity

WX3E μm/V 0.0 Width sensitivity

X3MS cm2/

(V2⋅ s)

5.0 Vds reduction to high drain field mobility

LX3MS μm⋅cm2/

(V2⋅s)

0.0 Length sensitivity

WX3MS μm⋅cm2/

(V2⋅s)

0.0 Width sensitivity

X3U1 μm/V2 0.0 Vds reduction to drain field mobility reduction factor

LX3U1 μm2/V 2 0.0 Length sensitivity

WX3U1 μm2/V 2 0.0 Width sensitivity

Table 64 Diffusion Layer Process Parameters

Name (Alias) Units Default Description

DS m 0.0 Average variation of size due to side etching or mask compensation (not used)

WDF m 0.0 Default width of the layer (not used)

Table 63 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

Aurora Reference Guide 107X-2006.09

Page 128: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 28 Specific Model Parameters

Note:

The wire model includes poly and metal layer process parameters.

Level 28 Specific Model Parameters

Table 65 Temperature Parameters

Name (Alias) Units Default Description

FEX 0.0 Temperature exponent for mobility reduction factor U1

Table 66 Transistor Process Parameters

Name (Alias) Units Default Description

BINFLAG - 0 Uses Wref, Lref when set > 0.9 (Aurora specific)

B1 0.0 Lower vdsat transition point

LB1 μm 0.0 Length sensitivity

WB1 μm 0.0 Width sensitivity

B2 1 Upper vdsat transition point

LB2 μm 0.0 Length sensitivity

WB2 μm 0.0 Width sensitivity

ETA0 0.0 Linear vds threshold coefficient

LETA μm 0.0 Length sensitivity

WETA μm 0.0 Width sensitivity

ETAMN 0.0 Minimum linear vds threshold coefficient

LETAMN μm 0.0 Length sensitivity

WETAMN μm 0.0 Width sensitivity

GAMMN V1/2 0.0 Minimum root-vsb threshold coefficient

108 Aurora Reference GuideX-2006.09

Page 129: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 28 Specific Model Parameters

LGAMN V1/2⋅μm 0.0 Length sensitivity

WGAMN V1/2⋅μm 0.0 Width sensitivity

K1 V1/2 0.5 Root-vsb threshold coefficient

LK1 V1/2⋅μm 0.0 Length sensitivity

WK1 V1/2⋅μm 0.0 Width sensitivity

K2 0.0 Linear vsb threshold coefficient

LK2 μm 0.0 Length sensitivity

WK2 μm 0.0 Width sensitivity

MUZ cm2/V⋅s 600 Low drain field first order mobility

LMUZ μm⋅cm2/V⋅s 0.0 Length sensitivity

WMUZ μm⋅cm2/V⋅s 0.0 Width sensitivity

N0 200 Low field weak inversion gate drive coefficient (value of 200 for N0 disables weak inversion calculation)

LN0 μm 0.0 Length sensitivity

WN0 μm 0.0 Width sensitivity

NB0 0.0 Vsb reduction to low field weak inversion gate drive coefficient

LNB μm 0.0 Length sensitivity

WNB μm 0.0 Width sensitivity

ND0 0.0 Vds reduction to low field weak inversion gate drive coefficient

LND μm 0.0 Length sensitivity

Table 66 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

Aurora Reference Guide 109X-2006.09

Page 130: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 28 Specific Model Parameters

WND μm 0.0 Width sensitivity

PHI0 V 0.7 Two times the Fermi potential

LPHI V⋅μm 0.0 Length sensitivity

WPHI V⋅μm 0.0 Width sensitivity

TOXM (TOX) μm (m) 0.02 Gate oxide thickness (if TOXM or TOX > 1, Angstroms is assumed)

U00 1/V 0.0 Gate field mobility reduction factor

LU0 μm/V 0.0 Length sensitivity

WU0 μm/V 0.0 Width sensitivity

U1 1/V 0.0 Drain field mobility reduction factor

LU1 μm/V 0.0 Length sensitivity

WU1 μm/V 0.0 Width sensitivity

VDDM V 5.0 Critical voltage for high drain field mobility reduction

VFB V -0.3 Flatband voltage

LVFB V⋅μm 0.0 Length sensitivity

WVFB V⋅μm 0.0 Width sensitivity

WFAC 4 Weak inversion factor

LWFAC μm 0.0 Length sensitivity

WWFAC μm 0.0 Width sensitivity

WFACU 0.0 Second weak inversion factor

LWFACU μm 0.0 Length sensitivity

WWFACU μm 0.0 Width sensitivity

Table 66 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

110 Aurora Reference GuideX-2006.09

Page 131: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 28 Specific Model Parameters

X2E

1/V 0.0 Vsb correction to linear vds threshold coefficient

LX2E

μm/V 0.0 Length sensitivity

WX2E μm/V 0.0 Width sensitivity

X2M (X2MZ) cm2/V2⋅s 0.0 Vsb correction to low field first order mobility

LX2M

(LX2MZ)μm⋅cm2/V2 ⋅s 0.0 Length sensitivity

WX2M (WX2MZ)

μm⋅cm2/V2 ⋅s 0.0 Width sensitivity

X2U0 1/V2 0.0 Vsb reduction to gate field mobility reduction factor

LX2U0 μm/V2 0.0 Length sensitivity

WX2U0 μm/V2 0.0 Width sensitivity

X2U1 μm/V2 0.0 Vsb reduction to drain field mobility reduction factor

LX2U1 μm2/V2 0.0 Length sensitivity

WX2U1 μm2/V2 0.0 Width sensitivity

X33M cm2/V2⋅s 0.0 Gate field reduction of X3MS

LX33M μm⋅cm2/V2⋅s 0.0 Length sensitivity

WX33M μm⋅cm2/V2⋅s 0.0 Width sensitivity

X3E 1/V 0.0 Vds correction to linear vds threshold coefficient

LX3E μm/V 0.0 Length sensitivity

Table 66 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

Aurora Reference Guide 111X-2006.09

Page 132: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 28 Specific Model Parameters

Note:

When reading parameter names, be aware of the difference in appearance between the capital letter O, and the number zero 0. All Level 28 parameters should be specified using nmos conventions, even for pmos—for example, ETA0 = 0.02, not ETA0 = -0.02. The WL-product sensitivity parameter is available for any parameter with an L and W sensitivity. Replace the leading “L” of the L sensitivity parameter name with a “P”.

WX3E μm/V 0.0 Width sensitivity

X3MS cm2/V2⋅s 5.0 Vds correction for high drain field mobility

LX3MS μm⋅cm2/V2⋅s 0.0 Length sensitivity

WX3MS μm⋅cm2/V2⋅s 0.0 Width sensitivity

X3U1 1/V2 0.0 Vds reduction to drain field mobility reduction factor

LX3U1 μm/V2 0.0 Length sensitivity

WX3U1 μm/V2 0.0 Width sensitivity

Table 67 Basic Model Parameters

Name (Alias) Units Default Description

XLREF m 0.0 Difference between physical (on wafer) and drawn reference channel length XLREF scaled = XLREF ⋅ SCALM

XWREF m 0.0 Difference between physical (on wafer) and drawn reference channel width XWREF scaled = XWREF ⋅ SCALM

Table 68 Temperature Parameters

Name (Alias) Units Default Description

FEX 0.0 Temperature exponent for mobility reduction factor U1

Table 66 Transistor Process Parameters (Continued)

Name (Alias) Units Default Description

112 Aurora Reference GuideX-2006.09

Page 133: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 47 (BSIM3 Version 2.0) Specific Model Parameters

Level 47 (BSIM3 Version 2.0) Specific Model Parameters

Table 69 Model Parameters

Name Units Default Comments

BINFLAG - 0 Uses Wref, Lref when set > 0.9 (Aurora specific)

VTH0 V 0.7 Threshold voltage of long channel at Vbs = 0 and small Vds(0.7 for n-channel, - 0.7 for p-channel)

K1 V1/2 0.53 First-order body effect coefficient

K2 -0.0186 Second-order body effect coefficient

K3 80.0 Narrow width effect coefficient

K3B 1/V 0 Body width coefficient of narrow width effect

KT1 V -0.11 Temperature coefficient for threshold voltage

KT2 0.022 Body bias coefficient of threshold temperature effect

GAMMA1 V1/2 See SIM3 Model Equations

Body effect coefficient, near interface

GAMMA2 V1/2 See Level 47 Model Equations

Body effect coefficient in the bulk

W0 m 2.5e-6 Narrow width effect coefficient

NLX m 1.74e-7 Lateral nonuniform doping along channel

DL m 0.0 Channel length reduction on one side (multiplied by SCALM)

DW m 0.0 Channel width reduction on one side (multiplied by SCALM)

NPEAK cm-3 (see Note 8)

1.7e17 Peak doping concentration near interface

Aurora Reference Guide 113X-2006.09

Page 134: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 47 (BSIM3 Version 2.0) Specific Model Parameters

PHI V See BSIM3 Model Equations

Surface potential under strong inversion

XT m 1.55e-7 Doping depth

VBM V -5.0 Maximum substrate bias

VBX V See BSIM3 Model Equations

Vbs at which the depletion width equals XT

DVT0 2.2 Short-channel effect coefficient 0

DVT1 0.53 Short-channel effect coefficient 1

DVT2 1/V -0.032 Short-channel effect coefficient 2

U0 m2/Vsec (see Note 8, below)

0.067 Low field mobility at T = TNOM

(0.067 for n-channel, 0.025 for p-channel)

UA m/V 2.25e-9 First-order mobility degradation coefficient

UA1 m/V 4.31e-9 Temperature coefficient of UA

UB m2/V2 5.87e-19 Second-order mobility degradation coefficient

UB1 m2/V2 -7.61e-18 Temperature coefficient of UB

UC 1/V 0.0465 Body bias sensitivity coefficient of mobility

UC1 1/V -0.056 Temperature coefficient of UC

VSAT cm/sec 8e6 Saturation velocity of carrier at T = TNOM

AT m/sec 3.3e4 Temperature coefficient of VSAT

Table 69 Model Parameters (Continued)

Name Units Default Comments

114 Aurora Reference GuideX-2006.09

Page 135: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 47 (BSIM3 Version 2.0) Specific Model Parameters

RDSW ohm ⋅ μm

0.0 Source drain resistance per unit width

RDS0 ohm 0.0 Source drain contact resistance

LDD m 0.0 Total length of LDD region

ETA 0.3 Coefficient of drain voltage reduction

ETA0 0.08 Subthreshold region DIBL (Drain Induced Barrier Lowering) coefficient

ETAB 1/V -0.07 Subthreshold region DIBL coefficient

EM V/m 4.1e7 Electrical field in channel above which hot carrier effect dominates

NFACTOR 1.0 Subthreshold region swing

VOFF V -0.11 Offset voltage in subthreshold region

LITL mCharacteristic length. The default is

VGLOW V -0.12 Lower bound of the weak-strong inversion transition region

VGHIGH V 0.12 Upper bound of the weak-strong inversion transition region

CDSC F/m2 2.4e-4 Drain/source and channel coupling capacitance

CDSCB F/Vm2 0 Body coefficient for CDSC

CIT F/m2 0.0 Interface state capacitance

PCLM 1.3 Coefficient of channel length modulation

PDIBL1 0.39 DIBL (Drain Induced Barrier Lowering) effect coefficient 1

PDIBL2 0.0086 DIBL effect coefficient 2

Table 69 Model Parameters (Continued)

Name Units Default Comments

LITLεsiToxXj

εox--------------------

⎝ ⎠⎜ ⎟⎛ ⎞

1 2⁄

=

Aurora Reference Guide 115X-2006.09

Page 136: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 47 (BSIM3 Version 2.0) Specific Model Parameters

DROUT 0.56 DIBL effect coefficient 3

DSUB DROUT DIBL coefficient in subthreshold region

PSCBE1 V/m 4.24e8 Substrate current induced body effect exponent 1

PSCBE2 m/V 1.0e-5 Substrate current induced body effect coefficient 2

A0 1 Bulk charge effect. The default is 4.4 for PMOS.

TNOM °C 25 Temperature at which parameters are extracted (reference temperature of the model).

SUBTHMOD

2 Subthreshold model selector

SATMOD 2 Saturation model selector

KETA 1/V -0.047 Body bias coefficient of the bulk charge effect

A1 1/V 0 First nonsaturation factor (0 for nmos, 0.23 for pmos)

A2 1.0 Second nonsaturation factor (1.0 for nmos, 0.08 for pmos)

UTE -1.5 Mobility temperature exponent

KT1L Vm 0 Channel length sensitivity of temperature coefficient for threshold voltage

UC0* (V/m)2 Temperature coefficient

BULKMOD 1 Bulk charge model selector

PVAG 0 Gate dependence of output resistance

* UC0 has no effect on the model

Table 69 Model Parameters (Continued)

Name Units Default Comments

116 Aurora Reference GuideX-2006.09

Page 137: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

Level 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

The Level 49 and Level 53 models represent the Star-Hspice implementation of the Berkeley BSIM3v3.2 model. While the Level 49 model represents the enhanced (faster and more robust) Star-Hspice implementation, the Level 53 model is totally compatible with the Berkeley implementation. The current implementation is the latest version of the BSIM3v3 model (v3.3).

The Aurora implementation includes a “smart” evaluation mode for drain and source series resistances (by using the specific RXFLAG model parameter). The model evaluation is speeded up more than 40% for models having series resistances. Through this feature, together with the efficient Star-Hspice implementation, the models available in Aurora represent the fastest and, at the same time, the most robust implementation of the BSIM3v3 model in the industry. An example which illustrates this feature is located at:

<tmapath>/aurora_2001.2.0/examples/p_hv/.

There are two strategies: ■ p_hv_r.stg illustrates the extraction of DC parameters at room temperature ■ p_hv_t.stg is used for the extraction of temperature parameters

The effect of RXFLAG can be observed by running the p_hv_r strategy two times: one by setting the RXFLAG parameter to 0 at the first step of the strategy, and the other, by setting it to 1.

The Aurora CMI Interface supports the following variables for each of the Star-Hspice embedded models:

Table 70 Specific Variables for Level 49 & 53 Models

Name Description Default Units Notes

VD Drain voltage 0.0 Volts (major)

VG Gate voltage 0.0 Volts (major)

VS Source voltage 0.0 Volts (major)

VB Substrate voltage 0.0 Volts (major)

FREQ Frequency 0.0 Hz (major)1

W Channel Width 1 × 10-6 meters

Aurora Reference Guide 117X-2006.09

Page 138: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares for resistance calculation

(undefined)

squares

NRS Number of source diffusion squares for resistance calculation

(undefined)

squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

AS Source diffusion area (undefined)

m2

AD Drain diffusion area (undefined)

m2

PS Perimeter of the source junction including the channel edge

(undefined)

m

PD Perimeter of the drain junction including the channel edge

(undefined)

m

M Multiple device option. MOSFET channel width, diode leakage, capacitors, and resistors are altered by this parameter. Simulates multiple parallel devices.

1.0

NF Number of fingers 1 2

RDC additional drain resistance due to contact resistance

0.0 ohm

RSC Additional source resistance due to contact resistance

0.0 ohm

Table 70 Specific Variables for Level 49 & 53 Models (Continued)

Name Description Default Units Notes

118 Aurora Reference GuideX-2006.09

Page 139: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

DELVTO Zero bias threshold voltage shift 0.0

DTEMP Device temperature difference from circuit temperature

0.0

GEO Source/drain sharing selector for ACM=3 0.0

DEVMODE Device mode 1

Z0 Characteristic impedance 50 ohm 1

SA Distance between OD edge to poly on one side (STI model).

0 m 2

SB Distance between OD edge to poly on the other side (STI model).

0 m 2

SD Multiple finger distance (STI model). 0 2

1. The FREQ and Z0 variables are introduced in Aurora 2003.09 to support S-parameter analysis

2. STI model.

Table 71 Specific Targets for Level 49 & 53 Models

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-17

IBS Substrate source-junction leakage current Amps 1 × 10-17

IBD Substrate drain-junction leakage current Amps 1 × 10-17

ISUB Substrate current Amps 1 × 10-17

VON Turn-on voltage V 1 × 10-17

SATVD Saturation voltage (VDSAT) V 1 × 10-17

Table 70 Specific Variables for Level 49 & 53 Models (Continued)

Name Description Default Units Notes

Aurora Reference Guide 119X-2006.09

Page 140: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

CAPGS Meyer’s gate capacitance (dQg/dVgs+cgso) Farads/m 1 × 10-17

CAPGD Meyer’s gate capacitance (dQg/dVds+cgdo) Farads/m 1 × 10-17

CAPGB Meyer’s gate capacitance (dQg/dVgs+cgbo) Farads/m 1 × 10-17

CAPBS Substrate source-junction capacitance Farads/m 1 × 10-17

CAPBD Substrate drain- junction capacitance Farads/m 1 × 10-17

QBS Substrate source-junction charge Coulombs 1 × 10-17

QBD Substrate drain-junction charge Coulombs 1 × 10-17

QG Gate charge Coulombs 1 × 10-17

QD Drain charge Coulombs 1 × 10-17

QS Source charge Coulombs 1 × 10-17

CGGB Intrinsic gate input capacitance Farads 1 × 10-17

CGSB Intrinsic gate-channel transcapacitance Farads 1 × 10-17

CGDB Intrinsic gate-drain transcapacitance Farads 1 × 10-17

CBGB Intrinsic body-gate transcapacitance Farads 1 × 10-17

CBSB Intrinsic body-source transcapacitance Farads 1 × 10-17

CBDB Intrinsic body-drain transcapacitance Farads 1 × 10-17

CDGB Intrinsic drain-gate transcapacitance Farads 1 × 10-17

GD Drain conductance mho 1 × 10-17

GS Source conductance mho 1 × 10-17

Table 71 Specific Targets for Level 49 & 53 Models (Continued)

Name Description Units Minimum

120 Aurora Reference GuideX-2006.09

Page 141: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

GBD Substrate drain junction-conductance mho 1 × 10-17

GBS Substrate source junction-conductance mho 1 × 10-17

IB Current entering substrate (bulk) terminal Amps 1 × 10-17

IG Current entering gate terminal Amps 1 × 10-17

WEFF Effective channel width m 1 × 10-17

LEFF Effective channel length m 1 × 10-17

BETAZERO μ0CoxWeff/Leff Amps/V2 1 × 10-17

BETAEFF μeffCoxWeff/Leff Amps/V2 1 × 10-17

UEFF Effective mobility (μeff) m2/vs 1 × 10-17

ISOURCE Current entering source terminal Amps 1 × 10-17

BULKFACT Bulk factor 1 × 10-17

SUBTHSLP Subthreshold slope 1 × 10-17

CAPGC Gate to channel capacitance Farads/m 1 × 10-17

VID Intrinsic drain voltage V 1 × 10-17

VIS Intrinsic source voltage V 1 × 10-17

VIRD Voltage drop on the drain resistance V 1 × 10-17

Table 71 Specific Targets for Level 49 & 53 Models (Continued)

Name Description Units Minimum

Aurora Reference Guide 121X-2006.09

Page 142: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

The cut-off frequency (FT) is defined as a target for the AC part of the model. The S parameters and y parameters (real and imaginary part) are also available as targets. The value of the frequency (FREQ) must be greater than 0 in order for the model to calculate the S and y parameters.

VIRS Voltage drop on the source resistance V 1 × 10-17

FT Cutoff frequency Hz 1 × 10-17

S11R Real part of S11 1 × 10-17

S11I Imaginary part of S11 1 × 10-17

S12R Real part of S12 1 × 10-17

S12I Imaginary part of S12 1 × 10-17

S21R Real part of S21 1 × 10-17

S21I Imaginary part of S21 1 × 10-17

S22R Real part of S22 1 × 10-17

S22I Imaginary part of S22 1 × 10-17

Y11R Real part of Y11 1 × 10-17

Y11I Imaginary part of Y11 1 × 10-17

Y12R Real part of Y12 1 × 10-17

Y12I Imaginary part of Y12 1 × 10-17

Table 72 Model Flags

Name Units Default Comments

Table 71 Specific Targets for Level 49 & 53 Models (Continued)

Name Description Units Minimum

122 Aurora Reference GuideX-2006.09

Page 143: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

VERSION - 3.3 Selects from BSIM3 Versions 3.0, 3.1, 3.11, 3.2, 3.2.1, 3.2.2, 3.2.3, 3.2.4, and 3.3

PARAMCHK - 0 PARAMCHK=1 will check some model parameters for range compliance

BINFLAG - 0 Uses Wref, Lref when set > 0.9 (Star-Hspice and Aurora specific)

MOBMOD - 1 Mobility model selector

CAPMOD - 3 Selects from Charge models 0,1,2,3

NOIMOD - 1 Berkeley noise model flag

NLEV - 0 (off) Star-Hspice noise model flag (non-zero overrides NOIMOD) (Star-Hspice specific)

NQSMOD - 0 (off) Select using the NQS Model

SFVTFLAG - 1 (on) Spline function for Vth (Star-Hspice specific)

VFBFLAG - 0 (off) VFB selector for CAPMOD=0 (Star-Hspice specific)

RXFLAG - 0 (off) Enables internal approximation for the drain and source external series resistances (Aurora specific)

STIMOD 0 STI model selector:

0 = Off

1 = UCB model

2 = TSMC scalable model

ACNQSMOD - 0 (no) AC small-signal NQS model selector

Table 73 Basic Model Parameters

Name Units Default Comments

TOX m 150e-10 Gate oxide thickness

Table 72 Model Flags (Continued)

Aurora Reference Guide 123X-2006.09

Page 144: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

TOXM m TOX Gate oxide thickness at which parameters are extracted

DTOXCV m 0 Difference between electrical and physical gate oxide thickness.

XJ m 0.15e-6 Junction depth

NGATE cm-3 infinite Polygate doping concentration

VTH0

(VTHO)

V 0.7 Threshold voltage of long channel device at Vbs = 0 and small Vds (typically 0.7 for n-channel, - 0.7 for p-channel)

NSUB cm-3 6.0e16 Substrate doping concentration

NCH cm-3 (see Note 6)

1.7e17 Peak doping concentration near interface

NLX m 1.74e-7 Lateral nonuniform doping along channel

K1 V1/2 0.50 First-order body effect coefficient

K2 - -0.0186 Second-order body effect coefficient

K3 - 80.0 Narrow width effect coefficient

K3B 1/V 0 Body width coefficient of narrow width effect

W0 m 2.5e-6 Narrow width effect coefficient

DVT0W 1/m 0 Narrow width coefficient 0, for Vth,

at small L

DVT1W 1/m 5.3e6 Narrow width coefficient 1, for Vth,

at small L

DVT

2W

1/V -0.032 Narrow width coefficient 2, for Vth,

at small L

Table 73 Basic Model Parameters (Continued)

Name Units Default Comments

124 Aurora Reference GuideX-2006.09

Page 145: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

DVT0 - 2.2 Short channel effect coefficient 0, for Vth

D

VT1

- 0.53 Short channel effect coefficient 1, for Vth

DVT2 1/V -0.032 Short channel effect coefficient 2, for Vth

ETA0 - 0.08 Subthreshold region DIBL (Drain Induced Barrier Lowering) coefficient

ETAB 1/V -0.07 Subthreshold region DIBL coefficient

DSUB - DROUT DIBL coefficient exponent in subthreshold region

VBM V -3.0 Maximum substrate bias, for Vth calculation

U0 cm2/V/sec 670 nmos250 pmos

Low field mobility at T = TNOM

UA m/V 2.25e-9 First-order mobility degradation coefficient

UB m2/V2 5.87e-19 Second-order mobility degradation coefficient

UC 1/V -4.65e-11 or -0.0465

Body bias sensitivity coefficient of mobility

-4.65e-11 for MOBMOD=1,2 or,

-0.0465 for MOBMOD = 3

A0 - 1.0 Bulk charge effect coefficient for channel length

AGS 1/V 0.0 Gate bias coefficient of Abulk

B0 m 0.0 Bulk charge effect coefficient for channel width

B1 m 0.0 Bulk charge effect width offset

KETA 1/V -0.047 Body-bias coefficient of bulk charge effect

VOFF V -0.08 Offset voltage in subthreshold region

VSAT m/sec 8e4 Saturation velocity of carrier at T = TNOM

Table 73 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 125X-2006.09

Page 146: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

A1 1/V 0 First nonsaturation factor

A2 - 1.0 Second nonsaturation factor

RDSW ohm ⋅ μm 0.0 Parasitic source drain resistance per unit width

PRWG 1/V 0 Gate bias effect coefficient of RDSW

PRWB 1/V1/2 0 Body effect coefficient of RDSW

WR - 1.0 Width offset from Weff for Rds calculation

NFACTOR - 1.0 Subthreshold region swing

CIT F/m2 0.0 Interface state capacitance

CDSC F/m2 2.4e-4 Drain/source and channel coupling capacitance

CDSCD F/Vm2 0 Drain bias sensitivity of CDSC

CDSCB F/Vm2 0 Body coefficient for CDSC

PCLM - 1.3 Coefficient of channel length modulation values < 0 will result in an error message and program exit.

PDIBLC1 - 0.39 DIBL (Drain Induced Barrier Lowering) effect coefficient 1

PDIBLC2 - 0.0086 DIBL effect coefficient 2

PDIBLCB 1/V 0 Body effect coefficient of DIBL effect coefficients

DROUT - 0.56 Length dependence coefficient of the DIBL correction parameter in Rout

PSCBE1 V/m 4.24e8 Substrate current induced body effect exponent 1

PSCBE2 V/m 1.0e-5 Substrate current induced body effect coefficient 2

PVAG - 0 Gate dependence of Early voltage

Table 73 Basic Model Parameters (Continued)

Name Units Default Comments

126 Aurora Reference GuideX-2006.09

Page 147: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

DELTA V 0.01 Effective Vds parameter

ALPHA0 m/V 0 First parameter of substrate impact ionization current

ALPHA1 1/V 0 Second parameter of substrate impact ionization current

BETA0 V 30 Third parameter of substrate impact ionization current

RSH 0.0 ohm/square Source/drain sheet resistance in ohm per square

Table 74 AC and Capacitance Parameters

Name Units Default Comments

XPART - 1 Charge partitioning rate flag

(default deviates from BSIM3V3=0)

CGSO F/m p1(see Note 1)

Non-LDD region source-gate overlap capacitance per unit channel length

CGDO F/m p2(see Note 2)

Non-LDD region source-gate overlap capacitance per unit channel length

CGBO F/m 0 Gate-bulk overlap capacitance per unit channel length

CGSL (CGS1)

F/m 0.0 Lightly doped source-gate overlap region capacitance

CGDL (CGD1)

F/m 0.0 Lightly doped drain-gate overlap region capacitance

CKAPPA F/m 0.6 Coefficient for lightly doped region overlap capacitance fringing field capacitance

CF F/m (see Note 3) Fringing field capacitance

Table 73 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 127X-2006.09

Page 148: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

CLC m 0.1e-6 Constant term for the short channel model

CLE - 0.6 Exponential term for the short channel model

ACDE m/V 1.0 Exponential coefficient for charge thickness

MOIN V 15.0 Coefficient for the gate-bias dependent surface potential

NOFF - 1.0 CV slope coefficient for weak to strong inversion region

VOFFCV V 0.0 CV offset voltage for weak to strong inversion region

Table 75 Length and Width Parameters

Name Units Default Comments

WINT m 0.0 Width offset fitting parameter from I-V without bias

WL mWLN 0.0 Coefficient of length dependence for width offset

WLN - 1.0 Power of length dependence of width offset

WW mWWN 0.0 Coefficient of width dependence for width offset

WWN - 1.0 Power of width dependence of width offset

WWL mWWN*mWLN 0.0 Coefficient of length and width cross term for width offset

Name Units Default Comments

DWG m/V 0.0 Coefficient of Weff’s gate dependence

DWB m/V1/2 0.0 Coefficient of Weff’s substrate body bias dependence

LINT m 0.0 Length offset fitting parameter from I-V without bias

LL mLLN 0.0 Coefficient of length dependence for length offset

Table 74 AC and Capacitance Parameters (Continued)

128 Aurora Reference GuideX-2006.09

Page 149: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

LLN - 1.0 Power of length dependence of length offset

LW mLWN 0.0 Coefficient of width dependence for length offset

LWN - 1.0 Power of width dependence of length offset

LWL mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset

DLC m LINT Length offset fitting parameter from CV

DWC m WINT Width offset fitting parameter from CV

WLC mWLN 0.0 Coefficient of length dependence for width offset from CV

WWC mWWN 0.0 Coefficient of width dependence for width offset from CV

WWLC mWWN

*mWLN

0.0 Coefficient of length and width cross term for width offset from CV

LLC mLLN 0.0 Coefficient of length dependence for length offset from CV

LWC mLWN 0.0 Coefficient of width dependence for length offset from CV

LWLC mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset from CV

Table 76 Temperature Parameters

Name Units Default Comments

TNOM °C 25 Reference temperature of the model

KT1 V 0.0 Temperature coefficient for Vth

Table 75 Length and Width Parameters (Continued)

Aurora Reference Guide 129X-2006.09

Page 150: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

KT1L m-V 0.0 Temperature coefficient for channel length dependence of Vth

KT2 - 0.022 Body bias coefficient of Vth temperature effect

UTE - -1.5 Mobility temperature exponent

UA1 m/V 4.31e-9 Temperature coefficient for UA

UB1 (m/V)2 -7.61e-18 Temperature coefficient for UB

UC1 m/V2 -5.69e-11 Temperature coefficient for UC

AT m/sec 3.3e4 Temperature coefficient for saturation velocity

PRT ohm-um 0 Temperature coefficient for RDSW

XTI - 3.0 Junction current temperature exponent

TPB V/K 0.0 Temperature coefficient for PB

TPBSW V/K 0.0 Temperature coefficient for PBSW

TPBSWG V/K 0.0 Temperature coefficient for PBSWG

TCJ 1/K 0.0 Temperature coefficient for CJ

TCJSW 1/K 0.0 Temperature coefficient for CJSW

TCJSWG 1/K 0.0 Temperature coefficient for CJSWG

Table 77 Bin Description Parameters

Name Units Default Comments

LMIN m 0.0 Maximum channel length

LMAX m 1.0 Maximum channel length

WMIN m 0.0 Minimum channel width

Table 76 Temperature Parameters (Continued)

130 Aurora Reference GuideX-2006.09

Page 151: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

WMAX m 1.0 Maximum channel width

BINUNIT - 0 Assumes Weff, Leff, Wref, and Lref units are in microns when BINUNIT=1 or meters otherwise

Table 78 Process Parameters

Name Units Default Comments

GAMMA1 V1/2 see Note 8 Body effect coefficient near the surface

GAMMA2 V1/2 see Note 9 Body effect coefficient in the bulk

VBX V see Note 10 VBX at which the depletion region width equals XT

XT m 1.55e-7 Doping depth

VBI V see Note 11 Drain and source junction built-in potential

VFB V calculated DC flat-band voltage

Table 79 Process Geometry Parameters

Name (Alias) Units Default Description

HDIF m 0 Length of heavily doped diffusion, from contact to lightly doped region (ACM=2, 3only)HDIFscaled = HDIF ⋅ SCALM

LDIF m 0 Length of lightly doped diffusion adjacent to gate(ACM=1, 2)LDIFscaled = LDIF ⋅ SCALM

XL m 0 Accounts for masking and etching effects XLscaled = XL ⋅ SCALM

XW

m 0 Accounts for masking and etching effects XWscaled = XW ⋅

SCALM

Table 77 Bin Description Parameters

Aurora Reference Guide 131X-2006.09

Page 152: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

Table 80 Noise Parameters

Name Units Default Comments

NOIA - 1.0e20 nmos

9.9e18 pmos

Body effect coefficient near the surface

Name Units Default Comments

NOIB - 5.0e4 nmos

2.4e3 pmos

Body effect coefficient in the bulk

NOIC - -1.4e-12 nmos

1.4e-12 pmos

VBX at which the depletion region width equals XT

EM V/m 4.1e7 Doping depth

AF - 1.0 Drain and source junction built-in potential

KF - 1.0 Flicker exponent

LINTNOI m 0.0 Length reduction parameter offset

Table 81 Junction Parameters

Name Units Default Comments

ACM - 0 Area calculation method selector (Star-Hspice specific)

JS A/m2 0.0 Bulk junction saturation current

(Default deviates from BSIM3v3 = 1.0e-4)

Name Units Default Comments

JSW A/m 0.0 Sidewall bulk junction saturation current

IJTH A Calculated Diode limiting current

NJ - 1 Emission coefficient (not used with ACM=3)

132 Aurora Reference GuideX-2006.09

Page 153: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

CJ F/m2 5.79e-4 Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-4)

CJSW F/m 0.0 Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-10)

CJSWG F/m CJSW Zero-bias gate-edge sidewall bulk junction capacitance

(not used with ACM=0-3)

PB, PHIB V 1.0 Bulk junction contact potential

PBSW V 1.0 Sidewall bulk junction contact potential

PBSWG V PBSW Gate-edge sidewall bulk junction contact potential

(not used with ACM=0-3)

Name Units Default Comments

MJ - 0.5 Bulk junction grading coefficient

MJSW - 0.33 Sidewall bulk junction grading coefficient

MJSWG - MJSW Gate-edge sidewall bulk junction grading coefficient

(not used with ACM=0-3)

Table 82 NQS Parameters

Name Units Default Comments

ELM - 5.0 Elmore constant

Table 83 Miscellaneous Parameters

Name (Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

Table 81 Junction Parameters

Aurora Reference Guide 133X-2006.09

Page 154: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

QFLAG 0.0 Flag for charge/cap computing

GMIN Mhos 1 × 10-12 Minimum conductance

Table 84 Drain and Source Resistance Parameters

Name (Alias) Units Default Description

RD ohm/sq 0.0 Drain ohmic resistance. This parameter is usually lightly doped regions’ sheet resistance for ACMŠ = 1.

LRD ohm/m 0 Drain resistance length sensitivity. Use this parameter with automatic model selection in conjunction with WRD and PRD to factor model for device size.

WRD ohm/m 0 Drain resistance width sensitivity

PRD ohm/m2 0 Drain resistance product (WxL) sensitivity

RS ohm/sq 0.0 Source ohmic resistance. This parameter is usually lightly doped regions’ sheet resistance for ACMŠ = 1.

LRS ohm/m 0 Source resistance length sensitivity. Use this parameter with automatic model selection in conjunction with WRS and PRS to factor model for device size.

WRS ohm/m 0 Source resistance width sensitivity

PRS ohm/m2 0 Source resistance product (WxL) sensitivity

Table 85 UCB STI Model Parameters

Name Units Default Comments

SA0 m 1.0e-06 Reference distance between OD edge to poly on one side.

Table 83 Miscellaneous Parameters

Name (Alias) Units Default Description

134 Aurora Reference GuideX-2006.09

Page 155: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

SB0 m 1.0e-06 Reference distance between OD edge to poly on the other side.

SK0

SK1

SK2

SL

SW

K

Table 86 TSMC Scalable STI Model Parameters

Name Units Default Comments

SA0 m 1.0e-06 Reference distance between OD edge to poly on one side.

SB0 m 1.0e-06 Reference distance between OD edge to poly on the other side.

WLOD m 0 Length parameter for the stress effect.

KU0 m 0 Mobility coefficient for the stress effect.

KVS

AT

- 0 Saturation velocity parameter for the stress effect.

KVTH0 Vm 0 Threshold shift parameter for the stress effect.

LLODKU0 - 0 Length parameter for U0 stress effect.

WLODKU0 - 0 Width parameter for U0 stress effect.

LLODVTH - 0 Length parameter for VTH stress effect.

WLODVTH - 0 Width parameter for VTH stress effect.

Table 85 UCB STI Model Parameters (Continued)

Aurora Reference Guide 135X-2006.09

Page 156: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

LWP Terms

The Star-HSpice Level 49 and Level 53 models implemented in Aurora also include the Length, Width, and Product terms for some of the parameters. The following table illustrates the LWP terms available with Aurora.

LKU0 m^LLODKU0 0 Length dependence of KU0.

WLU0 m^WLODKU0 0 Width dependence of KU0.

PKU0 m^(LLODKU0+WLODKU0)

0 Cross-term dependence of KU0.

LKVTH0 Vm^LLODVTH0 0 Length dependence of KVTH0.

WKVTH0 Vm^WLODVTH0 0 Width dependence of KVTH0.

PKVTH0 Vm^(LLODVTH0+WLODVTH0)

0 Cross-term dependence of KVTH0.

STK2 m 0 K2 shift factor related to VTH0 change.

LODK2 - 1 K2 shift modification factor for stress effect.

STETA0 m 0 ETA0 shift factor related to VTH0 change.

LODETA0 - 1 ETA0 shift modification factor for stress effect.

Table 87 Length, Width, & Cross-Term Dependent Parameters

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

CDSC LCDSC WCDSC PCDSC

CDSCB LCDSCB WCDSCB PCDSCB

CDSCD LCDSCD WCDSCD PCDSCD

CIT LCIT WCIT PCIT

NFACTOR LNFACTOR WNFACTOR PNFACTOR

Table 86 TSMC Scalable STI Model Parameters (Continued)

136 Aurora Reference GuideX-2006.09

Page 157: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

VSAT LVSAT WVSAT PVSAT

A0 LA0 WA0 PA0

AGS LAGS WAGS PAGS

A1 LA1 WA1 PA1

A2 LA2 WA2 PA2

KETA LKETA WKETA PKETA

NGATE LNGATE WNGATE PNGATE

K1 LK1 WK1 PK1

K2 LK2 WK2 PK2

VTH0 LVTH0 WVTH0 PVTH0

UA LUA WUA PUA

UB LUB WUB PUB

UC LUC WUC PUC

U0 LU0 WU0 PU0

VOFF LVOFF WVOFF PVOFF

DELTA LDELTA WDELTA PDELTA

RDSW LRDSW WRDSW PRDSW

PRWG LPRWG WPRWG PPRWG

PRWB LPRWB WPRWB PPRWB

ETA0 LETA0 WETA0 PETA0

ETAB LETAB WETAB PETAB

Table 87 Length, Width, & Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

Aurora Reference Guide 137X-2006.09

Page 158: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 49 & 53 (BSIM3v3) Variables, Targets and Model Parameters

PCLM LPCLM WPCLM PPCLM

PDIBLC1 LPDIBLC1 WPDIBLC1 PPDIBLC1

PDIBLC2 LPDIBLC2 WPDIBLC2 PPDIBLC2

PSCBE1 LPSCBE1 WPSCBE1 PPSCBE1

PSCBE2 LPSCBE2 WPSCBE2 PPSCBE2

WR LWR WWR PWR

AT LAT WAT PAT

KT1 LKT1 WKT1 PKT1

KT2 LKT2 WKT2 PKT2

UTE LUTE WUTE PUTE

UA1 LUA1 WUA1 PUA1

UB1 LUB1 WUB1 PUB1

UC1 LUC1 WUC1 PUC1

PRT LPRT WPRT PPRT

CGSL LCGSL

CGDL LCGDL

CKAPPA LCKAPPA

CF LCF

CLC LCLC

CLE LCLE

VOFFCV LVOFFCV

Table 87 Length, Width, & Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

138 Aurora Reference GuideX-2006.09

Page 159: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

Note:

The LWP parameters for the Level 49 & Level 53 models are included in the AURORA parameter set for global modeling purpose only. You can make use of some of the LWP terms for increasing the accuracy model, while maintaining the physical character and simplicity. If using the binning capability, ALL of the Level 49 & Level 53 model parameters that can be binned can also have associated LWP terms, regardless of whether or not their associated LWP terms appear in the parameter list.

Level 54 (BSIM4) Variables, Targets and Model Parameters

The Level 54 model represents the Star-Hspice implementation of the Berkeley BSIM4v4.5 model.

NOFF LNOFF

ACDE LACDE

MOIN LMOIN

Table 88 Specific Variables For the Level 54 Model

Name Description Default Units Notes

VD Drain voltage 0.0 Volts (major)

VG Gate voltage 0.0 Volts (major)

VS Source voltage 0.0 Volts (major)

VB Substrate voltage 0.0 Volts (major)

FREQ Frequency 0.0 Hz (major) 1

W Channel Width 1 × 10-6 meters

Table 87 Length, Width, & Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

Aurora Reference Guide 139X-2006.09

Page 160: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares for resistance calculation

1 squares 2

NRS Number of source diffusion squares for resistance calculation

1 squares 2

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

AS Source diffusion area (undefined) m2

AD Drain diffusion area (undefined) m2

PS Perimeter of the source junction including the channel edge

(undefined) m

PD Perimeter of the drain junction including the channel edge

(undefined) m

M Multiple device option. MOSFET channel width, diode leakage, capacitors, and resistors are altered by this parameter. Simulates multiple parallel devices.

1.0

RDC additional drain resistance due to contact resistance

0.0 ohm

RSC Additional source resistance due to contact resistance

0.0 ohm

DELVTO Zero bias threshold voltage shift 0.0

DTEMP Device temperature difference from circuit temperature

0.0

Table 88 Specific Variables For the Level 54 Model (Continued)

Name Description Default Units Notes

140 Aurora Reference GuideX-2006.09

Page 161: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

GEO Source/drain sharing selector for ACM=3 0.0

DEVMODE Device mode 1

RGEOMOD Source/drain diffusion resistance and contact model selector

1 3

NF Number of fingers 1

MIN It indicates whether to minimize the number of drain and source diffusions for even-number fingered device

0.0

Z0 Characteristic impedance 50 ohm 1

SA Distance between OD edge to poly on one side (STI model).

0 m 4

SB Distance between OD edge to poly on the other side (STI model).

0 m 4

SCA Integral of the first distribution function for scattered well dopant

0.0 No

SCB Integral of the second distribution function for scattered well dopant

0.0 No

SCC Integral of the third distribution function for scattered well dopant

0.0 No

SC Distance to a single well edge 0.0[m] No

1. The FREQ and Z0 variables were introduced in Aurora 2003.03 to support S-parameter analysis.

2. Unlike most of the other CMI MOSFET models where NRD and NRS are undefined by default, for Level 54 NRD and NRS default to 1.

3. In the Berkeley version of the model, RGEOMOD defaults to 0 (no S/D diffusion resistance

4. STI model.

Table 88 Specific Variables For the Level 54 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 141X-2006.09

Page 162: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

Table 89 Specific targets for the Level 54 Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-17

IBS Substrate source-junction leakage current Amps 1 × 10-17

IBD Substrate drain-junction leakage current Amps 1 × 10-17

ISUB Substrate current Amps 1 × 10-17

VON Turn-on voltage V 1 × 10-17

SATVD Saturation voltage (VDSAT) V 1 × 10-17

CAPGS Meyer’s gate capacitance (dQg/dVgs+cgso) Farads/m 1 × 10-17

CAPGD Meyer’s gate capacitance (dQg/dVds+cgdo) Farads/m 1 × 10-17

CAPGB Meyer’s gate capacitance (dQg/dVgs+cgbo) Farads/m 1 × 10-17

CAPBS Substrate source-junction capacitance Farads/m 1 × 10-17

CAPBD Substrate drain- junction capacitance Farads/m 1 × 10-17

QBS Substrate source-junction charge Coulombs 1 × 10-17

QBD Substrate drain-junction charge Coulombs 1 × 10-17

QG Gate charge Coulombs 1 × 10-17

QD Drain charge Coulombs 1 × 10-17

QS Source charge Coulombs 1 × 10-17

CGGB Intrinsic gate input capacitance Farads 1 × 10-17

CGSB Intrinsic gate-channel transcapacitance Farads 1 × 10-17

CGDB Intrinsic gate-drain transcapacitance Farads 1 × 10-17

142 Aurora Reference GuideX-2006.09

Page 163: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

CBGB Intrinsic body-gate transcapacitance Farads 1 × 10-17

CBSB Intrinsic body-source transcapacitance Farads 1 × 10-17

CBDB Intrinsic body-drain transcapacitance Farads 1 × 10-17

CDGB Intrinsic drain-gate transcapacitance Farads 1 × 10-17

GD Drain conductance mho 1 × 10-17

GS Source conductance mho 1 × 10-17

GBD Substrate drain junction-conductance mho 1 × 10-17

GBS Substrate source junction-conductance mho 1 × 10-17

IB Current entering substrate (bulk) terminal Amps 1 × 10-17

IG Current entering gate terminal Amps 1 × 10-17

WEFF Effective channel width m 1 × 10-17

LEFF Effective channel length m 1 × 10-17

BETAZEO μ0CoxWeff/Leff Amps/V2 1 × 10-17

BETAEFF μeffCoxWeff/Leff Amps/V2 1 × 10-17

UEFF Effective mobility (μeff) m2/vs 1 × 10-17

ISOURCE Current entering source terminal Amps 1 × 10-17

BULKFACT Bulk factor 1 × 10-17

SUBTHSLP

Subthreshold slope 1 × 10-17

CAPGC Gate to channel capacitance Farads/m 1 × 10-17

Table 89 Specific targets for the Level 54 Model (Continued)

Name Description Units Minimum

Aurora Reference Guide 143X-2006.09

Page 164: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

VID Intrinsic drain voltage V 1 × 10-17

VIS Intrinsic source voltage V 1 × 10-17

VIRD Voltage drop on the drain resistance V 1 × 10-17

VIRS Voltage drop on the source resistance V 1 × 10-17

FT Cutoff frequency Hz 1 × 10-17

S11R Real part of S11 1 × 10-17

S11I Imaginary part of S11 1 × 10-17

S12R Real part of S12 1 × 10-17

S12I Imaginary part of S12 1 × 10-17

S21R Real part of S21 1 × 10-17

S21I Imaginary part of S21 1 × 10-17

S22R Real part of S22 1 × 10-17

S22I Imaginary part of S22 1 × 10-17

Y11R Real part of Y11 1 × 10-17

Y11I Imaginary part of Y11 1 × 10-17

Y12R Real part of Y12 1 × 10-17

Y12I Imaginary part of Y12 1 × 10-17

Y21R Real part of Y21 1 × 10-17

Table 89 Specific targets for the Level 54 Model (Continued)

Name Description Units Minimum

144 Aurora Reference GuideX-2006.09

Page 165: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

The cut-off frequency (FT) is defined as a target for the AC part of the model. The S parameters and y parameters (real and imaginary part) are also available as targets. The value of the frequency (FREQ) must be greater than 0 in order for the model to calculate the S and y parameter

Y22R Real part of Y22 1 × 10-17

Y22I Imaginary part of Y22 1 × 10-17

Table 90 Model Flags

Name Units Default Comments

VERSION - 4.5 Selects BSIM4 Version (4.5)

PARAMCHK - 0 PARAMCHK=1 will check some model parameters for range compliance

BINFLAG - 0 Uses Wref, Lref when set > 0.9 (Aurora specific)

MOBMOD - 0 Mobility model selector

CAPMOD - 2 Selects from Charge models 0,1,2,3

TRNQSMOD - 0 (off) Select using the NQS Model

ACNQSMOD - 0 (off) Select using the NQS Model

CAPMOD 3 Selects from Charge models 0,1,2,3

FNOIMOD 1 Berkeley flicker noise model flag

TNOIMOD 0 Berkeley thermal noise model flag

IGCMOD 0 Gate to channel tunneling current selector

IGBMOD 0 Gate to substrate tunneling current selector

RDSMOD 0 Source/drain resistance model selector

Table 89 Specific targets for the Level 54 Model (Continued)

Name Description Units Minimum

Aurora Reference Guide 145X-2006.09

Page 166: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

DIOMOD 0 Source/drain junction diode model selector

PERMOD 0 Selects including the gate edge sidewall in PS/PD

STIMOD 0 STI model selector:0 = Off1 = UCB model2 = TSMC scalable model

TSMCDFLG 0 TSMC diode model flag

TEMPMOD 0 Temperature model flag

TTDIOMOD 0

VBFWDMOD

FTMODE 0 FT calculus selector (Aurora-specific)

Table 91 Basic Model Parameters

Name Units Default Comments

EPSROX m 150e-10 Gate oxide relative dielectric constant

TOXE m 30e-10 Effective gate oxide thickness

TOXP m TOXE Physical gate oxide thickness

TOXM m TOXE Gate oxide thickness at which parameters are extracted

DTOX m 0 TOXE-TOXP

XJ m 0.15e-6 Junction depth

NGATE cm-3 infinite Polygate doping concentration

VTH0(VTHO) V 0.7 Threshold voltage of long channel device at Vbs = 0 and small Vds (typically 0.7 for n-channel, - 0.7 for p-channel)

Table 90 Model Flags

146 Aurora Reference GuideX-2006.09

Page 167: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

PHIN V 0.0 Non-uniform vertical doping effect on surface potential

NSUB cm-3 6.0e16 Substrate doping concentration

NDEP cm-3 (see Note 6)

1.7e17 Peak doping concentration near interface

NSD cm-3 1.0e20 Source/drain doping concentration

K1 V1/2 0.50 First-order body effect coefficient

K2 - -0.0186 Second-order body effect coefficient

K3 - 80.0 Narrow width effect coefficient

K3B 1/V 0 Body width coefficient of narrow width effect

W0 m 2.5e-6 Narrow width effect coefficient

LPE0 m 1.74e-7 Lateral non-uniform doping effect on K1

LPEB m 0.0 Lateral non-uniform doping parameter atr VBS=0

DVT0W 1/m 0 Narrow width coefficient 0, for Vth,

at small L

DVT1W 1/m 5.3e6 Narrow width coefficient 1, for Vth,

at small L

DVT2W 1/V -0.032 Narrow width coefficient 2, for Vth,

at small L

DVT0 - 2.2 Short channel effect coefficient 0, for Vth

DVT1 - 0.53 Short channel effect coefficient 1, for Vth

DVT2 1/V -0.032 Short channel effect coefficient 2, for Vth

Table 91 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 147X-2006.09

Page 168: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

DVTP0 m 0.0 First coefficient of drain-induced Vth shift due to for long-channel pocket devices

DVTP1 1/V 0.0 First coefficient of drain–induced Vth shift due to for long–channel pocket devices

ETA0 - 0.08 Subthreshold region DIBL (Drain Induced Barrier Lowering) coefficient

ETAB 1/V -0.07 Subthreshold region DIBL coefficient

DSUB - DROUT DIBL coefficient exponent in subthreshold region

VBM V -3.0 Maximum substrate bias, for Vth calculation

U0 cm2/V/sec

670 nmos250 pmos

Low field mobility at T = TNOM

UA m/V 2.25e-9 First-order mobility degradation coefficient

UB m2/V2 5.87e-19 Second-order mobility degradation coefficient

UC 1/V -4.65e-11 or -0.0465

Body bias sensitivity coefficient of mobility

-4.65e-11 for MOBMOD=1,2 or,

-0.0465 for MOBMOD = 3

EU - 1.67(nmos)

1 (pmos)

Exponent for mobility degradation of MOBMOD=2

A0 - 1.0 Bulk charge effect coefficient for channel length

AGS 1/V 0.0 Gate bias coefficient of Abulk

B0 m 0.0 Bulk charge effect coefficient for channel width

B1 m 0.0 Bulk charge effect width offset

KETA 1/V -0.047 Body-bias coefficient of bulk charge effect

VOFF V -0.08 Offset voltage in subthreshold region

Table 91 Basic Model Parameters (Continued)

Name Units Default Comments

148 Aurora Reference GuideX-2006.09

Page 169: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

VOFFL Vm 0.0 Channel length dependence of VOFF

MINV - 0.0 Vgsteff fitting parameter for moderate inversion condition

VSAT m/sec 8e4 Saturation velocity of carrier at T = TNOM

A1 1/V 0 First nonsaturation factor

A2 - 1.0 Second nonsaturation factor

RDSW ohm ⋅ μm

200.0 Zero-bias LDD resistance per unit width for RDSMOD=0

RDSWMIN ohm ⋅ μm

0.0 LDD resistance per unit width at high VGS and zero VBS for RDSMOD=0

RDW ohm ⋅ μm

100.0 Zero-bias LD drain resistance per unit width for RDSMOD=1

RDWMIN ohm ⋅ μm

0.0 LD drain resistance per unit width at high VGS and zero VBS for RDSMOD=1

RSW ohm ⋅ μm

100.0 Zero-bias LD source resistance per unit width for RDSMOD=1

RSWMIN ohm ⋅ μm

0.0 LD source resistance per unit width at high VGS and zero VBS for RDSMOD=1

PRWG 1/V 0 Gate bias effect coefficient of LDD resistance

PRWB 1/V1/2 0 Body effect coefficient of LDD resistance

WR - 1.0 Width offset from Weff for Rds calculation

NFACTOR - 1.0 Subthreshold region swing

CIT F/m2 0.0 Interface state capacitance

CDSC F/m2 2.4e-4 Drain/source and channel coupling capacitance

Table 91 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 149X-2006.09

Page 170: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

CDSCD F/Vm2 0 Drain bias sensitivity of CDSC

CDSCB F/Vm2 0 Body coefficient for CDSC

PCLM - 1.3 Coefficient of channel length modulation values < 0 will result in an error message and program exit.

PDIBLC1 - 0.39 DIBL (Drain Induced Barrier Lowering) effect coefficient 1

PDIBLC2 - 0.0086 DIBL effect coefficient 2

PDIBLCB 1/V 0 Body effect coefficient of DIBL effect coefficients

DROUT - 0.56 Length dependence coefficient of the DIBL correction parameter in Rout

PSCBE1 V/m 4.24e8 Substrate current induced body effect exponent 1

PSCBE2 V/m 1.0e-5 Substrate current induced body effect coefficient 2

PVAG - 0 Gate dependence of Early voltage

DELTA V 0.01 Effective Vds parameter

FPROUT V/m1/2 0.0 Effect of pocket implant on Rout degradation

PDITS V 0.0 Impact of drain–induced Vth shift on Rout

PDITSL 1/m 0.0 Channel–length dependence of Impact of drain–induced Vth shift on Rout

PDITSD 1/V 0.0 VDS dependence of Impact of drain–induced Vth shift on Rout

ALPHA0 m/V 0 First parameter of substrate impact ionization current

ALPHA1 1/V 0 Second parameter of substrate impact ionization current

Table 91 Basic Model Parameters (Continued)

Name Units Default Comments

150 Aurora Reference GuideX-2006.09

Page 171: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

BETA0 V 30 Third parameter of substrate impact ionization current

RSH ohm/square

0 Source/drain sheet resistance in ohm per square

LAMBDA 0.0 Velocity overshoot coefficient

VTL m/s 2E5 Thermal velocity

LC 0 Velocity back scattering coefficient

XN 3.0 Velocity back scattering coefficient

Table 92 GIDL Model Parameters

Name Units Default Comments

AGIDL mho 0.0 Pre-exponential coefficient for GIDL

BGIDL V/m 2.3e9 Exponential coefficient for GIDL

CGIDL V3 0.5 Body-bias effect on GIDL

EGIDL V 0.8 Fitting parameter for band bending for GIDL

Table 93 Gate Dielectric Tunneling Current Model Parameters

Name Units Default Comments

AIGBACC (Fs2/g)1/2/m 0.43 Parameter for Igb in accumulation

BAIGBACC (Fs2/g)1/2/mV 0.054 Parameter for Igb in accumulation

CAIGBACC 1/V 0.075 Parameter for Igb in accumulation

NAIGBACC - 1 Parameter for Igb in accumulation

AIGBINV (Fs2/g)1/2/m 0.35 Parameter for Igb in inversion

Table 91 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 151X-2006.09

Page 172: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

BIGBINV (Fs2/g)1/2/mV 0.03 Parameter for Igb in inversion

CIGBINV 1/V 0.006 Parameter for Igb in inversion

EIGBINV V 1.1 Parameter for Igb in inversion

NIGBINV - 3 Parameter for Igb in inversion

AIGC (Fs2/g)1/2/m 0.43 (nmos)

0.31 (pmos)

Parameter for Igcs and Igcd

BIGC (Fs2/g)1/2/mV 0.054 (nmos)

0.024 (pmos)

Parameter for Igcs and Igcd

CIGC 1/V 0.075 (nmos)

0.03 (pmos)

Parameter for Igcs and Igcd

Name Units Default Comments

AIGSD (Fs2/g)1/2/m 0.054 (nmos)

0.31 (pmos)

Parameter for Igs and Igd

BIGSD (Fs2/g)1/2/mV 0.054 (nmos)

0.024 (pmos)

Parameter for Igs and Igd

CIGSD 1/V 0.075 (nmos)

0.03 (pmos)

Parameter for Igs and Igd

DLCIG m LINT Source/drain overlap length for Igs and Igd

NIGC - 1 Parameter for Igcs , Igcd, Igs and Igd

POXEDGE - 1 Factor for the gate oxide thickness in source/drain overlap regions

PIGCD - 1 VDS dependence of Igs and Igd

NTOX - 1 Exponent for gate oxide ratio

Table 93 Gate Dielectric Tunneling Current Model Parameters

152 Aurora Reference GuideX-2006.09

Page 173: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

TOXREF m 3.0e-9 Nominal gate oxide thickness for gate dielectric tunneling current model only

VFBSDOFF V 0 VFB offset parameter

Table 94 AC and Capacitance Parameters

Name Units Default Comments

XPART - 1 Charge partitioning rate flag

(default deviates from BSIM3V3=0)

CGSO F/m p1(see Note 1)

Non-LDD region source-gate overlap capacitance per unit channel length

CGDO F/m p2(see Note 2)

Non-LDD region source-gate overlap capacitance per unit channel length

CGBO F/m 0 Gate-bulk overlap capacitance per unit channel length

CGSL (CGS1) F/m 0.0 Lightly doped source-gate overlap region capacitance

CGDL (CGD1) F/m 0.0 Lightly doped drain-gate overlap region capacitance

CKAPPAS F/m 0.6 Coefficient of bias-dependent overlap capacitance for the source side

CKAPPAD F/m CKAPPAS Coefficient of bias-dependent overlap capacitance for the drain side

CF F/m (see Note 3) Fringing field capacitance

Name Units Default Comments

CLC m 0.1e-6 Constant term for the short channel model

CLE - 0.6 Exponential term for the short channel model

ACDE m/V 1.0 Exponential coefficient for charge thickness

Table 93 Gate Dielectric Tunneling Current Model Parameters

Aurora Reference Guide 153X-2006.09

Page 174: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

MOIN V 15.0 Coefficient for the gate-bias dependent surface potential

NOFF - 1.0 CV slope coefficient for weak to strong inversion region

VOFFCV V 0.0 CV offset voltage for weak to strong inversion region

Table 95 Length and Width Parameters

Name Units Default Comments

WINT m 0.0 Width offset fitting parameter from I-V without bias

WL mWLN 0.0 Coefficient of length dependence for width offset

WLN - 1.0 Power of length dependence of width offset

WW mWWN 0.0 Coefficient of width dependence for width offset

WWN - 1.0 Power of width dependence of width offset

WWL mWWN

*mWLN

0.0 Coefficient of length and width cross term for width offset

DWG m/V 0.0 Coefficient of Weff’s gate dependence

DWB m/V1/2 0.0 Coefficient of Weff’s substrate body bias dependence

LINT m 0.0 Length offset fitting parameter from I-V without bias

LL mLLN 0.0 Coefficient of length dependence for length offset

LLN - 1.0 Power of length dependence of length offset

LW mLWN 0.0 Coefficient of width dependence for length offset

LWN - 1.0 Power of width dependence of length offset

Table 94 AC and Capacitance Parameters (Continued)

154 Aurora Reference GuideX-2006.09

Page 175: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

LWL mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset

DLC m LINT Length offset fitting parameter from CV

DWC m WINT Width offset fitting parameter from CV

WLC mWLN 0.0 Coefficient of length dependence for width offset from CV

WW

CmWWN 0.0 Coefficient of width dependence for width offset

from CV

WWLC mWWN

*mWLN

0.0 Coefficient of length and width cross term for width offset from CV

LLC mLLN 0.0 Coefficient of length dependence for length offset from CV

LWC mLWN 0.0 Coefficient of width dependence for length offset from CV

LWLC mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset from CV

XLREF m 0.0 Difference between the physical (on the wafer) and the drawn reference channel length:

XLREFscaled=XLREF ⋅ SCALM

XWREF m 0.0 Difference between the physical (on the wafer) and the drawn reference channel width:

XWREFscaled=XWREF ⋅ SCALM

Table 96 Temperature Parameters

Name Units Default Comments

TNOM °C 25 Reference temperature of the model

KT1 V 0.0 Temperature coefficient for Vth

Table 95 Length and Width Parameters (Continued)

Aurora Reference Guide 155X-2006.09

Page 176: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

KT1L m-V 0.0 Temperature coefficient for channel length dependence of Vth

KT2 - 0.022 Body bias coefficient of Vth temperature effect

UTE - -1.5 Mobility temperature exponent

UA1 m/V 4.31e-9 Temperature coefficient for UA

UB1 (m/V)2 -7.61e-18 Temperature coefficient for UB

UC1 m/V2 -5.69e-11 Temperature coefficient for UC

AT m/sec 3.3e4 Temperature coefficient for saturation velocity

PRT ohm-um 0 Temperature coefficient for RDSW

XTIS - 3.0 Junction current temperature exponent

XTID - XTIS Junction current temperature exponent

TPB V/K 0.0 Temperature coefficient for PB

TPBSW V/K 0.0 Temperature coefficient for PBSW

TPBSWG V/K 0.0 Temperature coefficient for PBSWG

TCJ 1/K 0.0 Temperature coefficient for CJ

Name Units Default Comments

TCJSW 1/K 0.0 Temperature coefficient for CJSW

TCJSWG 1/K 0.0 Temperature coefficient for CJSWG

XTSS A/m2 0.02 Temperature coefficient for JTSS

XTSD A/m2 0.02 Temperature coefficient for JTSD

XTSSWS A/m 0.02 Temperature coefficient for JTSSWS

XTSSWD A/m 0.02 Temperature coefficient for JTSSWD

Table 96 Temperature Parameters (Continued)

156 Aurora Reference GuideX-2006.09

Page 177: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

XTSSWGS A/m 0.02 Temperature coefficient for JTSSWGS

XTSSWGD A/m 0.02 Temperature coefficient for JTSSWGD

TNJTS - 0.0 Temperature coefficient for NJTS

TNJTSSW - 0.0 Temperature coefficient for NJTSSW

TNJTSSWG - 0.0 Temperature coefficient for NJTSSWG

TMNR - 0.0 Temperature coefficient for MNR

TCNR - 0.0 Temperature coefficient for CNR

TDNR - 0.0 Temperature coefficient for DNR

TKU0 - 0 Temperature coefficient for KU0.

Table 97 Bin Description Parameters

Name Units Default Comments

LMIN m 0.0 Maximum channel length

LMAX m 1.0 Maximum channel length

WMIN m 0.0 Minimum channel width

WMAX m 1.0 Maximum channel width

BINUNIT - 0 Assumes Weff, Leff, Wref, and Lref units are in microns when BINUNIT=1 or meters otherwise

Table 98 Process Parameters

Name Units Default Comments

GAMMA1 V1/2 see Note 8 Body effect coefficient near the surface

Table 96 Temperature Parameters (Continued)

Aurora Reference Guide 157X-2006.09

Page 178: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

GAMMA2 V1/2 see Note 9 Body effect coefficient in the bulk

VBX V see Note 10 VBX at which the depletion region width equals XT

XT m 1.55e-7 Doping depth

VBI V see Note 11 Drain and source junction built-in potential

VFB V -1.0 DC flat-band voltage

Table 99 Process Geometry Parameters

Name (Alias) Units Default Description

XL m 0 Accounts for masking and etchingeffects XLscaled = XL ⋅ SCALM

XW m 0 Accounts for masking and etching effects XWscaled = XW ⋅ SCALM

Table 100 Noise Parameters

Name Units Default Comments

NOIA - 6.25e41 nmos

9.9e18 pmos

Flicker noise parameter A

NOIB - 3.125e26nmos1.5e25 pmos

Flicker noise parameter B

NOIC - 8.75 Flicker noise parameter C

EM V/m 4.1e7 Doping depth

AF - 1.0 Drain and source junction built-in potential

KF - 1.0 Flicker noise coefficient

EF - 0.0 Flicker noise exponent

Table 98 Process Parameters (Continued)

158 Aurora Reference GuideX-2006.09

Page 179: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

NTNOI - 1 Noise factor for short–channel devices for TNOIMOD=0 only

RNOIA - 0.577 Thermal noise coefficient

RNOIB - 0.37 Thermal noise coefficient

LINTNOI - 0 Length reduction parameter offset

Table 101 Junction Parameters

Name Units Default Comments

JSS A/m2 0.0 Bulk junction saturation current

(Default deviates from BSIM3v3 = 1.0e-4)

JSD A/m2 JSS Bulk junction saturation current

(Default deviates from BSIM3v3 = 1.0e-4)

JSWS A/m 0.0 Sidewall bulk junction saturation current

JSWD A/m JSWS Sidewall bulk junction saturation current

IJTHSREV A 0.1 Diode limiting reverse current

IJTHDREV A IJTHSREV Diode limiting reverse current

IJTHSFWD A 0.1 Diode limiting forward current

IJTHDFWD A IJTHSFWD Diode limiting forward current

BVS - 10 Breakdown voltage

BVD - BVS Breakdown voltage

XJBVS - 1 Fitting parameter for diode breakdown

XJBVD - XJBVS Fitting parameter for diode breakdown

NJS - 1 Emission coefficient

Table 100 Noise Parameters (Continued)

Aurora Reference Guide 159X-2006.09

Page 180: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

NJD - NJS Emission coefficient

CJS F/m2 5.79e-4 Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-4)

CJD F/m2 CJS Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-4)

CJSWS F/m 0.0 Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-10)

CJSWD F/m CJSWS Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-10)

CJSWGS F/m CJSWS Zero-bias gate-edge sidewall bulk junction capacitance

CJSWGD F/m CJSWGS Zero-bias gate-edge sidewall bulk junction capacitance

PBS V 1.0 Bulk junction contact potential

PBD V PBS Bulk junction contact potential

PBSWS V 1.0 Sidewall bulk junction contact potential

PBSWD V PBSWS Sidewall bulk junction contact potential

Name Units Default Comments

PBSWGS V PBSWS Gate-edge sidewall bulk junction contact potential

PBSWGD V PBSWGS Gate-edge sidewall bulk junction contact potential

MJS - 0.5 Bulk junction grading coefficient

MJD - MJS Bulk junction grading coefficient

MJSWS - 0.33 Sidewall bulk junction grading coefficient

Table 101 Junction Parameters (Continued)

160 Aurora Reference GuideX-2006.09

Page 181: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

MJSWD - MJSWS Sidewall bulk junction grading coefficient

MJ

SWGS

- MJSWS Gate-edge sidewall bulk junction grading coefficient

MJSWGD - MJSWGS Gate-edge sidewall bulk junction grading coefficient

Table 102 TSMC Diode Model Parameters

Name Units Default Comments

JTSS A/m2 0.0 Source junction saturation current

JTSD A/m2 0.0 Drain junction saturation current

JTSSWS A/m 0.0 Sidewall source junction saturation current

JTSSWD A/m 0.0 Sidewall drain junction saturation current

JTSSWGS A/m 0.0 Sidewall source junction saturation current, gate side

JTSSWGD A/m 0.0 Sidewall drain junction saturation current, gate side

NJTS - 60 Emission coefficient

NJTSSW - 60 Emission coefficient

NJTSSWG - 60 Emission coefficient

MNR - 21

BNR - 0

CNR - 0

DNR - 0

VTSS - 10

VTSD - 10

Table 101 Junction Parameters (Continued)

Aurora Reference Guide 161X-2006.09

Page 182: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

VTSSWS - 10

VTSSWD - 10

VTSSWGS - 10

VTSSWGD - 10

Table 103 UCB STI Model Parameters

Name Units Default Comments

SA0 m 1.0e-06 Reference distance between OD edge to poly on one side.

SB0 m 1.0e-06 Reference distance between OD edge to poly on the other side.

SK0

SK1

SK2

SL

SW

K

Table 104 TSMC Scalable STI Model Parameters

Name Units Default Comments

SA0 m 1.0e-06 Reference distance between OD edge to poly on one side.

SB0 m 1.0e-06 Reference distance between OD edge to poly on the other side.

WLOD m 0 Length parameter for the stress effect.

Table 102 TSMC Diode Model Parameters (Continued)

162 Aurora Reference GuideX-2006.09

Page 183: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

KU0 m 0 Mobility coefficient for the stress effect.

KVSAT - 0 Saturation velocity parameter for the stress effect.

KVTH0 Vm 0 Threshold shift parameter for the stress effect.

LLODKU0 - 0 Length parameter for U0 stress effect.

WLODKU0 - 0 Width parameter for U0 stress effect.

LLODVTH - 0 Length parameter for VTH stress effect.

WLODVTH - 0 Width parameter for VTH stress effect.

LKU0 m^LLODKU0 0 Length dependence of KU0.

WLU0 m^WLODKU0 0 Width dependence of KU0.

PKU0 m^(LLODKU0+WLODKU0)

0 Cross-term dependence of KU0.

LKVTH0 Vm^LLODVTH0 0 Length dependence of KVTH0.

WKVTH0 Vm^WLODVTH0 0 Width dependence of KVTH0.

PKVTH0 Vm^(LLODVTH0+WLODVTH0)

0 Cross-term dependence of KVTH0.

STK2 m 0 K2 shift factor related to VTH0 change.

LODK2 - 1 K2 shift modification factor for stress effect.

STETA0 m 0 ETA0 shift factor related to VTH0 change.

LODETA0 - 1 ETA0 shift modification factor for stress effect.

Table 105 NQS Parameters

Name Units Default Comments

ELM - 5.0 Elmore constant

Table 104 TSMC Scalable STI Model Parameters (Continued)

Aurora Reference Guide 163X-2006.09

Page 184: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

Table 106 Miscellaneous Parameters

Name (Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

QFLAG 0.0 Flag for charge/cap computing

GMIN Mhos 1 × 10-12 Minimum conductance

Table 107 Juncap Model Parameters

Name Units Default Comments

DTA ¡É 0 Temperature offset of the JUNCAP element with respect toTA

VR V 0 Voltage at which the parameters have been determined

JSGBR Am-2 1E-03 Bottom saturation-current density due to electron-hole generation at V=VR

JSDBR Am-2 1E-03 Bottom saturation-current density due diffusion from back contact

JSGSR Am-1 1E-03 Sidewall saturation-current density due to electron-hole generation at V=VR

JSDSR Am-1 1E-03 Sidewall saturation-current density due to diffusion from back contact

JSGGR Am-1 1E-03 Gate edge saturation-current density due to electron-hole generation at V=VR

JSDGR Am-1 1E-03 Gate edge saturation-current density due to diffusion from back contact

NB - 1 Emission coefficient of the bottom forward current

164 Aurora Reference GuideX-2006.09

Page 185: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

Note:

The parameter PSS in Aurora corresponds to the JUNCAP parameter PS. The name has been changed in order to avoid a conflict with the existing CMI MOSFET variable name PS.

NS - 1 Emission coefficient of the sidewall forward current

NG - 1 Emission coefficient of the gate edge forward current

CJBR Fm-2 1E-12 Bottom junction capacitance at V=VR

CJSR Fm-1 1E-12 Sidewall junction capacitance at V=VR

CJGR Fm-1 1E-12 Gate edge junction capacitance at V=VR

VDBR V 1 Diffusion voltage of the bottom junction at T=TR

VDSR V 1 Diffusion voltage of the sidewall junction at T=TR

VDGR V 1 Diffusion voltage of the gate-edge junction at T=TR

PB - 0.4 Bottom junction grading coefficient

PSS - 0.4 Sidewall junction grading coefficient (alias for PS)

PG - 0.4 Gate edge junction grading coefficient

TR - 25 Reference temperature

Table 108 Junction Parameters, MOSFET Levels 49/53

Name Unit Default Bin Description

ACM - 10 No Area calculation method selector (HSPICE specific)■ ACM=0-3 uses the HSPICE junction models■ ACM=10-13 uses the Berkeley junction modelsLevel 49 ACM defaults to 0

Table 107 Juncap Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 165X-2006.09

Page 186: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

JS A/m2 0.0 No Bulk junction saturation current.

(Default deviates from BSIM3v3=1.0e-4)

JSW A/m 0.0 No Sidewall bulk junction saturation current

NJ - 1 No Emission coefficient (use only with the Berkeley junction model: ACM=10-13)

N - 1 No Emission coefficient (HSPICE-specific), (use only with the HSPICE junction model,ACM=0-3)

CJ F/m2 5.79e-4 No Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3=5.0e-4)

CJSW F/m 0.0 No Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3=5.0e-10)

CJSWG F/m CJSW No Zero-bias gate-edge sidewall bulk junction capacitance (use only with the Berkeley junction model, ACM=10-13)

CJGATE F/m CJSW No Zero-bias gate-edge sidewall bulk junction capacitance (HSPICE-specific) (use only if ACM=3)

PB, PHIB V 1.0 No Bulk junction contact potential

PBSW V 1.0 No Sidewall bulk junction contact potential

PHP V 1.0 No Sidewall bulk junction contact potential (HSPICE) (use only with the HSPICE junction model: ACM=0-3)

PBSWG V PBSW No Gate-edge sidewall bulk junction contact potential (use only with the Berkeley junction model, ACM=10-13).

HSPICE has no equivalent parameter.

Gate-edge contact potential is always set to PHP for the HSPICE junction model.

MJ - 0.5 No Bulk junction grading coefficient

Table 108 Junction Parameters, MOSFET Levels 49/53

Name Unit Default Bin Description

166 Aurora Reference GuideX-2006.09

Page 187: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

BSIM4 Juncap2 Model

Aurora BSIM4 support for the juncap2 junction model is based on Philips’ JUNCAP2 model in BSIM4 version 4.2 and later. You use the flag JUNCAP=0 to turn on the built-in BSIM4 default junction model. You can use JUNCAP=1 to switch to the Juncap1 model and JUNCAP=2 to access the Juncap2 model. The Juncap2 model has 2 versions, 200.0 and 200.1, which can be toggled using the Aurora alias jcap2ver for the HSPICE JCAP2VERSION flag.

MJSW - 0.33 No Sidewall bulk junction grading coefficient

MJSWG - MJSW No Gate-edge sidewall bulk junction grading coefficient (use only with the Berkeley junction model: ACM=10-13)

HSPICE has no equivalent parameter.

Always set the gate-edge grading coefficient to MJSW for the HSPICE junction model.

Table 109 BSIM4 Juncap2 Model Parameters

Parameter Unit Default Description

JUNCAP - 0 Flag to turn on juncap diode model, 1 for juncap1, 2 for juncap2

JCAP2VER (Aurora alias)

- 200.1 Juncap2 model version (200.0, 200.1)

IMAX A 1000 Maximum current up to which forward current behaves exponentially

CJORBOT F/m2 1.00E-003 Zero-bias capacitance per unit-of-area of bottom component

CJORSTI F/m2 1.00E-009 Zero-bias capacitance per unit-of-length of STI-edge component

Table 108 Junction Parameters, MOSFET Levels 49/53

Name Unit Default Bin Description

Aurora Reference Guide 167X-2006.09

Page 188: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

CJORGAT F/m2 1.00E-009 Zero-bias capacitance per unit-of-length of gate-edge component

VBIRBOT V 1 Built-in voltage at the reference temperature of bottom component

VBIRSTI V 1 Built-in voltage at the reference temperature of STI-edge component

VBIRGAT V 1 Built-in voltage at the reference temperature of gate-edge component

PBOT - 0.5 Grading coefficient of bottom component

PSTI - 0.5 Grading coefficient of STI-edge component

PGAT - 0.5 Grading coefficient of gate-edge component

PHIGBOT V 1.16 Zero-temperature bandgap voltage of bottom component

PHIGSTI V 1.16 Zero-temperature bandgap voltage of STI-edge component

PHIGGAT V 1.16 Zero-temperature bandgap voltage of gate-edge component

IDSATRBO (Aurora alias for IDSATRBOT)

A/m2 1.00E-012 Saturation current density at the reference temperature of bottom component

IDSATRST(Aurora alias for IDSATRSTI)

A/m 1.00E-018 Saturation current density at the reference temperature of STI-edge component

IDSATRGA (Aurora alias for IDSATRGAT)

Am 1.00E-018 SATURATION current density at the reference temperature of gate-edge component

CSRHBOT A/m2 1.00E+002 Shockley-Read-Hall prefactor of bottom component

Table 109 BSIM4 Juncap2 Model Parameters (Continued)

Parameter Unit Default Description

168 Aurora Reference GuideX-2006.09

Page 189: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

CSRHSTI A/m2 1.00E-004 Shockley-Read-Hall prefactor of STI-edge component

CSRHGAT A/m2 1.00E-004 Shockley-Read-Hall prefactor of gate-edge component

XJUNSTI m 1.00E-007 Junction depth of STI-edge component

XJUNGAT m 1.00E-007 junction depth of gate-edge component

CTATBOT A/m3 1.00E+002 Trap-assisted tunneling prefactor of bottom component

CTATSTI A/m2 1.00E-004 Trap-assisted tunneling prefactor of STI-edge component

CTATGAT A/m2 1.00E-004 Trap-assisted tunneling prefactor of gate-edge component

MEFFTATB (Aurora alias for MEFFTATBOT)

- 0.25 Effective mass (in units of m0) for trap-assisted tunneling of bottom component

MEFFTATS (Aurora alias for MEFFTATSTI)

- 0.25 Effective mass (in units of m0) for trap-assisted tunneling of STI-edge component

MEFFTATG (Aurora alias for MEFFTATGAT

- 0.25 Effective mass (in units of m0) for trap-assisted tunneling of gate-edge component

CBBTBOT AV-3 1.00E-012 Band-to-band tunneling prefactor of bottom component

CBBTSTI AV-3m 1.00E-018 Band-to-band tunneling prefactor of STI-edge component

CBBTGAT AV-3m 1.00E-018 Band-to-band tunneling prefactor of gate-edge component

FBBTRBOT V/m 1.00E+009 Normalization field at the reference temperature for band-to-band tunneling of bottom component

FBBTRSTI V/m 1.00E+009 Normalization field at the reference temperature for band-to-band tunneling of STI-edge component

Table 109 BSIM4 Juncap2 Model Parameters (Continued)

Parameter Unit Default Description

Aurora Reference Guide 169X-2006.09

Page 190: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

FBBTRGAT V/m 1.00E+009 Normalization field at the reference temperature for band-to-band tunneling of gate-edge component

STFBBTBO (Aurora alias for STFBBTBOT)

1/K -1.00E-003 temperature scaling parameter for band-to-band tunneling of bottom component

STFBBTST (Aurora alias for STFBBTSTI)

1/K -1.00E-003 temperature scaling parameter for band-to-band tunneling of STI-edge component

STFBBTGA (Aurora alias for STFBBTGAT)

1/K -1.00E-003 temperature scaling parameter for band-to-band tunneling of gate-edge component

VBRBOT V 10 breakdown voltage of bottom component

VBRSTI V 10 breakdown voltage of STI-edge component

VBRGAT V 10 breakdown voltage of gate-edge component

PBRBOT V 4 breakdown onset tuning parameter of bottom component

PBRSTI V 4 breakdown onset tuning parameter of STI-edge component

PBRGA V 4 breakdown onset tuning parameter of gate-edge component

Table 109 BSIM4 Juncap2 Model Parameters (Continued)

Parameter Unit Default Description

170 Aurora Reference GuideX-2006.09

Page 191: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

LWP Terms

The Star-HSpice Level 54 model implemented in Aurora also includes the Length, Width, and Product terms for some of the parameters. The following table illustrates the LWP terms available with Aurora:

Table 110 Length, Width, and Cross-Term Dependent Parameters

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

CDSC LCDSC WCDSC PCDSC

CDSCB LCDSCB WCDSCB PCDSCB

CDSCD LCDSCD WCDSCD PCDSCD

CIT LCIT WCIT PCIT

NFACTOR LNFACTOR WNFACTOR PNFACTOR

VSAT LVSAT WVSAT PVSAT

AT LAT WAT PAT

A0 LA0 WA0 PA0

AGS LAGS WAGS PAGS

A1 LA1 WA1 PA1

A2 LA2 WA2 PA2

KETA LKETA WKETA PKETA

NGATE LNGATE WNGATE PNGATE

K1 LK1 WK1 PK1

K2 LK2 WK2 PK2

VTH0 LVTH0 WVTH0 PVTH0

UA LUA WUA PUA

UB LUB WUB PUB

Aurora Reference Guide 171X-2006.09

Page 192: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

UC LUC WUC PUC

U0 LU0 WU0 PU0

VOFF LVOFF WVOFF PVOFF

DELTA LDELTA WDELTA PDELTA

RDSW LRDSW WRDSW PRDSW

PRWG LPRWG WPRWG PPRWG

PRWB LPRWB WPRWB PPRWB

ETA0 LETA0 WETA0 PETA0

ETAB LETAB WETAB PETAB

PCLM LPCLM WPCLM PPCLM

PDIBLC1 LPDIBLC1 WPDIBLC1 PPDIBLC1

PDIBLC2 LPDIBLC2 WPDIBLC2 PPDIBLC2

PSCBE1 LPSCBE1 WPSCBE1 PPSCBE1

PSCBE2 LPSCBE2 WPSCBE2 PPSCBE2

WR LWR WWR PWR

CGSL LCGSL

CGDL LCGDL

CKAPPA LCKAPPA

CF LCF

CLC LCLC

CLE LCLE

Table 110 Length, Width, and Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

172 Aurora Reference GuideX-2006.09

Page 193: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 54 (BSIM4) Variables, Targets and Model Parameters

Note:

The LWP parameters for the Level 54 model are included in the AURORA parameter set for global modeling purpose only. You can make use of some of the LWP terms for increasing the accuracy model, while maintaining the physical character and simplicity. If using the binning model capability, ALL of the Level 54 model parameters that can be binned also can have associated LWP terms, regardless of whether or not their associated LWP terms appear in the parameter list.

BSIM3v3 WPE Model

HSPICE BSIM3V3 (Level=49, BSIM3 Version 3.22 or later) supports UC Berkeley's BSIM4.5 WPE (well-proximity effects) model (see Table 111and Table 112). To turn on this WPE model in BSIM3v3, specify WPEMOD=1 in your model cards.

VOFFCV LVOFFCV

NOFF LNOFF

ACDE LACDE

MOIN LMOIN

Table 111 Supported HSPICE BSIM3v3 WPE model parameters

Name Default Min Max Binnable Description

WPEMOD 0 0 1 No Flag for WPE model (WPEMOD=1 to activate this model)

SCREF 1.0e-6 0.0 No Reference distance to calculate SCA, SCB and SCC

WEB 0.0 No Coefficient for SCB

WEC 0.0 No Coefficient for SCC

Table 110 Length, Width, and Cross-Term Dependent Parameters (Continued)

Parameter Length Dependency

Width Dependency

Cross-Term Dependency

Aurora Reference Guide 173X-2006.09

Page 194: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 50 (Phillips MOS9) Model Parameters

Level 50 (Phillips MOS9) Model Parameters

The Philips MOS Model 9, Level 902, is available as Level 50 in HSPICE (based on the “Unclassified Report NL-UR 003/94” by R.M.D.A. Velghe, D.B.M. Klaassen, and F.M. Klaassen).

The model has been installed in Aurora in its entirety, except for the gate noise current.

Standard HSPICE parasitic diode equations, using parameters JS, JSW, N, CJ, CJSW, CJGATE, MJ, MJSW, PB, PHP, ACM, and HDIF have been added. The

KVTH0WE 0.0 Yes Threshold shift factor for well-proximity effect

K2WE 0.0 Yes K2 shift factor for well-proximity effect

KU0WE 0.0 Yes Mobility degradation factor for well-proximity effect

Table 112 Integrals to calculate distribution functions/distances

Name Default Min Max Description

SCA 0.0 0.0 Integral of the first distribution function for scattered well dopant

SCB 0.0 0.0 Integral of the second distribution function for scattered well dopant

SCC 0.0 0.0 Integral of the third distribution function for scattered well dopant

SC 0.0 0.0 Distance to a single well edge

Table 111 Supported HSPICE BSIM3v3 WPE model parameters

Name Default Min Max Binnable Description

174 Aurora Reference GuideX-2006.09

Page 195: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 50 (Phillips MOS9) Model Parameters

older parameter IS is not used. The Philips specific parasitic diode model (JUNCAP model) is not yet available in Aurora.

Table 113 LEVEL 50 MODEL PARAMETERS

Name Units Default(N) Default(P) Comments

LER m 1.1e-6 1.25e-6 Reference Leff

WER m 20.0e-6 20.0e-6 Reference Weff

LVAR m -220.0e-9 -460.0e-9 Variation in gate length

LAP m 100.0e-9 25.0e-9 Lateral diffusion per side

WVAR m -25.0e-9 -130.0e-9 Variation in active width

WOT m 0.0 0.0 Channel-stop diffusion per side

TR °C 21.0 21.0 Reference temperature for model

VTOR V 730.0e-3 1.1 Threshold voltage at zero bias

STVTO V/K -1.2e-3 -1.7e-3 Temperature dependence of VTO

SLVTO Vm -135.0e-9 35.0e-9 Length dependence of VTO

SL2VTO Vm2 0.0 0.0 Second length dependence of VTO

SWVTO Vm 130.0e-9 50.0e-9 Width dependence of VTO

KOR V-1/2 650.0e-3 470.0e-3 Low-back-bias body factor

SLKO V-1/2m -130.0e-9 -200.0e-9 Length dependence of KO

SWKO V-1/2m 2.0e-9 115.0e-9 Width dependence of KO

KR V-1/2 110.0e-3 470.0e-3 High-back-bias body factor

SLK V-1/2m -280.0e-9 -200.0e-9 Length dependence of K

SWK V-1/2m 275.0e-9 115.0e-9 Width dependence of K

PHIBR V 650.0e-3 650.0e-3 Strong inversion surface potential

Aurora Reference Guide 175X-2006.09

Page 196: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 50 (Phillips MOS9) Model Parameters

VSBXR V 660.0e-3 0.0 Transition voltage for dual-k-factor model

SLVSBX Vm 0.0 0.0 Length dependence of VSBX

SWVSBX Vm -675.0e-9 0.0 Width dependence of VSBX

BETSQ AV-2 83.0e-6 26.1e-6 Gain factor of infinite square transistor

ETABET - 1.6 1.6 Exponent of temperature dependence of gain factor

THE1R V-1 190.0e-3 190.0e-3 Gate-induced mobility reduction coefficient

STTHE1R V-1/K 0.0 0.0 Temperature dependence coefficient of THE1R

LTHE1R V-1m 140.0e-9 70.0e-9 Length dependence coefficient of THE1R

STLTHE1 V-1m/K 0.0 0.0 Temperature dependence of, length dependence of THE1R

SWTHE1 V-1m -58.0e-9 -80.0e-9 Width dependence coefficient of THE1R

THE2R V-1/2 12.0e-3 165.0e-3 Back-bias induced mobility reduction coefficient

STTHE2R V-1/2/K 0.0 0.0 Temperature dependence coefficient of THE2R

SLTHE2R V-1/2m -33.0e-9 -75.0e-9 Length dependence coefficient of THE2R

STLTHE2 V-1/2m/K 0.0 0.0 Temperature dependence of, length dependence of THE2R

SWTHE2 V-1/2m 30.0e-9 20.0e-9 Width dependence coefficient of THE2R

THE3R V-1 145.0e-3 27.0e-3 Lateral field induced mobility reduction coefficient

Table 113 LEVEL 50 MODEL PARAMETERS (Continued)

Name Units Default(N) Default(P) Comments

176 Aurora Reference GuideX-2006.09

Page 197: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 50 (Phillips MOS9) Model Parameters

STTHE3R V-1/K -660.0e-6 0.0 Temperature dependence coefficient of THE3R

SLTHE3R V-1m 185.0e-9 27.0e-9 Length dependence coefficient of THE3R

STLTHE3 V-1m/K -620.0e-12 0.0 Temperature dependence of, length dependence of THE3R

SWTHE3 V-1m 20.0e-9 11.0e-9 Width dependence coefficient of THE3R

GAM1R - 145.0e-3 77.0e-3 Drain-induced threshold shift coefficient, for high gate drive

SLGAM1 - 160.0e-9 105.0e-9 Length dependence of GAM1R

SWGAM1 - -10.0e-9 -11.0e-9 Width dependence of GAM1R

ETADSR - 600.0e-3 600.0e-3 Exponent of drain dependence of GAM1R

ALPR - 3.0e-3 44.0e-3 Channel length modulation factor

ETAALP - 150.0e-3 170.0e-3 Exponent of length dependence of ALPR

SLALP - -5.65e-3 9.0e-3 Coefficient of length dependence of ALPR

SWALP m 1.67e-9 180.0e-12 Coefficient of width dependence of ALPR

VPR V 340.0e-3 235.0e-3 Characteristic voltage for channel length modulation

GAMOOR - 18.0e-3 7.0e-3 Drain-induced threshold shift coefficient, at zero gate drive, and zero back-bias

SLGAMOO m2 20.0e-15 11.0e-15 Length dependence of GAMOOR

ETAGAMR - 2.0 1.0 Exponent of back-bias dependence of zero gate-drive, drain-induced threshold shift

MOR - 500.0e-3 375.0e-3 Subthreshold slope factor

Table 113 LEVEL 50 MODEL PARAMETERS (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 177X-2006.09

Page 198: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 50 (Phillips MOS9) Model Parameters

STMO K-1 0.0 0.0 Temperature dependence coefficient of MOR

SLMO m1/2 280.0e-6 47.0e-6 Length dependence coefficient of MOR

ETAMR - 2.0 1.0 Exponent of back-bias dependence of subthreshold slope

ZET1R - 420.0e-3 1.3 Weak-inversion correction factor

ETAZET - 170.0e-3 30.0e-3 Exponent of length dependence of ZET1R

SLZET1 - -390.0e-3 -2.8 Length dependence coefficient of ZET1R

VSBTR V 2.1 100.0 Limiting voltage for back-bias dependence

SLVSBT Vm -4.4e-6 0.0 Length dependence of VSBTR

A1R - 6.0 10.0 Weak avalanche current factor

STA1 K-1 0.0 0.0 Temperature coefficient of A1R

SLA1 m 1.3e-6 -15.0e-6 Length dependence of A1R

SWA1 m 3.0e-6 30.0e-6 Width dependence of A1R

A2R V 38.0 59.0 Exponent of weak-avalanche current

SLA2 Vm 1.0e-6 -8.0e-6 Length dependence of A2R

SWA2 Vm 2.0e-6 15.0e-6 Width dependence of A2R

A3R - 650.0e-3 520.0e-3 Factor of minimum drain bias above which avalanche sets in

SLA3 m -550.0e-9 -450.0e-9 Length dependence of A3R

SWA3 m 0.0 -140.0e-9 Width dependence of A3R

TOX m 25.0e-9 25.0e-9 Oxide thickness

Table 113 LEVEL 50 MODEL PARAMETERS (Continued)

Name Units Default(N) Default(P) Comments

178 Aurora Reference GuideX-2006.09

Page 199: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 50 (Phillips MOS9) Model Parameters

Note:

Using the Phillips MOS9 Model in HSPICE

Set LEVEL=50 to identify the model as the Philips MOS Model 9.

The default room temperature is 25 oC in HSPICE, but is 27 oC in most other simulators. When comparing to other simulators, set the simulation temperature to 27 with .TEMP 27 or with.OPTION TNOM=27.

The model parameter set should always include the model reference temperature, TR, which corresponds to TREF in other levels in HSPICE. The default for TR is 21.0 oC, to match the Philips simulator.

The model has its own charge-based capacitance model. The CAPOP parameter, which selects different capacitance models, is ignored for this model.

The model uses analytical derivatives for the conductances. The DERIV parameter, which selects the finite difference method, is ignored for this model.

COL F/m 320.0e-12 320.0e-12 Gate overlap capacitance per unit width

NTR J 24.4e-21 21.1e-21 Thermal noise coefficient

NFR V2 70.0e-12 21.4e-12 Flicker noise coefficient

Table 114 Miscellaneous

Name(Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

Table 113 LEVEL 50 MODEL PARAMETERS (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 179X-2006.09

Page 200: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 55 (EPFL-EKV) Model Parameters

DTEMP can be used with this model. It is set on the element line, and increases the temperature of individual elements relative to the circuit temperature.

Since defaults are nonzero, it is strongly recommended that every model parameter listed in the table above be set in the .MODEL statement.

Level 55 (EPFL-EKV) Model Parameters

The EPFL-EKV is available as Level 55 in HSPICE.

The model has been installed in its entirety, except for the gate noise current.

Standard HSPICE parasitic diode equations, using parameters JS, JSW, N, CJ, CJSW, CJGATE, MJ, MJSW, PB, PHP, ACM, HDIF, etc., have been added.

Table 115 Level 55 Model Parameters

Name Units Default Comments

COX F/m2 0.7e-3 Gate oxide specific capacitance

XJ m 0.1e-6 Junction depth

XL m 0 Accounts for masking and etching effects XLscaled = XL ⋅ SCALM

WD m 0 Lateral diffusion into channel from bulk along width WDscaled =ΩΔ ⋅ SCALM

DW m 0 Channel width correction. If DW is unspecified, DW default = XW-2WD.

DL m 0 Channel length correction. If DL is unspecified, DL default = XL-2LD.

VTO V 0.5 Long-channel threshold voltage

GAMMA V1/2 1.0 Body effect parameter

PHI V 0.7 Bulk Fermi potential

KP A/V2 50.0e-6 Transconductance parameter

180 Aurora Reference GuideX-2006.09

Page 201: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 55 (EPFL-EKV) Model Parameters

E0 V/m 1.0e12 Mobility reduction coefficient

UCRIT V/m 2.0e6 Longitudinal critical field

LAMBDA - 0.5 Channel length modulation coefficient

WETA - 0.25 Narrow channel effect coefficient

LETA - 0.1 Short-channel effect coefficient

Q0 As/m2 0 Reverse short channel effect peak charge density

LK m 0.29e-6 Reverse short channel effect characteristic length

IBA 1/m 0 First impact ionization coefficient

IBB V/m 3.0e8 Second impact ionization coefficient

IBN - 1.0 Saturation voltage for impact ionization

TEMPTNOM °C 25 Reference temperature of the model

TCV V/K 1.0e-3 Threshold voltage temperature coefficient

BEX - -1.5 Mobility temperature exponent

UCEX - 0.8 Longitudinal critical field temperature exponent

IBBT 1/K 9.0e-4 Temperature coefficient for IBB

AVTO Vm 0 Area (WxL) related threshold voltage mismatch parameter

AKP m 0 Area (WxL) related gain mismatch parameter

AGAMMA V1/2m 0 Area (WxL) related body effect mismatch parameter

KF - 0 Flicker noise coefficient

AF - 1 Flicker noise exponent

NQS - 0 Non-Quasi-Static operation switch

Table 115 Level 55 Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 181X-2006.09

Page 202: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 55 (EPFL-EKV) Model Parameters

SATLIM - exp(4) Ratio defining the saturation limit if/ir

XQC - 0.4 Charge capacitance model selector

Table 116 Star-Hspice Junction Specific Parameters

Name Units Default Comments

ACM - 0 Area calculation method selector

JS A/m2 0.0 Bulk junction saturation current

JSW A/m 0.0 Sidewall bulk junction saturation current

N - 1 Emission coefficient

NDS - 1 Reverse bias slope coefficient

VNDS V -1 Reverse bias current transition point

CJ F/m2 5.79e-4 Zero-bias bulk junction capacitance

CJSW F/m 0.0 Zero-bias sidewall bulk junction capacitance

CJGATE F/m CJSW Zero-bias gate-edge sidewall bulk junction capacitance (not used with ACM=0-3)

PB V 0.8 Bulk junction contact potential

PHP V PB Sidewall bulk junction contact potential

MJ - 0.5 Bulk junction grading coefficient

MJSW - 0.33 Sidewall bulk junction grading coefficient

TT s 0 Junction transit time

Table 115 Level 55 Model Parameters (Continued)

Name Units Default Comments

182 Aurora Reference GuideX-2006.09

Page 203: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 55 (EPFL-EKV) Model Parameters

HDIF m 0 Length of heavily doped diffusion, from contact to lightly doped region (ACM=2, 3 only)

LDIF m 0 Length of lightly doped diffusion adjacent to gate (ACM=1, 2)

LD m 0 Lateral diffusion into channel from source and drain diffusion

XW m 0 Accounts for masking and etching effects XWscaled = XW ⋅ SCALM

Table 117 HSPICE Specific Drain Source Resistance Parameters

Name (Alias)

Units Default Description

RS m Source ohmic resistance. This parameter is usually lightly doped regions’ sheet resistance for ACMŠ = 1

RD cm-3 Drain ohmic resistance. This parameter is usually lightly doped regions’ sheet resistance for ACMŠ = 1.

RSH V Drain and source diffusion sheet resistance

Table 118 Process Optional Parameters

Name (Alias)

Units Default Description

TOX m Oxide thickness (only used if COX is not specified)

NSUB cm-3 Channel doping (only used if GAMMA and/or PHI are not specified)

VFB V Flat-band voltage (only used if VTO is not specified)

UO cm2/(Vs) Low-field mobility (only used if KP is not specified)

VMAX m/s Saturation velocity (only used if UCRIT is not specified)

THETA 1/V Mobility reduction coefficient (only used if E0 is not specified)

Table 116 Star-Hspice Junction Specific Parameters (Continued)

Aurora Reference Guide 183X-2006.09

Page 204: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

Level 57 (BSIM3SOI PD) Variables and Model Parameters

The model represents the HSPICE version of the Berkeley BSIM3SOI-PD model. The implementation in Aurora includes bulk resistance and self-heating support. When self-heating is turned on, a 3x speed-up in model evaluation is observed.

Note:

External HSPICE HVMOS (L 66), BSIMSOI (L 57), PSP (L 69) and TFT (L 71) models are now available, using HSPICE as an external simulator.

Table 119 Specific Variables for the Level 57, 59 and 60 Models

Name Description Default Units Notes

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts 1,2,3

VE Backgate voltage 0.0 Volts

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares for resistance calculation

(undefined) squares

NRS Number of source diffusion squares for resistance calculation

(undefined) squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

AS Source diffusion area (undefined) m2

184 Aurora Reference GuideX-2006.09

Page 205: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

AD Drain diffusion area (undefined) m2

PS Perimeter of the source junction including the channel edge

(undefined) m

PD Perimeter of the drain junction including the channel edge

(undefined) m

M Multiple device option. MOSFET channel width, diode leakage, capacitors, and resistors are altered by this parameter. Simulates multiple parallel devices.

1.0

RDC additional drain resistance due to contact resistance

0.0 ohm

RSC Additional source resistance due to contact resistance

0.0 ohm

DELVTO Zero bias threshold voltage shift 0.0

DTEMP Device temperature difference from circuit temperature

0.0

GEO Source/drain sharing selector for ACM=3 0.0

DEVMODE Device mode 1

NRB Number of squares for body resistance calculation (undefined) squares

NBC Number of body contact isolation edge (undefined) squares

NSEG Number of segments for channel width partition (undefined)

PDBCP Parasitic perimeter length for the body contact at the drain side

(undefined) m

PSBCP Parasitic perimeter length for the body contact at the source side

(undefined) m

Table 119 Specific Variables for the Level 57, 59 and 60 Models (Continued)

Name Description Default Units Notes

Aurora Reference Guide 185X-2006.09

Page 206: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

AGBCP Parasitic gate-to-body overlap area for body contact

(undefined) m2

AEBCP Parasitic body-to-substrate overlap area for body contact

(undefined) m2

1. VB represents in fact the bias applied on the NBEXT (external substrate) node in Star-HSpice.

2. For device characterization, the substrate node needs to be accessible.

3. The substrate is the fourth node in order to maintain compatibility with the regular “bulk” MOSFET models.

Table 120 Model Flags

Name Units Default Comments

MOBMOD - 1 Mobility model selector

CAPMOD - 3 Selects from Charge models 0,1,2,3

NOIMOD - 1 Berkeley noise model flag

FNOIMOD 1 Berkeley flicker noise model flag

TNOIMOD 0 Berkeley thermal noise model flag

NLEV - 0 (off) Star-Hspice noise model flag (non-zero overrides NOIMOD) (Star-Hspice specific)

SHMOD - 0 (off) Select self-heating mode

PARAMCHK - 0 PARAMCHK=1 will check some model parameters for range compliance

SOIMOD - 0 SOI model selector: 0: PD; 1: unified PD/FD; 2: ideal FD; 3: auto selection

Table 119 Specific Variables for the Level 57, 59 and 60 Models (Continued)

Name Description Default Units Notes

186 Aurora Reference GuideX-2006.09

Page 207: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

Table 121 Basic Model Parameters

Name Units Default Comments

TSI m 1.0e-7 Gate oxide thickness

TOX m 1.0e-7 Gate oxide thickness

TOXM m TOX Gate oxide thickness at which parameters are extracted

XJ m 0.15e-6 Junction depth

NGATE cm-3 infinite Poly gate doping concentration

VTH0

(VTHO)

V 0.7 Threshold voltage of long channel device at Vbs = 0 and small Vds (typically 0.7 for n-channel, - 0.7 for p-channel)

NSUB cm-3 6.0e16 Substrate doping concentration

NCH cm-3 (see Note 6)

1.7e17 Peak doping concentration near interface

NLX m 1.74e-7 Lateral nonuniform doping along channel

K1 V1/2 0.53 First-order body effect coefficient

K1W1 m 0 First-order effect width dependent parameter

K1W2 m 0 Second-order effect width dependent parameter

K2 - -0.0186 Second-order body effect coefficient

K3 - 0 Narrow width effect coefficient

K3B 1/V 0 Body width coefficient of narrow width effect

KB1 - 1 Backgate body charge coefficient

W0 m 2.5e-6 Narrow width effect coefficient

DVT0 - 2.2 Short channel effect coefficient 0, for Vth

Aurora Reference Guide 187X-2006.09

Page 208: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

DVT1 - 0.53 Short channel effect coefficient 1, for Vth

DVT2 1/V -0.032 Short channel effect coefficient 2, for Vth

DVT0W 1/m 0 Narrow width coefficient 0, for Vth, at small L

DVT1W 1/m 5.3e6 Narrow width coefficient 1, for Vth, at small L

DVT2W 1/V -0.032 Narrow width coefficient 2, for Vth, at small L

ETA0 - 0.08 Subthreshold region DIBL (Drain Induced Barrier Lowering) coefficient

ETAB 1/V -0.07 Subthreshold region DIBL coefficient

DSUB - DROUT DIBL coefficient exponent in subthreshold region

VBM V -3.0 Maximum substrate bias, for Vth calculation

U0 cm2/V/sec

670 nmos250 pmos

Low field mobility at T = TNOM

UA m/V 2.25e-9 First-order mobility degradation coefficient

UB m2/V2 5.87e-19 Second-order mobility degradation coefficient

UC 1/V -4.65e-11 or -0.0465

Body bias sensitivity coefficient of mobility -4.65e-11 for MOBMOD=1,2 or, -0.0465 for MOBMOD = 3

A0 - 1.0 Bulk charge effect coefficient for channel length

AGS 1/V 0.0 Gate bias coefficient of Abulk

B0 m 0.0 Bulk charge effect coefficient for channel width

B1 m 0.0 Bulk charge effect width offset

KETA 1/V 0 Body-bias coefficient of bulk charge effect

KETAS V 0 Surface potential adjustment for bulk charge effect

Table 121 Basic Model Parameters (Continued)

Name Units Default Comments

188 Aurora Reference GuideX-2006.09

Page 209: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

VOFF V -0.08 Offset voltage in subthreshold region

VSAT m/sec 8e4 Saturation velocity of carrier at T = TNOM

A1 1/V 0 First nonsaturation factor

A2 - 1.0 Second nonsaturation factor

RDSW ohm ⋅ μm 0.0 Parasitic source drain resistance per unit width

PRWG 1/V 0 Gate bias effect coefficient of RDSW

PRWB 1/V1/2 0 Body effect coefficient of RDSW

WR - 1.0 Width offset from Weff for Rds calculation

NFACTOR - 1.0 Subthreshold region swing

CIT F/m2 0.0 Interface state capacitance

CDSC F/m2 2.4e-4 Drain/source and channel coupling capacitance

CDSCD F/Vm2 0 Drain bias sensitivity of CDSC

CDSCB F/Vm2 0 Body coefficient for CDSC

PCLM - 1.3 Coefficient of channel length modulation values < 0 will result in an error message and program exit.

PDIBLC1 - 0.39 DIBL (Drain Induced Barrier Lowering) effect coefficient 1

PDIBLC2 - 0.0086 DIBL effect coefficient 2

PDIBLCB 1/V 0 Body effect coefficient of DIBL effect coefficients

DROUT - 0.56 Length dependence coefficient of the DIBL correction parameter in Rout

PSCBE1 V/m 4.24e8 Substrate current induced body effect exponent 1

Table 121 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 189X-2006.09

Page 210: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

PSCBE2 V/m 1.0e-5 Substrate current induced body effect coefficient 2

PVAG - 0 Gate dependence of Early voltage

DELTA V 0.01 Effective Vds parameter

ALPHA0 m/V 0 The first parameter of impact ionization current

BETA0 V-1 0 First Vds dependent parameter of impact ionization current

FBJTII - 0 Fraction of bipolar current affecting the impact ionization

AGIDL Ω-1 0 GIDL constant

BGIDL V/m 0 GIDL exponential coefficient

NGIDL V 1.2 GIDL Vds enhancement coefficient

NTUN - 10 Reverse tunneling non-ideality factor

NDIO - 1 Diode non-ideality factor

NRECF0 - 2 Recombination non-ideality factor at forward bias

NRECR0 - 10 Recombination non-ideality factor at reverse bias

ISBJT A/m2 1e-6 BJT injection saturation current

ISDIF A/m2 1e-7 Body to source/drain injection saturation current

ISREC A/m2 1e-5 Recombination in depletion saturation current

ISTUN A/m2 0 Reverse tunneling saturation current

LN m 2e-6 Electron/hole diffusion length

VREC0 V 0 Voltage dependent parameter for recombination current

Table 121 Basic Model Parameters (Continued)

Name Units Default Comments

190 Aurora Reference GuideX-2006.09

Page 211: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

VTUN0 V 0 Voltage dependent parameter for tunneling current

NBJT - 1 Power coefficient of channel length dependency for bipolar current

LBJT0 m 0.2e-6 Reference channel length for bipolar current

VABJT V 10 Early voltage for bipolar current

AELY V/m 0 Channel length dependence of early voltage for bipolar current

AHLI - 0 High level injection parameter for bipolar current

RSH 0.0 ohm/square Source/drain sheet resistance in ohm per square

RBSH 0.0 ohm/m2 Extrinsic body contact sheet resistance

RBODY 0.0 ohm/m2 Intrinsic body contact sheet resistance

RHALO ohm/m 1e15 Body halo sheet resistance

VBSA V 0 Transition body voltage effect

K1B - 1 First backgate body effect parameter

K2B - 0 Second backgate body effect parameter for short-channel effect

DK2B - 0 Third backgate body effect parameter for short-channel effect

DVBD0 - 0 First short channel effect parameter for FD

DVBD1 - 0 Second short channel effect parameter for FD

VBS0FD - 0 Lower bound of built-in potential lowering for ideal FD operation

VBS0FD - 0 Upper bound of built-in potential lowering for PD operation

Table 121 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 191X-2006.09

Page 212: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

Table 122 Gate-to-Body Tunneling Parameters

Name Units Default Comments

IGMOD - 0 Gate current model selector

TOXQM m TOX Oxide thickness for I gb calculation

NTOX - 1 Power term of gate current

TOXREF m 2.5e-9 Target oxide thickness

EBG V 1.2 Effective bandgap in gate current calculation

ALPHAGB1 1/V 0.35 First Vox dependent parameter for gate current in inversion

BETAGB1 1/V^2 0.03 Second Vox dependent parameter for gate current in inversion

VGB1 V 300 Third Vox dependent parameter for gate current in inversion

VEVB - 0.075 Vaux parameter for valence band electron tunneling

ALPHAGB2 1/V 0.43 First Vox dependent parameter for gate current in accumulation

BETAGB2 1/V^2 0.05 Second Vox dependent parameter for gate current in accumulation

VGB2 V 17 Third Vox dependent parameter for gate current in accumulation

VECB - 0.026 Vaux parameter for conduction band electron tunneling

Table 123 Gate-to-Channel and Gate-to-S/D Current Parameters

Name Units Default Comments

IGCMOD 0 Gate to channel tunneling current selector

IGBMOD 0 Gate to substrate tunneling current selector

192 Aurora Reference GuideX-2006.09

Page 213: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

AIGC (Fs2/g)1/2/m 0.43 (nmos)

0.31 (pmos)

Parameter for Igcs and Igcd

BIGC (Fs2/g)1/2/mV

0.054 (nmos)

0.024 (pmos)

Parameter for Igcs and Igcd

CIGC 1/V 0.075 (nmos)

0.03 (pmos)

Parameter for Igcs and Igcd

AIGSD (Fs2/g)1/2/m 0.054 (nmos)

0.31 (pmos)

Parameter for Igs and Igd

BIGSD (Fs2/g)1/2/mV

0.054 (nmos)

0.024 (pmos)

Parameter for Igs and Igd

CIGSD 1/V 0.075 (nmos)

0.03 (pmos)

Parameter for Igs and Igd

DLCIG m LINT Source/drain overlap length for Igs and Igd

NIGC - 1 Parameter for Igcs , Igcd, Igs and Igd

POXEDGE - 1 Factor for the gate oxide thickness in source/drain overlap regions

PIGCD - 1 VDS dependence of Igs and Igd

Table 124 AC and Capacitance Parameters

Name Units Default Comments

XPART - 1 Charge partitioning rate flag

(default deviates from BSIM3V3=0)

CGSO F/m p1 (see Note 1) Non-LDD region source-gate overlap capacitance per unit channel length

CGDO F/m p2 (see Note 2) Non-LDD region source-gate overlap capacitance per unit channel length

Table 123 Gate-to-Channel and Gate-to-S/D Current Parameters (Continued)

Aurora Reference Guide 193X-2006.09

Page 214: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

CGEO F/m 0 Gate-substrate overlap capacitance per unit channel length

CGS1 F/m 0.0 Lightly doped source-gate overlap region capacitance

CGD1 F/m 0.0 Lightly doped drain-gate overlap region capacitance

CKAPPA F/m 0.6 Coefficient for lightly doped region overlap capacitance fringing field capacitance

CF F/m (see Note 3) Fringing field capacitance

CLC m 0.1e-6 Constant term for the short channel model

TT s 1e-12 Diffusion capacitance transit time coefficient

NDIF - 1 Power coefficient of channel length dependency for diffusion capacitance

LDIF0 - 1 Channel length dependency coefficient of diffusion capacitance

VSDFB V calculated Source/drain bottom diffusion capacitance flatband voltage

VSDTH V calculated Source/drain bottom diffusion capacitance threshold voltage

CSDMIN V calculated Source/drain bottom diffusion minimum capacitance

ASD - 0.3 Source/drain bottom smoothing parameter

CSDESW F/m 0 Source/drain sidewall fringing capacitance per unit length

DELVT V 0 Threshold voltage adjust for C-V

FBODY - 1 Scaling factor for body charge

CLE - 0.6 Exponential term for the short channel model

Table 124 AC and Capacitance Parameters (Continued)

194 Aurora Reference GuideX-2006.09

Page 215: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

MOINFD V 1e3 Coefficient for the gate-bias dependent surface potential for FD

NOFFFD - 1.0 Smoothing parameter for FD

VOFFFD V 0.0 Smoothing parameter for FD

NOFF - 1.0 CV slope coefficient for weak to strong inversion region

Table 125 Length and Width Parameters

Name Units Default Comments

WINT m 0.0 Width offset fitting parameter from I-V without bias

WL mWLN 0.0 Coefficient of length dependence for width offset

WLN - 1.0 Power of length dependence of width offset

WW mWWN 0.0 Coefficient of width dependence for width offset

WWN - 1.0 Power of width dependence of width offset

WWL mWWN*mWLN 0.0 Coefficient of length and width cross term for width offset

DWG m/V 0.0 Coefficient of Weff’s gate dependence

DWB m/V1/2 0.0 Coefficient of Weff’s substrate body bias dependence

DWBC m/V1/2 0.0 Width offset for body contact isolation edge

LINT m 0.0 Length offset fitting parameter from I-V without bias

LL mLLN 0.0 Coefficient of length dependence for length offset

LLN - 1.0 Power of length dependence of length offset

LW mLWN 0.0 Coefficient of width dependence for length offset

Table 124 AC and Capacitance Parameters (Continued)

Aurora Reference Guide 195X-2006.09

Page 216: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

L

WN

- 1.0 Power of width dependence of length offset

LWL mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset

DLC m LINT Length offset fitting parameter from CV

D

LCB

m LINT Length offset fitting parameter for body charge

DLBG m 0.0 Length offset fitting parameter for backgate charge

DWC m WINT Width offset fitting parameter from CV

Table 126 Temperature Parameters

Name Units Default Comments

TNOM °C 25 Reference temperature of the model

KT1 V 0.0 Temperature coefficient for Vth

KT1L m-V 0.0 Temperature coefficient for channel length dependence of Vth

KT2 - 0.022 Body bias coefficient of Vth temperature effect

UTE - -1.5 Mobility temperature exponent

UA1 m/V 4.31e-9 Temperature coefficient for UA

UB1 (m/V)2 -7.61e-18 Temperature coefficient for UB

UC1 m/V2 -5.69e-11 Temperature coefficient for UC

AT m/sec 3.3e4 Temperature coefficient for saturation velocity

PRT ohm-um 0 Temperature coefficient for RDSW

TCJSWG 1/K 0 Temperature coefficient of CJSWG

Table 125 Length and Width Parameters (Continued)

196 Aurora Reference GuideX-2006.09

Page 217: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

TPBSWG V/K 0 Temperature coefficient of PBSWG

NTRECF - 0 Temperature coefficient for NRECF

NTRECR - 0 Temperature coefficient for NRECR

XBJT - 2 Power dependence of JBJT on temperature

XDIF - 2 Power dependence of JDIF on temperature

XREC - 20 Power dependence of JREC on temperature

XTUN - 0 Power dependence of JTUN on temperature

CTH0 moC/(Ws)

0 Normalized thermal capacity

RTH0 moC/W 0 Normalized thermal resistance

WTH0 m 0 Minimum width for thermal resistance

Table 127 Bin Description Parameters

Name Units Default Comments

LMIN m 0.0 Maximum channel length

LMAX m 1.0 Maximum channel length

WMIN m 0.0 Minimum channel width

WMAX m 1.0 Maximum channel width

BINUNIT - 0 Assumes Weff, Leff, Wref, and Lref units are in microns when BINUNIT=1 or meters otherwise

Table 126 Temperature Parameters (Continued)

Aurora Reference Guide 197X-2006.09

Page 218: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

Note:

The bin description parameters are not used in the current version of Aurora

Table 128 Process Parameters

Name Units Default Comments

GAMMA1 V1/2 see Note 8 Body effect coefficient near the surface

GAMMA2 V1/2 see Note 9 Body effect coefficient in the bulk

VBX V see Note 10 VBX at which the depletion region width equals XT

XT m 1.55e-7 Doping depth

VBI V see Note 11 Drain and source junction built-in potential

Table 129 Noise Parameters

Name Units Default Comments

NOIA - 1.0e20 nmos

9.9e18 pmos

Body effect coefficient near the surface

NOIB - 5.0e4 nmos

2.4e3 pmos

Body effect coefficient in the bulk

NOIC - -1.4e-12 nmos

1.4e-12 pmos

VBX at which the depletion region width equals XT

EM V/m 4.1e7 Doping depth

AF - 1.0 Drain and source junction built-in potential

KF - 1.0 Flicker exponent

EF - 0.0 Flicker noise parameter

NTNOI - 1 Noise factor for short–channel devices for TNOIMOD=0 only

198 Aurora Reference GuideX-2006.09

Page 219: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 57 (BSIM3SOI PD) Variables and Model Parameters

Table 130 Junction Parameters

Name Units Default Comments

JS A/m2 0.0 Bulk junction saturation current

(Default deviates from BSIM3v3 = 1.0e-4)

JSW A/m 0.0 Sidewall bulk junction saturation current

NJ - 1 Emission coefficient (not used with ACM=3)

CJ F/m2 5.79e-4 Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-4)

CJSW F/m 0.0 Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-10)

CJSWG F/m CJSW Zero-bias gate-edge sidewall bulk junction capacitance

(not used with ACM=0-3)

PB, PHIB V 1.0 Bulk junction contact potential

PBSW V 1.0 Sidewall bulk junction contact potential

PBSWG V PBSW Gate-edge sidewall bulk junction contact potential

(not used with ACM=0-3)

MJ - 0.5 Bulk junction grading coefficient

MJSW - 0.33 Sidewall bulk junction grading coefficient

MJSWG - MJSW Gate-edge sidewall bulk junction grading coefficient

(not used with ACM=0-3)

Table 131 NQS Parameters

Name Units Default Comments

ELM - 5.0 Elmore constant

Aurora Reference Guide 199X-2006.09

Page 220: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

Level 59 (BSIM3SOI FD) Model Parameters

The model represents the Star-Hspice version of the Berkeley BSIM3SOI-FD model. The implementation in Aurora includes self-heating support. When self-heating is turned on, a 3x speed-up in model evaluation is observed.

Table 132 Miscellaneous Parameters

Name(Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL 57 DC Model Selector

VERSION 3.2 Model version selector

QFLAG 0.0 Flag for charge/cap computing

Table 133 Model Flags

Name Units Default Comments

MOBMOD - 1 Mobility model selector

CAPMOD - 3 Selects from Charge models 0,1,2,3

NOIMOD - 1 Berkeley noise model flag

NLEV - 0 (off) Star-Hspice noise model flag (non-zero overrides NOIMOD) (Star-Hspice specific)

SHMOD - 0 (off) Select self-heating mode

PARAMCHK

- 0 PARAMCHK=1 will check some model parameters for range compliance

Table 134 Basic Model Parameters

Name Units Default Comments

TSI m 1.0e-7 Gate oxide thickness

200 Aurora Reference GuideX-2006.09

Page 221: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

TOX m 1.0e-7 Gate oxide thickness

TOX m 1.0e-8 Gate oxide thickness

XJ m 0.15e-6 Junction depth

NGATE cm-3 infinite Poly gate doping concentration

VTH0

(VTHO)

V 0.7 Threshold voltage of long channel device at Vbs = 0 and small Vds (typically 0.7 for n-channel, - 0.7 for p-channel)

NSUB cm-3 6.0e16 Substrate doping concentration

NCH cm-3 (see Note 6)

1.7e17 Peak doping concentration near interface

NLX m 1.74e-7 Lateral nonuniform doping along channel

K1 V1/2 0.53 First-order body effect coefficient

VBSA V 0 Transition body voltage effect

DELP V 0.02 Constant for limiting Vbseff to surface potential

KB1 - 1 Coefficient for Vbs0 dependency on Vgbs

KB3 - 1 Coefficient for Vbs0 dependency on Vgbs at subthreshold

DVBD0 V 0 First coefficient of Vbs0 dependency on Leff

DVBD1 V 0 Second coefficient of Vbs0 dependency on Leff

K2 - -0.0186 Second-order body effect coefficient

K3 - 0 Narrow width effect coefficient

K3B 1/V 0 Body width coefficient of narrow width effect

Table 134 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 201X-2006.09

Page 222: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

W0 m 2.5e-6 Narrow width effect coefficient

DVT0 - 2.2 Short channel effect coefficient 0, for Vth

DVT1 - 0.53 Short channel effect coefficient 1, for Vth

DVT2 1/V -0.032 Short channel effect coefficient 2, for Vth

DVT0W 1/m 0 Narrow width coefficient 0, for Vth,

at small L

DVT1W 1/m 5.3e6 Narrow width coefficient 1, for Vth,

at small L

DVT2W 1/V -0.032 Narrow width coefficient 2, for Vth,

at small L

ETA0 - 0.08 Subthreshold region DIBL (Drain Induced Barrier Lowering) coefficient

ETAB 1/V -0.07 Subthreshold region DIBL coefficient

DSUB - DROUT DIBL coefficient exponent in subthreshold region

VBM V -3.0 Maximum substrate bias, for Vth calculation

U0 cm2/V/sec 670 nmos250 pmos

Low field mobility at T = TNOM

UA m/V 2.25e-9 First-order mobility degradation coefficient

UB m2/V2 5.87e-19 Second-order mobility degradation coefficient

UC 1/V -4.65e-11 or -0.0465 Body bias sensitivity coefficient of mobility

-4.65e-11 for MOBMOD=1,2 or,

-0.0465 for MOBMOD = 3

A0 - 1.0 Bulk charge effect coefficient for channel length

Table 134 Basic Model Parameters (Continued)

Name Units Default Comments

202 Aurora Reference GuideX-2006.09

Page 223: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

AGS 1/V 0.0 Gate bias coefficient of Abulk

B0 m 0.0 Bulk charge effect coefficient for channel width

B1 m 0.0 Bulk charge effect width offset

KETA 1/V 0 Body-bias coefficient of bulk charge effect

ABP - 1.0 Coefficient of Abeff dependency on Vgst

MXC - -0.9 Fitting parameter for Abeff calculation

ADICE0 - 1 DICE bulk charge factor

VOFF V -0.08 Offset voltage in subthreshold region

VSAT m/sec 8e4 Saturation velocity of carrier at T = TNOM

A1 1/V 0 First nonsaturation factor

A2 - 1.0 Second nonsaturation factor

RDSW ohm ⋅ μm 0.0 Parasitic source drain resistance per unit width

PRWG 1/V 0 Gate bias effect coefficient of RDSW

PRWB 1/V1/2 0 Body effect coefficient of RDSW

WR - 1.0 Width offset from Weff for Rds calculation

NFACTOR - 1.0 Subthreshold region swing

CIT F/m2 0.0 Interface state capacitance

CDSC F/m2 2.4e-4 Drain/source and channel coupling capacitance

CDSCD F/Vm2 0 Drain bias sensitivity of CDSC

CDSCB F/Vm2 0 Body coefficient for CDSC

Table 134 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 203X-2006.09

Page 224: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

PCLM - 1.3 Coefficient of channel length modulation values < 0 will result in an error message and program exit.

PDIBLC1 - 0.39 DIBL (Drain Induced Barrier Lowering) effect coefficient 1

PDIBLC2 - 0.0086 DIBL effect coefficient 2

PDIBLCB 1/V 0 Body effect coefficient of DIBL effect coefficients

DROUT - 0.56 Length dependence coefficient of the DIBL correction parameter in Rout

PSCBE1 V/m 4.24e8 Substrate current induced body effect exponent 1

PSCBE2 V/m 1.0e-5 Substrate current induced body effect coefficient 2

PVAG - 0 Gate dependence of Early voltage

DELTA V 0.01 Effective Vds parameter

ALPHA0 m/V 0 The first parameter of impact ionization current

ALPHA1 m/V 0 The second parameter of impact ionization current

AII 1/V 0 First Leff dependence Vdsatii parameter

BII m/V 0 Second Leff dependence Vdsatii parameter

CII - 0 First Vds dependence Vdsatii parameter

DII V -1 Second Vds dependence Vdsatii parameter

AGIDL Ω-1 0 GIDL constant

BGIDL V/m 0 GIDL exponential coefficient

Table 134 Basic Model Parameters (Continued)

Name Units Default Comments

204 Aurora Reference GuideX-2006.09

Page 225: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

NGIDL V 1.2 GIDL Vds enhancement coefficient

NTUN - 10 Reverse tunneling non-ideality factor

NDIO - 1 Diode non-ideality factor

ISBJT A/m2 1e-6 BJT injection saturation current

ISDIF A/m2 1e-7 Body to source/drain injection saturation current

ISREC A/m2 1e-5 Recombination in depletion saturation current

ISTUN A/m2 0 Reverse tunneling saturation current

EDL m 2e-6 Electron/hole diffusion length

KBJT1 m/V 0 Parasitic bipolar early effect

RSH 0.0 ohm/square Source/drain sheet resistance in ohm per square

RBSH 0.0 ohm/m2 Extrinsic body contact sheet resistance

RBODY 0.0 ohm/m2 Intrinsic body contact sheet resistance

Table 135 AC and Capacitance Parameters

Name Units Default Comments

XPART - 1 Charge partitioning rate flag

(default deviates from BSIM3V3=0)

CGSO F/m p1 (see Note 1) Non-LDD region source-gate overlap capacitance per unit channel length

CGDO F/m p2 (see Note 2) Non-LDD region source-gate overlap capacitance per unit channel length

Table 134 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 205X-2006.09

Page 226: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

Name Units Default Comments

CGEO F/m 0 Gate-substrate overlap capacitance per unit channel length

CGS1 F/m 0.0 Lightly doped source-gate overlap region capacitance

CGD1 F/m 0.0 Lightly doped drain-gate overlap region capacitance

CKAPPA F/m 0.6 Coefficient for lightly doped region overlap capacitance fringing field capacitance

CF F/m (see Note 3) Fringing field capacitance

CLC m 0.1e-6 Constant term for the short channel model

TT s 1e-12 Diffusion capacitance transit time coefficient

VSDFB V calculated Source/drain bottom diffusion capacitance flatband voltage

VSDTH V calculated Source/drain bottom diffusion capacitance threshold voltage

CSDMIN V calculated Source/drain bottom diffusion minimum capacitance

ASD - 0.3 Source/drain bottom smoothing parameter

CSDESW F/m 0 Source/drain sidewall fringing capacitance per unit length

CLE - 0.6 Exponential term for the short channel model

Table 136 Length and Width Parameters

Name Units Default Comments

WINT m 0.0 Width offset fitting parameter from I-V without bias

WL mWLN 0.0 Coefficient of length dependence for width offset

WLN - 1.0 Power of length dependence of width offset

Table 135 AC and Capacitance Parameters (Continued)

206 Aurora Reference GuideX-2006.09

Page 227: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

WW mWWN 0.0 Coefficient of width dependence for width offset

WWN - 1.0 Power of width dependence of width offset.

WWL mWWN*mWLN 0.0 Coefficient of length and width cross term for width offset

DWG m/V 0.0 Coefficient of Weff’s gate dependence

DWB m/V1/2 0.0 Coefficient of Weff’s substrate body bias dependence

Name Units Default Comments

LINT m 0.0 Length offset fitting parameter from I-V without bias

LL mLLN 0.0 Coefficient of length dependence for length offset

LLN - 1.0 Power of length dependence of length offset

LW mLWN 0.0 Coefficient of width dependence for length offset

LWN - 1.0 Power of width dependence of length offset

LWL mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset

DLC m LINT Length offset fitting parameter from CV

DWC m WINT Width offset fitting parameter from CV

Table 137 Temperature Parameters

Name Units Default Comments

TNOM °C 25 Reference temperature of the model

KT1 V 0.0 Temperature coefficient for Vth

Table 136 Length and Width Parameters (Continued)

Aurora Reference Guide 207X-2006.09

Page 228: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

KT1L m-V 0.0 Temperature coefficient for channel length dependence of Vth

KT2 - 0.022 Body bias coefficient of Vth temperature effect

UTE - -1.5 Mobility temperature exponent

UA1 m/V 4.31e-9 Temperature coefficient for UA

UB1 (m/V)2 -7.61e-18 Temperature coefficient for UB

UC1 m/V2 -5.69e-11 Temperature coefficient for UC

AT m/sec 3.3e4 Temperature coefficient for saturation velocity

PRT ohm-um 0 Temperature coefficient for RDSW

XBJT - 2 Power dependence of JBJT on temperature

XDIF - 2 Power dependence of JDIF on temperature

XREC - 20 Power dependence of JREC on temperature

XTUN - 0 Power dependence of JTUN on temperature

CTH0 moC/(Ws) 0 Normalized thermal capacity

RTH0 moC/W 0 Normalized thermal resistance

Table 138 Bin Description Parameters

Name Units Default Comments

LMIN m 0.0 Maximum channel length

LMAX m 1.0 Maximum channel length

WMIN m 0.0 Minimum channel width

WMAX m 1.0 Maximum channel width

Table 137 Temperature Parameters

208 Aurora Reference GuideX-2006.09

Page 229: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

Note:

The bin description parameters are not used in the current version of Aurora

BINUNIT - 0 Assumes Weff, Leff, Wref, and Lref units are in microns when BINUNIT=1 or meters otherwise

Table 139 Process Parameters

Name Units Default Comments

GAMMA1 V1/2 see Note 8 Body effect coefficient near the surface

GAMMA2 V1/2 see Note 9 Body effect coefficient in the bulk

VBX V see Note 10 VBX at which the depletion region width equals XT

XT m 1.55e-7 Doping depth

VBI V see Note 11 Drain and source junction built-in potential

Table 140 Noise Parameters

Name Units Default Comments

NOIA - 1.0e20 nmos

9.9e18 pmos

Body effect coefficient near the surface

NOIB - 5.0e4 nmos

2.4e3 pmos

Body effect coefficient in the bulk

NOIC - -1.4e-12 nmos

1.4e-12 pmos

VBX at which the depletion region width equals XT

EM V/m 4.1e7 Doping depth

AF - 1.0 Drain and source junction built-in potential

KF - 1.0 Flicker exponent

Table 138 Bin Description Parameters

Aurora Reference Guide 209X-2006.09

Page 230: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 59 (BSIM3SOI FD) Model Parameters

EF - 0.0 Flicker noise parameter

Table 141 Junction Parameters

Name Units Default Comments

JS A/m2 0.0 Bulk junction saturation current

(Default deviates from BSIM3v3 = 1.0e-4)

JSW A/m 0.0 Sidewall bulk junction saturation current

NJ - 1 Emission coefficient (not used with ACM=3)

CJ F/m2 5.79e-4 Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-4)

CJSW F/m 0.0 Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-10)

CJSWG F/m CJSW Zero-bias gate-edge sidewall bulk junction capacitance (not used with ACM=0-3)

PB, PHIB V 1.0 Bulk junction contact potential

PBSW V 1.0 Sidewall bulk junction contact potential

PBSWG V PBSW Gate-edge sidewall bulk junction contact potential(not used with ACM=0-3)

MJ - 0.5 Bulk junction grading coefficient

MJSW - 0.33 Sidewall bulk junction grading coefficient

MJSWG - MJSW Gate-edge sidewall bulk junction grading coefficient(not used with ACM=0-3)

Table 140 Noise Parameters (Continued)

210 Aurora Reference GuideX-2006.09

Page 231: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

Level 60 (BSIM3SOI DD) Model Parameters

The model represents the Star-Hspice version of the Berkeley BSIM3SOI-DD model. The implementation in Aurora includes bulk resistance and self-heating support. When self-heating is turned on, a 3x speed-up in model evaluation is observed.

Table 142 NQS Parameters

Name Units Default Comments

ELM - 5.0 Elmore constant

Table 143 Miscellaneous Parameters

Name(Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

QFLAG 0.0 Flag for charge/cap computing

Table 144 Model Flags

Name Units Default Comments

MOBMOD - 1 Mobility model selector

CAPMOD - 3 Selects from Charge models 0,1,2,3

NOIMOD - 1 Berkeley noise model flag

NLEV - 0 (off) Star-Hspice noise model flag (non-zero overrides NOIMOD) (Star-Hspice specific)

SHMOD - 0 (off) Select self-heating mode

PARAMCHK - 0 PARAMCHK=1 will check some model parameters for range compliance

Aurora Reference Guide 211X-2006.09

Page 232: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

Table 145 Basic Model Parameters

Name Units Default Comments

TSI m 1.0e-7 Gate oxide thickness

TOX m 1.0e-7 Gate oxide thickness

TOX m 1.0e-8 Gate oxide thickness

XJ m 0.15e-6 Junction depth

NGATE cm-3 infinite Poly gate doping concentration

VTH0

(VTHO)

V 0.7 Threshold voltage of long channel device at Vbs = 0 and small Vds (typically 0.7 for n-channel, - 0.7 for p-channel)

NSUB cm-3 6.0e16 Substrate doping concentration

NCH cm-3 (see Note 6) 1.7e17 Peak doping concentration near interface

NLX m 1.74e-7 Lateral nonuniform doping along channel

K1 V1/2 0.53 First-order body effect coefficient

VBSA V 0 Transition body voltage effect

DELP V 0.02 Constant for limiting Vbseff to surface potential

KB1 - 1 Coefficient for Vbs0 dependency on Vgbs

KB3 - 1 Coefficient for Vbs0 dependency on Vgbs at subthreshold

DVBD0 V 0 First coefficient of Vbs0 dependency on Leff

DVBD1 V 0 Second coefficient of Vbs0 dependency on Leff

K2 - -0.0186 Second-order body effect coefficient

K3 - 0 Narrow width effect coefficient

212 Aurora Reference GuideX-2006.09

Page 233: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

K3B 1/V 0 Body width coefficient of narrow width effect

W0 m 2.5e-6 Narrow width effect coefficient

DVT0 - 2.2 Short channel effect coefficient 0, for Vth

DVT1 - 0.53 Short channel effect coefficient 1, for Vth

DVT2 1/V -0.032 Short channel effect coefficient 2, for Vth

DVT0W 1/m 0 Narrow width coefficient 0, for Vth,

at small L

DVT1W 1/m 5.3e6 Narrow width coefficient 1, for Vth,

at small L

DVT2W 1/V -0.032 Narrow width coefficient 2, for Vth,

at small L

ETA0 - 0.08 Subthreshold region DIBL (Drain Induced Barrier Lowering) coefficient

ETAB 1/V -0.07 Subthreshold region DIBL coefficient

DSUB - DROUT DIBL coefficient exponent in subthreshold region

VBM V -3.0 Maximum substrate bias, for Vth calculation

U0 cm2/V/sec 670 nmos250 pmos

Low field mobility at T = TNOM

UA m/V 2.25e-9 First-order mobility degradation coefficient

UB m2/V2 5.87e-19 Second-order mobility degradation coefficient

UC 1/V -4.65e-11 or -0.0465

Body bias sensitivity coefficient of mobility

-4.65e-11 for MOBMOD=1,2 or,

-0.0465 for MOBMOD = 3

Table 145 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 213X-2006.09

Page 234: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

A0 - 1.0 Bulk charge effect coefficient for channel length

AGS 1/V 0.0 Gate bias coefficient of Abulk

B0 m 0.0 Bulk charge effect coefficient for channel width

B1 m 0.0 Bulk charge effect width offset

KETA 1/V 0 Body-bias coefficient of bulk charge effect

ABP - 1.0 Coefficient of Abeff dependency on Vgst

MXC - -0.9 Fitting parameter for Abeff calculation

ADICE0 - 1 DICE bulk charge factor

VOFF V -0.08 Offset voltage in subthreshold region

VSAT m/sec 8e4 Saturation velocity of carrier at T = TNOM

A1 1/V 0 First nonsaturation factor

A2 - 1.0 Second nonsaturation factor

RDSW ohm ⋅ μm 0.0 Parasitic source drain resistance per unit width

PRWG 1/V 0 Gate bias effect coefficient of RDSW

PRWB 1/V1/2 0 Body effect coefficient of RDSW

WR - 1.0 Width offset from Weff for Rds calculation

NFACTOR - 1.0 Subthreshold region swing

CIT F/m2 0.0 Interface state capacitance

CDSC F/m2 2.4e-4 Drain/source and channel coupling capacitance

CDSCD F/Vm2 0 Drain bias sensitivity of CDSC

CDSCB F/Vm2 0 Body coefficient for CDSC

Table 145 Basic Model Parameters (Continued)

Name Units Default Comments

214 Aurora Reference GuideX-2006.09

Page 235: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

PCLM - 1.3 Coefficient of channel length modulation values < 0 will result in an error message and program exit.

PDIBLC1 - 0.39 DIBL (Drain Induced Barrier Lowering) effect coefficient 1

PDIBLC2 - 0.0086 DIBL effect coefficient 2

PDIBLCB 1/V 0 Body effect coefficient of DIBL effect coefficients

DROUT - 0.56 Length dependence coefficient of the DIBL correction parameter in Rout

PSCBE1 V/m 4.24e8 Substrate current induced body effect exponent 1

PSCBE2 V/m 1.0e-5 Substrate current induced body effect coefficient 2

PVAG - 0 Gate dependence of Early voltage

DELTA V 0.01 Effective Vds parameter

ALPHA0 m/V 0 The first parameter of impact ionization current

ALPHA1 m/V 0 The second parameter of impact ionization current

AII 1/V 0 First Leff dependence Vdsatii parameter

BII m/V 0 Second Leff dependence Vdsatii parameter

CII - 0 First Vds dependence Vdsatii parameter

DII V -1 Second Vds dependence Vdsatii parameter

AGIDL Ω-1 0 GIDL constant

BGIDL V/m 0 GIDL exponential coefficient

Table 145 Basic Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 215X-2006.09

Page 236: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

NGIDL V 1.2 GIDL Vds enhancement coefficient

NTUN - 10 Reverse tunneling non-ideality factor

NDIO - 1 Diode non-ideality factor

ISBJT A/m2 1e-6 BJT injection saturation current

ISDIF A/m2 1e-7 Body to source/drain injection saturation current

ISREC A/m2 1e-5 Recombination in depletion saturation current

ISTUN A/m2 0 Reverse tunneling saturation current

EDL m 2e-6 Electron/hole diffusion length

KBJT1 m/V 0 Parasitic bipolar early effect

RSH 0.0 ohm/square

Source/drain sheet resistance in ohm per square

RBSH 0.0 ohm/m2 Extrinsic body contact sheet resistance

RBODY 0.0 ohm/m2 Intrinsic body contact sheet resistance

Table 146 AC and Capacitance Parameters

Name Units Default Comments

XPART - 1 Charge partitioning rate flag

(default deviates from BSIM3V3=0)

CGSO F/m p1 (see Note 1) Non-LDD region source-gate overlap capacitance per unit channel length

Table 145 Basic Model Parameters (Continued)

Name Units Default Comments

216 Aurora Reference GuideX-2006.09

Page 237: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

Name Units Default Comments

CGDO F/m p2 (see Note 2) Non-LDD region source-gate overlap capacitance per unit channel length

CGEO F/m 0 Gate-substrate overlap capacitance per unit channel length

CGS1 F/m 0.0 Lightly doped source-gate overlap region capacitance

CGD1 F/m 0.0 Lightly doped drain-gate overlap region capacitance

CKAPPA F/m 0.6 Coefficient for lightly doped region overlap capacitance fringing field capacitance

CF F/m (see Note 3) Fringing field capacitance

CLC m 0.1e-6 Constant term for the short channel model

TT s 1e-12 Diffusion capacitance transit time coefficient

VSDFB V calculated Source/drain bottom diffusion capacitance flatband voltage

VSDTH V calculated Source/drain bottom diffusion capacitance threshold voltage

CSDMIN V calculated Source/drain bottom diffusion minimum capacitance

ASD - 0.3 Source/drain bottom smoothing parameter

CSDESW

F/m 0 Source/drain sidewall fringing capacitance per unit length

CLE - 0.6 Exponential term for the short channel model

Table 147 Length and Width Parameters

Name Units Default Comments

WINT m 0.0 Width offset fitting parameter from I-V without bias

Table 146 AC and Capacitance Parameters (Continued)

Aurora Reference Guide 217X-2006.09

Page 238: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

WL mWLN 0.0 Coefficient of length dependence for width offset

WLN - 1.0 Power of length dependence of width offset

WW mWWN 0.0 Coefficient of width dependence for width offset

WWN - 1.0 Power of width dependence of width offset.

WWL mWWN*mWLN 0.0 Coefficient of length and width cross term for width offset

DWG m/V 0.0 Coefficient of Weff’s gate dependence

Name Units Default Comments

DWB m/V1/2 0.0 Coefficient of Weff’s substrate body bias dependence

LINT m 0.0 Length offset fitting parameter from I-V without bias

LL mLLN 0.0 Coefficient of length dependence for length offset

LLN - 1.0 Power of length dependence of length offset

LW mLWN 0.0 Coefficient of width dependence for length offset

LWN - 1.0 Power of width dependence of length offset

LWL mLWN*mLLN 0.0 Coefficient of length and width cross term for length offset

DLC m LINT Length offset fitting parameter from CV

DWC m WINT Width offset fitting parameter from CV

Table 148 Temperature Parameters

Name Units Default Comments

TNOM °C 25 Reference temperature of the model

Table 147 Length and Width Parameters (Continued)

218 Aurora Reference GuideX-2006.09

Page 239: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

K

T1

V 0.0 Temperature coefficient for Vth

KT1L m-V 0.0 Temperature coefficient for channel length dependence of Vth

KT2 - 0.022 Body bias coefficient of Vth temperature effect

UTE - -1.5 Mobility temperature exponent

UA1 m/V 4.31e-9 Temperature coefficient for UA

UB1 (m/V)2 -7.61e-18 Temperature coefficient for UB

UC1 m/V2 -5.69e-11 Temperature coefficient for UC

AT m/sec 3.3e4 Temperature coefficient for saturation velocity

PRT ohm-um 0 Temperature coefficient for RDSW

XBJT - 2 Power dependence of JBJT on temperature

XDIF - 2 Power dependence of JDIF on temperature

XREC - 20 Power dependence of JREC on temperature

XTUN - 0 Power dependence of JTUN on temperature

Name Units Default Comments

CTH0 moC/(Ws) 0 Normalized thermal capacity

RTH0 moC/W 0 Normalized thermal resistance

Table 149 Bin Description Parameters

Name Units Default Comments

LMIN m 0.0 Maximum channel length

Table 148 Temperature Parameters

Aurora Reference Guide 219X-2006.09

Page 240: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

Note:

The bin description parameters are not used in the current version of Aurora.

L

MAX

m 1.0 Maximum channel length

WMIN m 0.0 Minimum channel width

WMAX m 1.0 Maximum channel width

BINUNIT - 0 Assumes Weff, Leff, Wref, and Lref units are in microns when BINUNIT=1 or meters otherwise

Table 150 Process Parameters

Name Units Default Comments

GAMMA1 V1/2 see Note 8 Body effect coefficient near the surface

GAMMA2 V1/2 see Note 9 Body effect coefficient in the bulk

VBX V see Note 10 VBX at which the depletion region width equals XT

XT m 1.55e-7 Doping depth

VBI V see Note 11 Drain and source junction built-in potential

Table 151 Noise Parameters

Name Units Default Comments

NOIA - 1.0e20 nmos

9.9e18 pmos

Body effect coefficient near the surface

NOIB - 5.0e4 nmos

2.4e3 pmos

Body effect coefficient in the bulk

Table 149 Bin Description Parameters

220 Aurora Reference GuideX-2006.09

Page 241: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 60 (BSIM3SOI DD) Model Parameters

Name Units Default Comments

NOIC - -1.4e-12 nmos

1.4e-12 pmos

VBX at which the depletion region width equals XT

EM V/m 4.1e7 Doping depth

AF - 1.0 Drain and source junction built-in potential

KF - 1.0 Flicker exponent

EF - 0.0 Flicker noise parameter

Table 152 Junction Parameters

Name Units Default Comments

JS A/m2 0.0 Bulk junction saturation current (Default deviates

from BSIM3v3 = 1.0e-4)

JSW A/m 0.0 Sidewall bulk junction saturation current

NJ - 1 Emission coefficient (not used with ACM=3)

CJ F/m2 5.79e-4 Zero-bias bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-4)

CJSW F/m 0.0 Zero-bias sidewall bulk junction capacitance

(Default deviates from BSIM3v3 = 5.0e-10)

CJSWG F/m CJSW Zero-bias gate-edge sidewall bulk junction capacitance

(not used with ACM=0-3)

PB, PHIB V 1.0 Bulk junction contact potential

PBSW V 1.0 Sidewall bulk junction contact potential

Table 151 Noise Parameters (Continued)

Aurora Reference Guide 221X-2006.09

Page 242: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 61 (RPI Amorphous Silicon TFT) Model Parameters

Level 61 (RPI Amorphous Silicon TFT) Model Parameters

The RPI Amorphous Silicon and Polysilicon MOSFET Models, are available in HSPICE as Level 61 and 62 respectively. These models are using slightly

PBSWG V PBSW Gate-edge sidewall bulk junction contact potential

(not used with ACM=0-3)

MJ - 0.5 Bulk junction grading coefficient

MJSW - 0.33 Sidewall bulk junction grading coefficient

MJSWG - MJSW Gate-edge sidewall bulk junction grading coefficient

(not used with ACM=0-3)

Table 153 NQS Parameters

Name Units Default Comments

ELM - 5.0 Elmore constant

Table 154 Miscellaneous Parameters

Name(Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

QFLAG 0.0 Flag for charge/cap computing

Table 152 Junction Parameters

222 Aurora Reference GuideX-2006.09

Page 243: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 61 (RPI Amorphous Silicon TFT) Model Parameters

different variable and target sets compared to the regular bulk CMI MOSFET models.

Table 155 Specific Variables for the Level 61, and 62 Models

Name Description Default Units Notes

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts 1

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares for resistance calculation

(undefined) squares

NRS Number of source diffusion squares for resistance calculation

(undefined) squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

DEVMODE Device mode 1

Aurora Reference Guide 223X-2006.09

Page 244: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 61 (RPI Amorphous Silicon TFT) Model Parameters

Note:

1. The VB variable is not used in the Level 61 and 62 models. It is only defined for compatibility with regular bulk MOSFET data files.

Table 156 Specific Targets for the Level 61 and 62 Models

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-17

IBS Substrate source-junction leakage current

Amps 1 × 10-17

IBD Substrate drain-junction leakage current

Amps 1 × 10-17

ISUB Substrate current Amps 1 × 10-17

VTHON Turn-on voltage V 1 × 10-17

SATVD Saturation voltage (VDSAT) V 1 × 10-17

CAPGS Meyer’s gate capacitance (dQg/dVgs+cgso)

Farads/m 1 × 10-17

CAPGD Meyer’s gate capacitance (dQg/dVds+cgdo)

Farads/m 1 × 10-17

CAPGB Meyer’s gate capacitance (dQg/dVgs+cgbo)

Farads/m 1 × 10-17

CAPBS Substrate source-junction capacitance

Farads/m 1 × 10-17

CAPBD Substrate drain- junction capacitance Farads/m 1 × 10-17

QBS Substrate source-junction charge Coulombs 1 × 10-17

QBD Substrate drain-junction charge Coulombs 1 × 10-17

QG Gate charge Coulombs 1 × 10-17

QD Drain charge Coulombs 1 × 10-17

224 Aurora Reference GuideX-2006.09

Page 245: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 61 (RPI Amorphous Silicon TFT) Model Parameters

QS Source charge Coulombs 1 × 10-17

CGGB Intrinsic gate input capacitance Farads 1 × 10-17

CGSB Intrinsic gate-channel transcapacitance

Farads 1 × 10-17

CGDB Intrinsic gate-drain transcapacitance Farads 1 × 10-17

CBGB Intrinsic body-gate transcapacitance Farads 1 × 10-17

CBSB Intrinsic body-source transcapacitance

Farads 1 × 10-17

CBDB Intrinsic body-drain transcapacitance Farads 1 × 10-17

CDGB Intrinsic drain-gate transcapacitance Farads 1 × 10-17

GD Drain conductance mho 1 × 10-17

GS Source conductance mho 1 × 10-17

GBD Substrate drain junction-conductance mho 1 × 10-17

GBS Substrate source junction-conductance

mho 1 × 10-17

IB Current entering substrate (bulk) terminal

Amps 1 × 10-17

IG Current entering gate terminal Amps 1 × 10-17

WEFF Effective channel width m 1 × 10-17

LEFF Effective channel length m 1 × 10-17

BETAZERO μ0CoxWeff/Leff Amps/V2 1 × 10-17

Table 156 Specific Targets for the Level 61 and 62 Models (Continued)

Name Description Units Minimum

Aurora Reference Guide 225X-2006.09

Page 246: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 61 (RPI Amorphous Silicon TFT) Model Parameters

BETAEFF μeffCoxWeff/Leff Amps/V2 1 × 10-17

UEFF Effective mobility (μeff) m2/vs 1 × 10-17

ISOURCE Current entering source terminal Amps 1 × 10-17

BULKFACT Bulk factor 1 × 10-17

SUBTHSLP Subthreshold slope 1 × 10-17

CAPGC Gate to channel capacitance Farads/m 1 × 10-17

VID Intrinsic drain voltage V 1 × 10-17

VIS Intrinsic source voltage V 1 × 10-17

VIRD Voltage drop on the drain resistance V 1 × 10-17

VIRS Voltage drop on the source resistance V 1 × 10-17

Table 157 Level 61 Model Parameters

Name Units Default Comments

QFLAG 0.0 Flag for charge/cap computing

ALPHASAT - 0.6 Saturation modulation parameter

CGDO F/m 0.0 Gate-drain overlap capacitance per meter channel width

CGSO F/m 0.0 Gate-source overlap capacitance per meter channel width

DEF0 eV 0.6 Dark Fermi level position

DELTA - 5 Transition width parameter

Table 156 Specific Targets for the Level 61 and 62 Models (Continued)

Name Description Units Minimum

226 Aurora Reference GuideX-2006.09

Page 247: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 61 (RPI Amorphous Silicon TFT) Model Parameters

EL eV 0.35 Activation energy of the hole leakage current

EMU eV 0.06 Field effect mobility activation energy

EPS - 11 Relative dielectric constant of substrate

EPSI - 7.4 Relative dielectric constant of gate insulator

GAMMA - 0.4 Power law mobility parameter

GMIN m-3eV-1 1E23 Minimum density of deep states

IOL A 3E-14 Zero bias leakage current parameter

KASAT 1/° C 0.006 Temperature coefficient of ALPHASAT

KVT V/° C -0.036 Threshold voltage temperature coefficient

LAMBDA 1/V 0.0008 Output conductance parameter

M - 2.5 Knee shape parameter

MUBAND m2/Vs 0.001 Conduction band mobility

RD µ 0.0 Drain resistance

RS µ 0.0 Source resistance

SIGMA0 A 1E-14 Minimum leakage current parameter

TNOM oC 25 Parameter measurement temperature

TOX m 1E-7 Thin-oxide thickness

V0 V 0.12 Characteristic voltage for deep states

VAA V 7.5E3 Characteristic voltage for field effect mobility

VDSL V 7 Hole leakage current drain voltage parameter

VFB V -3 Flat band voltage

Table 157 Level 61 Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 227X-2006.09

Page 248: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 62 (RPI Polysilicon TFT) Model Parameters

Level 62 (RPI Polysilicon TFT) Model Parameters

VGSL V 7 Hole leakage current gate voltage parameter

VMIN V 0.3 Convergence parameter

VTO V 0.0 Zero-bias threshold voltage

Table 158 Level 62 Model Parameters

Name Units Default Comments

SHMOD 0 Self-heating model selector

TSHFLAG 0 When the TSHFLAG is set to 1, the temperature increase due to self-heating is calculated using an approximation based on the measured ID value, instead of using the full temperature node solver. This results in a 3x improvement in model evaluation speed.

QFLAG 0.0 Flag for charge/cap computing

CAPMOD 0.0 Capacitance model selector

VERSION 1.0 Model version:

0 - Shur model;

1 - version 1;

2 - version 2.

ISUBMOD 0 CLM model selector

INTDSNOD 1 1 - uses external drain/source resistances;

0 - uses internal approximation

ACM 0 Area calculation method

Table 157 Level 61 Model Parameters (Continued)

Name Units Default Comments

228 Aurora Reference GuideX-2006.09

Page 249: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 62 (RPI Polysilicon TFT) Model Parameters

RSH ohm/sq 0.0 Sheet resistance.

ASAT - 1 Proportionality constant of Vsat

AT m/V 3E-8 DIBL parameter 1

BLK - 0.001 Leakage barrier lowering constant

BT m.V 1.9E-6 DIBL parameter 2

CGDO F/m 0 Gate-drain overlap capacitance per meter channel width

CGSO F/m 0 Gate-source overlap capacitance per meter channel width

DASAT 1/°C 0 Temperature coefficient of ASAT

DD m 1400 Å Vds field constant

DELTA - 4.0 Transition width parameter

DG m 2000 Å Vgs field constant

DMU1 cm2/Vs ° C

0 Temperature coefficient of MU1

DVT V 0 The difference between VON and the threshold voltage

DVTO V/°C 0 Temperature coefficient of VTO

EB EV 0.68 Barrier height of diode

ETA - 7 Subthreshold ideality factor

ETAC0 - ETA Capacitance subthreshold ideality factor at zero drain bias

ETAC00 1/V 0 Capacitance subthreshold coefficient of drain bias

I0 A/m 6.0 Leakage scaling constant

Table 158 Level 62 Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 229X-2006.09

Page 250: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 62 (RPI Polysilicon TFT) Model Parameters

I00 A/m 150 Reverse diode saturation current

LASAT M 0 Coefficient for length dependence of ASAT

LKINK M 19E-6 Kink effect constant

MC - 3.0 Capacitance knee shape parameter

MK - 1.3 Kink effect exponent

MMU - 3.0 Low field mobility exponent

MU0 cm2/Vs 100 High field mobility

MU1 cm2/Vs 0.0022 Low field mobility parameter

MUS cm2/Vs 1.0 Subthreshold mobility

RD µ 0 Drain resistance

RDX 0 Resistance in series with Cgd

RS µ 0 Source resistance

RSX 0 Resistance in series with Cgs

TNOM °C 25 Parameter measurement temperature

TOX m 1e-7 Thin-oxide thickness

V0 V 0.12 Characteristic voltage for deep states

VFB V -0.1 Flat band voltage

VKINK V 9.1 Kink effect voltage

VON V 0 On-voltage

VTO V 0 Zero-bias threshold voltage

LAMBDA (Version 2.0)

Table 158 Level 62 Model Parameters (Continued)

Name Units Default Comments

230 Aurora Reference GuideX-2006.09

Page 251: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 62 (RPI Polysilicon TFT) Model Parameters

VSIGMAT (Version 2.0)

DSIGMA (Version 2.0)

ME (Version 2.0)

META (Version 2.0)

MSS (Version 2.0)

LS (Version 2.0)

VP (Version 2.0)

VMAX (Version 2.0)

THETA (Version 2.0)

CTH0 moC/(Ws) 0 Normalized thermal capacity (self-heating model)

RTH0 moC/W 0 Normalized thermal resistance (self-heating model)

WTH0 m 0 Minimum width for thermal resistance (self-heating model)

Table 159 MOS Geometry Model Parameters

Name (Alias) Units Default Description

HDIF m 0 Length of heavily doped diffusion, from contact to lightly doped region (ACM=2, 3 only)HDIFscaled = HDIF ⋅ SCALM

Table 158 Level 62 Model Parameters (Continued)

Name Units Default Comments

Aurora Reference Guide 231X-2006.09

Page 252: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 62 (RPI Polysilicon TFT) Model Parameters

LD m Lateral diffusion into channel from source and drain diffusion.

If LD and XJ are unspecified, LD default=0.0.

When LD is unspecified, but XJ is specified, LD is calculated from XJ. LD default=0.75 ⋅ XJ.

For Level 4 only, lateral diffusion is derived from LD⋅XJ.LDscaled = LD ⋅ SCALM

LDAC m This parameter is the same as LD, but if LDAC is included in the .MODEL statement, it replaces LD in the Leff calculation for AC gate capacitance.

LMLT 1 Length shrink factor

LREF m 0 Channel length reference LREFscaled = LREF ⋅ SCALM

LDIF m 0 Length of lightly doped diffusion adjacent to gate (ACM=1, 2)LDIFscaled = LDIF ⋅ SCALM

WD m 0 Lateral diffusion into channel from bulk along width WDscaled = ΩΔ ⋅ SCALM

WDAC m 0 This parameter is the same as WD, but if WDAC is included in the .MODEL statement, it replaces WD in the Weff calculation for AC gate capacitance.

WMLT 1 Diffusion layer and width shrink factor

WREF m 0 Channel width referenceWREFscaled = WREF ⋅ SCALM

XL m 0 Accounts for masking and etching effectsXLscaled = XL ⋅ SCALM

XW m 0 Accounts for masking and etching effectsXWscaled = XW ⋅ SCALM

XJ m 0 Metallurgical junction depth

XJscaled = XJ ⋅ SCALM

Table 159 MOS Geometry Model Parameters

Name (Alias) Units Default Description

232 Aurora Reference GuideX-2006.09

Page 253: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

Level 63 (Phillips MOS11) Model Parameters

The Philips MOS Model 11 is available as Level 63 in HSPICE. The Level 63 model in Aurora represents the HSPICE Level 63 with physical geometry scaling rules. The VERSION model parameter should be set to 11010 (for the 1101 version of the model) or to 1100 (for the 1100 version of the model). The model uses the same variables as the other regular bulk CMI MOSFET models.

Table 160 Level 63 Model Parameters

Name Units Default(N) Default(P) Comments Version

LER m 1E-6 1E-6 Effective channel length of the reference transistor

WER m 1E-5 1E-5 Effective channel width of the reference transistor

LVAR m 0 0 Difference between the actual and the programmed poly silicon gate length

LAP m 4E-8 4E-8 Effective channel length reduction per side due to the lateral diffusion of the source/drain dopont ions

WVAR m 0 0 Difference between the actual and the programmed field oxide opening

WOT m 0 0 Effective reduction of the channel width per side due to the lateral diffusion of the channel stop dopant ions

TR ¡É 21 21 Temperature at which the parameters for the reference transistor have been determined

VFBR V -1.05 -1.05 Flat-band voltage for the reference transistor at the reference temperature

1100

Aurora Reference Guide 233X-2006.09

Page 254: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

VFB V -1.05 -1.05 Flat-band voltage for the reference transistor at the reference temperature

11010

STVFB V/K 5E-4 5E-4 Coefficient of the temperature dependence of VFB

KOR V1/2 0.5 0.5 Body-effect factor for the reference transistor

SLKO V1/2m 0 0 Coefficient of the length dependence of kO

SL2KO V1/2m2 0 0 Second coefficient of the length dependence of kO

SWKO V1/2m 0 0 Coefficient of the width dependence of kO

KPINV V-1/2 0 0 Inverse of body –effect factor of the poly-silicon gate

PHIBR V 0.95 0.95 Surface potential at the onset of strong inversion at the reference temperature

SLPHIB Vm 0 0 Coefficient of the length dependence of φΒ

SL2PHIB Vm2 0 0 Second coefficient of the length dependence of φΒ

SWPHIB Vm 0 0 Coefficient of the width dependence of φΒ

STPHIB V/K 5E-4 5E-4 Coefficient of the temperature dependence of φΒ

11010

BETSQ AV-2 3.709E-4 1.15E-4 Gain factor for an infinite squatre transistor at the reference temperature

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

234 Aurora Reference GuideX-2006.09

Page 255: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

ETABET - 1.3 0.5 Exponent of the temperature dependence of the gain factor

1100

ETABETR - 1.3 0.5 Exponent of the temperature dependence of the gain factor

11010

SLETABET m 0 0 Coefficient of the length dependence of ETABET

11010

FBET1 - 0 0 Relative mobility decrease due to first lateral profile

LP1 m 8E-7 8E-7 Characteristic length of first lateral profile

FBET2 - 0 0 Relative mobility decrease due to second lateral profile

LP2 m 8E-7 8E-7 Characteristic length of second lateral profile

THESRR V-1 0.4 0.73 Coefficient of the mobility reduction due to surface roughness scattering for the reference transistor at the reference temperature

ETASR - 1.3 0.5 Exponent of the temperature dependence of θSR

11010

SWTHESR m 0 0 Coefficient of the width dependence of θSR

THEPHR V-1 1.29E-2 1E-3 Coefficient of the mobility reduction due to phonon scattering for the reference transistor at the reference temperature

ETAPH - 1.75 1.75 Exponent of the temperature dependence of θSR for the reference temperature

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

Aurora Reference Guide 235X-2006.09

Page 256: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

SWTHEPH m 0 0 Coefficient of the width dependence of θSR

ETAMOBR - 1.4 3 Effective field parameter for dependence on depletion/ inversion charge for the reference transistor

STETAMOB K-1 0 0 Coefficient of the temperature dependence of ηΜΟΒ

SWETAMOB m 0 0 Coefficient of the width dependence of ηΜΟΒ

NUR - 1 1 Exponent of the field dependence of the mobility model minus 1(i.e. ν-1) at the reference temperature

1100

NU - 1 1 Exponent of the field dependence of the mobility model minus 1(i.e. ν-1) at the reference temperature

11010

NUEXP - 5.25 3.23 Exponent of the temperature dependence of parameter ?

THERR V-1 0.155 0.08 Coefficient of the series resistance for the reference transistor at the reference temperature

ETAR - 0.95 0.4 Exponent of the temperature dependence of θR

SWTHER m 0 0 Coefficient of the width dependence of θR

THER1 V 0 0 Numerator of the gate voltage dependent part of series resistance for the reference transistor

THER2 V 1 1 Denominator of the gate voltage dependent part of series resistance for the reference transistor

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

236 Aurora Reference GuideX-2006.09

Page 257: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

THESATR V-1 0.5 0.2 Velocity saturation parameter due to optical/acoustic phonon scattering for the reference transistor at the reference temperature

SLTHESAT - 1 1 Coefficient of the length dependence of θSAT

THESATEX - 1 1 Exponent of the length dependence of θSAT

ETASAT - 1.04 0.86 Exponent of the temperature dependence of θSAT

SWTHESAT m 0 0 Coefficient of the width dependence of θSAT

THETHR V-3 1E-3 1E-3 Coefficient of self-heating for the reference transistor at the reference temperature

THETHEXP - 1 1 Exponent of the length dependence of θTH

SWTHETH m 0 0 Coefficient of the width dependence of θTH

SDIBLO V-1/2 2E-3 1E-3 Drain-induced barrier-lowering parameter for the reference transistor

SDIBLEXP - 1.35 1.35 Exponent of the length dependence of σDIBL

MOR - 0 0 Parameter for short-channel subthreshold slope for the reference transistor

MOEXP - 1.34 1.34 Exponent of the length dependence of mO

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

Aurora Reference Guide 237X-2006.09

Page 258: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

MOO 0 0 Parameter for short-channel subthreshold slope.

SSFR V-1/2 6.25E-3 6.25E-3 Static feedback parameter for the reference transistor

SLSSF m 1E-6 1E-6 Coefficient of the length dependence of σSF

SWSSF m 0 0 Coefficient of the width dependence of σSF

ALPR - 1E-2 1E-2 Factor of the channel length modulation for the reference transistor

SLALP - 1 1 Coefficient of the length dependence of α

ALPEXP - 1 1 Exponent of the length dependence of α

SWALP m 0 0 Coefficient of the width dependence of α

VP V 5E-2 5E-2 Characteristic voltage of the channel length modulation

LMIN m 1.5E-7 1.5E-7 Minimum effective channel length in technology, used for calculation of smoothing factor m

A1R - 6 6 Factor of the weak-avalanche current for the reference transistor at the reference temperature

STA1 K-1 0 0 Coefficient of the temperature dependence of a1

SLA1 m 0 0 Coefficient of the length dependence of a1

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

238 Aurora Reference GuideX-2006.09

Page 259: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

SWA1 m 0 0 Coefficient of the width dependence of a1

A2R V 38 38 Exponent of the weak-avalanche current for the reference transistor

SLA2 Vm 0 0 Coefficient of the length dependence of a2

SWA2 Vm 0 0 Coefficient of the width dependence of a2

A3R - 1 1 Factor of the drain-source voltage above which weak-avalanche occurs, for the reference transistor

SLA3 m 0 0 Coefficient of the length dependence of a3

SWA3 m 0 0 Coefficient of the width dependence of a3

AGIDLR AV-3 0 0 Gain factor for GIDL current for a channel length of 1E-6m

BGIDL V 41 0 Probability factor for GIDL at the reference temperature

STBGIDL VK-1 -3.638E-4 0 Coefficient of the temperature dependence of BGIDL

CGIDL - 0 0 Factor for the lateral field dependence of GIDL

IGINVR AV-2 0 0 Gain factor for intrinsic gate tunneling current in inversion for the reference transistor

BINV V 48 48 Probability factor for intrinsic gate tunneling current in inversion

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

Aurora Reference Guide 239X-2006.09

Page 260: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

IGACCR AV-2 0 0 Gain factor for intrinsic gate tunneling current in accumulation for the reference transistor

BACC V 48 48 Probability factor for intrinsic gate tunneling current in accumulation

VFBOV V 0 0 Flat-band voltage for the Source/Drain overlap extensions

KOV V1/2 2.5 2.5 Body-effect factor for the Source/Drain overlap extensions

IGOVR AV-2 0 0 Gain factor for Source/Drain overlap tunneling current for the reference transistor

TOX m 3.2E-9 3.2E-9 Thickness of the gate oxide layer

COL Fm-1 3.2E-10 3.2E-10 Gate overlap capacitance per unit channel length

GATENOIS - 0 0 Flag for in/exclusion of induced gate thermal noise

NTR J 1.656E-20 1.656E-20 Coefficient of the thermal noise at the actual temperature

1100

NT J 1.656E-20 1.656E-20 Coefficient of the thermal noise at the actual temperature

11010

NFAR V-1m-4 1.573E22 1.573E22 First coefficient of the flicker noise for the reference transistor

NFBR V-1m-2 4.752E8 4.752E8 Second coefficient of the flicker noise for the reference transistor

NFCR V-1 0 0 Third coefficient of the flicker noise for the reference transistor

Table 160 Level 63 Model Parameters (Continued)

Name Units Default(N) Default(P) Comments Version

240 Aurora Reference GuideX-2006.09

Page 261: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

Table 161 Juncap Model Parameters

Name Units Default Comments

DTA ¡É 0 Temperature offset of the JUNCAP element with respect toTA

VR V 0 Voltage at which the parameters have been determined

JSGBR Am-2 1E-03 Bottom saturation-current density due to electron-hole generation at V=VR

JSDBR Am-2 1E-03 Bottom saturation-current density due diffusion from back contact

JSGSR Am-1 1E-03 Sidewall saturation-current density due to electron-hole generation at V=VR

JSDSR Am-1 1E-03 Sidewall saturation-current density due to diffusion from back contact

JSGGR Am-1 1E-03 Gate edge saturation-current density due to electron-hole generation at V=VR

JSDGR Am-1 1E-03 Gate edge saturation-current density due to diffusion from back contact

NB - 1 Emission coefficient of the bottom forward current

NS - 1 Emission coefficient of the sidewall forward current

NG - 1 Emission coefficient of the gate edge forward current

CJBR Fm-2 1E-12 Bottom junction capacitance at V=VR

CJSR Fm-1 1E-12 Sidewall junction capacitance at V=VR

CJGR Fm-1 1E-12 Gate edge junction capacitance at V=VR

VDBR V 1 Diffusion voltage of the bottom junction at T=TR

Aurora Reference Guide 241X-2006.09

Page 262: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 (Phillips MOS11) Model Parameters

Note:

Using the Phillips MOS11 Model in HSPICE:

Set LEVEL=63 to identify the model as the Philips MOS Model 11.

Set VERSION to 11010 or to 1100.DO NOT set VERSION to 11011. This value should only be used with the Level 63 B model in Aurora..

The default room temperature is 25 oC in HSPICE, but is 27 oC in most other simulators. When comparing to other simulators, set the simulation temperature to 27 with .TEMP 27 or with .OPTION TNOM=27.

The model parameter set should always include the model reference temperature, TR, which corresponds to TREF in other levels in HSPICE. The default for TR is 21.0 oC, to match the Philips simulator.

VDSR V 1 Diffusion voltage of the sidewall junction at T=TR

VDGR V 1 Diffusion voltage of the gate-edge junction at T=TR

PB - 0.4 Bottom junction grading coefficient

PSS - 0.4 Sidewall junction grading coefficient

PG - 0.4 Gate edge junction grading coefficient

Table 162 Miscellaneous

Name(Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL 63 DC Model Selector

VERSION - 11010 Version of this model

Table 161 Juncap Model Parameters

Name Units Default Comments

242 Aurora Reference GuideX-2006.09

Page 263: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

MOS11 has LMIN as its own parameter, which has the difference definition from that of Star-Hspice. To avoid the conflict with LMIN in Star-Hspice, LMIN parameter in MOS11 was changed to LLMIN.

The parameters VFBR, ETABET, NUR and NTR in VERSION 1100

correspond to the parameters VFB, ETABETR, NU and NT in VERSION 11010, respectively.

The VERSION 11010 includes the following additional parameters:

STPHIB, SLETABET and ETASR.

The parameters GATENOIS, THESATEX and PSS in Aurora correspond to the MOS 11 parameters GATENOISE, THESATEXP and PS, respectively. The names have been changed because of the 8 character name limitation in Aurora and in order to avoid conflict with the existing CMI MOSFET variable name PS.

Level 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

The Level 63 B model in Aurora represents the HSPICE Level 63 model with binning scaling rules. The VERSION model parameter must be set to 11011. The model includes the JUNCAP parameters described in the previous section. It also uses the same variables as the other regular bulk CMI MOSFET models.

Table 163 Level 63 B Model Parameters

Name Units Default(N) Default(P) Comments

LVAR m 0 0 Difference between the actual and the programmed poly silicon gate length

LAP m 4.00E-008 4.00E-008 Effective channel length reduction per side due to lateral diffusion of source/drain dopant ions

WVAR m 0 0 Difference between the actual and the programmed field oxide opening

WOT 0 0 Effective reduction, channel width per side due to lateral diffusion of channel stop dopant ions m

Aurora Reference Guide 243X-2006.09

Page 264: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

TR oC 21 21 Temperature at which the parameters for the reference transistor have been determined

VFB V -1.05 -1.05 Flat-band voltage for the reference transistor at the reference temperature

POKO V^1/2 0.5 0.5 Coefficient, geometry independent part of KO

PLKO V^1/2 0 0 Coefficient for the length dependent of KO

PWKO V^1/2 0 0 Coefficient for the width dependent of KO

PLWKO V^1/2 0 0 Coefficient, length times width KO dependent

KPINV V^-1/2 0 0 Inverse of body-effect factor, poly-silicon gate

POPHIB V 0.95 0.95 Coefficient, geometry independent part of PHIB

PLPHIB V 0 0 Coefficient for the length dependent of PHIB

PWPHIB V 0 0 Coefficient for the width dependent of PHIB

PLWPHIB V 0 0 Coefficient, length times width PHIB dependent

POBET AV^-2 1.92E-003 3.81E-004 Coefficient, geometry independent part of BET

PLBET AV^-2 0 0 Coefficient for the length dependent of BET

PWBET AV^-2 0 0 Coefficient for the width dependent of BET

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

244 Aurora Reference GuideX-2006.09

Page 265: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PLWBET AV^-2 0 0 Coefficient, width over length dependent of BET

POTHESR V^-1 3.56E-001 7.30E-001 Coefficient, geometry independent part of THESR

PLTHESR V^-1 0 0 Coefficient for the length dependent of THESR

PWTHESR V^-1 0 0 Coefficient for the width dependent of THESR

PLWTHESR V^-1 0 0 Coefficient, length times width THESR dependent

POTHEPH V^-1 1.29E-002 1.00E-003 Coefficient, geometry independent part of THEPH

PLTHEPH V^-1 0 0 Coefficient for the length dependent of THEPH

PWTHEPH V^-1 0 0 Coefficient for the width dependent of THEPH

PLWHEPH V^-1 0 0 Coefficient, length times width THEPH dependent

POETAMOB - 1.4 3 Coefficient, geometry independent ETAMOB part

PLETAMOB - 0 0 Coefficient for the length dependent of ETAMOB

PWETAMOB - 0 0 Coefficient for the width dependent of ETAMOB

PLWETAMO - 0 0 Coefficient, length times width dependent of ETAMOB; original name: PLWETAMOB

POTHER V^-1 8.12E-002 7.90E-002 Coefficient, geometry independent part of THER

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 245X-2006.09

Page 266: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PLTHER V^-1 0 0 Coefficient for the length dependent of THER

PWTHER V^-1 0 0 Coefficient for the width dependent of THER

PLWTHER V^-1 0 0 Coefficient, length times width THER dependent

THER1 V 0 0 Numerator of gate voltage dependent part of series resistance for all transistors in the bin

THER2 V 1 1 Denominator of gate voltage dependent part of series resistance for all transistors in the bin

POTHESAT V^-1 2.51E-001 1.73E-001 Coefficient, geometry independent part of THESAT

PLTHESAT V^-1 0 0 Coefficient for the length dependent of THESAT

PWTHESAT V^-1 0 0 Coefficient for the width dependent of THESAT

PLWTHESA V^-1 0 0 Coefficient, length times width THESAT dependent; original name: PLWTHESAT

POTHETH V^-3 1.00E-005 0 Coefficient, geometry independent part of THETH

PLTHETH V^-3 0 0 Coefficient for the length dependent of THETH

PWTHETH V^-3 0 0 Coefficient for the width dependent of THETH

PLWTHETH V^-3 0 0 Coefficient, length times width THETH dependent

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

246 Aurora Reference GuideX-2006.09

Page 267: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

POSDIBL V^-1/2 8.53E-004 3.55E-005 Coefficient, geometry independent SDIBL part

PLSDIBL V^-1/2 0 0 Coefficient for the length dependent of SDIBL

PWSDIBL V^-1/2 0 0 Coefficient for the width dependent of SDIBL

PLWSDIBL V^-1/2 0 0 Coefficient, length times width dependent of SDIBL

POMO - 0 0 Coefficient, geometry independent part of m0

PLMO - 0 0 Coefficient for the length dependent of m0

PWMO - 0 0 Coefficient for the width dependent of m0

PLWMO - 0 0 Coefficient, length times width m0 dependent

POSSF V^-1/2 1.20E-002 1.00E-002 Coefficient, geometry independent part of SSF

PLSSF V^-1/2 0 0 Coefficient for the length dependent of SSF

PWSSF V^-1/2 0 0 Coefficient for the width dependent of SSF

PLWSSF V^-1/2 0 0 Coefficient, length times width SSF dependent

POALP - 2.50E-002 2.50E-002 Coefficient, geometry independent part of ALP

PLALP - 0 0 Coefficient for the length dependent of ALP

PWALP - 0 0 Coefficient for the width dependent of ALP

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 247X-2006.09

Page 268: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PLWALP - 0 0 Coefficient, length times width dependent of ALP

VP V 5.00E-002 5.00E-002 Characteristic voltage of the channel length modulation

POMEXP - 0.2 0.2 Coefficient, geometry independent part of 1/m

PLMEXP - 0 0 Coefficient for the length dependent of 1/m

PWMEXP - 0 0 Coefficient for the width dependent of 1/m

PLWMEXP - 0 0 Coefficient, length times width 1/m dependent

POA1 - 6.02 6.86 Coefficient, geometry independent part of a1

PLA1 - 0 0 Coefficient for the length dependent of a1

PWA1 - 0 0 Coefficient for the width dependent of a1

PLWA1 - 0 0 Coefficient, length times width a1 dependent

POA2 V 3.80E+001 5.73E+001

Coefficient, geometry independent part of a2

PLA2 V 0 0 Coefficient for the length dependent of a2

PWA2 V 0 0 Coefficient for the width dependent of a2

PLWA2 V 0 0 Coefficient, length times width a2 dependent

POA3 - 6.41E-001 4.25E-001 Coefficient, geometry independent part of a3

PLA3 - 0 0 Coefficient for the length dependent of a3

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

248 Aurora Reference GuideX-2006.09

Page 269: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PWA3 - 0 0 Coefficient for the width dependent of a3

PLWA3 - 0 0 Coefficient, length times width a3 dependent

POIGINV AV^-2 0 0 Coefficient for the geometry independent part of IGINV

PLIGINV AV^-2 0 0 Coefficient for the length dependent of IGINV

PWIGINV AV^-2 0 0 Coefficient for the width dependent of IGINV

PLWIGINV AV^-2 0 0 Coefficient, length times width dependent of IGINV

POBINV V 48 48 Coefficient for the geometry independent part of IGINV

PLBINV V 0 0 Coefficient for the length dependent of IGINV

PWBINV V 0 0 Coefficient for the width dependent of IGINV

PLWBINV V 0 0 Coefficient, length times width dependent of IGINV

POIGACC AV^-2 0 0 Coefficient for the geometry independent part of IGACC

PLIGACC AV^-2 0 0 Coefficient for the length dependent of IGACC

PWIGACC AV^-2 0 0 Coefficient for the width dependent of IGACC

PLWIGACC AV^-2 0 0 Coefficient, length times width dependent of IGACC

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 249X-2006.09

Page 270: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

POBACC V 48 87.5 Coefficient for the geometry independent part of BACC

PLBACC V 0 0 Coefficient for the length dependent of BACC

PWBACC V 0 0 Coefficient for the width dependent of BACC

PLWBACC V 0 0 Coefficient, length times width dependent of BACC

VFBOV V 0 0 Flatband voltage for the source/drain overlap extensions

KOV V^1/2 2.5 2.5 Body-effect factor for the source/drain overlap extensions

POIGOV AV^-2 0 0 Coefficient for the geometry independent part of IGOV

PLIGOV AV^-2 0 0 Coefficient for the length dependent of IGOV

PWIGOV AV^-2 0 0 Coefficient for the width dependent of IGOV

PLWIGOV AV^-2 0 0 Coefficient, width over length dependent of IGOV

TOX m 3.20E-009 3.20E-009 Thickness of the gate oxide layer

POCOX F 2.98E-014 2.72E-014 Coefficient, geometry independent COX part

PLCOX F 0 0 Coefficient for the length dependent of COX

PWCOX F 0 0 Coefficient for the width dependent of COX

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

250 Aurora Reference GuideX-2006.09

Page 271: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PLWCOX F 0 0 Coefficient, length times width dependent of COX

POCGDO F 6.39E-015 6.36E-015 Coefficient, geometry independent CGDO part

PLCGDO F 0 0 Coefficient for the length dependent of CGDO

PWCGDO F 0 0 Coefficient for the width dependent of CGDO

PLWCGDO F 0 0 Coefficient, width over length dependent of CGDO

POCGSO F 6.39E-015 6.36E-015 Coefficient for the geometry independent part of CGSO

PLCGSO F 0 0 Coefficient for the length dependent of CGSO

PWCGSO F 0 0 Coefficient for the width dependent of CGSO

PLWCGSO F 0 0 Coefficient, width over length dependent of CGSO

GATENOIS - 0 0 In/exclusion flag of induced gate thermal noise; original name: GATENOISE

NT J 1.66E-020 1.66E-020 Coefficient for thermal noise at the reference temperature

PONFA V^-1m^-4 8.32E+022 1.90E+022

Coefficient, geometry independent NFA part

PLNFA V^-1m^-4 0 0 Coefficient for the length dependent of NFA

PWNFA V^-1m^-4 0 0 Coefficient for the width dependent of NFA

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 251X-2006.09

Page 272: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PLWNFA V^-1m^-4 0 0 Coefficient, length times width dependent of NFA

PONFB V^-1m^-2 2.51E+007 5.04E+006

Coefficient for the geometry independent part of NFB

PLNFB V^-1m^-2 0 0 Coefficient for the length dependent of NFB

PWNFB V^-1m^-2 0 0 Coefficient for the width dependent of NFB

PLWNFB V^-1m^-2 0 0 Coefficient for the length times width dependent of NFB

PONFC V^-1 0 3.63E-010 Coefficient for the geometry independent part of NFC

PLNFC V^-1 0 0 Coefficient for the length dependent of NFC

PWNFC V^-1 0 0 Coefficient for the width dependent of NFC

PLWNFC V^-1 0 0 Coefficient, length times width dependent of NFC

POTVFB VK^-1 5.00E-004 5.00E-004 Coefficient for the geometry independent part of STVFB

PLTVFB VK^-1 0 0 Coefficient, length dependent of STVFB

PWTVFB VK^-1 0 0 Coefficient for the width dependent of STVFB

PLWTVFB VK^-1 0 0 Coefficient, length times width dependent of STVFB

POTPHIB VK^-1 -8.50E-004 -8.50E-004

Coefficient for the geometry independent part of STPHIB

PLTPHIB VK^-1 0 0 Coefficient for the length dependent of STPHIB

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

252 Aurora Reference GuideX-2006.09

Page 273: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PWTPHIB VK^-1 0 0 Coefficient for the width dependent of STPHIB

PLWTPHIB VK^-1 0 0 Coefficient, length times width dependent of STPHIB

POTETABE - 1.3 0.5 Coefficient, geometry independent part of ETABET; original name: POTETABET

PLTETABE - 0 0 Coefficient for the length dependent of ETABET; original name: PLTETABET

PWTETABE - 0 0 Coefficient for the width dependent of ETABET; original name: PWTETABET

PLWTETAB - 0 0 Coefficient, length times width ETABET dependent; original name: PLWTETABET

POTETASR - 0.65 0.5 Coefficient, geometry independent part of ETASR

PLTETASR - 0 0 Coefficient for the length dependent of ETASR

PWTETASR - 0 0 Coefficient for the width dependent of ETASR

PLWTETAS - 0 0 Coefficient, length times width dependent of ETASR; original name: PLWTETASR

POTETAPH - 1.35 3.75 Coefficient, geometry independent part of ETAPH

PLTETAPH - 0 0 Coefficient for the length dependent of ETAPH

PWTETAPH - 0 0 Coefficient for the width dependent of ETAPH

PLWTETAP - 0 0 Coefficient, length times width ETAPH dependent; original name: PLWTETAPH

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 253X-2006.09

Page 274: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

POTETAMO K^-1 0 0 Coefficient for the geometry independent part of STETAMOB; original name: POTETAMOB

PLTETAMO K^-1 0 0 Coefficient for the length dependent of STETAMOB; original name: PLTETAMOB

PWTETAMO K^-1 0 0 Coefficient for the width dependent of STETAMOB; original name: PWTETAMOB

PLWTETAM K^-1 0 0 Coefficient, length times width dependent of STETAMOB; original name: PLWTETAMOB

NU - 2 2 Exponent of field dependence of the mobility model at the reference temperature

POTNUEXP - 5.25 3.23 Coefficient, geometry independent NUEXP part

PLTNUEXP - 0 0 Coefficient for the length dependent of NUEXP

PWTNUEXP - 0 0 Coefficient for the width dependent of NUEXP

PLWTNUEX - 0 0 Coefficient, length times width dependent of NUEXP; original name: PLWTNUEXP

POTETAR - 0.95 0.4 Coefficient, geometry independent part of TETAR

PLTETAR - 0 0 Coefficient for the length dependent of TETAR

PWTETAR - 0 0 Coefficient for the width dependent of TETAR

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

254 Aurora Reference GuideX-2006.09

Page 275: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

PLWTETAR - 0 0 Coefficient, length times width dependent of TETAR

POTETASA - 1.04 0.86 Coefficient for the geometry independent part of TETASAT; original name: POTETASAT

PLTETASA - 0 0 Coefficient for the length dependent of TETASAT; original name: PLTETASAT

PWTETASA - 0 0 Coefficient for the width dependent of TETASAT; original name: PWTETASAT

PLWTETAT - 0 0 Coefficient, length times width dependent of TETASAT; original name: PLWTETASAT

POTA1 K^-1 0 0 Coefficient, geometry independent STA1 part

PLTA1 K^-1 0 0 Coefficient for the length dependent of STA1

PWTA1 K^-1 0 0 Coefficient for the width dependent of STA1

PLWTA1 K^-1 0 0 Coefficient, length times width dependent of STA1

POAGIDL 0 0 Coefficient, geometry independent AGIDL part

PLAGIDL 0 0 Coefficient for the length dependent of AGIDL.

PWAGIDL 0 0 Coefficient for the width dependent of AGIDL

PLWAGIDL 0 0 Coefficient, length times width dependent of AGIDL

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

Aurora Reference Guide 255X-2006.09

Page 276: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

POBGIDL 0 0 Coefficient, geometry independent BGIDL part

PLBGIDL 0 0 Coefficient for the length dependent of BGIDL.

PWBGIDL 0 0 Coefficient for the width dependent of BGIDL

PLWBGIDL 0 0 Coefficient, length times width dependent of BGIDL

POCGIDL 0 0 Coefficient, geometry independent CGIDL part

PLCGIDL 0 0 Coefficient for the length dependent of CGIDL.

PWCGIDL 0 0 Coefficient for the width dependent of CGIDL

PLWCGIDL 0 0 Coefficient, length times width dependent of CGIDL

POTBGIDL 0 0 Coefficient, geometry independent TBGIDL part

PLTBGIDL 0 0 Coefficient for the length dependent of TBGIDL.

PWTBGIDL 0 0 Coefficient for the width dependent of TBGIDL

PLWTBGID 0 0 Coefficient, length times width dependent of TBGIDL; original name: PLWTBGIDL

Table 163 Level 63 B Model Parameters (Continued)

Name Units Default(N) Default(P) Comments

256 Aurora Reference GuideX-2006.09

Page 277: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 63 B (Phillips MOS11 with binning scaling rules) Model Parameters

Note:

Using the Phillips MOS11 Model in HSPICE:

Set LEVEL=63 to identify the model as the Philips MOS Model 11.

Set VERSION=11011.

The default room temperature is 25 oC in HSPICE, but is 27 oC in most other simulators. When comparing to other simulators, set the simulation temperature to 27 with .TEMP 27 or with.OPTION TNOM=27.

The model parameter set should always include the model reference temperature, TR, which corresponds to TREF in other levels in HSPICE. The default for TR is 21.0 oC, to match the Philips simulator.

The parameters GATENOIS, PLWETAMO, PLWTHESA, POTETABE, PLTETABE, PWTETABE, PLWTETAB, PLWTETAS, PLWTETAP, POTETAMO, PLTETAMO, PWTETAMO, PLWTETAM, PLWTNUEX, POTETASA, PLTETASA, PWTETASA, PLWTETAT and PSS in Aurora correspond to the MOS 11 parameters GATENOISE, PLWETAMOB, PLWTHESAT, POTETABET, PLTETABET, PWTETABET, PLWTETABET, PLWTETASR, PLWTETAPH, POTETAMOB, PLTETAMOB, PWTETAMOB, PLWTETAMOB, PLWTNUEXP, POTETASAT, PLTETASAT, PWTETASAT, PLWTETASAT and PS, respectively. The names have been changed because of the 8 character name limitation in Aurora and in order to avoid conflict with the existing CMI MOSFET variable name PS.

Table 164 Miscellaneous

Name(Alias) Units Default Description

TYPE 1 1 - nmos, -1 pmos

LEVEL DC Model Selector

VERSION - 11011 Version of this model

Aurora Reference Guide 257X-2006.09

Page 278: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 64 (HISIM) Model Parameters

Level 64 (HISIM) Model Parameters

The HISIM MOSFET model, which is available as Level 64 in HSPICE, uses the same variables as the other regular bulk CMI MOSFET models.

Table 165 Level 64 model parameters

Name Description Default Units

TNOM,

TREF

Nominal temperature 27.0 oC

LEVEL Star-HSpice model selector 12 -

VERSION Version of the model (up to 120) 100 -

CORSRD Flag. Indicates whether to include the Rs and Rd contact resistors, and whether to solve equations iteratively.

0 (no)

COOVLP Overlap capacitance model selector.

COOVLP=-1, constant value

COOVLP=0, approximating field linear reduction

COOVLP=1, considering lateral impurity profile.

0

COISUB Substrate current model selector.

COISUB=0(no),

COISUB=1(yes)

0

COIIGS Gate tunneling current model selector.

COIIGS=0(no),COIIGS=1(yes)

This model is not activated in the HiSIM1.0 release.

0

258 Aurora Reference GuideX-2006.09

Page 279: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 64 (HISIM) Model Parameters

COGIDL Selects gate-induced drain leakage (GIDL) current model.

COGIDL=0(no)

COGIDL=1(yes)

This model is not activated in HiSIM1.0 release

0

COGISL Selects gate-induced source leakage (GISL) current model.

COGISL=0(no)

COGISL=1(yes)

0

CONOIS 1/f noise model selector.

CONOIS=0(no)

CONOIS=1(yes)

0

COISTI STI leakage current model selector.

COISTI=0(no),

COISTI=1(yes)

0

COCGSO Gate-source overlap capacitance by CGSO is calculated:

COCGSO = 0: no (default)

COCGSO = 1: yes

0

COCGDO Gate-drain overlap capacitance by CGDO is calculated:

COCGDO = 0: no (default)

COCGDO = 1: yes

0

COCGBO Gate-substrate overlap capacitance by CGBO is calculated:

COCGBO = 0: no (default)

COCGBO = 1: yes

0

Table 165 Level 64 model parameters (Continued)

Aurora Reference Guide 259X-2006.09

Page 280: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 64 (HISIM) Model Parameters

COADOV Overlap capacitances are added to intrinsic ones:

COADOV = 1: yes (default)

COADOV = 0: no

1

COSMBI

TOX oxide thickness 5e-9 m

XLD gate-overlap length 50e-9 m

XWD gate-overlap width 100e-9 m

XPOLYD difference between gate-poly and design lengths

0 m

TPOLY height of the gate poly-Si 0 m

RS source-contact resistance 80e-6 VA^-1m

RD drain-contact resistance 80e-6 VA^-1m

NSUBC substrate-impurity concentration 1e16 cm^-3

NSUBP maximum pocket concentration 1e17 cm^-3

VFBC flat-band voltage -1 V

LP pocket penetration length 15e-9 m

XJ junction depth 0 m

BGTMP1 bandgap narrowing 90.25e6

eVK^-1

BGTMP2 bandgap narrowing 100e-9 eVK^-2

QME1 coefficient for quantum mechanical effect

40e-12 Vm

QME2 coefficient for quantum mechanical effect

300e-12

V

Table 165 Level 64 model parameters (Continued)

260 Aurora Reference GuideX-2006.09

Page 281: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 64 (HISIM) Model Parameters

QME3 coefficient for quantum mechanical effect

0 m

PGD1 strength of poly depletion 10e-3 V

PGD2 threshold voltage of poly depletion 1 V

PGD3 Vds dependence of poly depletion 0.8 -

PARL1 strength of lateral-electric-field gradient 1 -

PARL2 depletion width of channel/contact junction

0 m

SC1 short-channel coefficient 1 0 V^-1

SC2 short-channel coefficient 2 0 V^-2

SC3 short-channel coefficient 3 0 V^-2m

SCP1 short-channel coefficient 1 for pocket 0 V^-1

SCP2 short-channel coefficient 2 for pocket 0 V^-2

SCP3 short-channel coefficient 3 for pocket 0 V^-2m

WFC threshold voltage reduction 0 Fm^-1

MUEPH2 mobility reduction 0 -

W0 minimum gate width 0 log(m)

VDS0 drain voltage for extracting the low-field mobility ***

50e-3 V

MUECB0 Coulomb scattering 300 cm^2V^-1s^-1

MUECB1 Coulomb scattering 30 cm^2V^-1s^-1

MUEPH0 phonon scattering *** 0.3 cm^2(Vs)^1(Vcm^1)^MUEPH1

MUEPH1 phonon scattering 25e3 -

Table 165 Level 64 model parameters (Continued)

Aurora Reference Guide 261X-2006.09

Page 282: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 64 (HISIM) Model Parameters

MUETMP temperature dependence of phonon scattering

1.5 -

MUESR0 surface-roughness scattering *** 2.0 cm^2(Vs)^-1(Vcm^1)^MUESR1

MUESR1 surface-roughness scattering 2e15 -

NDEP coefficient of effective-electric field *** 1.0 -

NINV coefficient of effective-electric field *** 0.5 -

NINVD modification of NINV 1e-9 V^-1

BB high-field-mobility degradation *** 2.0 -

VMAX maximum saturation velocity 7e6 cms^-1

VOVER velocity overshoot effect 10e-3 cm^VOVERP

VOVERP Lgate dependence of velocity overshoot 0.1 -

RPOCK1 resistance coefficient caused by the potential barrier

10e-3 V

RPOCK2 resistance coefficient caused by the potential barrier

0.1 V^2m^1/2A^-1

CLM1 hardness coefficient of channel/contact junction

0.7 -

CLM2 coefficient for QB contribution 200 m^-1

CLM3 coefficient for QI contribution 1 -

SUB1 substrate current coefficient 1 10 V^-1

SUB2 substrate current coefficient 2 20 V

SUB3 substrate current coefficient 3 0.8 -

GLEAK1 gate current coefficient 1 1e6 V^1/2V^-2s^-1

GLEAK2 gate current coefficient 2 20e6 Vcm^-1V^-1.5

Table 165 Level 64 model parameters (Continued)

262 Aurora Reference GuideX-2006.09

Page 283: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 64 (HISIM) Model Parameters

GLEAK3 gate current coefficient 3 0.3 -

GIDL1 GIDL current coefficient 1 50e-3 cmm^1/2A^-1

GIDL2 GIDL current coefficient 2 1e6 Vcm^-1V^1.5

GIDL3 GIDL current coefficient 3 0.3 -

NFALP contribution of the mobility fluctuation 1e-16 Vs

NFTRP ratio of trap density to attenuation coefficient

10e9 V^-1cm^-2

CIT capacitance caused by the interface trapped carriers

0 Fm^-2

VZADD0 symmetry conservation coefficient 10e-3 V

PZADD0 symmetry conservation coefficient 5e-3 V

GLPART1

GLPART2

KAPPA

XDIFFD

PTHROU

VDIFFJ

Table 165 Level 64 model parameters (Continued)

Aurora Reference Guide 263X-2006.09

Page 284: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

Level 66 (HVMOS) Variables and Targets

The Level 66 model represents the Star-Hspice proprietary HVMOS model. Aurora support is updated through version 1.3. The model includes specific features, such as independent bias-dependent drain/source resistances, quasi-saturation, and self-heating. .

When the TSHFLAG parameter is set to 1, the temperature increase due to self-heating is calculated using an approximation based on the measured ID value, instead of using the full temperature node solver. This results in a 3x improvement in model evaluation speed. This feature is based on accurately approximating ID with the measured value and is now available with the HSPICE L 57, 59, 60, 62, 66 and 71 MOSFET models.

The TSHFLAG parameter only works when self-heating is turned on (SHMOD=1 and RTH0>0).

Aurora-HSPICE are compatible when RSHS and/or RSHD are non-zero.

The variables NRD, NRS and RGEOMOD for the HSPICE L 54 an L 66 models in Aurora are now "undefined" by default.

For Level 66 (HVMOS) model, see the HSPICE MOSFET Models Manual for description of HSPICE proprietary parameters. Other parameters are the same as BSIM4. The following tables list the specific variables and targets available to Arurora.

Note:

External HSPICE HVMOS (L 66), BSIMSOI (L 57), PSP (L 69) and TFT (L 71) models are now available, using HSPICE as an external simulator.

Table 166 Specific Variables for the Level 66 Model

Name Description Default Units Notes

VD Drain voltage 0.0 Volts (major)

VG Gate voltage 0.0 Volts (major)

VS Source voltage 0.0 Volts (major)

VB Substrate voltage 0.0 Volts (major)

FREQ Frequency 0.0 Hz (major)1

264 Aurora Reference GuideX-2006.09

Page 285: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

W Channel Width 1 × 10-6 meters

L Channel Length 1 × 10-6 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares for resistance calculation

1 squares 2

NRS Number of source diffusion squares for resistance calculation

1 squares 2

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

AS Source diffusion area (undefined) m2

AD Drain diffusion area (undefined) m2

PS Perimeter of the source junction including the channel edge

(undefined) m

PD Perimeter of the drain junction including the channel edge

(undefined) m

M Multiple device option. MOSFET channel width, diode leakage, capacitors, and resistors are altered by this parameter. Simulates multiple parallel devices.

1.0

RDC additional drain resistance due to contact resistance

0.0 ohm

RSC Additional source resistance due to contact resistance

0.0 ohm

DELVTO Zero bias threshold voltage shift 0.0

Table 166 Specific Variables for the Level 66 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 265X-2006.09

Page 286: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

DTEMP Device temperature difference from circuit temperature

0.0

GEO Source/drain sharing selector for ACM=3 0.0

DEVMODE Device mode 1

RGEOMOD Source/drain diffusion resistance and contact model selector

1

NF Number of fingers 1

MIN It indicates whether to minimize the number of drain and source diffusions for even-number fingered device

0.0

Z0 Characteristic impedance 50 ohm 1

SA Distance between OD edge to poly on one side (STI model).

0 m 3

Table 166 Specific Variables for the Level 66 Model (Continued)

Name Description Default Units Notes

266 Aurora Reference GuideX-2006.09

Page 287: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

SB Distance between OD edge to poly on the other side (STI model).

0 m 3

SD Multiple finger distance (STI model). 0 3

1. The FREQ and Z0 variables for S-parameter analysis are not supported yet in Aurora for Level 66.

2. Unlike most of the other CMI MOSFET models where NRD and NRS are undefined by default, for Level 66 NRD and NRS default to 1.

3. STI model.

Table 167 Specific targets for the Level 66 Model

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-17

IBS Substrate source-junction leakage current Amps 1 × 10-17

IBD Substrate drain-junction leakage current Amps 1 × 10-17

ISUB Substrate current Amps 1 × 10-17

VON Turn-on voltage V 1 × 10-17

SATVD Saturation voltage (VDSAT) V 1 × 10-17

CAPGS Meyer’s gate capacitance (dQg/dVgs+cgso) Farads/m 1 × 10-17

CAPGD Meyer’s gate capacitance (dQg/dVds+cgdo) Farads/m 1 × 10-17

CAPGB Meyer’s gate capacitance (dQg/dVgs+cgbo) Farads/m 1 × 10-17

CAPBS Substrate source-junction capacitance Farads/m 1 × 10-17

CAPBD Substrate drain- junction capacitance Farads/m 1 × 10-17

QBS Substrate source-junction charge Coulombs 1 × 10-17

QBD Substrate drain-junction charge Coulombs 1 × 10-17

Table 166 Specific Variables for the Level 66 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 267X-2006.09

Page 288: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

QG Gate charge Coulombs 1 × 10-17

QD Drain charge Coulombs 1 × 10-17

QS Source charge Coulombs 1 × 10-17

CGGB Intrinsic gate input capacitance Farads 1 × 10-17

CGSB Intrinsic gate-channel transcapacitance Farads 1 × 10-17

CGDB Intrinsic gate-drain transcapacitance Farads 1 × 10-17

CBGB Intrinsic body-gate transcapacitance Farads 1 × 10-17

CBSB Intrinsic body-source transcapacitance Farads 1 × 10-17

CBDB Intrinsic body-drain transcapacitance Farads 1 × 10-17

CDGB Intrinsic drain-gate transcapacitance Farads 1 × 10-17

GD Drain conductance mho 1 × 10-17

GS Source conductance mho 1 × 10-17

GBD Substrate drain junction-conductance mho 1 × 10-17

Table 167 Specific targets for the Level 66 Model (Continued)

Name Description Units Minimum

268 Aurora Reference GuideX-2006.09

Page 289: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

GBS Substrate source junction-conductance mho 1 × 10-17

IB Current entering substrate (bulk) terminal Amps 1 × 10-17

IG Current entering gate terminal Amps 1 × 10-17

WEFF Effective channel width m 1 × 10-17

LEFF Effective channel length m 1 × 10-17

BETAZERO μ0CoxWeff/Leff Amps/V2 1 × 10-17

BETAEFF μeffCoxWeff/Leff Amps/V2 1 × 10-17

UEFF Effective mobility (μeff) m2/vs 1 × 10-17

ISOURCE Current entering source terminal Amps 1 × 10-17

BULKFACT Bulk factor 1 × 10-17

SUBTHSLP Subthreshold slope 1 × 10-17

CAPGC Gate to channel capacitance Farads/m 1 × 10-17

VID Intrinsic drain voltage V 1 × 10-17

VIS Intrinsic source voltage V 1 × 10-17

VIRD Voltage drop on the drain resistance V 1 × 10-17

VIRS Voltage drop on the source resistance V 1 × 10-17

FT Cutoff frequency Hz 1 × 10-17

S11R Real part of S11 1 × 10-17

S11I Imaginary part of S11 1 × 10-17

Table 167 Specific targets for the Level 66 Model (Continued)

Name Description Units Minimum

Aurora Reference Guide 269X-2006.09

Page 290: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 66 (HVMOS) Variables and Targets

Note:

The cut-off frequency (FT), S-parameters and Y-parameters are not supported yet for Level 66 in Aurora.

S12R Real part of S12 1 × 10-17

S12I Imaginary part of S12 1 × 10-17

S21R Real part of S21 1 × 10-17

S21I Imaginary part of S21 1 × 10-17

S22R Real part of S22 1 × 10-17

S22I Imaginary part of S22 1 × 10-17

Y11R Real part of Y11 1 × 10-17

Y11I Imaginary part of Y11 1 × 10-17

Y12R Real part of Y12 1 × 10-17

Y12I Imaginary part of Y12 1 × 10-17

Y21R Real part of Y21 1 × 10-17

Y21I Imaginary part of Y21 1 × 10-17

Y22R Real part of Y22 1 × 10-17

Y22I Imaginary part of Y22 1 × 10-17

Table 167 Specific targets for the Level 66 Model (Continued)

Name Description Units Minimum

270 Aurora Reference GuideX-2006.09

Page 291: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

Level 69 PSP100 Model

The PSP100 model is a compact MOSFET model intended for digital, analog, and RF designs. It has been jointly developed by the Pennsylvania State University and Philips Research. The roots of this model lie in both SP (PennState) and MOS Model 11 (Philips). This model is available in Aurora through the CMI.

It is a surface-potential based MOS model containing all relevant physical effects (mobility reduction, velocity saturation, DIBL, gate current, lateral doping gradient effects, STI stress, and so forth), to model present-day and upcoming deep-submicron bulk CMOS technologies. The JUNCAP2 source/drain junction model is an integrated part of PSP100.

For a full description of the PSP100 model, see http://pspsmodel.ee.psu.edu/.

General Features

The PSP general features of this model are:■ Physical surface-potential-based formulation in both intrinsic and extrinsic

model modules■ Physical and accurate description of the accumulation region■ Inclusion of all relevant small-geometry effects■ Modeling of the halo implant effects, including the output conductance

degradation in long devices■ Coulomb scattering and non-universality in the mobility model■ Non-singular velocity-field relation enabling the modeling of RF distortions,

including intermodulation effects■ Complete Gummel symmetry■ Mid-point bias linearization enabling accurate modeling of the ration-based

circuits (for example, R2R circuits)■ Quantum-mechanical corrections■ Correction for the polysilicon depletion effects■ Gate-induced drain leakage (GIDL) and gate-induced source leakage

current (GISL) model

Aurora Reference Guide 271X-2006.09

Page 292: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

■ Surface-potential-based noise model including channel thermal noise, flicker noise, and channel-induced gate noise

■ Advanced junction model, including trap-assisted tunneling, band-to-band tunneling, and avalanche breakdown

■ Spline-collocation-based non-quasi-static (NQS) model, including all terminal currents

■ Stress model (based on BSIM4 version)

The variables and target names and usage are similar to the other MOSFET CMI (HSPICE) models in Aurora.

PSP100.1 Model

The PSP100.1 model is compatible with the PSP100 model. It improves performance by about a factor of 2, and adds a thermal noise coefficient (FNT) parameter. This parameter is used to add in thermal noise. Set FNT=1 (default) to turn on thermal noise. Set FNT=0 to turn off thermal noise.

Model Parameter Lists

Table 168 lists the model parameters for the PSP1000 model and the model parameters for the PSP100 model are listed in Table 169.

Table 168 Level 69 Model Parameters, Model PSP1000

Name (Alias) Unit Default Min. Max. Description

LEVEL - 69 - - Model Selector

GEOMOD - 1 - - Geometrical model or Electrical model

VERSION - 100.1(Default)/100

- - Model Version Number

TR °C 21 -273 - Reference temperature

Switch Parameters

272 Aurora Reference GuideX-2006.09

Page 293: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

SWIGATE - 0 0 1 Flag for gate current (0=off )

SWIMPACT - 0 0 1 Flag for impact ionization current (0=off)

SWGIDL - 0 0 1 Flag for GIDL/GISL current (0=off)

SWJUNCAP - 0 0 1 Flag for JUNCAP (0=off)

Process Parameters

LVAR0 m 0 - - Geometry independent difference between actual and programmed poly-silicon gate length

LVARL - 0 - - Length dependence of difference between actual and programmed poly-silicon gate length

LVARW - 0 - - Width dependence of difference between actual and programmed poly-silicon gate length

LAP m 0 - - Effective channel length reduction per side due to lateral diffusion of source/drain dopant ions

WVAR0 m 0 - - Geometry independent difference between actual and programmed field-oxide opening

WVARL - 0 - - Length dependence of difference between the actual and the programmed field-oxide opening

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 273X-2006.09

Page 294: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

WVARW - 0 - - Width dependence of difference between actual and programmed field-oxide opening

WOT m 0 - - Effective reduction of channel width per side due to lateral diffusion of channel-stop dopant ions

VFB0 V -1 - - Geometry-independent flat-band voltage at TR

VFBL - 0 - - Length dependence of flat-band voltage

VFBW - 0 - - Width dependence of flat-band voltage

VFBLW - 0 - - Area dependence of flat-band voltage

STVFB0 V/K 5.00e-004

- - Geometry-independent temperature dependence of VFB

STVFBL - 0 - - Length dependence of temperature dependence of VFB

STVFBW - 0 - - Width dependence of temperature dependence of VFB

STVFBLW - 0 - - Area dependence of temperature dependence of VFB

TOX m 2.00e-009

1.00e-010

- Gate oxide thickness

NSUB0 m-3 3.00e+023

1.00e+020

- Geometry independent substrate doping

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

274 Aurora Reference GuideX-2006.09

Page 295: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

NSUB0W - 0 - - Coefficient describing width dependence of substrate doping due to segregation

WSEG m 1.00e-008

1.00e-010

- Characteristic length of segregation of substrate doping

NPCK m-3 1.00e+024

0 - Pocket doping level

NPCKW - 0 - - Coefficient describing width dependence of pocket doping due to segregation

WSEGP m 1.00e-008

1.00e-010

- Characteristic length of segregation of pocket doping

LPCK m 1.00e-008

1.00e-010

- Characteristic length of lateral doping profile

LPCKW - 0 - - Coefficient describing width dependence of characteristic length of lateral doping profile

VNSUB V 0 - - Effective doping bias-dependence parameter

NSLP V 0.05 1.00e-003

- Effective doping bias-dependence parameter

DNSUB V-1 0 0 1 Effective doping bias-dependence parameter

NP0 m-3 1.00e+026

- - Geometry-independent gate poly-silicon doping

NPL - 0 - - Length dependence of gate poly-silicon doping

QMC - 1 0 - Quantum-mechanical correction

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 275X-2006.09

Page 296: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

CT0 - 0 - - Geometry-independent part of interface states factor CT

CTL - 0 - - Length dependence of interface states

CTLEXP - 1 - - Exponent describing length dependence of interface states factor CT

CTW - 0 - - Width dependence of interface states

TOXOV m 2.00e-009

1.00e-010

- Overlap oxide thickness

LOV m 0 0 - Overlap length for gate/drain and gate/source overlap capacitance

NOV m-3 5.00e+025

1.00e+020

1.00e+027

Effective doping of overlap region

Lateral Gradient Factor Parameters

F0L1 - 0 - - First coefficient for length dependence of lateral gradient factor F0

F0L2 - 0 - - Second coefficient for length dependence of lateral gradient factor F0

AF0 V-1 0 - - Geometry-independent back-bias dependence of lateral gradient factor

AFL V-1 0 - - Length dependence of back-bias dependence of lateral gradient factor

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

276 Aurora Reference GuideX-2006.09

Page 297: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

AFLEXP - 2 - - Exponent describing length dependence of back-bias dependence of lateral gradient factor

AFW - 0 - - Width dependence of back-bias dependence of lateral gradient factor

BFL V-1 0 - - Length dependence of surface-potential dependence of lateral gradient factor

CFL V-1 0 - - Length dependence of drain-bias dependence of lateral gradient factor

CFLEXP - 2 - - Exponent describing length dependence of drain-bias dependence of lateral gradient factor

CFW - 0 - - Width dependence of drain-bias dependence of lateral gradient factor

CFB V-1 0 0 1 Back-bias dependence of CF

Mobility Parameters

U0 m2/V/s 5.00e-002

- - Zero-field mobility at TR

FBET1 - 0 - - Relative mobility decrease due to first lateral profile

FBET1W - 0 - - Width dependence of relative mobility decrease due to first lateral profile

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 277X-2006.09

Page 298: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

LP1 m 1.00e-008

1.00e-010

- Mobility-related characteristic length of first lateral profile

LP1W - 0 - - Width dependence of mobility-related characteristic length of first lateral pro- file

FBET2 - 0 - - Relative mobility decrease due to second lateral profile

LP2 m 1.00e-008

1.00e-010

- Mobility-related characteristic length of second lateral profile

BETW1 - 0 - - First higher-order width scaling coefficient of BETN

BETW2 - 0 - - Second higher-order width scaling coefficient of BETN

WBET m 1.00e-009

1.00e-010

- Characteristic width for width scaling of BETN

STBET0 - 1 - - Geometry independent temperature dependence of BETN

STBETL - 0 - - Length dependence of temperature dependence of BETN

STBETW - 0 - - Width dependence of temperature dependence of BETN

STBETLW - 0 - - Area dependence of temperature dependence of BETN

MUE0 m/V 0.5 - - Geometry independent mobility reduction coefficient MUE at TR

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

278 Aurora Reference GuideX-2006.09

Page 299: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

MUEW - 0 - - Width dependence of mobility reduction coefficient MUE at TR

STMUE - 0 - - Temperature dependence of MUE

THEMU - 1.5 0 - Mobility reduction exponent at TR

STTHEMU - 1.5 - - Temperature dependence of THEMU

CS0 - 0 - - Geometry independent Coulomb scattering parameter CS at TR

CSW - 0 - - Width dependence of coulomb scattering parameter CS at TR

STCS - 0 - - Temperature dependence of CS

XCOR0 V-1 0 - - Geometry independent non-universality parameter

XCORL - 0 - - Length dependence of non-universality parameter

XCORW - 0 - - Width dependence of non-universality parameter

XCORLW - 0 - - Area dependence of non-universality parameter

STXCOR - 0 - - Temperature dependence of non-universality parameter

Series Resistance Parameters

RSW1 ohm 2500 - - Source/drain series resistance for a channel width of 1 um at TR

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 279X-2006.09

Page 300: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

RSW2 - 0 - - Higher-order width scaling of source/drain series resistance

STRS - 1 - - Temperature dependence of source/drain series resistance

RSB V-1 0 0 1 Back-bias dependence of series resistance

RSG V-1 0 0 - Gate-bias dependence of series resistance

Velocity Saturation Parameters

THESAT0 V-1 0 - - Geometry independent velocity saturation parameter at TR

THESATL V-1 0.05 - - Length dependence of velocity saturation parameter THESAT

THESATLEXP Aurora alias: THESATLE

- 1 - - Exponent for length dependence of THESAT

THESATW - 0 - - Width dependence of velocity saturation parameter THESAT

STTHESAT0 Aurora alias: STTHESA0

- 1 - - Geometry independent temperature dependence of THESAT

STTHESATL Aurora alias: STTHESAL

- 0 - - Length dependence of temperature dependence of THESAT

STTHESATW Aurora alias: STTHESAW

- 0 - - Width dependence of temperature dependence of THESAT

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

280 Aurora Reference GuideX-2006.09

Page 301: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

STTHESATLW Aurora alias: STTHESLW

- 0 - - Area dependence of temperature dependence of THESAT

THESATB V-1 0 0 1 Back-bias dependence of velocity saturation

THESATG V-1 0 0 - Gate-bias dependence of velocity saturation

Saturation Voltage Parameters

SO - 0.98 0 0.99 Drain saturation voltage parameter

AX0 - 18 - - Geometry independent linear/ saturation transition factor

AXL - 0.4 0 - Length dependence of the linear/ saturation transition factor

Channel Length Modulation (CLM) Parameters

ALPL - 5.00e-004

- - Length dependence of CLM pre-factor ALP

ALPLEXP - 1 - - Exponent for length dependence of CLM pre-factor ALP

ALPW - 0 - - Width dependence of CLM pre-factor ALP

ALP1L1 V 0 - - Length dependence of CLM enhancement factor above threshold

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 281X-2006.09

Page 302: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

ALP1LEXP - 0.5 - - Exponent describing the length dependence of CLM enhancement factor above threshold

ALP1L2 - 0 0 - Second order length dependence of CLM enhancement factor above threshold

ALP1W - 0 - - Width dependence of CLM enhancement factor above threshold

ALP20 V-1 0 - - Geometry independent CLM enhancement factor below threshold

ALP2L - 0 0 - Length dependence of CLM enhancement factor below threshold

ALP2W - 0 - - Width dependence of CLM enhancement factor below threshold

VP V 0.05 1.00e-010

- CLM logarithmic dependence parameter

Impact Ionization (II) Parameters

A10 - 1 - - Geometry independent part of impact-ionization pre-factor A1

A1L - 0 - - Length dependence of A1

A1W - 0 - - Width dependence of A1

A2 V 10 0 - Impact-ionization exponent at TR

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

282 Aurora Reference GuideX-2006.09

Page 303: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

STA2 V 0 - - Temperature dependence of A2

A30 - 1 - - Geometry independent saturation-voltage dependence of II

A3L - 0 - - Length dependence of saturation-voltage dependence of II

A3W - 0 - - Width dependence of saturation-voltage dependence of II

A40 V-1/2 0 - - Geometry independent back-bias dependence of II

A4W V-1/2 0 - - Width dependence of back-bias dependence of II

Gate Current Parameters

GC0 - 0 -10 10 Gate tunnelling energy adjustment

IGINVLW A 0 - - Gate channel current pre-factor

for a channel area of 1 um2

IGOVW A 0 - - Gate overlap current pre-factor for a channel width of 1 um

STIG - 2 - - Temperature dependence of gate current

GC2 - 0.375 0 10 Gate current slope factor

GC3 - 0.063 -2 2 Gate current curvature factor

CHIB V 3.1 1 - Tunnelling barrier height

Gate-Induced Drain Leakage (GIDL) Parameters

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 283X-2006.09

Page 304: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

AGIDLW A/V3 0 - - Width dependence of GIDL pre-factor

BGIDL V 41 0 - GIDL probability factor at TR

STBGIDL V/K 0 - - Temperature dependence of BGIDL

CGIDL - 0 - - Back-bias dependence of GIDL

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

284 Aurora Reference GuideX-2006.09

Page 305: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

Charge Model Parameters

CGBOVL F 0 - - Oxide capacitance for gate bulk

overlap for an area of 1 um2

IFKW C/V1/2 0 - - Inner fringe capacitance parameter for a channel width of 1 um

IFC V-1 0 0 - Inner fringe capacitance parameter

IFVBI V 1.2 1.12 - Built-in potential

CFRW F 0 - - Outer fringe capacitance for a channel width of 1 um

Noise Model Parameters

NFALW V-1/m4 8.00e+022

- - First coefficient of flicker noise

for a channel area of 1 um2

NFBLW V-1/m2 3.00e+007

- - Second coefficient of flicker noise for a channel area of 1

um2

NFCLW V-1 0 - - Third coefficient of flicker noise

for a channel area of 1 um2

FNT - 1 0 - Thermal noise coefficient (Only for PSP100.1 Version)

Other Parameters

DTA K 0 - - Temperature offset w.r.t. ambient circuit temperature

Table 168 Level 69 Model Parameters, Model PSP1000 (Continued)

Name (Alias) Unit Default Min. Max. Description

Aurora Reference Guide 285X-2006.09

Page 306: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

Parameters for stress model(Based on BSIM4 Version)

SAREF m 1.00e-006

1.00e-009

- Reference distance between OD edge to Poly from one side

SBREF m 1.00e-006

1.00e-009

- Reference distance between OD edge to Poly from other side

WLOD m 0 - - Width parameter

KU0 m 0 - - Mobility degradation/ enhancement coefficient

KVSAT m 0 -1 1 Saturation velocity degradation/ enhancement parameter

TKU0 - 0 - - Temperature coefficient of KU0

LKU0 mLLODKU0 0 - - Length dependence of KU0

WKU0 mWLODKU0 0 - - Width dependence of KU0

PKU0 mLLODKU0+WLODKU0

0 - - Cross-term dependence of KU0

LLODKU0 - 0 0 - Length parameter for mobility stress effect

WLODKU0 - 0 0 - Width parameter for mobility stress effect

KVTH0 Vm 0 - - Threshold shift parameter

LKVTH0 mLLODVTH 0 - - Length dependence of KVTH0

WKVTH0 mWLODVTH 0 - - Width dependence of KVTH0

PKVTH0 mLLODVTH+WLODVTH

0 - - Cross-term dependence of KVTH0

LLODVTH - 0 0 - Length parameter for threshold voltage stress effect

286 Aurora Reference GuideX-2006.09

Page 307: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

WLODVTH - 0 0 - Width parameter for threshold voltage stress effect

STK2 m 0 - - K2 shift factor related threshold voltage change

LODK2 - 1 0 - K2 shift modification factor

STETA0 m 0 - - ETA0 shift factor related to threshold voltage change

LODETA0 - 1 0 - ETA0 shift modification factor

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

LEVEL - 69 - - Model Selector

GEOMOD - 1 - - Geometrical model or Electrical model

VERSION - 100.1(Default)/100

- - Model Version Number

TR ×C 21 -273 - Reference temperature

Switch Parameters

SWIGATE - 0 0 1 Flag for gate current (0=off)

SWIMPACT - 0 0 1 Flag for impact ionization current (0= off)

SWGIDL - 0 0 1 Flag for GIDL/GISL current (0=off)

SWJUNCAP - 0 0 1 Flag for JUNCAP (0=off)

Process Parameters

VFB V -1 - - Flat-band voltage at TR

Aurora Reference Guide 287X-2006.09

Page 308: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

STVFB V/K 5.00e-004

- - Temperature dependence of VFB

TOX m 2.00e-009

1.00e-010

- Gate oxide thickness

NSUB m-3 5.00e+023

1.00e+020

1.00e+026

Substrate doping

VNSUB V 0 - - Effective doping bias-dependence parameter

NSLP V 0.05 1.00e-003

- Effective doping bias-dependence parameter

DNSUB V-1 0 0 1 Effective doping bias-dependence parameter

NP m-3 1.00e+026

0 - Gate poly-silicon doping

QMC - 1 0 - Quantum-mechanical correction

CT - 0 0 - Interface states factor

TOXOV m 2.00e-009

1.00e-010

- Overlap oxide thickness

NOV m-3 5.00e+025

1.00e+020

1.00e+027

Effective doping of overlap region

Lateral Gradient Factor Parameters

F0 - 1 1.00e-003

1 Lateral gradient factor coefficient

AF V-1 0 0 1 Back-bias dependence of lateral gradient factor

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

288 Aurora Reference GuideX-2006.09

Page 309: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

BF V-1 0 0 - Surface-potential dependence of lateral gradient factor

CF V-1 0 0 - Drain-bias dependence of lateral gradient factor

CFB V-1 0 0 1 Back-bias dependence of CF

Mobility Parameters

BETN m2/V/s 7.00e-002

0 - Product of channel aspect ratio and zero- field mobility at TR

STBET - 1 - - Temperature dependence of BETN

MUE m/V 0.5 0 - Mobility reduction coefficient at TR

STMUE - 0 - - Temperature dependence of MUE

THEMU - 1.5 0 - Mobility reduction exponent at TR

STTHEMU - 1.5 - - Temperature dependence of THEMU

CS - 0 0 - Coulomb scattering parameter at TR

STCS - 0 - - Temperature dependence of CS

XCOR V-1 0 0 - Non-universality parameter

STXCOR - 0 - - Temperature dependence of non-universality parameter

Series Resistance Parameters

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

Aurora Reference Guide 289X-2006.09

Page 310: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

RS ohm 30 0 - Source/drain series resistance at TR

STRS - 1 - - Temperature dependence of series resistance RS

RSB V-1 0 0 1 Back-bias dependence of series resistance RS

RSG V-1 0 0 - Gate-bias dependence of series resistance RS

Velocity Saturation Parameters

THESAT V-1 1 0 - Velocity saturation parameter at TR

STTHESAT - 1 - - Temperature dependence of THESAT

THESATB V-1 0 0 1 Back-bias dependence of velocity saturation

THESATG V-1 0 0 - Gate-bias dependence of velocity saturation

Saturation Voltage Parameters

SO - 0.98 0 0.99 Drain saturation voltage parameter

AX - 3 2 - Linear/ saturation transition factor

Channel Length Modulation (CLM) Parameters

ALP - 0.01 0 - CLM pre-factor

ALP1 V 0 0 - CLM enhancement factor above threshold

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

290 Aurora Reference GuideX-2006.09

Page 311: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

ALP2 V-1 0 0 - CLM enhancement factor below threshold

VP V 0.05 1.00e-010

- CLM logarithmic dependence parameter

Impact Ionization (II) Parameters

A1 - 1 0 - Impact-ionization pre-factor

A2 V 10 0 - Impact-ionization exponent at TR

STA2 V 0 - - Temperature dependence of A2

A3 - 1 0 - Saturation-voltage dependence of II

A4 V-1/2 0 0 - Back-bias dependence of II

Gate Current Parameters

GC0 - 0 -10 10 Gate tunnelling energy adjustment

IGINV A 0 0 - Gate channel current pre-factor

IGOV A 0 0 - Gate overlap current pre-factor

STIG - 2 - - Temperature dependence of gate current

GC2 - 0.375 0 10 Gate current slope factor

GC3 - 0.063 -2 2 Gate current curvature factor

CHIB V 3.1 1 - Tunnelling barrier height

Gate-Induced Drain Leakage (GIDL) Parameters

AGIDL A/V3 0 0 - GIDL pre-factor

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

Aurora Reference Guide 291X-2006.09

Page 312: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsLevel 69 PSP100 Model

BGIDL V 41 0 - GIDL probability factor at TR

STBGIDL V/K 0 - - Temperature dependence of BGIDL

CGIDL - 0 - - Back-bias dependence of GIDL

Charge Model Parameters

COX F 1.00e-014

0 - Oxide capacitance for intrinsic channel

CGOV F 1.00e-015

0 - Oxide capacitance for gate drain/source overlap

CGBOV F 0 0 - Oxide capacitance for gate bulk overlap

IFK C/V1/2 0 0 - Inner fringe capacitance parameter

IFC V-1 0 0 - Inner fringe capacitance parameter

IFVBI V 1.2 1.12 - Built-in potential

CFR F 0 0 - Outer fringe capacitance

Noise Model Parameters

NFA V-1/m4 8.00e+022

0 - First coefficient of flicker noise

NFB V-1/m2 3.00e+007

0 - Second coefficient of flicker noise

NFC V-1 0 0 - Third coefficient of flicker noise

FNT - 1 0 - Thermal noise coefficient (Only for PSP100.1 Version)

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

292 Aurora Reference GuideX-2006.09

Page 313: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsSource- and Drain-Bulk Junction Model Parameters

Source- and Drain-Bulk Junction Model Parameters

The parameters listed in Table 170 apply to both PSP1000 and PSP100 models

Other Parameters

DTA K 0 - - Temperature offset w.r.t. ambient circuit temperature

Table 170 Source- and Drain-bulk Junction Model Parameters

Name Unit Default Min. Max. Description

TRJ °C 21 -250 - Reference temperature

IMAX A 1000 1.00e-012

- Maximum current up to which forward current behaves exponentially

Capacitance Parameters

CJORBOT F/m2 1.00e-003

1.00e-012

- Zero-bias capacitance per unit-of-area of bottom component

CJORSTI F/m 1.00e-009

1.00e-018

- Zero-bias capacitance per unit-of-length of STI-edge component

CJORGAT F/m 1.00e-009

1.00e-018

- Zero-bias capacitance per unit-of-length of gate-edge component

VBIRBOT V 1 0.05 - Built-in voltage at the reference temperature of bottom component

VBIRSTI V 1 0.05 - Built-in voltage at the reference temperature of STI-edge component

VBIRGAT V 1 0.05 - Built-in voltage at the reference temperature of gate-edge component

Table 169 Level 69 Model Parameters, Model PSP100

Name Unit Default Min. Max. Description

Aurora Reference Guide 293X-2006.09

Page 314: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsSource- and Drain-Bulk Junction Model Parameters

PBOT - 0.5 0.05 0.95 Grading coefficient of bottom component

PSTI - 0.5 0.05 0.95 Grading coefficient of STI-edge component

PGAT - 0.5 0.05 0.95 Grading coefficient of gate-edge component

Ideal-current Parameters

PHIGBOT V 1.16 - - Zero-temperature bandgap voltage of bottom component

PHIGSTI V 1.16 - - Zero-temperature bandgap voltage of sti-edge component

PHIGGAT V 1.16 - - Zero-temperature bandgap voltage of gate-edge component

IDSATRBOT Aurora alias: IDSATRBO

A/m2 1.00e-012

0 - Saturation current density at the reference temperature of bottom component

IDSATRSTI Aurora alias: IDSATRST

A/m 1.00e-018

0 - Saturation current density at the reference temperature of sti-edge component

IDSATRGAT Aurora alias: IDSATRGA

A/m 1.00e-018

0 - Saturation current density at the reference temperature of gate-edge component

Shockley-Read-Hall Parameters

CSRHBOT A/m3 1.00e+002

0 - Shockley-Read-Hall prefactor of bottom component

CSRHSTI A/m2 1.00e-004

0 - Shockley-Read-Hall prefactor of STI-edge component

CSRHGAT A/m2 1.00e-004

0 - Shockley-Read-Hall prefactor of gate-edge component

Table 170 Source- and Drain-bulk Junction Model Parameters

Name Unit Default Min. Max. Description

294 Aurora Reference GuideX-2006.09

Page 315: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsSource- and Drain-Bulk Junction Model Parameters

XJUNSTI m 1.00e-007

1.00e-009

- Junction depth of STI-edge component

XJUNGAT m 1.00e-007

1.00e-009

- Junction depth of gate-edge component

CTATBOT A/m3 1.00e+002

0 - Trap-Assisted Tunneling Prefactor Of Bottom Component

CTATSTI A/m2 1.00e-004

0 - Trap-Assisted Tunneling Prefactor Of Sti-Edge Component

CTATGAT A/m2 1.00e-004

0 - Trap-Assisted Tunneling Prefactor Of Gate-Edge Component

MEFFTATBOT Aurora alias: MEFFTATB

- 0.25 0.01 - Effective Mass (In Units Of M0) For Trap-Assisted Tunneling of bottom component

MEFFTATSTI Aurora alias: MEFFTATS

- 0.25 0.01 - Effective Mass (In Units Of M0) For Trap-Assisted Tunneling of STI-edge component

MEFFTATGAT Aurora alias: MEFFTATG

- 0.25 0.01 - Effective Mass (In Units Of M0) For Trap-Assisted Tunneling of gate-edge component

Band-to-band Tunneling Parameters

CBBTBOT AV-3 1.00e-012

0 - Band-to-band tunneling prefactor of bottom component

CBBTSTI AV-3m 1.00e-018

0 - Band-to-band tunneling prefactor of sti-edge component

CBBTGAT AV-3m 1.00e-018

0 - Band-to-band tunneling prefactor of gate-edge component

FBBTRBOT Vm-1 1.00e+009

- - Normalization field at the reference temperature for band-to-band tunneling of bottom component

Table 170 Source- and Drain-bulk Junction Model Parameters

Name Unit Default Min. Max. Description

Aurora Reference Guide 295X-2006.09

Page 316: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsSource- and Drain-Bulk Junction Model Parameters

FBBTRSTI Vm-1 1.00e+009

- - Normalization field at the reference temperature for band-to-band tunneling of STI-edge component

FBBTRGAT Vm-1 1.00e+009

- - Normalization field at the reference temperature for band-to-band tunneling of gate-edge component

STFBBTBOT Auraora alias: STFBBTBO

K-1 -1.00e-003

- - Temperature scaling parameter for band-to-band tunneling of bottom component

STFBBTSTI Aurora alias: STFBBTST

K-1 -1.00e-003

- - Temperature scaling parameter for band-to-band tunneling of stI-edge component

STFBBTGATSAurora alias:STFBBTGA

K-1 -1.00e-003

- - Temperature scaling parameter for band-to-band tunneling of gate-edge component

Avalanche and Breakdown Parameters

VBRBOT V 10 0.1 - Breakdown voltage of bottom component

VBRSTI V 10 0.1 - Breakdown voltage of sti-edge component

VBRGAT V 10 0.1 - Breakdown voltage of gate-edge component

PBRBOT V 4 0.1 - Breakdown onset tuning parameter of bottom component

PBRSTI V 4 0.1 - Breakdown onset tuning parameter of sti-edge component

PBRGAT V 4 0.1 - Breakdown onset tuning parameter of gate-edge component

Table 170 Source- and Drain-bulk Junction Model Parameters

Name Unit Default Min. Max. Description

296 Aurora Reference GuideX-2006.09

Page 317: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Bipolar Transistor Models

Star-Hspice Bipolar Transistor Models

Starting with version 2002.2, Aurora supports the Star-Hspice BJT ("HSBJT") models. Currently supported models include Level 1, 2, 6 (MEXTRAM), 8 (HICUM), 9 (VBIC99), 11 (UCSD HBT) and 12 (VBIC95). These models are implemented through the CMI library and the Star-HspiceRF model interface.

The following tables illustrate the common variables and targets that are available for each of these models.

Variables

The HSBJT models use 15 variables:

Table 171 Variables of the HSBJT Models

Name Description Default Units Notes

VB Base voltage undefined Volts major

VC Collector voltage undefined Volts major

VE Emitter voltage 0.0 Volts major

VS Substrate voltage 0.0 Volts major

VCB Collector-base voltage

undefined Volts major

IBS Forced base current undefined Amps

major

ICS Forced collector current

undefined Amps

major

Aurora Reference Guide 297X-2006.09

Page 318: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Bipolar Transistor Models

DescriptionVB, VC, VE, and VS are the applied voltages on the base, collector, emitter, and substrate terminals, respectively. VCB is the collector-base voltage, and is an extra variable in Aurora (VCB = VC-VB). Any of these terminals may be used as a reference by leaving its voltage at the default value of zero. IBS is the value of the sourced base current. If IBS is defined, a sourced base current is assumed and VB is ignored. ICS is the value of the source collector current. If ICS is nonzero, a source collector current is assumed and VC is ignored. AREA is a scale factor for the current. T is the temperature, in degrees Celsius. MODE = -1 specifies that the collector and emitter terminals have been interchanged for reverse mode measurements; MODE = +1 is the normal case. DEVID, the device identification number, distinguishes data from different transistors. Similarly, REGION distinguishes data from the same device but from different regions of behavior. The FREQ and Z0 variables are introduced in Aurora 2003.03 to support S-parameter analysis.

FREQ Frequency 0.0 Hz major

AREA Area scale factor 1.0

T Temperature 27.0 °C

MODE -1 for reverse mode +1

POLARITY -1 for pnp +1

DEVID Device identification 0

REGION Device behavior region

0

Z0 Characteristic impedance

50 ohm

Table 171 Variables of the HSBJT Models

Name Description Default Units Notes

298 Aurora Reference GuideX-2006.09

Page 319: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Bipolar Transistor Models

Note:

For versions of Aurora prior to 2002.2 only a nonzero IBS value forced a base current. IBS=0 has been enabled starting with Aurora 2002.2 in order to account for open base characterization.

Note:

In Aurora it is ok to use VB and VC instead of VCB, when VCB=0 (sweeping VB and VC together: VB=VC). However, it is not ok to use VB and VC when VBC is constant, but nonzero. In such a case, VCB must be used.

PolarityPOLARITY specifies the polarity of the input data. For npn devices, POLARITY is +1. In this case, a positive base-to-emitter voltage will forward-bias the base-to-emitter junction. If POLARITY is -1, the voltages and currents are assumed correct for pnp transistors. In this case, a negative base-to-emitter voltage is required to forward-bias the base-to-emitter junction.

Aurora Reference Guide 299X-2006.09

Page 320: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Bipolar Transistor Models

TargetsTable 172 Targets of the HSBJT Models

Name Description Units Minimum

IC Current entering collector terminal

Amps

1 × 10-15

IB Current entering base terminal Amps

1 × 10-15

IE Current entering emitter terminal Amps

1 × 10-15

ISUB Substrate current Amps

1 × 10-15

RBE Effective base resistance W 1 × 10-6

TAUF Forward transit time sec 1 × 10-6

FT Cutoff frequency Hz 1 x 10-6

FTAPRX Approximated cutoff frequency Hz 1 x 10-6

GAIN AC gain 1 x 10-6

GAINAPRX

Approximated AC gain 1 x 10-6

VBM Measured bas voltage V 1 × 10-17

VIBC Internal base-collector voltage V 1 × 10-17

S11R Real part of S11 1 × 10-17

S11I Imaginary part of S11 1 × 10-17

S12R Real part of S12 1 × 10-17

S12I Imaginary part of S12 1 × 10-17

300 Aurora Reference GuideX-2006.09

Page 321: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Bipolar Transistor Models

DescriptionIC, IB, IE, and ISUB are the currents entering the collector, base, emitter, and substrate terminals of the transistor. RBE is the effective base resistance calculated by the model. RBE may be a function of the applied bias. Minimum is the smallest absolute value of the target for which relative error is used; for smaller values, absolute error is used.

For normal forward operation, IC and IB are positive for npn transistors (POLARITY = +1) and negative for pnp transistors (POLARITY = -1).

The cut-off frequency (FT) is defined as a target for the AC part of the HSBJT models. The S parameters and y parameters (real and imaginary part) are also

S21R Real part of S21 1 × 10-17

S21I Imaginary part of S21 1 × 10-17

S22R Real part of S22 1 × 10-17

S22I Imaginary part of S22 1 × 10-17

Y11R Real part of y11 1 × 10-17

Y11I Imaginary part of y11 1 × 10-17

Y12R Real part of y12 1 × 10-17

Y12I Imaginary part of y12 1 × 10-17

Y21R Real part of y21 1 × 10-17

Y21I Imaginary part of y21 1 × 10-17

Y22R Real part of y22 1 × 10-17

Y22I Imaginary part of y22 1 × 10-17

Table 172 Targets of the HSBJT Models (Continued)

Name Description Units Minimum

Aurora Reference Guide 301X-2006.09

Page 322: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

available as targets. The value of the frequency (FREQ) must be greater than 0 in order for the model to calculate the S and y parameters.

Note:

For further information on the variables, targets, and parameters used in the Star-Hspice BJT models, refer to the Star-Hspice User’s Manual.

HSBJT L 1-2 Model

The model represents the Star-HSPICE implementation of the Gummel-Poon and extended Gummel-Poon (Gummel-Poon-Kull) models.

Table 173 Parameters of the HSBJT L1-2 Model

Name Description Default Units Notes

LEVEL Star-Hspice model selector 1 1

FTMODE FT calculus selector 0 2

IS Collector saturation current 1 × 10-16 Amps

BF Forward beta 100.0

NF Forward current exponent 1.0

VAF Forward Early voltage 0.0 Volts 3

IKF Forward high-current beta roll-off 0.0 Amps 3

ISE Forward low-current beta roll-off coefficient 0.0 Amps

NE Forward low-current beta roll-off exponent 1.5

BR Reverse beta 1.0

NR Reverse current exponent 1.0

VAR Reverse Early voltage 0.0 Volts 3

302 Aurora Reference GuideX-2006.09

Page 323: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

IKR Reverse high-current beta roll-off 0.0 Amps 3

NK Exponent for high current roll-off 0.5

ISC Reverse low-current beta roll-off coefficient 0.0 Amps

NC Reverse low-current beta roll-off exponent 2.0

RB Low-current base resistance 0.0 W

IRB Ib for base resistance reduction 0.0 Amps 3

RBM High-current base resistance 0.0 W

RE Emitter series resistance 0.0 W

RC Collector series resistance 0.0 W 4

RCX Extra collector series resistance 0.0 W 4, 2

XTB Temperature coefficient of beta 0.0

EG Band-gap energy 1.11 Volts

XTI Temperature coefficient of mobility 3.0

GMIN Minimum conductance 1 × 10-16 Mhos 5

TF Ideal forward transit time 0.0 sec

XTF Transit time bias dependence term 0.0

VTF Transit time Vbc dependence term 1 × 1030 Volts

ITF Transit time dependence on Ic 0.0 Amps

PTF Excess phase at cut-off frequency 0.0 deg

CJE Base-emitter junction zero bias depletion capacitance

0 F

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 303X-2006.09

Page 324: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

VJE Base-emitter junction built-in voltage 1 V

MJE Base-emitter junction grading coefficient 0.33

CJC Base-collector junction zero bias depletion capacitance

0 F

VJC Base-collector junction built-in voltage 1 V

MJC Base-collector junction grading coefficient 0.33

XCJC Base-collector capacitance partition coefficient.

1

CJS Substrate junction zero bias depletion capacitance

0 F

VJS Substrate junction built-in voltage 1 V

MJS Substrate junction grading coefficient 0.5

FC SPICE forward bias capacitance coefficient 0.5

TR Reverse transit time 0 s

GAMMA Collector epilayer coefficient 0 6

VO Collector epilayer carrier velocity saturation voltage

0 V 6, 3

NEPI Epilayer current emission coefficient (Star-Hspice only)

1 1, 6

QCO Epitaxial charge factor 0 C 6

BRS Substrate BJT Beta 0 6, 7

SUBS Substrate connection selector 1 6, 7

ISS Substrate junction current 0.0 Amps 1

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

304 Aurora Reference GuideX-2006.09

Page 325: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

NS Substrate emission coefficient 1 1

IBC Reverse saturation current between base and

collector

0 Amps 1

IBE Reverse saturation current between base and emitter

0 Amps 1

CBCP External base-collector capacitance 0 F 1

CBEP External base-emitter capacitance 0 F 1

CCSP External substrate capacitance 0 F 1

TREF Nominal temperature 27.0 °C

BEXV VO temperature exponent (Level 2 only). 2.42 - 1

BEX RC temperature exponent (Level 2 only). 1.9 - 1, 4

CTC Temperature coefficient for zero-bias base collector capacitance. TLEVC=1 enables CTC to override the default temperature compensation.

0 1/oC 1

CTE Temperature coefficient for zero-bias base emitter capacitance. TLEVC=1 enables CTE to override the default temperature compensation.

0 1/oC 1

CTS Temperature coefficient for zero-bias substrate capacitance. TLEVC=1 enables CTS to override the default temperature compensation.

0 1/oC 1

EG Energy gap for pn junction. For TLEV=0 or 1, default=1.11. For TLEV=2, default=1.16

eV 1

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 305X-2006.09

Page 326: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

GAP1 First bandgap correction factor (from Sze, alpha term)

7.02E-004 eV/oC 1

GAP2 Second bandgap correction factor (Sze, beta term)

1108 x 1

TBF1 First-order temperature coefficient for BF. 0 1/oC 1

TBF2 Second-order temperature coefficient for BF.

0 1/oC^2 1

TBR1 First-order temperature coefficient for BR. 0 1/oC 1

TBR2 Second-order temperature coefficient for BR.

0 1/oC^2 1

TIKF1 First-order temperature coefficient for IKF. 0 1/oC 1

TIKF2 Second-order temperature coefficient for IKF.

0 1/oC^2 1

TIKR1 First-order temperature coefficient for IKR. 0 1/oC 1

TIKR2 Second-order temperature coefficient for IKR.

1/oC^2 1

TIRB1 First-order temperature coefficient for IRB. 0 1/oC 1

TIRB2 Second-order temperature coefficient for IRB.

0 1/oC^2 1

TISC1 First-order temperature coefficient for ISC. TLEV=3 enables TISC1.

0 1/oC 1

TISC2 Second-order temperature coefficient for ISC. TLEV=3 enables TISC2.

0 1/oC^2 1

TIS1 First-order temperature coefficient for IS or IBE and IBC. TLEV=3 enables TIS1.

0 1/oC 1

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

306 Aurora Reference GuideX-2006.09

Page 327: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

TIS2 Second-order temperature coefficient for IS or IBE and IBC. TLEV=3 enables TIS2.

0 1/oC^2 1

TISE1 First-order temperature coefficient for ISE. TLEV=3 enables TISE1.

0 1/oC 1

TISE2 Second-order temperature coefficient for ISE. TLEV=3 enables TISE2.

0 1/oC^2 1

TISS1 First-order temperature coefficient for ISS. TLEV=3 enables TISS1.

0 1/oC 1

TISS2 Second-order temperature coefficient for ISS. TLEV=3 enables TISS2.

0 1/oC^2 1

TITF1 First-order temperature coefficient for ITF. 1

TITF2 Second-order temperature coefficient for ITF.

1

TLEV Temperature equation level selector for BJTs (interacts with TLEVC).

1 - 1

TLEVC Temperature equation level selector: BJTs, junction capacitances, and potentials (interacts with TLEV).

1 - 1

TMJC1 First-order temperature coefficient for MJC.

0 1/oC 1

TMJC2 Second-order temperature coefficient for MJC.

0 1/oC^2 1

TMJE1 First order temperature coefficient for MJE. 0 1/oC 1

TMJE2 Second-order temperature coefficient for MJE.

0 1/oC^2 1

TMJS1 First-order temperature coefficient for MJS.

0 1/oC 1

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 307X-2006.09

Page 328: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

TMJS2 Second-order temperature coefficient for MJS.

0 1/oC^2 1

TNC1 First-order temperature coefficient for NC. 0 1/oC 1

TNC2 Second-order temperature coefficient for NC.

0 1

TNE1 First-order temperature coefficient for NE. 0 1/oC 1

TNE2 Second-order temperature coefficient for NE.

0 1/oC^2 1

TNF1 First-order temperature coefficient for NF. 0 1/oC 1

TNF2 Second-order temperature coefficient for NF.

0 1/oC^2 1

TNR1 First-order temperature coefficient for NR. 0 1/oC 1

TNR2 Second-order temperature coefficient for NR.

0 1/oC^2 1

TNS1 First-order temperature coefficient for NS. 0 1/oC 1

TNS2 Second-order temperature coefficient for NS.

0 1/oC^2 1

TRB1 First-order temperature coefficient for RB. 0 1/oC 1

TRB2 Second-order temperature coefficient for RB.

0 1/oC^2 1

TRC1 First-order temperature coefficient for RC. 0 1/oC 1, 4

TRC2 Second-order temperature coefficient for RC.

0 1/oC^2 1, 4

TRE1 First-order temperature coefficient for RE. 0 1/oC 1

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

308 Aurora Reference GuideX-2006.09

Page 329: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 1-2 Model

TRE2 Second-order temperature coefficient for RE.

0 1/oC^2 1

TRM1 Firs-order temperature coefficient for RBM. TRB1 1/oC 1

TRM2 Second-order temperature coefficient for RBM.

TRB2 1/oC^2 1

TTF1 First-order temperature coefficient for TF. 0 1/oC 1

TTF2 Second-order temperature coefficient for TF.

0 1/oC^2 1

TTR1 First-order temperature coefficient for TR. 0 1/oC 1

TTR2 Second-order temperature coefficient for TR.

0 1/oC^2 1

TVAF1 First-order temperature coefficient for VAF. 0 1/oC 1

TVAF2 Second-order temperature coefficient for VAF.

0 1/oC^2 1

TVAR1 First-order temperature coefficient for VAR.

0 1/oC 1

TVAR2 Second-order temperature coefficient for VAR.

0 1/oC^2 1

TVJC VJC temperature coefficient. TVJC uses TLEVC= 1 or 2 to override default temperature compensation.

0 V/oC 1

TVJE VJE temperature coefficient. TVJE uses TLEVC= 1 or 2 to override default temperature compensation.

0 V/oC 1

TVJS VJS temperature coefficient. TVJS uses TLEVC= 1 or 2 to override default temperature compensation.

0 V/oC 1

Table 173 Parameters of the HSBJT L1-2 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 309X-2006.09

Page 330: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 4 Model

HSBJT L 4 Model

The model HSBJT L 4 (formerly HSBT L 12) represents the Star-HSpice implementation of the VBIC95 model.

Note:

The model known in Aurora as "HSBJT L 12" was changed to HSBJT L 4 for for better HSPICE compatibility in the version 2006.09 release.

1. Star-Hspice specific

2. Aurora specific.

3. The default value disables the associated effect.

4. In the Star-Hspice Level 2 model, the RC parameter represents the resistance of the collector epilayer. The model does not include the RCO parameter of the Aurora BJT model. The RCX parameter has been introduced to address this issue. RCX represents an external, constant resistance, in series with the variable resistance of the collector epilayer (RC). This way, the HSBJT L 1-2 model becomes equivalent with the internal BJT model. If LEVEL=1, RCX is not used. If LEVEL=2, RCX is used in a similar way to the RC parameter in the BJT model. Furthermore, if LEVEL=2, TRC1 and TRC2 represent temperature coefficients of RCX. To maintain the compatibility with Star-Hspice, if the RCX parameter is used, when saving the model parameters in a file a SPICE subcircuit is created. Inside the subcircuit, RCX, together with its temperature coefficients, TRC1 and TRC2, is declared as an external SPICE element that is connected to the collector of the BJT element.

5. Star-Hspice option.

6. Level 2 specific parameter.

7. The initial value differs wrt. the one in Star-Hspice. BRS must be set to 0 to ensure that the Level 1 and 2 models are compatible.

Table 174 Parameters of the HSBJT L 4 model

Name Description Default Units

IS Transport saturation current 1.0e-16 A

IBEI Forward ideal base emitter saturation current 1.0e-18 A

NEI Forward ideal base emitter current exponent 1.0 -

WBE Base emitter peripheral current coefficient 1.0 -

NF Forward current exponent 1.0 -

VEF Forward Early voltage 20.0 V

IKF Forward knee current 2.0e-5 A

310 Aurora Reference GuideX-2006.09

Page 331: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 4 Model

IBEN Forward non ideal base emitter saturation current 0.0 A

NEN Forward non ideal base emitter current exponent 2.0 -

IBCI Reverse ideal base collector saturation current 1.0e-16 A

NCI Reverse ideal base collector current exponent 1.0 -

NR Reverse current exponent 1.0 -

VER Reverse Early voltage 20.0 V

IKR Reverse knee current 1.0 A

IBCN Reverse non ideal base collector saturation current 0.0 0.0

NCN Reverse non ideal base collector current exponent 2.0 -

RBX Extrinsic base resistance 500.0 W

RBI Intrinsic base resistance 50.0 W

RE Emitter series resistance 2.0 W

RCX Extrinsic collector resistance 0.0 W

RCI Intrinsic collector resistance 0.0 W

GAMM Collector epilayer coefficient 0.0 -

HRCF Collector epilayer high current coefficient 1.0 -

VO Collector epilayer saturation velocity voltage 100.0 V

QCO Collector epilayer charge coefficient 0.0 -

ISP Parasitic transport saturation current 0.0 A

WSP Parasitic peripheral current coefficient 1.0 -

NFP Parasitic current exponent 1.0 -

IBEIP Parasitic forward ideal saturation current 0.0 A

Table 174 Parameters of the HSBJT L 4 model (Continued)

Aurora Reference Guide 311X-2006.09

Page 332: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 4 Model

IBENP Parasitic forward non ideal saturation current 0.0 A

IBCIP Parasitic reverse ideal saturation current 0.0 A

Name Description Default Units

NCIP Parasitic reverse ideal current exponent 1.0 -

IBCNP Parasitic reverse non ideal saturation current 0.0 A

NCNP Parasitic reverse non ideal current exponent 2.0 -

IKP Parasitic knee current 0.0 A

RBP Parasitic resistance 0.0 W

RS Substrate series resistance 0.0 W

TF Ideal forward transit time 1.0e-11 s

TR Ideal reversed transit time 0.0 s

XTF Transit time bias dependence coefficient 3.0 -

ITF Transit time dependence on Ic 1.0e-3 A

VTF Transit time vbc dependence coefficient 0.0 V

QTF Transit time base width dependence 0.0 -

TD Excess phase at cut-off frequency 0.0 s

KFN Flicker-noise coefficient 0.0 -

AFN Flicker-noise exponent 1.0 -

BFN Flicker-noise 1/f dependence 1.0 -

CBEO Base-emitter overlap capacitance 0.0 F

CBCO Base-collector overlap capacitance 0.0 F

CJE Base-emitter zero-bias depletion capacitance 1.0e-15 F

Table 174 Parameters of the HSBJT L 4 model (Continued)

312 Aurora Reference GuideX-2006.09

Page 333: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 4 Model

PE Base-emitter built-in potential 0.8 V

ME Base-emitter-junction exponential factor 0.5 -

AJE Base-emitter capacitance selector -0.5 -

CJC Base-collector zero-bias depletion capacitance 1.0e-15 F

CJEP Base-collector extrinsic depletion capacitance 0.0 F

PC Base-collector built-in potential 0.8 V

MC Base-collector-junction exponential factor 0.5 -

AJC Base-collector capacitance selector -0.5 -

CJCP Zero-bias collector-substrate capacitance 1.0e-15 F

PS Substrate-junction built-in potential 0.8 V

MS Substrate-junction exponential factor 0.5 -

AJS Collector-substrate capacitance selector -0.5 -

FC Forward-bias depletion capacitor coefficient 0.5 -

AVC1 Base-collector weak avalanche first coefficient 0.0 -

AVC2 Base-collector weak avalanche second coefficient 0.0 -

XRE RE Temperature coefficient 0.0 -

XRB RBX RBI Temperature coefficient 0.0 -

XRC RCX RC Temperature coefficient 0.0 -

XRS RS RP Temperature coefficient 0.0 -

XVO VO Temperature coefficient 0.0 -

EA IS activation energy 1.12 V

EAIE IBEI activation energy 1.12 V

Table 174 Parameters of the HSBJT L 4 model (Continued)

Aurora Reference Guide 313X-2006.09

Page 334: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 4 Model

EAIC IBCI IBEIP activation energy 1.12 V

EAIS IBCIP activation energy 1.12 V

EANE IBEN activation energy 1.12 V

EANC IBCN IBENP activation energy 1.12 V

EANS IBCNP activation energy 1.12 V

XIS IS temperature coefficient 3.0 -

XII Ideal currents temperature coefficient 3.0 -

XIN Non ideal currents temperature coefficient 3.0 -

TNF NF temperature coefficient 3.0 -

TAVC AVC2 temperature coefficient 3.0 -

RTH Thermal resistance 0.0 -

CTH Thermal capacitance 0.0 -

TNOM,

TREF

Nominal temperature 27.0 oC

LEVEL Star-HSpice model selector 12 -

FTMODEFT calculus selector1 0 -

GMINMinimum conductance2 10-16 Mhos

1. Aurora-specific.

2. Star-Hspice option

Table 174 Parameters of the HSBJT L 4 model (Continued)

314 Aurora Reference GuideX-2006.09

Page 335: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 9 Model

HSBJT L 9 Model

The model represents the Star-HSPICE implementation of the VBIC99 model.

Table 175 Parameters of the HSBJT L 9 model

Name Description Default Units

IS Transport saturation current 1.0e-16 A

IBEI Forward ideal base emitter saturation current 1.0e-18 A

NEI Forward ideal base emitter current exponent 1.0 -

WBE Base emitter peripheral current coefficient 1.0 -

ISRR Reverse transport saturation current1 1.0 A

NF Forward current exponent 1.0 -

VEF Forward Early voltage 20.0 V

IKF Forward knee current 2.0e-5 A

IBEN Forward non ideal base emitter saturation current 0.0 A

NEN Forward non ideal base emitter current exponent 2.0 -

IBCI Reverse ideal base collector saturation current 1.0e-16 A

NCI Reverse ideal base collector current exponent 1.0 -

NR Reverse current exponent 1.0 -

VER Reverse Early voltage 20.0 V

IKR Reverse knee current 1.0 A

IBCN Reverse non ideal base collector saturation current 0.0 0.0

NCN Reverse non ideal base collector current exponent 2.0 -

RBX Extrinsic base resistance 500.0 W

RBI Intrinsic base resistance 50.0 W

Aurora Reference Guide 315X-2006.09

Page 336: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 9 Model

RE Emitter series resistance 2.0 W

RCX Extrinsic collector resistance 0.0 W

RCI Intrinsic collector resistance 0.0 W

GAMM Collector epilayer coefficient 0.0 -

HRCF Collector epilayer high current coefficient 1.0 -

VO Collector epilayer saturation velocity voltage 100.0 V

QCO Collector epilayer charge coefficient 0.0 -

VRT Reach-through voltage for Cbc limiting 0.0 V

ART Smoothing parameter for reach-through 0.1 -

QBM Base charge model selection 0.0 -

DEAR Delta activation energy for ISRR 0.0 -

EAP Activation energy for ISP 1.12 -

VBBE Base-emitter breakdown voltage 0.0 -

NBBE Base-emitter breakdown emission coefficient 1.0 -

IBBE Base-emitter breakdown current 1.0e-6 -

ISP Parasitic transport saturation current 0.0 A

WSP Parasitic peripheral current coefficient 1.0 -

NFP Parasitic current exponent 1.0 -

IBEIP Parasitic forward ideal saturation current 0.0 A

IBENP Parasitic forward non ideal saturation current 0.0 A

IBCIP Parasitic reverse ideal saturation current 0.0 A

Table 175 Parameters of the HSBJT L 9 model (Continued)

Name Description Default Units

316 Aurora Reference GuideX-2006.09

Page 337: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 9 Model

NCIP Parasitic reverse ideal current exponent 1.0 -

IBCNP Parasitic reverse non ideal saturation current 0.0 A

NCNP Parasitic reverse non ideal current exponent 2.0 -

IKP Parasitic knee current 0.0 A

RBP Parasitic resistance 0.0 W

RS Substrate series resistance 0.0 W

TF Ideal forward transit time 1.0e-11 s

TR Ideal reversed transit time 0.0 s

XTF Transit time bias dependence coefficient 3.0 -

ITF Transit time dependence on Ic 1.0e-3 A

VTF Transit time vbc dependence coefficient 0.0 V

QTF Transit time base width dependence 0.0 -

TD Excess phase at cut-off frequency 0.0 s

KFN Flicker-noise coefficient 0.0 -

AFN Flicker-noise exponent 1.0 -

BFN Flicker-noise 1/f dependence 1.0 -

CBEO Base-emitter overlap capacitance 0.0 F

CBCO Base-collector overlap capacitance 0.0 F

CJE Base-emitter zero-bias depletion capacitance 1.0e-15 F

PE Base-emitter built-in potential 0.8 V

ME Base-emitter-junction exponential factor 0.5 -

Table 175 Parameters of the HSBJT L 9 model (Continued)

Name Description Default Units

Aurora Reference Guide 317X-2006.09

Page 338: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 9 Model

AJE Base-emitter capacitance selector -0.5 -

CJC Base-collector zero-bias depletion capacitance 1.0e-15 F

CJEP Base-collector extrinsic depletion capacitance 0.0 F

PC Base-collector built-in potential 0.8 V

MC Base-collector-junction exponential factor 0.5 -

AJC Base-collector capacitance selector -0.5 -

CJCP Zero-bias collector-substrate capacitance 1.0e-15 F

PS Substrate-junction built-in potential 0.8 V

MS Substrate-junction exponential factor 0.5 -

AJS Collector-substrate capacitance selector -0.5 -

CCSO Fixed collector-substrate capacitance 0.0 F

FC Forward-bias depletion capacitor coefficient 0.5 -

AVC1 Base-collector weak avalanche first coefficient 0.0 -

AVC2 Base-collector weak avalanche second coefficient 0.0 -

XRE RE Temperature coefficient 0.0 -

XRB RBX RBITemperature coefficient 0.0 -

XRBI

XRC RCX RCI Temperature coefficient 0.0 -

XRCI

XRS RS RP Temperature coefficient 0.0 -

XVO VO Temperature coefficient 0.0 -

Table 175 Parameters of the HSBJT L 9 model (Continued)

Name Description Default Units

318 Aurora Reference GuideX-2006.09

Page 339: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 9 Model

EA IS activation energy 1.12 V

EAIE IBEI activation energy 1.12 V

EAIC IBCI IBEIP activation energy 1.12 V

EAIS IBCIP activation energy 1.12 V

EANE IBEN activation energy 1.12 V

EANC IBCN IBENP activation energy 1.12 V

EANS IBCNP activation energy 1.12 V

XIS IS temperature coefficient 3.0 -

XII Ideal currents temperature coefficient 3.0 -

XIN Non ideal currents temperature coefficient 3.0 -

TNF NF temperature coefficient 3.0 -

TAVC AVC2 temperature coefficient 3.0 -

TVBBE1 Linear temperature coefficient of VBBE 0.0 -

TVBBE2 Quadratic temperature coefficient of VBBE 0.0 -

TNBBE Temperature coefficient of NBBE 0.0 -

EBBE exp(-VBBE/(NBBE*Vtv)) 0.0 -

XRCX Temperature exponent of extrinsic base resistance 0.0 -

XRBX Temperature exponent of extrinsic collector resistance 0.0 -

XRBP Temperature exponent of parasitic base resistance 0.0 -

XIKF Temperature exponent of IKF 0.0 -

XISR Temperature exponent of ISRR 0.0 -

Table 175 Parameters of the HSBJT L 9 model (Continued)

Name Description Default Units

Aurora Reference Guide 319X-2006.09

Page 340: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 6 Model

HSBJT L 6 Model

The model represents the Star-HSPICE implementation of the MEXTRAM V503 and V504 models. The model version is controlled through the VERS parameter.

RTH Thermal resistance 0.0 -

CTH Thermal capacitance 0.0 -

TREF Nominal temperature 27.0 oC

LEVEL Star-HSpice model selector 9 -

FTMODE FT calculus selector2 0 -

GMIN Minimum conductance3 10-16 Mhos

1. VBIC99-specific.

2. Aurora-specific

3. Star-Hspice option

Table 176 Parameters of the HSBJT L 6 model

Name Description Default Units

LEVEL Star-HSpice model selector 6 -

VERS Flag for choosing MEXTRAM model (level 503 or 504) 504 -

EXMOD Flag for extended modeling of the reverse current gain 1 -

EXPHI Flag for distributed high frequency effects in transient 1 -

EXAVL Flag for extended modeling of avalanche currents 0 -

TREF Reference temperature 25.0 oC

IS Collector-emitter saturation current 2.2e-17 A

Table 175 Parameters of the HSBJT L 9 model (Continued)

Name Description Default Units

320 Aurora Reference GuideX-2006.09

Page 341: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 6 Model

VER Reverse early voltage1 2.5 V

VEF Forward early voltage2 44.0 V

BF Ideal forward current gain 215.0 -

XIBI Fraction of ideal base current that belongs to the sidewall 0.0 -

IBF Saturation current of the non-ideal forward base current 2.7e-15 A

MLF Non-ideality factor of the non-ideal forward base current3 2.0 V

VLF Cross-over voltage of the non-ideal forward base

current4 0.2 V

IK Collector-emitter high injection knee current 0.1 A

BRI Ideal reverse current gain 7.0 -

IBR Saturation current of the non-ideal reverse base current 1.0e-15 A

VLR Cross-over voltage of the non-ideal reverse base current 0.2 V

XEXT Part of Iex, Qex, Qtex, and Isub that depends on the base-collector voltage Vbc1

0.63 -

QBO Base charge at zero bias5 1.2e-12 C

ETA Factor of the built–in field of the base6 4.0 -

AVL Weak avalanche parameter7 50 -

EFI Electric field intercept (with EXAVL=1)8 0.7 -

WAVL Epilayer thickness used in weak-avalanche model 1.1e-6 m

VAVL Voltage determining the curvature of avalanche current 3.0 V

SFH Current spreading factor of avalanche model (when EXAVL=1)

0.3 -

Table 176 Parameters of the HSBJT L 6 model (Continued)

Name Description Default Units

Aurora Reference Guide 321X-2006.09

Page 342: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 6 Model

RE Emitter resistance 5.0 Ohm

RBC Constant part of the base resistance 23.0 Ohm

RBV Zero-bias value of the variable part of the base resistance

18.0 Ohm

RCC Constant part of the collector resistance 12.0 Ohm

RCV Resistance of the un-modulated epilayer 150.0 Ohm

SCRCV Space charge resistance of the epilayer 1250.0 Ohm

IHC Critical current for velocity saturation in the epilayer 4.0e-3 A

AXI Smoothness parameter for the onset of quasi-saturation 0.3 -

CJE Zero bias emitter-base depletion capacitance 7.3e-14 F

VDE Emitter-base diffusion voltage 0.95 V

PE Emitter-base grading coefficient 0.4 -

XCJE Fraction of the emitter-base depletion capacitance that belongs to the sidewall

0.4 -

CJC Zero bias collector-base depletion capacitance 7.8e-14 F

VDC Collector-base diffusion voltage 0.68 V

PC Collector-base grading coefficient 0.5 -

XP Constant part of CJC 0.35 -

MC Coefficient for the current modulation of the collector-base depletion capacitance

0.5 -

XCJC Fraction of the collector-base depletion capacitance under the emitter

3.2e-2 -

MTAU Non-ideality of the emitter stored charge 1.0 -

Table 176 Parameters of the HSBJT L 6 model (Continued)

Name Description Default Units

322 Aurora Reference GuideX-2006.09

Page 343: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 6 Model

TAUE Minimum transit time of stored emitter charge 2.0e-12 s

TAUB Transit time of stored base charge 4.2e-12 s

TEPI Transit time of stored epilayer charge 4.1e-11 s

TAUR Transit time of reverse extrinsic stored base charge 5.2e-10 s

DEG Bandgap difference over the base 0.0 eV

XREC Pre-factor of the recombination part of Ib1 0.0 -

VI Ionization voltage base dope 0.04 V

NA Maximum base dope concentration 3e17 cm^-3

ER Temperature coefficient of VLF and VLR 2e-3 -

AQBO Temperature coefficient of the zero-bias base charge 0.3 -

AE Temperature coefficient of the resistivity of the emitter 0.0 -

AB Temperature coefficient of the resistivity of the base 1.0 -

AEPI Temperature coefficient of the resistivity of the epilayer 2.5 -

AEX Temperature coefficient of the resistivity of the extrinsic base

0.62 -

AC Temperature coefficient of the resistivity of the buried layer

2.0 -

DVGBF Bandgap voltage difference of forward current gain 5.0e-2 V

DVGBR Bandgap voltage difference of reverse current gain 4.5e-2 V

VGB Bandgap voltage of the base 1.17 V

VGC Bandgap voltage of the collector 1.18 V

VGJ Bandgap voltage recombination emitter-base junction 1.15 V

Table 176 Parameters of the HSBJT L 6 model (Continued)

Name Description Default Units

Aurora Reference Guide 323X-2006.09

Page 344: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 6 Model

DVGTE Bandgap voltage difference of emitter stored charge 0.05 V

AF Exponent of the flicker-noise 2.0 -

KF Flicker-noise coefficient for ideal base current 2.0e-11 -

KFN Flicker-noise coefficient, non-ideal base current 2.0e-11 -

ISS Base-substrate saturation current 4.8e-17 A

IKS Base-substrate high injection knee current 2.5e-4 A

CJS Zero bias collector-substrate depletion capacitance 3.15e-13 F

VDS Collector-substrate diffusion voltage 0.62 V

PS Collector-substrate grading coefficient 0.34 -

VGS Bandgap voltage of the substrate 1.2 V

AS For a closed buried layer: AS=AC. For an open buried layer: AS=AEPI.

1.58 -

RTH Thermal aresistance 300.0 oC/W

CTH Thermal capacitance 3.0e-9 J/^C

FTMODE FT calculus selector9 0 -

GMIN Minimum conductance10 10-16 Mhos

1. MEXTRAM V504 specific.

2. MEXTRAM V504 specific.

3. MEXTRAM V504 specific.

4. MEXTRAM V503 specific.

5. MEXTRAM V503 specific.

6. MEXTRAM V503 specific.

7. MEXTRAM V503 specific.

8. MEXTRAM V503 specific.

Table 176 Parameters of the HSBJT L 6 model (Continued)

Name Description Default Units

324 Aurora Reference GuideX-2006.09

Page 345: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 8 Model

HSBJT L 8 Model

The model represents the Star-HSPICE implementation of the HICUM model.

9. Aurora-specific

10. Star-Hspice option

Table 177 Parameters of the HSBJT L 8 model

Name Description Default Units Notes

LEVEL Star-HSpice model selector 8 -

TREF Temperature in simulation 26.85 C

C10 Constant(IS*QP0) 3.76e-32 A^2s

Qp0 Zero-bias hole charge 2.78e-14 As

ICH High-current correction for 2D/3D 2.09e-02 A

HFC Weighting factor for Qfc (mainly for HBTs) 1.0 -

HFE Weighting factor for Qef in HBTs 1.0 -

HJCI Weighting factor for Qjci in HBTs 1.0 -

HJEI Weighting factor for Qjei in HBTs 0.0 -

ALIT Factor for additional delay time of iT 0.45 -

VDEI Built-in voltage 0.95 V

CJEI0 Zero-bias value 8.11e-15 F

ZEI Exponent coefficient 0.5 -

ALJEI Ratio of max. to zero-bias value 1.8 -

CJCI0 Zero-bias value 1.16e-15 F

VDCI Built-in voltage 0.8 V

ZCI Exponent coefficient 0.333 -

Aurora Reference Guide 325X-2006.09

Page 346: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 8 Model

VPTCI Punch-through voltage (=q Nci w^2ci /(2epsilon)) 416 V

T0 Low current transit time at VB'C' =0 4.75e-12 s

DT0H Time constant for base and BC SCR width modulation

2.1e-12 s

TBVL Voltage for modeling carrier jam at low VC'E' 40e-12 s

TEF0 Storage time in neutral emitter 1.8e-12 s

GTFE Exponent factor for current dep. emitter transit time 1.4 -

THCS Saturation time constant at high current densities 3.0e-11 s

ALHC Smoothing factor for current dep. C and B transit time

0.75 -

FTHC Partitioning factor for base and collection portion 0.6 -

ALQF Factor for additional delay time of Q_f 0.225 -

RCI0 Low-field resistance of internal collector region 127.8 Ohm

VLIM Voltage separating ohmic and SCR regime 0.7 V

VPT Epi punch-through vtg. of BC SCR 5.0 V

VCES Internal CE sat. vtg. 0.1 V

TR Time constant for inverse operation 1.0e-9 s

IBEIS BE saturation current 1.16e-20 A

MBEI BE saturation current 1.015 -

IREIS BE recombination saturation current 1.16e-6 A

MREI BE recombination non-ideality factor 2.0 -

IBCIS BC saturation current 1.16e-20 A

Table 177 Parameters of the HSBJT L 8 model (Continued)

Name Description Default Units Notes

326 Aurora Reference GuideX-2006.09

Page 347: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 8 Model

MBCI BC non-ideality factor 1.015 -

FAVL Prefactor for CB avalanche effect 1.186 1/V

QAVL Exponent factor for CB avalanche effect 1.11e-14 As

RBI0 Value at zero-bias 0 Ohm

FDQR0 Correction factor for modulation by BE abd BC SCR 0.0 -

FGEO Geometry factor (value corresponding to long emitter stripe)

0.73 -

FQI Ratio of internal to total minority charge 0.9055 -

FCRBI Ratio of h.f. shunt to total internal capacitance. 0.0 -

LATB Scaling factor for Qfc in 1_E 3.765 -

LATL Scaling factor for Qfc in l_E direction 0.342 -

CJEP0 Zero-bias value 2.07e-15 F

VDEP Built-in voltage 1.05 V

ZEP Depletion coeff 0.4 -

ALJEP Ratio of max. to zero-bias value 2.4 -

IBEPS Saturation current 3.72e-21 A

MBEP Non-ideality factor 1.015 -

IREPS Recombination saturation factor 1e-30 A

MREP Recombination non-ideality factor 2.0 -

IBETS Saturation current 0 A

ABET Exponent coefficient 0.0 -

CJCX0 Zero-bias depletion value 5.393e-15 F

Table 177 Parameters of the HSBJT L 8 model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 327X-2006.09

Page 348: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 8 Model

VDCX Built-in voltage 0.7 V

ZCX Exponent coefficient 0.333 -

VPTCX Punch-through voltage 100 V

CCOX Collector oxide capacitance 2.97e-15 F

FBC Partitioning factor for C_BCX=C'_BCx+C"_BCx 0.1526 -

IBCXS Saturation current 4.39e-20 A

MBCX Non-ideality factor 1.03 -

CEOX Emitter-base isolation overlap cap 1.13e-15 F

RBX External base series resistance 0 Ohm

RE Emitter series resistance 0 Ohm

RCX External collector series resistance 0 Ohm

ITSS Transfer saturation current 0.0 A

MSF Non-ideality factor (forward transfer current) 0.0 -

TSF Minority charge storage transit time 0.0 -

ISCS Saturation current of CS diode 0.0 A

MSC Non-ideality factor of CS diode 0.0 -

CJS0 Zero-bias value of CS depletion cap 3.64e-14 F

VDS Built-in voltage 0.6 V

ZS Exponent coefficient 0.447 -

VPTS Punch-through voltage 1000 V

RSU Substrate series resistance 0 Ohm

Table 177 Parameters of the HSBJT L 8 model (Continued)

Name Description Default Units Notes

328 Aurora Reference GuideX-2006.09

Page 349: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 8 Model

CSU Substrate capacitance from permittivity of bulk material

0 F

KF Flicker noise factor (no unit only for AF=2!) 1.43e-8 -

AF Flicker noise exponent factor 2.0 -

KRBI Factor for internal base resistance 1.17 -

VGB Bandgap-voltage 1.17 V

ALB Relative temperature coefficient of forward current gain

6.3e-3 1/K

ALT0 First-order relative temperature coefficient of TEF0 0 1/K

KT0 Second-order relative temperature coefficient of TEF0

0 1/K

ZETACI Temperature exponent factor RCI0 1.6 -

ALVS Relative temperature coefficient of saturation drift velocity

1e-3 1/K

ALCES Relative temperature coefficient of VCES 0.4e-3 1/K

ZETARBI Temperature exponent factor of RBI0 0.588 -

ZETARBX Temperature exponent factor of RBX 0.2060 -

ZETARCX Temperature exponent factor of RCX 0.2230 -

ZETARE Temperature exponent factor of RE 0 -

ALFAV Relative temperature coefficient for avalanche breakdown

8.25e-5 1/K

ALQAV Relative temperature coefficient for avalanche breakdown

1.96e-4 1/K

RTH Thermal resistance (not supported) 0 K/W

Table 177 Parameters of the HSBJT L 8 model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 329X-2006.09

Page 350: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 11 Model

HSBJT L 11 Model

The model represents the Star-HSpice implementation of the UCSD-HBT model.

CTH Thermal resistance (not supported) 0 Ws/K

FBCS Determine external BC capacitance partitioning -1.0 -

IS Ideal saturation current 1.0 A

KRBI Noise analysis of internal resistance 1.0 -

MCF Non-ideal factor of reverse current between base and collector. VT=VT*MCF

1.0 -

MSR Non-ideal factor of reverse current in substrate transistor. VT=VT*MSR

1.0 -

ZETACX Temperature exponent factor (epi-layer) 1.0 -

FTMODE FT calculus selector 0 - 1

GMIN Minimum conductance 10-16 Mhos 2

1. Aurora-specific

2. Star-Hspice option

Table 178 Parameters of the HSBJT L 11 model

Name Description Default Units Notes

LEVEL Star-Hspice model selector 11 -

FTMODE FT calculus selector 0 - Aurora-specific

BKDN Flag indicating to include BC breakdown FALSE logic

TREF Temperature at which model parameters are given 27 C

Table 177 Parameters of the HSBJT L 8 model (Continued)

Name Description Default Units Notes

330 Aurora Reference GuideX-2006.09

Page 351: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 11 Model

IS Saturation value for forward collector current 1.00E-025 A

NF Forward collector current ideality factor 1 -

NR Reverse current ideality factor 1 -

ISA Collector current EB barrier limiting current 1.00E+010 A

NA Collector current EB barrier ideality factor 2 -

ISB Collector current BC barrier limiting current 1.00E+010 A

NB Collector current BC barrier ideality factor 2 -

VAF Forward Early voltage 1000 V

VAR Reverse Early voltage 1000 V

IK Knee current for dc high injection effect 1.00E+010 A

BF Forward ideal current gain 10000 -

BR Reverse ideal current gain 10000 -

ISE Saturation value for non-ideal base current 1.00E-030 A

NE Ideality factor for non-ideal forward base current 2 -

ISEX Saturation value for emitter leakage diode 1.00E-030 A

NEX Ideality factor for emitter leakage diode 2 -

ISC Saturation value for intrinsic bc junction current 1.00E-030 A

NC Ideality factor for intrinsic bc junction current 2 -

ISCX Saturation value for extrinsic bc junction current 1.00E-030 A

NCX Ideality factor for extrinsic bc junction current 2 -

FA Factor for specification of avalanche voltage 0.9 -

Table 178 Parameters of the HSBJT L 11 model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 331X-2006.09

Page 352: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 11 Model

BVC Collector-base breakdown voltage BVcbo 1000 V

NBC Exponent for BC multiplication factor vs voltage 8 -

ICSS Saturation value for collector-substrate current 1.00E-030 A Aurora alias for ICS

NCS Ideality factor for collector-substrate current 2 -

RE Emitter resistance 0 ohm

REX Extrinsic emitter leakage diode series resistance 0 ohm

RBX Extrinsic base resistance 0 ohm

RBI Intrinsic base resistance 0 ohm

RCX Extrinsic collector resistance 0 ohm

RCI Intrinsic collector resistance 0 ohm

CJE BE depletion capacitance at zero bias 0 F

VJE BE diode built-in potential for Cj estimation 1.6 V

MJE Exponent for voltage variation of BE Cj 0.5 -

CEMIN Minimum BE capacitance 0 F

FCE Factor for start of high bias BE Cj approximation 0.8 -

CJC Intrinsic BC depletion capacitance at zero bias 0 F

VJC Intrinsic BC diode built-in potential for CJ estimation

1.4 V

MJC Exponent for voltage variation of Intrinsic BC Cj 0.33 -

CCMIN Minimum value of intrinsic BC Cj 0 F

FC Factor for start of high bias BC Cj approximation 0.8 -

Table 178 Parameters of the HSBJT L 11 model (Continued)

Name Description Default Units Notes

332 Aurora Reference GuideX-2006.09

Page 353: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 11 Model

CJCX Extrinsic BC depletion capacitance at zero bias 0 F

VJCX Extrinsic BC diode built-in potential for CJ estimation

1.4 V

MJCX Exponent for voltage variation, Extrinsic BC Cj 0.33 -

CXMIN Minimum extrinsic Cbc 0 F

XCJC Factor for partitioning extrinsic BC Cj 1 -

CJS Collector-substrate depletion capacitance (0 bias) 0 F

VJS CS diode built-in potential for Cj estimation 1.4 V

MJS Exponent for voltage variation of CS Cj 0.5 -

TFB Base transit time 0 s

TBEXS Excess BE heterojunction transit time 0 s

TBCXS Excess BC heterojunction transit time 0 s

TFC0 Collector forward transit time 0 s

ICRIT0 Critical current for intrinsic Cj variation 1.00E+003 A

ITC Characteristic current for TFC 0 A

ITC2 Characteristic current for TFC 0 A

VTC Characteristic voltage for TFC 1.00E+003 V

TKRK Forward transit time for Kirk effect 0 s

VKRK Characteristic Voltage for Kirk effect 1.00E+003 V

IKRK Characteristic current for Kirk effect 1.00E+003 A

TR Reverse charge storage time, intrinsic BC diode 0 s

TRX Reverse charge storage time, extrinsic BC diode 0 s

Table 178 Parameters of the HSBJT L 11 model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 333X-2006.09

Page 354: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSBJT L 11 Model

FEX Factor to determine excess phase 0 -

KFN BE flicker noise constant 0 -

AFN BE flicker noise exponent for current 1 -

BFN BE flicker noise exponent for frequency 1 -

XTI Exponent for IS temperature dependence 2 -

XTB Exponent for beta temperature dependence 2 -

TNE Coefficient for NE temperature dependence 0 -

TNC Coefficient for NC temperature dependence 0 -

TNEX Coefficient for NEX temperature dependence 0 -

EG Activation energy for IS temperature dependence 1.5 V

EAE Activation energy, ISA temperature dependence 0 V

EAC Activation energy, ISB temperature dependence 0 V

EAA Added activation energy, ISE temp dependence 0 V

EAB Added activation energy, ISC temp dependence 0 V

EAX Added activation energy, ISEX temp dependence 0 V

XRE Exponent for RE temperature dependence 0 -

XREX Exponent for REX temperature dependence 0 -

XRB Exponent for RB temperature dependence 0 -

XRC Exponent for RC temperature dependence 0 -

TVJE Coefficient for VJE temperature dependence 0 V/C

TVJCX Coefficient for VJCX temperature dependence 0 V/C

Table 178 Parameters of the HSBJT L 11 model (Continued)

Name Description Default Units Notes

334 Aurora Reference GuideX-2006.09

Page 355: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice JFET Models

Star-Hspice JFET Models

Starting with version 2003.03, Aurora supports the Star-Hspice JFET ("HSJFET") models. Currently supported models include Level 1, 2, 3 and 7 (TOM3). These models are implemented through the CMI library and the Star-HspiceRF model interface.

The following tables illustrate the common variables and targets that are available for each of these models.

Variables

The HSJFET models use 11 variables:

TVJC Coefficient for VJC temperature dependence 0 V/C

GMIN Minimum conductance 10-16 Mhos Star-HSPICE option

Table 179 Variables of the HSJFET Models

Name Description Default Units

VD Applied drain bias 0.0 Volts

VG Applied gate bias 0.0 Volts

VS Applied source bias 0.0 Volts

VB Applied substrate bias 0.0 Volts

W Relative channel width 1.0

L Relative channel length 1.0

T Temperature 27.0 °C

POLARITY -1 for p-channel +1

Table 178 Parameters of the HSBJT L 11 model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 335X-2006.09

Page 356: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice JFET Models

Targets

Seven targets are defined for the JFET/SPICE model:

DEVID Device identification 0

REGION Device behavior region 0

DEVMODE Device mode 1

Table 180 Targets of the JFET/SPICE Model

Name Description Units Minimum

ID Current entering the drain terminal Amps 1 × 10-15

IG Current entering the gate terminal Amps 1 × 10-15

ISOURCE Current entering the source terminal Amps 1 × 10-15

CAPGS G-S capacitance F 1 × 10-17

CAPGD G-D capacitance F 1 × 10-17

IGS G-S current F 1 × 10-15

IGD G-D current F 1 × 10-15

Table 179 Variables of the HSJFET Models

Name Description Default Units

336 Aurora Reference GuideX-2006.09

Page 357: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 1-3 Model

HSJFET L 1-3 Model

The model represents the HSPICE Level 1, 2 and 3 JFET models.

Table 181 Parameters for the HSJFET L1-3 Model

Name Description Default Units Notes

ACM Area calculation method. Use this parameter to select between traditional SPICE unitless gate area calculations, and the newer style of area calculations (see the ACM section). If W and L are specified, AREA becomes: ACM=0 AREA=Weff/Leff ACM=1 AREA=Weff x Leff

- -

ALIGN Misalignment of gate 0 m

HDIF Distance of the heavily diffused or low resistance region from source or drain contact to lightly doped region

0 m

IS Gate junction saturation current ISeff = IS x AREAeff

1.00E-014 Amp

LDEL Difference between drawn and actual or optical device length LDELeff = LDEL x SCALM

0 m

LDIF Distance of the lightly doped region from heavily doped region to transistor edge

0 m

N Emission coefficient for gate-drain and gate-source diodes

1 -

RD Drain ohmic resistance (see the ACM section) RDeff = RD /AREAeff, ACM=0

0 ohm

RG Gate resistance (see the ACM section) RGeff = RG x AREAeff, ACM=0

0 ohm

RS Source ohmic resistance (see the ACM section) RSeff = RS /AREAeff, ACM=0

0 ohm

RSH Heavily doped region, sheet resistance 0 ohm/sq

Aurora Reference Guide 337X-2006.09

Page 358: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 1-3 Model

RSHG Gate sheet resistance 0 ohm/sq

RSHL Lightly doped region, sheet resistance 0 ohm/sq

WDEL Difference between drawn and actual or optical device width WDELeff = WDEL x SCALM

0 m

CAPOP Capacitor model selector: CAPOP=0 -- default capacitance equation based on diode depletion layer, CAPOP=1 -- symmetric capacitance equations (Statz), CAPOP=2 -- Synopsys improvement to CAPOP=1

0 -

CALPHA ALPHA Saturation factor for capacitance model (CAPOP=2 only)

- -

CAPDS Drain to source capacitance for TriQuint model

0 F

CGAMDS GAMDS Threshold lowering factor for capacitance (CAPOP=2 only)

- -

CGD Zero-bias gate-drain junction capacitance CGDeff = CGD x AREAeff. Override this parameter by specifying GCAP.

0 F

CGS Zero-bias gate-source junction capacitance CGSeff = CGS x AREAeff Override this parameter by specifying GCAP

0 F

CRAT Source fraction of gate capacitance (used with GCAP)

0.67 -

GCAP Zero-bias gate capacitance. If specified, CGSeff = GCAP x CRAT x AREAeff and CGDeff = GCAP x (1-CRAT) x AREAeff

- F

Table 181 Parameters for the HSJFET L1-3 Model

Name Description Default Units Notes

338 Aurora Reference GuideX-2006.09

Page 359: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 1-3 Model

FC Coefficient for forward-bias depletion capacitance formulas (CAPOP=0 and 2 only)

0.5 -

CVTO Threshold voltage for capacitance model (CAPOP=2 only)

VTO V

MJ Grading coefficient for gate-drain and gate-source diodes (CAPOP=0 and 2 only)

0.5 -

PB Gate junction potential 0.8 V

TT Transit time 0 s

VDEL Transition width for Vgs 0.2 V

LEVEL Level of FET DC model. Level=2 is based on modifications to the SPICE model for gate modulation of LAMBDA. Level=3 is the Curtice MESFET model.

1 - 1, 2, 3

BETA Transconductance parameter, gain 1.00E-4 Amp/V^2 1, 2, 3

ND Drain subthreshold factor (typical value=1) 0 1/V 1, 2, 3

NG Gate subthreshold factor (typical value=1) 0 - 1, 2, 3

VTO Threshold voltage. If set, it overrides internal calculation. A negative VTO is a depletion transistor regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

-2 V 1, 2, 3

A Active layer thickness Aeff = A x SCALM 0.5µ m 3

ALPHA Saturation factor 2 1/V 3

D Semiconductor dielectric constant: Si=11.7, GaAs=10.9

11.7 - 3

DELTA Ids feedback parameter of TriQuint model 0 - 3

Table 181 Parameters for the HSJFET L1-3 Model

Name Description Default Units Notes

Aurora Reference Guide 339X-2006.09

Page 360: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 1-3 Model

GAMDS Drain voltage, induced threshold voltage lowering coefficient

0 - 3, 4

LAMBDA Channel length modulation parameter 0 1/V 1, 2, 3

LAM1 Channel length modulation gate voltage parameter

0 1/V 2

K1 Threshold voltage sensitivity to bulk node 0 V^1/2 3

NCHAN - 1.55E16 atom/cm^3 3

SAT Saturation factor: SAT=0 (standard Curtice model), SAT=1 (Curtice model with hyperbolic tangent coefficient), SAT=2 (cubic approximation of Curtice model (Statz))

0 - 3

SATEXP Drain voltage exponent 36 - 3

UCRIT Critical field for mobility degradation 0 V/cm 3

VBI Gate diode built-in voltage 1.06 V 3

VGEXP Gate voltage exponent 2.06 - 3, 4

VP Pinch-off voltage (default is calculated) - -

Table 182 Temperature Effects Parameters

Name (Alias) Units Default Description Notes

TREF °C 25.0 Reference temperature of model

BEX -1.5 Low field mobility, UO, temperature exponent

BETATCE 1/°K 0 BETA, temperature coefficient for the TOM model.

Table 181 Parameters for the HSJFET L1-3 Model

Name Description Default Units Notes

340 Aurora Reference GuideX-2006.09

Page 361: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 1-3 Model

CTD 1/°K 0.0 Gat-drain temperature coefficient. Set TLEVC to 1 to enable CTD to override default HSPICE temperature compensation.

CTS 1/°K 0.0 Gat-source temperature coefficient. Set TLEVC to 1 to enable CTS to override default HSPICE temperature compensation.

EG eV Energy gap for pn junction diode. Set default=1.11, for TLEV=0 or 1 and default=1.16, for TLEV=2.

1.17 – silicon0.69 – Schottky barrier diode0.67 – germanium1.52 – gallium arsenide

F1EX 0 Bulk junction bottom grading coefficient

GAP1 eV/°K 7.02e-4 First bandgap correction factor (from Sze, alpha term)

7.02e-4 – silicon4.73e-4 – silicon4.56e-4 – germanium5.41e-4 – gallium arsenide

GAP2 °K 1108 Second bandgap correction factor (from Sze, beta term)

1108 – silicon636 – silicon 210 – germanium 204 – gallium arsenide

TCV V/°K 0.0 Threshold voltage temperature coefficient. 1

TLEV 0.0 Temperature equation level selector.

TLEVC 0.0 Temperature equation level selector for junction capacitances and potentials, interacts with TLEV. .

TRD 1/°K 0.0 Temperature coefficient for drain resistor

Table 182 Temperature Effects Parameters (Continued)

Name (Alias) Units Default Description Notes

Aurora Reference Guide 341X-2006.09

Page 362: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 7 Model

HSJFET L 7 Model

The model represents the HSPICE Level 7 (TOM3) model.

TRS 1/°K 0.0 Temperature coefficient for source resistor

TRG 1/°K 0.0 Temperature coefficient for gate resistor

TPB V/°K 0.0 Temperature coefficient for PB. TLEVC=1 or 2 overrides the default temperature compensation.

XTI 0.0 Saturation current temperature exponent. Use XTI=3 for silicon diffused junction. Set XTI=2 for Schottky barrier diode.

1. TOM extension to Level 3

Table 183 Parameters for the HSJFET L 7 Model

Name Description Default Units

LEVEL Model Index (7 for TOM3) - 1

TNOM Reference temperature oC 25

VTO Threshold voltage V -2

VTOTC Threshold voltage temperature coefficient V/K 0

ALPHA Saturation factor 1/V 2

BETA Transconductance parameter A/V^-Q 0.1

LAMBDA Channel length modulation parameter 1/V 0

VBI Gate diode built-in potential V 1

CDS Drain to source capacitance F 1.00E-012

IS Forward gate diode saturation current A 1.00E-014

Table 182 Temperature Effects Parameters (Continued)

Name (Alias) Units Default Description Notes

342 Aurora Reference GuideX-2006.09

Page 363: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSJFET L 7 Model

KF Flicker noise coefficient - 0

AF Flicker noise exponent - 1

GAMMA Drain voltage-induced threshold voltage lowering coefficient

- 0

Q Parameter Q to model the non-square-law of the drain current

- 2

EG Barrier height at 0K (used for capacitance model)

V 1.11

XTI Diode saturation current temperature coefficient

- 0

VST Sub-threshold slope V 1

ALPHATCE ALPHA temperature coefficient (exponential) K^-1 0

ILK Leakage diode current parameter A 0

PLK Leakage diode potential parameter V 1

K Knee-function parameter - 2

VSTTC Linear temperature coefficient of VST VK^-1 0

QGQL Charge parameter FV 5.00E-016

QGQH Charge parameter FV -2.00E-016

QGI0 Charge parameter A 1.00E-006

QGAG Charge parameter V^-1 1

QGAD Charge parameter V^-1 1

QGGB Charge parameter A^-1V^-1 100

QGCL Charge parameter F 2.00E-016

Table 183 Parameters for the HSJFET L 7 Model

Name Description Default Units

Aurora Reference Guide 343X-2006.09

Page 364: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Diode HSDIODE L 1,3 Model

Star-Hspice Diode HSDIODE L 1,3 Model

Starting with version 2003.03, Aurora supports the Star-Hspice Diode ("HSDIODE") models. Currently supported models include Level 1, 3 and 2 (Fowler-Nordheim). These models are implemented through the Star-HspiceRF model interface.

QGSH Sidewall capacitance F 1.00E-016

QGDH Sidewall capacitance F 0

QGG0 Charge parameter F 0

MST Sub-threshold slope -- drain parameter V^-1 0

N Forward gate diode ideality factor - 1

GAMMATC Linear temperature coefficient for GAMMA K^-1 0

VBITC Linear temperature coefficient for VBI VK^-1 0

CGSTCE Linear temperature coefficient for CGS K^-1 0

CGDTCE Linear temperature coefficient for CGD K^-1 0

MSTTC Linear temperature coefficient for MST V^-1K^-1 0

BETATCE Linear temperature coefficient for BETA K^-1 0

Table 183 Parameters for the HSJFET L 7 Model

Name Description Default Units

344 Aurora Reference GuideX-2006.09

Page 365: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Diode HSDIODE L 1,3 Model

Variables

The HSDIODE L 1,3 model uses six variables:

VD is the applied voltage (forward bias) on the diode terminals (anode to cathode). AREA is a scale factor for the current. T is the temperature, in degrees Celsius. DEVID, the device identification number, distinguishes data from different diodes. Similarly, REGION distinguishes data from the same device, but from different regions of behavior.

Table 184 Variables of the HSDIODE L 1,3 Model

Name Description Default Units

VD Applied diode voltage 0.0 Volts

AREA Area scale factor 1.0

T Temperature 27.0 °C

DEVID Device identification 0

REGION Device behavior region 0

PJ Periphery scale factor 0.0

Aurora Reference Guide 345X-2006.09

Page 366: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Diode HSDIODE L 1,3 Model

Targets

Six primary targets are defined for the HSDIODE L 1,3 model:

ID and IR are the currents entering the anode and cathode terminals of the transistor, respectively. ID = - IR will always obtain; that is, ID is the forward current of the diode, and IR is the reverse current.

Parameters

The parameters used by the HSDIODE L 1,3 model are listed in the following table, with their default values and units. The parameters IS, N, BV, and IBV control the basic model, which is valid at moderate currents. EG and XTI control the temperature dependence of the model. RS is the series resistance of the diode. In HSSPICE, GMIN is not a model parameter, but a simulator option that adds a small conductance in series (large resistance in parallel) with all devices. It is used to aid convergence in circuit simulation. Synopsys TCAD does not recommend using it here.

Table 185 Targets of the HSDIODE L 1,3 Model

Name Description Units Minimum

ID Current entering anode terminal Amps 1 × 10-15

IR Current entering cathode terminal Amps 1 × 10-15

C Capacitance Farads 1 × 10-18

Q Stored charge Couls 1 × 10-15

GD Computed conductance Mhos 1 × 10-15

VI Intrinsic junction voltage Volts 1 × 10-15

Table 186 Parameters for the HSDIODE L1,3 Model

Name Description Default Units Notes

LEVEL Star-HSpice model selector 11 -

346 Aurora Reference GuideX-2006.09

Page 367: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Diode HSDIODE L 1,3 Model

IS Diode saturation current 1 × 10-16 Amps

N Emission coefficient 1.0

IK Knee current 0 Amps 1

IKR Knee current, reverse mode 0 Amps 1

RS Diode series resistance 0 W

BV Reverse breakdown voltage 1 × 1010 Volts

NBV Emission coefficient for breakdown region N 2

IBV Current at breakdown voltage 1× 10-3 Amps

JSW Sidewall saturation current 1.11 Volts

EXPLI Current-explosion model parameter 1 × 1015 Amps

EXPLIR Current-explosion model parameter for reverse mode

EXPLI Amps 2

NTUN Emission coefficient for tunneling(soft breakdown) current

30 2

JTUN Area tunneling(soft breakdown) saturation current

0.0 Volts 2

JTUNSW Sidewall tunneling(soft breakdown) saturation current

0.0 Volts 2

XW Accounts for masking and etching effects 0.0 m

XTI Saturation current temperature exponent 3.0 3

XTITUN Tunneling(soft breakdown) saturation current temperature exponent.

3.0 3, 2

TCV Breakdown voltage temperature coefficient 0.0 1/°C 3

Table 186 Parameters for the HSDIODE L1,3 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 347X-2006.09

Page 368: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Diode HSDIODE L 1,3 Model

TRS Series resistance temperature coefficient 0.0 1/°C 3

GMIN Minimum conductance 1 × 10-16 Mhos 4

DCAP Capacitance model selectoy 2

CJ Zero-bias capacitance 0.0 Farads 5

PB Built-in voltage 1 Volts 5

M Grading coefficient 0.5 5

FC Forward-bias capacitance coefficient 0.5 5

CJP Zero-bias capacitance (periphery) 0.0 Farads 5

PHP Built-in voltage (periphery) 1 Volts 5

MJSW Grading coefficient (periphery) 0.5 5

FCS Forward-bias capacitance coefficient (periphery)

0.5 5

TT Transit time 1e-8 s 5

TREF Nominal temperature 25.0 °C

CTA Temperature coefficient for area junction capacitance. TLEVC=1 enables CTA to override the default temperature compensation.

0 1/oC 3, 6

CTP Temperature coefficient forperiphery junction capacitance. TLEVC=1 enables CTP to override the default temperature compensation.

0 1/oC 3, 6

EG Energy gap for pn junction. For TLEV=0 or 1, default=1.11. For TLEV=2, default=1.16

eV 3, 6

Table 186 Parameters for the HSDIODE L1,3 Model (Continued)

Name Description Default Units Notes

348 Aurora Reference GuideX-2006.09

Page 369: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsStar-Hspice Diode HSDIODE L 1,3 Model

GAP1 First bandgap correction factor (from Sze, alpha term)

7.02E-004 eV/oC 3, 6

GAP2 Second bandgap correction factor (Sze, beta term)

1108 x 3, 6

TLEV Temperature equation level selector (interacts with TLEVC).

1 - 3, 6

TLEVC Temperature equation level selector: BJTs, junction capacitances, and potentials (interacts with TLEV).

1 - 3, 6

TM1 First order temperature coefficient for MJ 0 1/oC 3, 6

TM2 Second-order temperature coefficient for MJ.

0 1/oC^2 3, 6

TTT1 First-order temperature coefficient for TT. 0 1/oC 3, 6

TTT2 Second-order temperature coefficient for TT.

0 1/oC^2 3, 6

TPB Temperature coefficient for PB. If TLEVC is set to 1 or 2, TPB overrides the default temperature compensation.

0 1/oC 3, 6

TPHP Temperature coefficient for PHP. If TLEVC is set to 1 or 2, TPB overrides the default temperature compensation.

0 1/oC 3, 6

1. A zero value means IKF infinite.

2. New parameters in HSPICE 2004.03 and Aurora 2004.12.

3. Temperature model parameter.

4. Star-Hspice option.

5. AC model parameter.

6. Star-Hspice specific.

Table 186 Parameters for the HSDIODE L1,3 Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 349X-2006.09

Page 370: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSDIODE L 2 Model

The HSDIODE L 1,3 model represents the HSPICE diode model levels 1 and 3: If LEVEL=3 (selecting the geometry scalable diode model), the AREA and PJ minor variables are specified in square microns and microns, respectively. For LEVEL=1, the model can be made compatible with the internal DIODE model in Aurora. However, there still are some differences:■ The junction capacitance parameters CJ, PB, and M in the HSDIODE L 1,3

model correspond to CJO, VJ, and MJ in the DIODE model. ■ The HSDIODE model does not include the NR and ISR parameters. ■ BV is positive for the DIODE model and negative for HSDIODE.

HSDIODE L 2 Model

Variables

The HSDIODE L 2 model uses six variables:

VD is the applied voltage (forward bias) on the diode terminals (anode to cathode).

Table 187 Variables of the HSDIODE L 2 Model

Name Description Default Units

VD Applied diode voltage 0.0 Volts

W Width 0.0

L Length 0.0

T Temperature 27.0 °C

DEVID Device identification 0

REGION Device behavior region 0

350 Aurora Reference GuideX-2006.09

Page 371: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsHSDIODE L 2 Model

Targets

Six primary targets are defined for the HSDIODE L 2 model:

ID and IR are the currents entering the anode and cathode terminals of the transistor, respectively. ID = - IR will always obtain; that is, ID is the forward current of the diode, and IR is the reverse current.

Table 188 Targets of the HSDIODE L 2 Model

Name Description Units Minimum

ID Current entering anode terminal Amps 1× 10-15

IR Current entering cathode terminal Amps 1 × 10-15

C Capacitance Farads 1 × 10-18

Q Stored charge Couls 1 × 10-15

GD Computed conductance Mhos 1 × 10-15

VI Intrinsic junction voltage Volts 1 × 10-15

Aurora Reference Guide 351X-2006.09

Page 372: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/EXTSPICE Model

Parameters

The parameters used by the HSDIODE L 2 model are listed in the following table, with their default values and units.

MOS/EXTSPICE Model

Aurora can be instructed to implement the MOS transistor models in any SPICE circuit simulator in place of the built-in models. This can be achieved by specifying MOS/EXTSPICE as the model name in the MODEL statement. The MODEL statement defines the model to be used during optimization:

MODEL NAME=MOS/EXTSPICE INITIAL=<initfile> SIMULATO=<spice>

The model parameters that are selected for optimization must be initialized by using the INITIAL parameter to specify the parameter initialization file (<initfile> in the above example). This file defines initial values and lowerand upper bounds for parameters. The SIMULATO parameter specifies the name of the external circuit simulator (<spice> in the above example) used to evaluate the model. Valid simulator names are defined by SIMULATOR statements.

Table 189 Parameters for the HSDIODE L 2 Model

Name Description Default Units

LEVEL Star-HSpice model selector 11 -

EF Forward critical electric field 1.0E8 V/cm

ER Reverse critical electric field EF V/cm

JF Forward current coefficient, for Fowler-Nordheim.

1E-10 A/V2

JR Reverse current coefficient, for Fowler-Nordheim.

JF A/V2

TOX Oxide layer thickness 100 Angstrom

XW Accounts for masking and etching effects 0.0

352 Aurora Reference GuideX-2006.09

Page 373: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/EXTSPICE Model

Level Parameter

The LEVEL parameter determines the MOS transistor model to be selected. To choose the required level, initialize the LEVEL parameter to the desired value in the parameter initialization file. Allowed levels are 1, 2, 3, 6, and 7. Levels 6 and 7 only work for the HSPICE circuit simulator. For a complete description of the model parameters and their proper names, refer to SPICE circuit simulator documentation.

Variables

The MOS/EXTSPICE model uses 12 variables:

Table 190 Variables of the MOS/EXTSPICE Model

Name Description Default Units

VD Drain voltage 0.0 Volts

VG Gate voltage 0.0 Volts

VS Source voltage 0.0 Volts

VB Substrate voltage 0.0 Volts

W Gate Width 1.0 meters

L Gate Length 1.0 meters

T Temperature 27.0 °C

NRD Number of drain diffusion squares 1.0 squares

NRS Number of source diffusion squares 1.0 squares

POLARITY Device polarity (-1 for p-channel) +1

DEVID Device identification 0

REGION Device behavior region 0

DEVMODE Device mode 1

Aurora Reference Guide 353X-2006.09

Page 374: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsMOS/EXTSPICE Model

VD, VG, VS, and VB are the voltages on the drain, gate, source, and bulk terminals, respectively. Any of these terminals may be used as a reference by leaving its voltage at the default value of zero. W and L are the channel length and width in meters. T is the temperature, in degrees Celsius. DEVID distinguishes data from different devices. Similarly, REGION is used to distinguish data from the same device, but from different regions of device behavior.

PolarityThe model recognizes both N-channel and P-channel devices, depending on the value of POLARITY. For N-channel devices (POLARITY = +1), the drain current and the gate and drain voltages are normally positive, while the source current and substrate voltage are negative. For P-channel devices (POLARITY = -1), the voltages and currents have the opposite signs. NRD and NRS are the relative resistivities of the drain and the source in squares.

Targets

Four primary targets are defined for the MOS/EXTSPICE model:

Note:

To view the list of available parameters defined with Aurora’s external circuit simulator interface, look at <tma path>/aurora_32/library/auinit2 and auinit3 files.

Table 191 Targets of the MOS/EXTSPICE Model

Name Description Units Minimum

ID Drain current Amps 1 × 10-15

IG Gate current Amps 1 × 10-15

IS Source current Amps 1 × 10-15

IB Substrate current Amps 1 × 10-15

354 Aurora Reference GuideX-2006.09

Page 375: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/EXTSPICE Model

BSIM/EXTSPICE Model

The BSIM model in the SPICE circuit simulator can be accessed by specifying BSIM/EXTSPICE as the model name in the MODEL statement. The MODEL statement defines the model to be used during optimization:

MODEL NAME=BSIM/EXTSPICE INITIAL=<initfile> SIMULATO=<spice>

The model parameters selected for optimization must be initialized byusing the INITIAL parameter to specify the parameter initialization file(<initfile> in the above example. This file defines initial values and lower and upper bounds for parameters. The SIMULATO parameter specifies the name of the external circuit simulator (<spice> in the above example) used to evaluate the model. Valid simulator names are defined by SIMULATOR statements.

To implement the BSIM model in HSPICE, initialize LEVEL to 13 in the parameter initialization file. To implement the modified BSIM model in HSPICE, initialize LEVEL to 28 in the parameter initialization file.

Variables

The BSIM/EXTSPICE model uses 11 variables (refer to Table 4).

Targets

Twenty-three targets are used in the BSIM/EXTSPICE model (refer toTable 5).

Targets for HSPICE Modified BSIM Model (level = 28)

Thirty targets are used in the modified BSIM/EXTSPICE model for HSPICE:

Table 192 Targets of Modified BSIM/EXTSPICE Model for HSPICE

Name Description Units Minimum

ID Current entering drain terminal Amps 1 × 10-15

IG Current entering gate terminal Amps 1 × 10-15

IS Current entering source terminal Amps 1 × 10-15

Aurora Reference Guide 355X-2006.09

Page 376: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM/EXTSPICE Model

IB Current entering substrate terminal Amps 1 × 10-15

TVFB Flat-band voltage Volts 100

TPHI Surface inversion potential Volts 100

TK1 Body effect coefficient Volts0.5 100

TK2 Drain/source depletion charge sharing coefficient 100

TETA Zero-bias drain-induced barrier lowering (DIBL) coefficient

100

TX2E Sensitivity of DIBL effect to substrate bias 1/Volts 100

TX3E Sensitivity of DIBL effect to drain bias at VDS = VDD 1/Volts 100

TX2MZ Sensitivity of mobility to substrate bias at VDS = 0 cm2/V2-sec 100

TU0 Zero-bias transverse-field mobility degradation coefficient

1/Volts 100

TX2U0 Sensitivity of TU0 to substrate bias 1/Volts2 100

TMUS Mobility at zero substrate bias and VDS = VDD cm2/V-sec 100

TX2MS Sensitivity of TMUS to substrate bias cm2/V2-sec 100

TX3MS Sensitivity of TMUS to drain bias at VDS = VDD cm2/V2-sec 100

TU1 Zero-bias velocity saturation coefficient μm/Volt 100

TX2U1 Sensitivity of TU1 to substrate bias μm/Volt 100

TX3U1 Sensitivity of TU1 to drain bias at VDS = VDD μm/Volt 100

TN0 Zero-bias subthreshold slope coefficient 100

TNB Sensitivity of subthreshold slope to substrate bias 1/Volts 100

Table 192 Targets of Modified BSIM/EXTSPICE Model for HSPICE

Name Description Units Minimum

356 Aurora Reference GuideX-2006.09

Page 377: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM3V3/EXTSPICE Model

BSIM3V3/EXTSPICE Model

The BSIM3V3/EXTSPICE model represents the external SPICE version of the latest BSIM3V3 model (v3.2.3-4). It is intended for checking the extracted Level 49 or Level 53 model with the user’s circuit simulator. It can be also used for optimization, however it will take much longer to optimize based on it. Therefore, we recommend extracting the parameters using the internal Level 49 or 53 model and checking the model (plots) using the external BSIM3V3 model.

The parameter list depends on the circuit simulator. See http://www-device.eecs.berkeley.edu/~bsim3/ for the standard Berkeley parameter list.

Note:

You may need to adjust the value of the Level parameter, if using a circuit simulator other than Star-HSpice.

TND Sensitivity of subthreshold slope to drain bias 1/Volts 100

TGAMMN

Minimum root-VSB threshold coefficient Volts0.5 100

TETAMN Minimum linear VDS threshold coefficient 100

TX33M Gate field reduction for X3MS cm2/V2-sec 100

TB1 Lower VDSAT threshold transition point 100

TB2 Upper VDSAT threshold transition point 100

WFAC Weak inversion factor 100

WFACU Second weak inversion factor 100

Table 192 Targets of Modified BSIM/EXTSPICE Model for HSPICE

Name Description Units Minimum

Aurora Reference Guide 357X-2006.09

Page 378: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsBSIM4/EXTSPICE Model

BSIM4/EXTSPICE Model

The BSIM4/EXTSPICE model represents the external SPICE version of the BSIM4 model. It is intended for checking the extracted Level 54 model with the user’s circuit simulator. It can be also used for optimization, however it will take much longer to optimize based on it. Therefore, we recommend extracting the parameters by using the internal Level 54 model and checking the model (plots) using the external BSIM4 model.

The parameter list depends on the circuit simulator. See http://www-device.eecs.berkeley.edu/~bsim4/ for the standard Berkeley parameter list.

Note:

You may need to adjust the value of the Level parameter if using a circuit simulator other than Star-HSpice.

BJT/EXTSPICE Model

Aurora can be instructed to implement the BJT transistor models in any SPICE circuit simulator in place of the built-in models, by specifying BJT/EXTSPICE as the model name in the MODEL statement. The MODEL statement defines the model to be used during optimization:

MODEL NAME=BJT/EXTSPICE INITIAL=<initfile> SIMULATO=<spice>

The model parameters selected for optimization must be initialized byusing the INITIAL parameter to specify the parameter initialization file(<initfile> in the above example). This file defines initial values and lower and upper bounds for parameters. The SIMULATO parameter specifies the name of the external circuit simulator (<spice> in the above example) used to evaluate the model. Valid simulator names are defined by SIMULATOR statements.

For a complete description of the model parameters and their proper names, refer to SPICE circuit simulator documentation.

Variables

The BJT/EXTSPICE model uses 13 variables (refer to Table 20).

358 Aurora Reference GuideX-2006.09

Page 379: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsJCAP/EXTSPICE Model

Targets

Three primary targets are defined for the BJT/EXTSPICE model:

JCAP/EXTSPICE Model

Aurora can be instructed to implement the JCAP models in any SPICE circuit simulator in place of the built-in models. This can be achieved by specifying JCAP/EXTSPICE as the model name in the MODEL statement. The MODEL statement defines the model to be used during optimization:

MODEL NAME=JCAP/EXTSPICE INITIAL=<initfile> SIMULATO=<spice>

The model parameters selected for optimization must be initialized byusing the INITIAL parameter to specify the parameter initialization file(<initfile> in the above example). This file defines initial values and lower and upper bounds for parameters.

The SIMULATO parameter specifies the name of the external circuitsimulator (<spice> in the above example) used to evaluate the model.Valid simulator names are defined by SIMULATOR statements.

For a complete description of the model parameters and their proper names, refer to SPICE circuit simulator documentation.

Variables

The JCAP/EXTSPICE model uses five variables (refer toTable 29).

Table 193 Targets of the BJT/EXTSPICE Model

Name Description Units Minimum

IC Current entering collector terminal Amps 1 × 10-15

IB Current entering base terminal Amps 1 × 10-15

IE Current entering emitter terminal Amps 1 × 10-15

ISUB Current entering substrate terminal Amps 1 × 10-15

Aurora Reference Guide 359X-2006.09

Page 380: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

Targets

One primary target is defined for the JCAP/EXTSPICE model:

Response Surface Methodology (RSM) Model

Aurora contains a built-in model for applying the Response Surface Methodology (RSM) method to either simulated or experimental data. This model, named RSM, allows quadratic surfaces with up to nine independent variables to be fit. Provisions are also made for joining multiple response surfaces together to form composite surfaces, as well as for calculating derivatives of the response surfaces for sensitivity estimates.

Variables

The RSM model uses nine variables:

Table 194 Targets of the JCAP/EXTSPICE Model

Name Description Units Minimum

CT Total junction capacitance Farads 1 × 10-18

Table 195 Variables of the RSM Model

Name Description Default Units

VAR1 Variable 1 0.0

VAR2 Variable 2 0.0

VAR3 Variable 3 0.0

VAR4 Variable 4 0.0

VAR5 Variable 5 0.0

VAR6 Variable 6 0.0

VAR7 Variable 7 0.0

VAR8 Variable 8 0.0

360 Aurora Reference GuideX-2006.09

Page 381: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

Although all variables are equivalent, they should be used consecutively, starting with VAR1. The parameter NVAR is used to indicate to Aurora the number of variables to be used.

Targets

Nine primary targets are defined for the RSM model:

These targets are the values of each of the nine independent response surfaces. A separate set of parameters is maintained for each of the nine surfaces.

VAR9 Variable 9 0.0

Table 196 Targets of the RSM Model

Name Description Units Minimum

RSM1 Quadratic surface number 1 1 × 10-3

RSM2 Quadratic surface number 2 1 × 10-3

RSM3 Quadratic surface number 3 1 × 10-3

RSM4 Quadratic surface number 4 1 × 10-3

RSM5 Quadratic surface number 5 1 × 10-3

RSM6 Quadratic surface number 6 1 × 10-3

RSM7 Quadratic surface number 7 1 × 10-3

RSM8 Quadratic surface number 8 1 × 10-3

RSM9 Quadratic surface number 9 1 × 10-3

Table 195 Variables of the RSM Model

Name Description Default Units

Aurora Reference Guide 361X-2006.09

Page 382: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

Parameters

The RSM model uses 76 parameters:

Table 197 Parameters for the RSM Model

Name Description Default Units Notes

NVAR Number of variables 3

MODNUM Number of the RSM model 1 1

MODE Switch to turn on/off derivative calculation 0 2

A0 Constant term 0

A1 Linear coefficient for VAR1 0

A2 Linear coefficient for VAR2 0

A3 Linear coefficient for VAR3 0

A4 Linear coefficient for VAR4 0

A5 Linear coefficient for VAR5 0

A6 Linear coefficient for VAR6 0

A7 Linear coefficient for VAR7 0

A8 Linear coefficient for VAR8 0

A9 Linear coefficient for VAR9 0

A11 Quadratic coefficient for VAR1 0

A22 Quadratic coefficient for VAR2 0

A33 Quadratic coefficient for VAR3 0

A44 Quadratic coefficient for VAR4 0

A55 Quadratic coefficient for VAR5 0

A66 Quadratic coefficient for VAR6 0

362 Aurora Reference GuideX-2006.09

Page 383: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

A77 Quadratic coefficient for VAR7 0

A88 Quadratic coefficient for VAR8 0

A99 Quadratic coefficient for VAR9 0

A12 Cross coefficient between VAR1 and VAR2 0

A13 Cross coefficient between VAR1 and VAR3 0

A14 Cross coefficient between VAR1 and VAR4 0

A15 Cross coefficient between VAR1 and VAR5 0

A16 Cross coefficient between VAR1 and VAR6 0

A17 Cross coefficient between VAR1 and VAR7 0

A18 Cross coefficient between VAR1 and VAR8 0

A19 Cross coefficient between VAR1 and VAR9 0

A23 Cross coefficient between VAR2 and VAR3 0

A24 Cross coefficient between VAR2 and VAR4 0

A25 Cross coefficient between VAR2 and VAR5 0

A26 Cross coefficient between VAR2 and VAR6 0

A27 Cross coefficient between VAR2 and VAR7 0

A28 Cross coefficient between VAR2 and VAR8 0

A29 Cross coefficient between VAR2 and VAR9 0

A34 Cross coefficient between VAR3 and VAR4 0

A35 Cross coefficient between VAR3 and VAR5 0

A36 Cross coefficient between VAR3 and VAR6 0

Table 197 Parameters for the RSM Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 363X-2006.09

Page 384: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

A37 Cross coefficient between VAR3 and VAR7 0

A38 Cross coefficient between VAR3 and VAR8 0

A39 Cross coefficient between VAR3 and VAR9 0

A45 Cross coefficient between VAR4 and VAR5 0

A46 Cross coefficient between VAR4 and VAR6 0

A47 Cross coefficient between VAR4 and VAR7 0

A48 Cross coefficient between VAR4 and VAR8 0

A49 Cross coefficient between VAR4 and VAR9 0

A56 Cross coefficient between VAR5 and VAR6 0

A57 Cross coefficient between VAR5 and VAR7 0

A58 Cross coefficient between VAR5 and VAR8 0

A59 Cross coefficient between VAR5 and VAR9 0

A67 Cross coefficient between VAR6 and VAR7 0

A68 Cross coefficient between VAR6 and VAR8 0

A69 Cross coefficient between VAR6 and VAR9 0

A78 Cross coefficient between VAR7 and VAR8 0

A79 Cross coefficient between VAR7 and VAR9 0

A89 Cross coefficient between VAR8 and VAR9 0

PRSM1 Value of target RSM1 0 3

PRSM2 Value of target RSM2 0 3

PRSM3 Value of target RSM3 0 3

Table 197 Parameters for the RSM Model (Continued)

Name Description Default Units Notes

364 Aurora Reference GuideX-2006.09

Page 385: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

PRSM4 Value of target RSM4 0 3

PRSM5 Value of target RSM5 0 3

PRSM6 Value of target RSM6 0 3

PRSM7 Value of target RSM7 0 3

PRSM8 Value of target RSM8 0 3

PRSM9 Value of target RSM9 0 3

DRSMD1 Partial derivative of current RSM model w.r.t. VAR1 0 4

DRSMD2 Partial derivative of current RSM model w.r.t. VAR2 0 4

DRSMD3 Partial derivative of current RSM model w.r.t. VAR3 0 4

DRSMD4 Partial derivative of current RSM model w.r.t. VAR4 0 4

DRSMD5 Partial derivative of current RSM model w.r.t. VAR5 0 4

DRSMD6 Partial derivative of current RSM model w.r.t. VAR6 0 4

DRSMD7 Partial derivative of current RSM model w.r.t. VAR7 0 4

DRSMD8 Partial derivative of current RSM model w.r.t. VAR8 0 4

DRSMD9 Partial derivative of current RSM model w.r.t. VAR9 0 4

1. MODNUM should be from 1 to 9 to evaluate a single RSM model. If MODNUM = 0, all 9 RSM models will be evaluated.

2. MODE should be 0 for evaluation of the RSM surfaces only. MODE should be 1 to evaluate the partial derivatives of the model in addition to the model.

3. The parameters PRSM1, PRSM2,… PRSM9 are output by the model, and should not be modified.

4. The parameters DRSMD1, DRSMD2,…DRSMD9 are output by the model, and should not be modified.

Table 197 Parameters for the RSM Model (Continued)

Name Description Default Units Notes

Aurora Reference Guide 365X-2006.09

Page 386: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

Multiple Parameter SetsThe RSM model is unique among the built-in Aurora models in having multiple sets of parameters available. These additional parameter sets allow you to fit multiple independent RSM surfaces, save the fitting parameters for each surface, and then join the multiple independent surfaces together to form a composite response surface. The parameter MODNUM switches between the nine available RSM models. That is, if

, where , the RSM model is given by

(3)

The parameters A0 through A99 for each RSM surface are maintained separately from the parameters for the other eight surfaces.

Model Evaluation

The results of model evaluation are available not only in the targets , but also in the parameters . Since the parameters can be accessed as assigned names, it is possible to do arbitrary calculations on the values, as well as printing them out to a formatted file.

As a special case, if , all models are evaluated. This feature is useful for forming composite surfaces after individual models have been fit. The point at which the surfaces are evaluated is given by the currently selected values of the variables VAR1, VAR2,…VAR9.

Partial Derivative CalculationPartial derivatives of the surface with respect to each variable are calculated to add sensitivity information into composite response surfaces. The parameter mode should be set to 0 to turn off the derivative calculation, and should be set to 1 to turn on the derivative calculation. The surface to be used in the derivative calculation is specified with the MODNUM parameter.

For example, if ,then , and ,.

The point at which the derivative is to be calculated is given by the currently selected values of the variables VAR1, VAR2, … VAR9. These partial derivatives are output only as parameters DRSMD1 through DRSMD9, and

MODNUM n=

n 1,2,...,9=

RSMn A0

i 0=

NVAR

∑ Ai VARi

j i=

NVAR

∑i 1=

NVAR

∑ Aij VARi VARj⋅ ⋅+⋅+=

RSMn

PRSMn

MEDNUM 0=

MODNUM 3= DRSMD1∂RSM3∂VAR1----------------= DRSMD2

∂RSM3∂VAR1----------------=

366 Aurora Reference GuideX-2006.09

Page 387: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

they are not available as targets. This means that they cannot be used as part of the fitting procedure. However, they can be used in the formation of composite response surfaces after the surfaces have been fit.

Note:

Although calculating partial derivatives does not change model results, it does slow calculation. Turn on this calculation only when needed.

Aurora Reference Guide 367X-2006.09

Page 388: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Chapter 2: Model DescriptionsResponse Surface Methodology (RSM) Model

368 Aurora Reference GuideX-2006.09

Page 389: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

33Input Statement Descriptions

Presents Aurora program statements.

The Aurora program is directed via input statements that appear in a command input file or that are entered interactively from a terminal.

This chapter describes the statements Aurora recognizes. The first section of this chapter describes the input statement format and defines the syntax used in the detailed documentation contained in the sections that follow. The last section summarizes the input statements.

Input Statements

This section discusses the following topics:■ Format■ Input limits■ Syntax

Format

Aurora input statements are specified in a free form format with the following characteristics:■ A statement consists of a statement name followed by a list of parameter

names and values. ■ A statement may occupy more than one line by using continuation lines. ■ An input line is a continuation line if the first nonblank character is a plus (+)

or if the last nonblank character of the previous input line was a plus. This sequence is not available during interactive input mode.

Aurora Reference Guide 369X-2006.09

Page 390: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ Statements may be broken for continuation only between parameter specifications.

■ Only the first 80 characters (including blanks) of each line are processed. If the first 80 characters of a line are all blank, the line is ignored.

■ Nonprinting characters, such as backspace, horizontal tabulation, line feed, form feed, and carriage return, are converted to blanks.

Input Limits

The input file to Aurora is limited to: ■ 1000 input statements■ 2000 input lines (including blank lines) ■ 60,000 characters to specify the input statements ■ Up to 250 parameters can be optimized simultaneously■ Up to 800 data files can be used■ Parameter values larger than 1e30 and smaller than 1e-30 are supported.

These limits apply to the complete input, including statements entered interactively and through CALL statements.

Syntax

Valid statement and parameter names are those defined by the Aurora keyfiles, described in Chapter 1. Each name consists of one to eight consecutive nonblank characters. Names may be abbreviated by omitting characters from the end, if the abbreviation is unambiguous.

AppendingExtra characters may be appended to a name. For example, I.P and I.PRINTALL are both acceptable statement names. I. is not acceptable because it is ambiguous (it could be I.PRINT or I.SAVE), and I.PALL is not acceptable because it does not match a valid statement name.

Statements with ParametersEvery statement begins with a statement name, which may be followed by parameter names with associated values. Some parameters must be assigned

Aurora Reference Guide 370X-2006.09

Page 391: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

values. In such cases an equals character (=) separates the value from the parameter name.

Parameter name/value pairs are separated from the statement name and from each other by blanks or commas. Blanks are permitted anywhere, except within a name or a value.

Statements without ParametersSome statements, such as the BATCH, RETURN, and STOP statements, have no associated parameters. In this case, the first input line of the statement consists of the statement name followed by a character value, while each continuation line contains only a character value.

The character value on each input line may be either a single character expression or an arbitrary character string in which the first nonblank character is not a quote (”) or a commercial at (@).

Other Parameter NamesMany Aurora statements use variable, parameter, or target names as parameters; these are indicated in the statement descriptions as <Vname>, <Pname>, and <Tname>, respectively. Variable, parameter, target, and model names may also appear as character values to be assigned to character-type parameters.

Parameters

Parameters in Aurora may be one of four types: ■ Logical ■ Numerical■ Array ■ Character

The syntax for specifying the value of a parameter depends on its type.

Aurora Reference Guide 371X-2006.09

Page 392: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Logical

A logical parameter has a value of “true” or “false.” The value is “true” if the parameter name appears by itself. The value is “false” if the parameter name is preceded by a NOT character (^, !, or #).

A logical parameter is also assigned a logical value by following the parameter name with an equals character (=) and the logical value. Blanks on either side of the equals character are ignored.

The logical value may be specified with any valid numerical expression (see Numerical Expressions on page 4). The logical value is negated if the parameter name is preceded by a NOT character (^, !, or #).

Numerical

A numerical parameter is assigned a numerical value by following the parameter name with an equals character (=) and the numerical value. Blanks on either side of the equals character are ignored. The numerical value may be specified with any valid numerical expression.

Array

The value of an array-type parameter consists of a list of one or more numerical values. The general form of an array specification is:

PARM(i)=(<V1>, <V2>, …, <Vn>)

where <V1>, <V2>, and <Vn> are numerical values. The numerical values are enclosed in parentheses and separated by commas and/or blanks. If only one list value is specified, the parentheses may be omitted.

The index i specifies that the first value in the list be assigned to element number i of the array; subsequent list values are assigned to subsequent array elements.

Each array specification must be contained on a single input line. To specify large arrays, increment the starting array index as shown in the following example:

PARM(01)=(<V01>, <V02>, …, <V10>) +PARM(11)=(<V11>, <V12>, …, <V20>) +PARM(21)=(<V21>, <V22>, …, <V30>) +PARM(31)=( . . .

Aurora Reference Guide 372X-2006.09

Page 393: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The index i and its enclosing parentheses may be omitted. In such cases, the assignment of list values starts with the first element of the array. The index i and the numerical list values are specified with any valid numerical expressions.

A pair of commas (separated by one or more blanks) in the value list denotes a null list value, and leaves the corresponding array element unspecified.

Character

A character parameter is assigned a character value by following the parameter name with an equals character (=) and the character value. Blanks on either side of the equals character are ignored. The character value may be specified with any valid character expression (see Character Expressions). The length of a character value may not exceed 80 characters.

Numerical Expressions

Numerical expressions are used to specify the indices for array parameters and the values of logical, numerical, and array parameters. Blanks are not used in numerical expressions because blanks are used to separate parameter names and values.

Components

Numerical expressions contain the components described in the following sections.

Numerical ValuesNumerical values are used as arguments to arithmetic operators, relational operators, numerical functions, and logical functions. Numerical constants may be specified with any valid FORTRAN integer, fixed point, or floating point decimal number representation.

As an example, the following are equivalent valid numerical constants:

.50.50.005E+2+05D-1

Aurora Reference Guide 373X-2006.09

Page 394: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Logical ValuesLogical values may be used as arguments to logical operators and logical functions. The following logical constants are available:

Assigned NamesAssigned names may be used in place of numerical or logical values as long as the assigned names are of type numerical or logical. See"Controlling Program Execution‚" p. -480.

Character ExpressionsCharacter expressions may be used as arguments to relational operators and logical functions. Character expressions may also be used as arguments to conversion functions as long as the values of the expressions represent valid numerical or logical values.

Delimiters Delimiters establish precedence and separate function arguments:

( ) parentheses for delimiting groups; semicolons for delimiting multiple arguments in functions

Arithmetic Operators Arithmetic operators operate on a pair of numerical values and return a numerical value:

x + y additionx - y subtractionx * y multiplicationx / y division ()x ** y exponentiation ()

true values false values

true false

t f

yes no

y n

Aurora Reference Guide 374X-2006.09

Page 395: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Relational Operators Relational operators operate on a pair of numerical or character values and return a logical value:

x < y less thanx <= y less than or equal tox = y equal tox ^= y not equal tox > y greater thanx >= y greater than or equal to

Logical Operators Logical operators operate on a single logical value or on a pair of logical values and return a logical value:

^ x logical negation (not)x & y logical andx | y logical or

Numerical Functions Numerical functions operate on numerical values and return a numerical value:

exp(x) exponentiallog(x) natural (base e) logarithm ()log10(x) common (base 10) logarithm ()erf(x) error functionerfc(x) complementary error functionsqrt(x) square root ()sin(x) sine (x in radians)cos(x) cosine (x in radians)tan(x) tangent (x in radians)asin(x) arcsine ()acos(x) arccosine ()atan(x) arctangent ()atan2(x;y) arctangent ()sinh(x) hyperbolic sinecosh(x) hyperbolic cosinetanh(x) hyperbolic tangentabs(x) absolute valueint(x) truncationnint(x) nearest whole number ()

Aurora Reference Guide 375X-2006.09

Page 396: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

mod(x;y) remaindering ()sign(x;y) transfer of sign ()dim(x;y) positive difference ()min(x;y;…) choosing smallest value (maximum of 80 arguments)max(x;y;…) choosing largest value (maximum of 80 arguments)

Logical Functions Logical functions operate on a logical, numerical, or character value and return a logical value:

ltype(x) true if x is a logical value; false otherwisentype(x) true if x is a numerical value; false otherwisectype(x) true if x is a character value; false otherwise

Conversion Functions Conversion functions operate on a character value and return a logical or numerical value:

lval(x) convert the character value x to the equivalent logical valuenval(x) convert the character value x to the equivalent numerical value

Component Precedence

The components of numerical expressions are evaluated according to the following order of precedence:

1. Groups delimited by parentheses evaluated from inner to outer

2. Functions evaluated from left to right

3. Exponentiation operators evaluated from right to left

4. Multiplication and division arithmetic operators evaluated from left to right

5. Addition and subtraction operators evaluated from left to right

6. Relational operators evaluated from left to right

7. Logical negation operators evaluated from left to right

8. Logical and operators evaluated from left to right

9. Logical or operators evaluated from left to right

Aurora Reference Guide 376X-2006.09

Page 397: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Note:

Conversion occurs between logical and numerical values in some situations. Logical values are converted from true to 1.0 and from false to 0.0 when they appear as arguments to arithmetic operators, relational operators, and numerical functions. Numerical values are converted from nonzero to true and from zero to false when they appear as arguments to logical operators.

Examples of Numerical Expressions

The following table contains examples of numerical expressions:

In the above examples, VAL1 and VAL2 are assigned names. Assigned names are discussed with the description of the ASSIGN statement.().

Character Expressions

Character expressions are used to specify the values of character parameters and the contents of statements, such as the BATCH, RETURN, and STOP statements, which have no associated parameters.

Expression Value

(2+sqrt(5))*(4/2**3) 2.12

@VAL1*(@VAL2+1.E12) 2.2E13 (for VAL1=2, VAL2=1E13)

2*3/4*5 7.5

2*3+4+exp(6/5) 13.32

2<5 true

“aa”>”ab” false

^(2<5)|”aa”>”ab” false

(2<5)&true true

1 + 1 (***invalid***—contains blanks)

Aurora Reference Guide 377X-2006.09

Page 398: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

They may also appear in numerical expressions as arguments to relational operators, logical functions, and conversion functions. (Numerical Expressions.)

Syntax

Character expressions may be either nonblank character strings or concatenations of any combination of character strings enclosed in quotes (“) and assigned names. Blanks are only allowed in character expressions within quoted character strings. Character expressions may not be continued from one input line to the next.

Length

The length of a character expression may not exceed 80 characters after replacement of assigned names and removal of quotes around quoted character strings.

Examples of Character Expressions

The following table contains examples of character expressions:

Expression Value

string string

“this string” this string

“this”” string” this string

@VAL1” string” this string (for VAL1=“this”)

@VAL1@VAL2 this string (for VAL1=“this”, VAL2=“string”)

this string (***invalid***—contains blanks and is not enclosed in quotes)

‘this string’ (***invalid***—contains blanks and is not enclosed in quotes)

Aurora Reference Guide 378X-2006.09

Page 399: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Statement Format Description

The remainder of this chapter describes the input statements recognized by Aurora. The description of each statement consists of a formatted list of the parameters associated with the statement, followed by a table of parameter descriptions. The parameter list indicates the type of each parameter, identifies which parameters are optional, and defines valid combinations of parameters.

Parameter Definition Table

The parameter definition table includes the following:■ Parameter name■ Parameter type■ Parameter function and synonyms■ Default value■ Physical units

The parameter type is specified as one of the following:

logical - logical parameter

number - numerical parameter

array - array parameter

character - character parameter

Syntax of Parameter Lists

The following special characters are used in the formatted parameter list that appears at the beginning of each statement description: ■ Angle brackets < >■ Square brackets [ ] ■ Vertical bar |■ Braces { } ■ Parentheses ( )

Aurora Reference Guide 379X-2006.09

Page 400: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Value TypesA lower case letter in angle brackets represents a value of a given type. The following types of values are represented:

<n> - numerical value

<a> - array value

<c> - character value

For example,

PARM1=<n>

indicates that the PARM1 parameter is assigned a numerical value.

Defining GroupsBraces, parentheses, and square brackets are used to define groups of parameters or groups of groups. For example,

{( PARM1 [PARM2 [PARM3]] PARM4 ) PARM5}

is a valid group, composed of the subgroups (PARM1 [PARM2 [PARM3]] PARM4 )and PARM5.

The first subgroup may be subdivided further into the subgroups PARM1, [PARM2 [PARM3]], and PARM4

Optional GroupsSquare brackets enclose groups that are optional. For example,

STMT1 [PARM1] [ PARM2 PARM3 ] [ PARM4 [PARM5] ]

indicates that in the STMT1 statement, the parameter PARM1 is optional. The group [ PARM2 PARM3 ] is optional, but if PARM2 is specified, PARM3 must also be specified. The group [ PARM4 [PARM5] ] is optional, but PARM5 may be specified only if PARM4 is specified.

List of GroupsWhen one of a list of groups must be selected, the groups are enclosed in braces and separated by vertical bars. For example,

STMT2 {PARM1 | PARM2 | PARM3 PARM4 )}

indicates that the STMT2 statement requires that one of the three groups PARM1, PARM2, or( PARM3 PARM4 )be specified.

Aurora Reference Guide 380X-2006.09

Page 401: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Group HierarchyParentheses enclose groups considered as single items in higher level groupings. For example, in the above STMT2 statement, the group ( PARM3 PARM4 ) constitutes one of three possible choices, and is therefore enclosed in parentheses.

Note:

The special characters (< >, [ ], |, { }, and ( )) in the above examples indicate parameter types, optional groups, alternate choices, and group hierarchy. They should not form part of the actual input to Aurora.

Multiple NamesEllipses (…) are used in connection with variable, parameter, and target names (<Vname>, <Pname>, and <Tname>, respectively) to indicate that more than one name (of the appropriate type) may be specified.

Model Specification

The following statements specify the model for which parameters are to be extracted:

Statement Definition Page

MODEL Lists available models or specifies a model to use. -382

SIMULATOR Defines names and command strings for invoking external circuit simulators.

-383

TARGET Defines a secondary target (e.g., conductances or gains).

-385

MACRO Specifies the file that contains the circuit netlist template used with user-defined simulators.

-390

LANG (SABER specific) Specifies the language used to describe the template used with user defined simulators.

-391

SCS (SABER specific) Specifies the name of the .scs template file (command file) to run SABER simulator.

-392

Aurora Reference Guide 381X-2006.09

Page 402: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

MODEL

The MODEL statement defines the model to be used during optimization.

MODEL [U

NNAMED INITIALED [SIMULATO=<c>] ]

Description

The MODEL statement identifies the model to be fit by the NAME keyword and a parameter initialization file by the INITIAL keyword. If NAME and INITIAL are not specified, a list of available model names is printed.

The SIMULATO parameter specifies the name of an external circuit simulator to be used for model evaluation. This parameter is only meaningful for those models that use an external circuit simulator to perform model evaluation. The SIMULATOR statement is used to define valid simulator names.

Because most Aurora commands require a valid model to be specified initially, a MODEL statement is usually the first statement in a run, apart from title and comments. The MODEL statement resets Aurora to its original state, discarding all data, parameters, or variable selections. To read a new INITIAL parameter file without resetting Aurora, use the REVERT command.

SETTARG Defines a target for a loop-based optimization (e.g., delays).

-393

Parameter Type Definition Default Units

NAME character The name of the model. none

INITIAL character The identifier for the parameter initialization file. none

SIMULATO character The name of the external circuit simulator to be used for model evaluation. Valid names are defined with the SIMULATOR statement.

none

Aurora Reference Guide 382X-2006.09

Page 403: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The INITIAL parameter file has four columns containing the name, initial, minimum, and maximum values for each model parameter. The minimum and maximum values may be omitted for parameters that are not to be extracted. An “*” preceding the name indicates that the parameter is to be extracted. Lines beginning with “$” are ignored.

Assigned Name

When a model is specified, an assigned name is created for each parameter and given the initial value of the parameter (see the ASSIGN statement). For example, if the parameter VTO is initialized to 0.5, the assigned name VTO is created and initialized to 0.5 also. If no initial value is given for a parameter, the associated assigned name is given the value zero. Assigned names are useful for writing parameter values with the PRINT statement and the FILE keyword. They are also used in numerical expressions in succeeding input statements.

The value of the assigned name associated with each parameter changes with the value of the parameter. The value of the assigned name is changed directly by the FIX, EXTRACT, REVERT, and OPTIMIZE statements, or indirectly by the OPTIMIZE, PLOT, and SUMMARIZE statements.

SIMULATOR

The SIMULATOR statement defines the names and command strings used to invoke external circuit simulators for model evaluation.

SIMULATOR NAME=<c> [C1=<c>] [C2=<c>] [C3=<c>] [C4=<c>] [C5=<c>]

Parameter Type Definition Default Units

NAME character The name of the external circuit simulator. none

C1 character The first component of the command string that invokes the simulator.

none

C2 character The second component of the command string that invokes the simulator.

none

Aurora Reference Guide 383X-2006.09

Page 404: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The SIMULATOR statement defines the names and command strings associated with external circuit simulators. The command strings are used to invoke the simulators for model evaluation. If NAME is not specified, a list of available simulator names and command strings is printed.

The names defined by the SIMULATOR statement can be specified by the SIMULATO parameter on the MODEL statement. This is the mechanism for choosing the external circuit simulator to be used to evaluate the model specified by the MODEL statement.

Command String

The command string used to invoke the external circuit simulator is specified with the parameters C1-C5. The command string is formed by concatenating the character strings specified with these parameters. Leading spaces are retained in the character strings, while trailing spaces are removed. The command string can contain text and assigned names. Assigned names are replaced with their current values when the simulator name is specified on the MODEL statement.

For example, if Berkeley SPICE3 is located in the directory /bspice, the name BSPICE could be defined to invoke it with

SIMULATOR NAME=BSPICE C1="/

bspice/spice3 -O @AUSAV < @AUTTN”

For PSPICE located in the directory /pspice, the name PSPICE could be defined to invoke it with

C3 character The third component of the command string that invokes the simulator.

none

C4 character The fourth component of the command string that invokes the simulator.

none

C5 character The fifth component of the command string that invokes the simulator.

none

Parameter Type Definition Default Units

Aurora Reference Guide 384X-2006.09

Page 405: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SIMULATOR NAME=PSPICE C1=”/

pspice/pspice -d0 @AUTTN @AUSAV”

For HSPICE located in the directory /hspice, the name HSPICE could be defined to invoke it with

SIMULATOR NAME=HSPICE C1=”/

hspice/hspice @AUTTN > @AUSAV”

For SABER located in the directory /saber, the name SABER1 could be defined to invoke it with

SIMULATOR NAME=SABER1 C1=”/

saber/saber1 @AUTTN @AUSAV”

which would use the SPICE device model templates provided with SABER.

For SABER located in the directory /saber, the name SABER2 could be defined to invoke it with

SIMULATOR NAME=SABER2 C1=”/

saber/saber2 @AUTTN @AUSAV”

which would use the SABER device model templates provided with SABER.

The initially assigned names AUTTN and AUSAV are used in the above examples to include the names of the temporary files <base>.ttn and <base>.sav, respectively, in the command string. These files are used by Aurora to store the input and output associated with external circuit simulators.

Note:

When creating an input file for Aurora with a text editor, theSIMULATOR statement must precede the MODEL statement. The MODEL statement will not identify the simulator you want if a SIMULATOR statement is issued after a MODEL statement.

TARGET

The TARGET statement is used to define secondary targets, to supply weighting and minimum values for primary and secondary targets, and initiate a flag if the logarithm of a target is to be used instead of the target itself.

Aurora Reference Guide 385X-2006.09

Page 406: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

TARGET

NAME=<c> [WEIGHT=<n>] [MINIMUM=<n>] [FACTOR=<n>] [ { ( EQUALS A=<c> ) | ( {SUM | DIFFEREN | RATIO} A=<c> B=<c> ) | ( DERIVATI A=<c> B=<c> [DELTA=<n>] [SMOOTH=<n>] [DIVIDE] [D.EXP=<n>] T.EXP=<n>)

| ( INV_DER A=<c> B=<c> [DELTA=<n>] [SMOOTH=<n>] [DIVIDE])[D.EXP=<n>] T.EXP=<n>)

| ( POWER=<n> A=<c> ) } | ( MODULE } | ( PHASE } [DESCRIPT=<c>] [UNITS=<c>] ]

Parameter Type Definition Default Units

NAME character The name of the target. none

WEIGHT number The weighting factor applied to this target. 1.0 none

MINIMUM number A minimum absolute target value, below which absolute rather than relative error is used in calculating the fitting error during optimization.

See text units for the target

FACTOR number An optional factor that multiplies the target value

1 none

EQUALS logical Specifies that a secondary target is defined as equal to primary target A.

false

SUM logical Specifies that a secondary target is defined as the sum of primary target A and primary target B.

false

DIFFEREN logical Specifies that a secondary target is defined as the difference between primary target A and primary target B.

false

RATIO logical Specifies that a secondary target is defined as the ratio of primary target A divided by primary target B.

false

Aurora Reference Guide 386X-2006.09

Page 407: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

DERIVATI logical Specifies that a secondary target is defined as the derivative of primary target A with respect to variable B.

false

INV_DER logical Specifies that a secondary target is defined as the inverse of the derivative of primary target B with respect to variable A.Synonym: INVERSE_

false

DELTA number The amount by which the variable B is changed in computing the derivative of primary target A.

Chosen based on the values of variable B

units of variable B

SMOOTH number The range of values for variable B to be used in calculating the derivative of primary target A.

none units of variable B

DIVIDE logical Specifies division by the primary target. false

D.EXP number The exponent of the derivative target. 1.0 none

T.EXP number The exponent of the primary target specified with DIVIDE.

1.0 none

POWER number The exponent for the primary target A used to compute a “POWER” secondary target.

1.0

MODULE logical Specifies that a secondary target is defined as the absolute value of the complex quantity (A + jB), where A and B are primary targets.

false

PHASE logical Specifies that a secondary target is defined as the phase of the complex quantity (A + jB), where A and B are primary targets.

false

A character The name of primary target A used in calculating the secondary target.

none

B character The name of primary target B or variable B used in calculating the secondary target.

none

Parameter Type Definition Default Units

Aurora Reference Guide 387X-2006.09

Page 408: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The TARGET statement has three purposes:■ To define secondary targets in terms of primary targets■ To assign weights and/or minimum values to primary or secondary targets■ To flag whether the target or the log of the target is used during optimization

The TARGET statement may appear anywhere after the MODEL statement.

Secondary Target

Secondary targets are defined by specifying the NAME parameter and one of the parameters EQUALS, POWER, SUM, DIFFEREN, RATIO, or DERIVATI. If the EQUALS parameter is specified, the parameter A specifies the name of the primary target to which the secondary target is equated. The POWER keyword is used to define the exponent for the primary target A. If the SUM, DIFFEREN, or RATIO parameters are specified, the parameters A and B specify the names of the primary targets from which the secondary target is computed. The secondary target is calculated as A+B, A-B, and A/B for SUM, DIFFEREN, and RATIO, respectively.

If the DERIVATI parameter is specified, the parameters A and B specify the names of a primary target and a variable, respectively. The secondary target is calculated as the derivative of A with respect to B, using numerical differentiation of the available data. This calculation requires that data exist for primary target A at several closely spaced values of variable B, for equal values of the other variables. The parameter DELTA is the difference in variable B to be used during the calculation of the numerical derivative. If this parameter is not specified, an appropriate value will be chosen based on the values of variable B. The parameter SMOOTH specifies a range of values of variable B over which a quadratic function is fitted to values of primary target A. The derivative is calculated from the quadratic function, allowing more reliable

DESCRIPT character The description of the secondary target. This information is used to document the model.

none

UNITS character The units of the secondary target. This information is used to document the model.

none

Parameter Type Definition Default Units

Aurora Reference Guide 388X-2006.09

Page 409: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

calculations from noisy data. The DIVIDE keyword specifies that the derivative will be divided by the value of the primary target. Optional exponents for the derivative and for the primary target can be specified with D.EXP and T.EXP, respectively: (dA/dB)D.EXP/AT.EXP.

The INV_DER (INVERSE_) specification acts similar to DERIVATI, except that parameter B specifies the name of the primary target, parameter A specifies the name of the variable, and the inverse of the derivative of A with respect to B is calculated. This target type is used mainly for calculus of Rout in case of MOS models.

The MODULE and PHASE secondary target types apply to complex quantities (such as S-parameters, y-parameters). Examples:

TARGET NAME = s11m MODULE A = s11r B = s11i

TARGET NAME = s11p PHASE A = s11i B = s11r

The FACTOR keyword can be used with any type of secondary target. Its effect is to multiply the value of the target with the specified value (default, 1).

Secondary targets are calculated for all selected variable values for which the required values of primary targets and variables are available. The calculation of derivatives may use values of variable B outside of the selection region.

Weight and Error Values

Weighting factors and/or minimum values are defined by specifying the NAME parameter and the WEIGHT and/or MINIMUM values. A weighting factor is associated with each target. Each data point specifying this target is weighted by the target weighting factor, in addition to any individual weighting factor applied to the point.

The MINIMUM parameter determines whether relative error or absolute error is used for each data point using this target. If the absolute target value is less than MINIMUM, the absolute error scaled by MINIMUM is used; otherwise, relative error is used. MINIMUM specifies the value of Tmin. Every target must have a positive (nonzero) MINIMUM value. If a MINIMUM is not specified for a new target, a default value is computed as follows:

Aurora Reference Guide 389X-2006.09

Page 410: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ If EQUALS or DERIVATI is specified, the minimum for target A is used.■ If SUM or DIFFEREN is specified, the minimum for target A or target B is

used, whichever is smaller.

■ If ratio is specified, a value of 10 -6 times the ratio of the minimum values of targets A and B are used.

Documentation

The DESCRIPT and UNITS parameters are used for documentation and may be listed by the PRINT statement. The value of the UNITS parameter is used in the axis labels on plots, and may be up 12 characters long.

MACRO

The MACRO statement is used to specify the file that contains the circuit netlist template used with user-defined simulators. The file is a complete netlist (e.g., a SPICE .ckt file or a SABER .sin file) except the bias values, instance parameters, and model parameters are in parameterized form.

MACRO

FILE=<c>

An example of a macro SPICE file (circuit template) representing a DMOS transistor is illustrated below.

DMOS1 EXAMPLE FOR MACRO MODELING* RECOMMENDED OPTIONS.OPTION NUMDGT=8 RELTOL=1.0E-6 ABSTOL=1.0E-14 VNTOL=1.0E-6*FOR HSPICE.OPTION INGOLD=2*+ NUMDGT=10 RELTOL=1.0E-6 ABSI=1.0E-14 VNTOL=1.0E-6*+ RELMOS=1.0E-6 ABSMOS=1.0E-14*** BIASES FOR THE SATURATION REGIONV1 1 0 DC $$V1$$V2 2 0 DC $$V2$$ V3 3 0 DC 0.00** DRAIN GATE SOURCE BULKM1 5 2 3 3 M2

Aurora Reference Guide 390X-2006.09

Page 411: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

+W = $$JW$$ +L = $$JL$$** DRAIN GATE SOURCEJ1 1 3 5 JFET1** DEFINE THE MOS MODEL PARAMETERS .MODEL M2 NMOS +LEVEL=$$MLEVEL$$ +VTO=$$MVTO$$+TOX=$$MTOX$$+NSUB=$$MNSUB$$+XJ=$$MXJ$$+LD=$$MLD$$+UO=$$MUO$$+VMAX=$$MVMAX$$+ETA=$$META$$+KAPPA=$$MKAPPA$$** DEFINE THE JFET MODEL PARAMETERS.MODEL JFET1 NJF+VTO=$$JVTO$$+BETA=$$JBETA$$+IS=$$JIS$$** PRINT THE RESULTING CURRENTS

.PRINT DC I(V1)

.END

LANG

The LANG statement is used to specify the input syntax language of the circuit netlist template used for user-defined simulators. It is currently used only with the SABER circuit simulator.

LANG

TYPE=SPICE | MAST

The default value is SPICE.

Aurora Reference Guide 391X-2006.09

Page 412: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SCS

The SCS statement is used to specify the name of the .scs file (batch command file for SABER) that contains the parameterized commands to be used with user-defined external circuit simulators.

SCS

FILE=<c>

An example .sin and .scs template files is illustrated below. The .sin file is specified with the MACRO FILE statement, while the .scs file is described with the SCS FILE statement.

.sin file----------

#macro filespm..model p = ( type = _n, JW = $$JW$$,JL = $$JL$$,MLEVEL = $$MLEVEL$$,MVTO = $$MVTO$$,MTOX = $$MTOX$$,MNSUB = $$MNSUB$$,MXJ = $$MXJ$$,MLD = $$MLD$$,MUO = $$MUO$$,MVMAX = $$MVMAX$$,META = $$META$$,MKAPPA = $$MKAPPA$$,JVTO = $$JVTO$$,JBETA = $$JBETA$$,JIS = $$JIS$$)v.V1 n1 0 = dc = $$V1$$v.V2 n2 0 = dc = $$V2$$

.scs file----------

spm.m1 n1 n2 n3 n4 = model = p , W = $$W$$ , L = $$L$$# .scs file dc divary v.V2 from 0 to 5 by 0.25dt(sigl ..., sweep v(v.V1) , swb 0, swe 5.025, sws 0.25)pr (cn i(v.V1 ), form exp, sigd 6, of $$ausav$$)

Aurora Reference Guide 392X-2006.09

Page 413: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SETTARG

The SETTARG statement is used to define targets for the loop-based optimization (see the LOOP statement). This is mainly intended for transient and AC circuit analysis specific targets, such as delays.

SETTARG

NAME=<c> [GOAL=<n>] [VALUE=<n>] [WEIGHT=<n>]

Parameters

The GOAL keyword specifies the desired value for the current target. VALUE specifies the actual value of the target.

Example of using SETTARG in an optimization loop:

LOOP OPTIMIZE ASSIGN NAME=valp N.VAL=5e-7 + LOWER=3.5e-7 UPPER=1e-6 OPTIMIZE FIX cap value=@valp echo @valp GETVALUE name=val1 value=t goal=vout equal=1.65 rise=3 + ^include model echo @val1 GETVALUE name=val2 value=t goal=vout equal=1.65 rise=4 + ^include model echo @val2 ASSIGN NAME=val3 n.val=@val2-@val1 echo @val3 SETTARG NAME=tar1 GOAL=5.786e-10 [email protected]

Parameter Type Definition Default Units

NAME character The name of the target. none

GOAL number The reference (“measured”) value for this target.

0.0 none

VALUE number The actual value of this target. 0.0 none

WEIGHT number The weighting factor applied to this target. 1.0 none

Aurora Reference Guide 393X-2006.09

Page 414: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Data Specification

The following statements specify the files that contain the data to be fit, and give the format of the data contained in the files:

TABLE

The TABLE statement defines the structure of a data table.

TABLE

<c>

Note:

The table statement must be contained on a single input line, and may not be continued.

Description

The purpose of the table is to define a series of data points. (Up to 200000 data points can now be used for optimization.) Associated with each data point is a

Statement Name Definition Page

TABLE Describes the format of the data tables. -394

VARIABLE Gives values for one or more variables. -396

SCALE Specifies a scale factor to be applied to variables and/or targets in a data table.

-399

ALIAS Allows alternative names to be used for variables and/or targets.

-399

BYPASS Allows columns in a data table to be ignored. -400

SKIP Allows the first few lines of a data file to be skipped. -401

DATA Specifies the files containing the data to be fit. -402

Aurora Reference Guide 394X-2006.09

Page 415: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

unique value for each variable defined by the model. This value is specified in one of four ways:■ Explicitly specified in the table ■ Implied ■ Set by a VARIABLE statement preceding the table■ Take the default value assumed by the model

One or more target values may be associated with each data point.

Character String

The character string associated with the TABLE statement contains a list of variable, target, and/or ignored names. (Ignored names denote columns of data to be ignored, and are specified by the BYPASS statement.) Each pair of names is separated by one or more blanks. Variable names inside angle brackets (< >) define implied variables that vary as specified by associated VARIABLE statements. Variable, target, and ignored names without surrounding angle brackets define values that appear explicitly in the data table.

Table Organization

The data is logically organized as a table, with one column for each explicit (i.e., not enclosed in angle brackets) variable, target, or ignored name in the TABLE statement. Data values are numeric quantities, and must be separated by spaces. Although the TABLE statement may specify a two-dimensional table, the input does not need to be in tabular format; the number of data values on each line is arbitrary, and does not need to be the same from one line to the next.

Data Value

Each data value is associated with a name on the TABLE statement as follows: the TABLE statement is scanned from left to right. When an explicit variable, target, or ignored name is encountered, the next data value is read and assigned to that name; when an implied variable name is encountered, the remainder of the TABLE statement is scanned with the variable set to each of its implied values. When the entire statement has been scanned (including

Aurora Reference Guide 395X-2006.09

Page 416: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

repeats for implied variables), the process starts over again if any data values remain. There must be enough data to complete the last scan of the TABLE statement.

Examples

The following examples may clarify the interpretation of the TABLE statement:

TABLE Vd Id Is

Each row of this table contains values for Vd, Id, and Is, in that order.

VARIABLE Vd VALUE=(1.0, 2.0, 4.0, 8.0)TABLE <Vd> Id Is

A value of Id and a value of Is is read for each of the four values of Vd.

TABLE Vg <Vd> Id IS

A value of Vg is read, followed by a series of values for Id and Is, as in the previous example.

TABLE <Vb> Vg <Vd> Id Is

For each (implied) value of Vb, a value of Vg is read, followed by a series of values for Id and Is, as in the previous examples.

Default

A TABLE statement appearing in the simulation input defines the default table structure for tables occurring in all subsequent data files. A TABLE statement appearing in a data file specifies the table structure for all subsequent tables in that file and overrides any default table structure defined in the simulation input.

VARIABLE

The VARIABLE statement specifies the values of variables for interpretation of data tables.

VARIABLE <Vname>=<n> ...

or

Aurora Reference Guide 396X-2006.09

Page 417: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

<Vname> ... { ( [START=<n>] [END=<n>] [INCREMEN=<n>] [NUMBER=<n>] ) | VALUE=<a> }

Description

The VARIABLE statement specifies the values of one or more variables for use in interpreting subsequent data tables. Variables may be given a single value (with the <Vname>=<n> form), an array of values (using VALUE=<a>), or

Parameter Type Definition Default Units

<VNAME> number Specifies the variable(s) to be given a value or cycled through the specified set of values. If no value is associated with <Vname>, then the following keywords apply.

none units for the variable(s)

START number The first value in the range of values to be used for the variable(s).

END-(NUMBER-1)*INCREMEN

units for the variable(s)

END number The last value in the range of values to be used for the variable(s).Synonym: STOP

START+(NUMBER-1)*INCREMEN

units for the variable(s)

INCREMEN number The increment between values in the range of values to be used for the variable(s).

(END-START)/(NUMBER-1)

units for the variable(s)

NUMBER number The number of values in the range of values to be used for the variable(s). This is one more than the number of steps.

2 none

VALUE array The values to be used for the variable(s). At most 40 values may be specified with this parameter.

none units for the variable(s)

Aurora Reference Guide 397X-2006.09

Page 418: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

range of values specified by the START, END, INCREMEN, and NUMBER keywords (any three of these is sufficient). When multiple values are given (i.e., an array or range), the values are used in sequence, cycling back to the beginning of the sequence if necessary.

Default

A VARIABLE statement appearing in the simulation input defines the default variable values for tables occurring in data files defined by all subsequent DATA statements. A VARIABLE statement appearing in a data file defines the variable values for all subsequent tables in that file and overrides default variable values defined in the simulation input.

Examples

In the first form of the VARIABLE statement, values are assigned to variable names:

VARIABLE W=10.0E-6 L=2.5 e-6 Vb=-2.0

assigns values of 10 microns to W, 2.5 microns to L, and -2 volts to Vb. The same assignment of values can be made with three statements using the VALUE keyword:

VARIABLE W VALUE=10.0

e-6VARIABLE L VALUE=2.5

e-6VARIABLE V

b VALUE=-2.0

Ranges are used when a large number of equal step values is required:

VARIABLE Vd START=0.0 END=5.0 INCR=0.1

This statement specifies 51 values of Vd, starting at 0 and going to 5 volts in steps of 0.1 volts.

When the steps are not equal, the array form is used:

VARIABLE Vb VALUE=( 0.0, -1.0, -3.0, -6.0 )

Note:

The order of the values is significant. The value 0 will be used first, then -1, etc.

Aurora Reference Guide 398X-2006.09

Page 419: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SCALE

The SCALE statement specifies scale factors for variables and targets in the input data files.

SCALE [<Vname>]... [<Tname>]... FACTOR=<n>

Description

The SCALE statement specifies scale factors for variables and targets appearing in input data tables. Each explicitly tabulated value of the indicated variable or target is multiplied by FACTOR.

The SCALE statement appears either in the command input file or in the data input file. A scale factor in the command input applies to all subsequent data files until cancelled or changed by another SCALE statement. A scale factor specified in a data file applies only to that data file, and overrides any scale factor specified in the command input. Each FACTOR replaces any previously specified factors for a given variable or target; factors are not cumulative.

ALIAS

The ALIAS statement changes the name used for a variable or target on the VARIABLE, SCALE, and TABLE statements, and in reading SUMMARY data files.

ALIAS [MODEL=<c>] [DATA=<c>] [CANCEL]

Parameter Type Definition Default Units

<VNAME> logical The variable(s) to be given a scale factor. none

<TNAME> logical The target(s) to be given a scale factor. none

FACTOR number The scale factor to be applied to the specified variable (s) and/or target(s).

none 1.0

Aurora Reference Guide 399X-2006.09

Page 420: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The ALIAS statement changes the name by which a variable or target is recognized in interpreting input data files. MODEL specifies the original name defined by the model, while DATA specifies the new name to be used. The new name is recognized in place of the old name in the VARIABLE, SCALE, and TABLE statements, and in reading SUMMARY format data files. Both the MODEL and DATA keywords are required unless the CANCEL keyword is specified.

The CANCEL keyword is used to cancel previously defined aliases. The substitutions to be cancelled are determined by the MODEL and DATA keywords. If MODEL and/or DATA is specified, then any aliases involving the original and/or new variable or target names are cancelled. If neither MODEL nor DATA is given, then all aliases are cancelled.

ALIAS statements are often required when reading SUMMARY format data files written by Synopsys TCAD device simulators. The use of the ALIAS statement for this purpose is illustrated in the description of the DATA statement.

BYPASS

The BYPASS statement specifies names for data values to ignore during the interpretation of data tables.

Parameter Type Definition Default Units

MODEL character The variable or target name to be changed. This keyword is required unless CANCEL is specified.

none

DATA character The new name for the variable or target. This keyword is required unless CANCEL is specified.

none

CANCEL logical Specifies that the original names of one or more variables or targets are to be restored.

false

Aurora Reference Guide 400X-2006.09

Page 421: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

BYPASS NAME=<c> [CANCEL]

Description

The BYPASS statement defines names for ignored values in data tables. These names may be used in the TABLE statement to account for values not defined by the model used for the simulation. The ignored value names facilitate the use of a data table containing more data than is required by the model.

A BYPASS statement may appear both in the simulation input and in data files. In both cases, the name defined by the BYPASS statement is added to a list of available names to ignore.

Note:

Starting with Aurora 2000.2, an existing variable or target can be also “bypassed”.

SKIP

The SKIP statement specifies lines to skip in a data file.

SKIP LINES=<n>

Parameter Type Definition Default Units

NAME character The name of the data value to ignore. none

CANCEL logical Cancels a previous BYPASS statement. none

Parameter Type Definition Default Units

LINES number The number of data lines to skip. 0 none

Aurora Reference Guide 401X-2006.09

Page 422: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The SKIP statement provides a method for ignoring lines in data files. The ignored lines may contain header information or data that must be temporarily removed from the analysis.

A SKIP statement appearing in the simulation input defines the number of lines to skip at the beginning of each subsequent data file. A SKIP statement in a data file defines the number of lines to skip following the SKIP statement in that file.

DATA

The DATA statement specifies the input data files.

DATA

INPUT=<c> [SUMMARY] [RESET]

Description

Each data file contains one or more data tables separated by one or more input statements from the set COMMENT, TABLE, VARIABLE, ALIAS, SCALE, BYPASS, and SKIP. These statements change the table definition by modifying the table structure or the variable values associated with the table. Any TABLE,

Parameter Type Definition Default

INPUT character The identifier(s) of the data input file(s). If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes (e.g., “file1, file2, file3”).

Synonym: FILE

none

SUMMARY logical Specifies that the input files are summary files from an Synopsys TCAD device simulator.

false

RESET logical Initializes data file structures false

Aurora Reference Guide 402X-2006.09

Page 423: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

VARIABLE, ALIAS and SCALE statements appearing in the data file override defaults previously established by similar statements in the simulation input.

Table Structure and VariablesBefore a data table can be interpreted, the table structure and variable values must be completely defined. The table structure is specified with a TABLE statement. A VARIABLE statement must be used to define the range of variable values for each implied variable appearing in the TABLE statement. Any variable which has not been named in a VARIABLE or TABLE statement assumes its default value defined by the model.

Summary FilesInput data may also be read from SUMMARY format files produced by Synopsys TCAD’s device simulators. The variable names seen by Aurora are of the form V <electrode name>, where <electrode name> is the name of the electrode specified by the device simulator. Target names are of the form <code><electrode name>, where <code> is a one- or two-character quantity code (e.g., I for current). The voltage and current associated with a p-well contact may appear in the summary data file as Vpwell and Ipwell, respectively.

To use these data for the substrate voltage and current in the Aurora MOS model, the ALIAS statement is used:

ALIAS MODEL=Vb DATA=VpwellALIAS MODEL=Ib DATA=Ipwell

Data Selection and Weighting

The following statements specify which data points to fit during an optimization step, which points to plot in a PLOT statement, and the weighting to be applied to each point:

Statement Name Definition Page

SELECT Selects data points to be included for optimization or plotted. -405

INCLUDE Includes selected data points in the set of data to be fit during an optimization step.

-407

Aurora Reference Guide 403X-2006.09

Page 424: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

EXCLUDE Removes selected points from the set of data points to be fit in an optimization step.

-409

WEIGHT Specifies the weight to be applied to selected data points during optimization.

-410

GETVALUE Assigns individual data or model (computed) values to user-defined numerical variables.

-412

SEPARATE Separates the specified target values based on the individual contribution of two minor variables.

-416

Aurora Reference Guide 404X-2006.09

Page 425: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SELECT

The SELECT statement selects the data points to be used by the INCLUDE, EXCLUDE, WEIGHT, and PLOT statements. Data points are selected according to the values of the variables.

SELECT

<Vname>=<n> ...

or [<Vname>] ... {ALL | ( START=<n> END=<n> [INCREMEN=<n>] ) | VALUE=<a>}

Parameter Type Definition Default Units

<VNAME> number Specifies the variable(s) to be selected. If no value is associated with <Vname>, then the following keywords apply.

none units for

variable

ALL logical Specifies that all values of the specified variable(s) are to be selected.

false

START number The first value in a range of values to be selected.

none units for the variable

END number The last value in a range of values to be selected. Synonym: STOP

none units for the variable

INCREMEN number The increment between values in the range of values to be selected. If this parameter is not specified, all values between START and END are selected.

none units for the variable

VALUE array The value(s) of the variable(s) to be selected. At most, 40 values may be specified with this parameter.

none units for the variable

Aurora Reference Guide 405X-2006.09

Page 426: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

SELECT statements are used to define subsets of the input data to be used by the INCLUDE, EXCLUDE, WEIGHT, and PLOT statements. Each subset consists of all data points with a selected value for each variable as specified by preceding SELECT statements. The SELECT statement specifies the selected value(s) of one or more variables.

Variables

The <Vname>(s) specify the variables to be selected by this SELECT statement. If no <Vname> is specified, the statement applies to all variables. A single value for a variable is selected by <Vname>=<n>.

Multiple values are specified by the other keywords: ■ ALL specifies that all values are selected■ START and END specify a range of values■ VALUE gives a list of values to be selected

Groups of SELECT statements are used to define subsets of data for inclusion, exclusion, weighting, or plotting. The selections for any variable are overridden by subsequent SELECT statements for that variable.

Examples Select all data points (all values of all variables):

SELECT ALLSelect data points having W=20e-6 and L=3e-6:

SELECT W=20e-6 L=3e-6or

SELECT W VALUE=20e-6 SELECT L VALUE= 3e-6Select points with Vb of 0, -1, or -3:

SELECT Vb VALUE=(0,-1,-3)Select data for all values of L:

SELECT L ALLIf an INCLUDE statement is encountered after the preceding series of SELECT statements, all data points having W=20e-6 and Vb of 0, -1, or -3 are included.

Aurora Reference Guide 406X-2006.09

Page 427: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The second SELECT L statement supersedes the first, so that all values of L are selected.

INCLUDE

The INCLUDE statement specifies data points to be included for optimization.

INCLUDE

[<Tname>]... [MINIMUM=<n>] [MAXIMUM=<n>] [WEIGHT=<n>] [FILES=<c>] [ALL] [LOG] [INVERSE] [PRIMARY]

Parameter Type Definition Default Units

<TNAME> logical Specifies target(s) to be included from the data files.

false

MINIMUM number The minimum target value to be included.

-1.0e38

units for the target

MAXIMUM number The maximum target value to be included. +1.0e38 units for the target

WEIGHT number The weighting factor applied to each data point included.

1.0 none

FILES character The identifier(s) of the data input file(s) from which data is taken. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3”.

all files are used

ALL logical Specifies that previous SELECT statements are ignored in including data points.

LOG logical Specifies that the logarithm of the target, rather than the target itself, is used for optimization.

false

Aurora Reference Guide 407X-2006.09

Page 428: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The INCLUDE statement specifies data points to be included for optimization, which are added to the set of previously included points.The set of points to be added is specified by previous SELECT statements and by keywords on the INCLUDE statement. The <Tname>(s) specify targets to be included. If no target names are given, values of all primary targets are included.

If the FILES keyword is given, only points from the indicated data input files will be included; otherwise data will be taken from all input files. All files must have been previously specified on a DATA statement. Normally, only data points selected by previous SELECT statements are used. However, if ALL is specified, then previous SELECT statements are ignored.

Only target values greater or equal to MINIMUM and less than or equal to MAXIMUM will be included. MINIMUM and MAXIMUM are useful for eliminating bad data and data for which the model is not valid. If the PRIMARY keyword is also specified and the target to be included is a secondary one, then minimum and maximum values apply to the first primary target from which the current one is calculated. This feature allows you to include a primary and a secondary target, using the same data points (e.g., you can include both ID and gm for ID above threshold), and is especially useful in the case of non-monotonic targets (such as gm).

WEIGHT specifies a weighting factor to be applied to all target values included by this INCLUDE statement. This weight is in addition to the weight specified for each target by the TARGET statement.

INVERSE logical Specifies that the inverse of the target, rather than the target itself, is used for optimization.

false

PRIMARY logical (Only applicable to secondary targets.) Specifies that the MINIMUM or MAXIMUM values apply to the first primary target from which the secondary target is calculated, rather than the secondary target itself.

false

Parameter Type Definition Default Units

Aurora Reference Guide 408X-2006.09

Page 429: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Note:

If weighting targets differently, use values > 1 only. For example, if you are using both ID and Rout and you want to assign a 3 times smaller weighting to Rout, you will use a 3 weighting factor for ID and 1 for Rout.

When the INCLUDE statement is processed, the number of points added and the total number of included points are printed. No data point may be included more than once. If a point specified for inclusion has been previously included, it will not be included again. Thus, the number of points added may be less than the number of points selected by the SELECT and INCLUDE statements.

EXCLUDE

The EXCLUDE statement specifies data points to be excluded from the optimization. It reverses the effect of previous INCLUDE statements.

EXCLUDE

[<Tname>]... [MINIMUM=<n>] [MAXIMUM=<n>] [FILES=<c>] [ALL]

Parameter Type Definition Default Units

<TNAME> logical Specifies target(s) to be excluded from optimization.

false

MINIMUM number The minimum target value to be excluded.

-1.0e38 units for the target

MAXIMUM number The maximum target value to be excluded.

+1.0e38 units for the target

FILES character The identifier(s) of the data input file(s) from which points to be excluded are read. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3”.

all files are used

Aurora Reference Guide 409X-2006.09

Page 430: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The EXCLUDE statement specifies data points to be removed from the set of points included for optimization. It reverses the effects of previous INCLUDE statements.

The set of points to be excluded is specified by previous SELECT statements and by keywords on the EXCLUDE statement. The <Tname>(s) specify targets to be excluded. If no target names are given, values of all targets (primary and secondary) are excluded.

If the FILES keyword is given, only points read from the indicated data input files will be excluded; otherwise data from all input files will be excluded. All files must have been previously specified on a DATA statement. Normally, only data points selected by previous SELECT statements are considered. However, if ALL is specified, then previous SELECT statements are ignored. The statement

EXCLUDE ALL

excludes all data points, leaving no data included for optimization.

Only target values greater or equal to MINIMUM and less than or equal to MAXIMUM are excluded. MINIMUM and MAXIMUM are useful for eliminating bad data and data for which the model is not valid.

When the EXCLUDE statement is processed, the number of points removed and the total number of remaining included points are printed.

WEIGHT

The WEIGHT statement specifies a weighting factor to be applied to included data points.

ALL logical Specifies that SELECT statements are ignored in excluding data points.

false

Parameter Type Definition Default Units

Aurora Reference Guide 410X-2006.09

Page 431: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

WEIGHT

[<Tname>]... [MINIMUM=<n>] [MAXIMUM=<n>] [WEIGHT=<n>] [FILES=<c>] [ALL]

Description

The WEIGHT statement specifies a weighting factor for previously included data points. The set of points to be weighted is specified by previous SELECT statements and by keywords on the WEIGHT statement. The <Tname>(s) specify targets to be weighted. If no target names are given, values of all targets (primary and secondary) are weighted.

Parameter Type Definition Default Units

<Tname> logical Specifies target(s) to be weighted. false

MINIMUM number The minimum target value to be weighted.

-1.0e38 minimum target

value weighted

MAXIMUM number The maximum target value to be weighted.

+1.0e38 units for target

WEIGHT number The weighting factor to be applied to the selected data points.

1.0 none

FILES character The identifier(s) of the data input file(s) from which points to be weighted are read. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3”.

data from all files are weighted

ALL logical Specifies that previous SELECT statements are ignored in weighting data points.

false

Aurora Reference Guide 411X-2006.09

Page 432: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

If the FILES keyword is given, only points read from the indicated data input files will be weighted; otherwise data from all input files will be considered. All files must have been previously specified on a DATA statement. Normally, only data points selected by previous SELECT statements are weighted. However, if ALL is specified, then previous SELECT statements are ignored.

Only target values greater or equal to MINIMUM and less than or equal to MAXIMUM will be weighted.

WEIGHT specifies that the weighting factor is applied to the selected data points. This weight is in addition to the weight specified for each target by the TARGET statement. When the WEIGHT statement is processed, the number of points affected and the total number of included points are printed. The WEIGHT statement specifies a weighting factor to be applied to included data points.

GETVALUE

The GETVALUE statement selects an individual data or model (computed) value, based on specified criteria. The value is assigned to a user-defined variable.

GETVALUE

[NAME=

<c>

] [GOAL=

<c>

] [VALUE=

{<c> | GETINDEX}] [FILES=<c>] [ALL] [MODEL] [INCLUDE][ | {MINIMUM | MAXIMUM } | TOTAL

| RMS | ERRMAX [DISPLAY]| INDEX=<n> | EQUAL=<n> ( [CROSS=<n>] | [RISE=<n>] [FALL=<n>]) | USE_PREV

]

Aurora Reference Guide 412X-2006.09

Page 433: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Parameter Type Definition Default Units

NAME character The name of the user-defined variable to receive the value.

GOAL character The variable or target used with the selection criteria.

VALUE character The variable or target used for getting the value. GETINDEX can be specified for calculating a data point index.

FILES character The identifier(s) of the data input file(s) from which data is taken. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3”.

all files are used

ALL logical Specifies that previous SELECT statements are ignored in including data points.

False

MODEL logical Specifies to use the simulated (computed) values.

False

INCLUDE logical Specifies that only data included for optimization be used. If this parameter is false, the input data points specified by previous SELECT statements are used.

True

MINIMUM logical Specifies the minimum value of GOAL as a criteria.

False

MAXIMUM logical Specifies the maximum value of GOAL as a criteria.

False

TOTAL logical Used to count the included data points for the specified target.

False

RMS logical Computes the RMS error for the specified target, based on the included data points.

False

ERRMAX logical Computes the maximum relative error value, based on the included data points.

False

Aurora Reference Guide 413X-2006.09

Page 434: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The effect of the GETVALUE statement is to assign a specified data or model value to a user-defined numerical variable. VALUE specifies the target or variable used to get the value (i.e., if VGS is specified, a VGS value will be assigned to the user-defined variable). GOAL specifies the variable or target used with the selection criteria.

The GETINDEX keyword can be used to specify the value, instead of a variable or target name. In such a case, the command will return the index of the specified data point.

If the MODEL keyword is specified, the values as calculated from the model are used; otherwise, data values are used. The INCLUDE keyword specifies that only those data points included for optimization are used. INCLUDE is true by default; if it is negated, all data defined by the current selection criteria are used. If the ALL keyword is present, the selection criteria are ignored, and all data are used. If the FILES keyword is given, only data read from the specified file(s) are used.

There are 5 types of selection criteria:

DISPLAY logical Used to display the RMS or ERRMAX value in the GUI.

False

INDEX numerical Specifies the index of the data point for the specified target.

0

EQUAL numerical Specifies the exact value of GOAL as a criteria. 0

CROSS numerical Specifies the total number of occurrences, for EQUAL.

0

RISE numerical Specifies the total number of occurrences, on a rising ramp, for EQUAL.

0

FALL numerical Specifies the total number of occurrences, on a falling ramp, for EQUAL.

0

USE_PREV logical Specifies that the result of a previous simulation is used. This is only available if an external simulator is used for macro-modeling.

False

Parameter Type Definition Default Units

Aurora Reference Guide 414X-2006.09

Page 435: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ MINIMUM or MAXIMUM selects the value of VALUE corresponding to the minimum (respectively maximum) value of GOAL;

■ TOTAL is used to compute the total number of points for GOAL;■ RMS is used to compute the RMS error for GOAL. If GOAL is a variable, the

total RMS error for the used data is computed;■ INDEX is used to specify the index of the point;■ EQUAL specifies a matching value for GOAL; an optional number of

occurrences can be specified by using CROSS, RISE (occurrences on a rising edge) or FALL (occurrences on a falling edge). If CROSS, RISE or FALL are not specified, than the program will try to find an exact match for EQUAL; otherwise the closest possible value is used.

There are two main reasons to use GETVALUE:■ To provide support for data processing and, through it, for direct extraction

methods.■ To provide a more flexible way to compute targets, especially for transient

and AC analysis, mainly intended to be used inside a loop-based optimization.

Example of implementing a direct extraction method for calculating the threshold voltage:

exclude allselect allselect L=@ltargselect region=@idvgselect VGS start=@vgmin1 end=@vgmax1 incr=@vgstep1select VBS=@vbmin1select VDS=@vdlow

include ID+min=2e-7*@w/@ltarg+files=@dfile

include gm+min=2e-7*@w/@ltarg+files=@dfile+primary

getval name=slope value=gm goal=gm max includegetval name=xvg value=vgs goal=gm max includegetval name=yid value=id goal=gm max includegetval name=vonopt value=von goal=gm max ^include model

Aurora Reference Guide 415X-2006.09

Page 436: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

assign name=vonext n.value=@xvg-(@yid/@slope)-0.05assign name=vondif n.value=@vonopt-@vonext

print file=von.ext C.VALUE=@vonext append closeprint file=von.opt C.VALUE=@vonopt append closeprint file=von.dif C.VALUE=@vondif append close

The next example illustrates using GETVALUE to compute the delay of a ring oscillator:

LOOP OPTIMIZE ASSIGN NAME=valp N.VAL=5e-7 + LOWER=3.5e-7 UPPER=1e-6 OPTIMIZE FIX cap value=@valp echo @valp GETVALUE name=val1 value=t goal=vout equal=1.65 rise=3 + ^include model echo @val1 GETVALUE name=val2 value=t goal=vout equal=1.65 rise=4 + ^include model echo @val2 ASSIGN NAME=val3 n.val=@val2-@val1 echo @val3 SETTARG NAME=tar1 GOAL=5.786e-10 [email protected]

SEPARATE

The SEPARATE statement is used to separate the data set, based on the contribution of two minor variables to the values of a specified target. The results are saved in two data files, each of them corresponding to the contribution of one of the minor variables considered. The main purpose is to separate the contribution of area and sidewall for the drain-substrate and source substrate capacitance data before extracting the related parameters. At least two data sets with different values for one or both of the minor variables are necessary.

SEPARATE

[<Target>][VAR1=<c>] [VAR2=<c>] [OUTFILE=<c>] [FILES=<c>] [RESIDUAL]

Aurora Reference Guide 416X-2006.09

Page 437: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The results of the SEPARATE statement are save in two files: <OUTFILE>.<VAR1> (containing only the contribution of VAR1 to the target) and <OUTFILE>.<VAR2> (containing only the contribution of VAR2).

For example, the following statement

separate CT VAR1=A VAR2=P OUTFILE=CTcreates two new data files, CT.A and CT.P

If the RESIDUAL keyword is specified, a third output file, named <OUTFILE>.residual is created. When specifying this keyword, at least three data sets with different values for the minor variables need to be considered.

The SEPARATE statement is based on the paper of N. Gambetta et. al, “A New Extraction Method For Unit Bipolar Junction Transistor Capacitance Parameters”, in Proc. IEEE 1995 Int. Conference on Microelectronic Test Structures, vol.8, March 1995.

Considering the case of a junction capacitance versus reverse applied voltage, for each data point we have:

C(i)meas

Parameter Type Definition Default Units

<TNAME> logical Specifies the target to be considered. false

VAR1 character The first minor variable.

VAR2 character The second minor variable.

OUTFILE character The first part of the file names used to receive the results.

FILES character The identifier(s) of the data input file(s) from which data is taken. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3”.

all files are used

RESIDUAL logical Specifies that a separate “parasitics” contribution to be saved in a third output file; this option only works if at least three different data sets are used.

False

Aurora Reference Guide 417X-2006.09

Page 438: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(V) = A(i)Carea(V) + P(i)Csidewall(V) + Cresidual(V)

(the third term is optional)

The idea is to solve the resulting (obviously overdetermined) linear equation system for each data point, using the least square approach, in order to get the values of Carea, Csidewall and, optionally, Cresidual at each bias point. The results are then saved in two (respectively three) data files.

The following example illustrates the use of the separate statement:

model name = JCAP/SPICE+init = au_par.pargsave file=au_par.parrevert all init=au_par.pardata file = au_data.0data file = au_data.1exclude allselect allassign name = T n.value = 2.700E+01select T = 2.700E+01assign name = A n.value = 1.685E-8select A = 1.685E-8assign name = P n.value = 5.32E-4select P = 5.32E-4select VR value=( 0 1 2 3 4 5)include CT+files = "au_data.0"select allassign name = T n.value = 2.700E+01select T = 2.700E+01assign name = A n.value = 1.109E-8select A = 1.109E-8assign name = P n.value = 5.958E-3select P = 5.958E-3select VR value=( 0 1 2 3 4 5)include CT

separate CT VAR1=A VAR2=P OUTFILE=CT

Aurora Reference Guide 418X-2006.09

Page 439: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Optimization

The following statements control the actual optimization of parameters:

FIX

The FIX statement specifies parameters that are not to be optimized, and assigns values to these parameters.

FIX

<Pname>=<n> ...

or

[ {<Pname> ... | ALL} ] [ {VALUE=<n> | UNDEFINE}

Statements Definition Page

FIX Specifies parameters to be held constant during optimization.

-419

EXTRACT Specifies parameters to be extracted during optimization. -422

COUPLE Specifies parameters to be coupled during optimization. -425

CONTROL Sets values of control constants used by the optimization. -426

OPTIMIZE Extracts parameters, using optimization. -427

REVERT Restores parameters to their values before the last optimization step, or reads parameter values from a file.

-428

SAVE Saves parameter values in a file. -430

GSAVE Saves only the defined values into a file -430

SPSAVE Generates a SPICE model file -431

Aurora Reference Guide 419X-2006.09

Page 440: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The FIX statement specifies one or more parameters to be held fixed during optimization, and assigns values to these parameters. The status of other parameters remains unchanged. The names of the specified parameters must be defined by the model used for the simulation.

If the <Pname>=<n> form is used, or if the VALUE keyword is specified, the numerical value is assigned to the named parameter(s). Otherwise, the parameters being fixed retain their previous values.

Some models, such as the MOS models in standard SPICE, detect whether or not a parameter has been given a value and alter their calculations accordingly. The UNDEFINE keyword specifies that the named <Pname>s are to be treated as though they had never been assigned values.

When the FIX statement changes the value of a parameter, the value of the assigned name associated with the parameter is changed as well.

DFIX

The FIX statement is used for double-precision number input and specifies parameters that are not to be optimized, and assigns values to these parameters.

Parameter Type Definition Default Units

<PNAME> number Specifies model parameter(s) to be fixed and their values. If no value is associated with <Pname>, then the following keywords apply.

none units for parameter

ALL logical Specifies that all model parameters are to be fixed.

false

VALUE number The value to be assigned to the fixed parameter(s).

Synonym: INITIAL

none units for parameter

UNDEFINE logical Specifies that the model parameter(s) are to be reset to their undefined state.

false

Aurora Reference Guide 420X-2006.09

Page 441: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

DFIX

<Pname>=<n> ...

or

[ {<Pname> ... | ALL} ] [ {VALUE=<n> | UNDEFINE}

Description

The DFIX statement specifies double-precision number input for one or more parameters to be held fixed during optimization, and assigns values to these parameters. The status of other parameters remains unchanged. The names of the specified parameters must be defined by the model used for the simulation.

If the <Pname>=<n> form is used, or if the VALUE keyword is specified, the numerical value is assigned to the named parameter(s). Otherwise, the parameters being fixed retain their previous values.

Some models, such as the MOS models in standard SPICE, detect whether or not a parameter has been given a value and alter their calculations accordingly. The UNDEFINE keyword specifies that the named <Pname>s are to be treated as though they had never been assigned values.

Parameter Type Definition Default Units

<PNAME> number Specifies model parameter(s) to be fixed and their values. If no value is associated with

<Pname>

, then the following keywords apply.

none units for parameter

ALL logical Specifies that all model parameters are to be fixed.

false

VALUE number The value to be assigned to the fixed parameter(s).

Synonym: INITIAL

none units for parameter

UNDEFINE logical Specifies that the model parameter(s) are to be reset to their undefined state.

false

Aurora Reference Guide 421X-2006.09

Page 442: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

When the DFIX statement changes the value of a parameter, the value of the assigned name associated with the parameter is changed as well.

EXTRACT

The EXTRACT statement specifies parameters to be optimized and assigns initial values and lower and upper bounds for these parameters.

EXTRACT

<Pname>=<n> ...

or

<Pname> ... [INITIAL=<n>] [LOWER=<n>] [UPPER=<n>]

Description

The EXTRACT statement specifies one or more parameters to be optimized and assigns an initial value, lower bound, and upper bound for these parameters. The status of other parameters remains unchanged. The names of the specified parameters must be defined by the model used for the simulation.

Parameter Type Definition Default Units

<PNAME> number Specifies model parameter(s) to be optimized and their initial values. If no value is associated with <Pname>, the following keywords apply.

none units of parameter

INITIAL number The initial value for the optimized parameter.

Synonym: VALUE

none units for the parameter

LOWER number The lower bound for the optimized parameter(s).

none units for the parameter

UPPER number The upper bound for the optimized parameter(s).

none units for the parameter

Aurora Reference Guide 422X-2006.09

Page 443: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The <Pname>=<n> form of the statement is used to specify initial values only; the second form must be used when lower and upper bounds are given.

The INITIAL, LOWER, or UPPER values replace any previously assigned values for the specified parameters. If both the LOWER and UPPER bounds are given, the smaller value is used as the lower bound and the larger value is used as the upper bound. The optimized value(s) of the specified parameter(s) is always between the lower and upper bounds. If the lower and upper bounds are equal, the parameter is fixed and removed from the optimization.

The optimization algorithm requires that “reasonable” lower and upper bounds (i.e., same order of magnitude as the parameter value) be specified for all parameters to be optimized.

When the EXTRACT statement changes the initial value of a parameter, the value of the assigned name associated with the parameter is changed as well.

Note:

Based on the upper/lower ratio value, the program automatically decides whether to use a log-scale transform of the parameters. This eliminates sensitivity to parameter limits and provides substantially better convergence compared to versions prior to the 1999.4 release of Aurora.

DEXTRACT

The DEXTRACT statement specifies double-precision number input for parameters to be optimized and assigns initial values and lower and upper bounds for these parameters.

DEXTRACT

<Pname>=<n> ...

or

<Pname> ... [INITIAL=<n>] [LOWER=<n>] [UPPER=<n>]

Aurora Reference Guide 423X-2006.09

Page 444: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The DEXTRACT statement specifies double-precision number input for one or more parameters to be optimized and assigns an initial value, lower bound, and upper bound for these parameters. The status of other parameters remains unchanged. The names of the specified parameters must be defined by the model used for the simulation.

The <Pname>=<n> form of the statement is used to specify initial values only; the second form must be used when lower and upper bounds are given.

The INITIAL, LOWER, or UPPER values replace any previously assigned values for the specified parameters. If both the LOWER and UPPER bounds are given, the smaller value is used as the lower bound and the larger value is used as the upper bound. The optimized value(s) of the specified parameter(s) is always between the lower and upper bounds. If the lower and upper bounds are equal, the parameter is fixed and removed from the optimization.

The optimization algorithm requires that “reasonable” lower and upper bounds (i.e., same order of magnitude as the parameter value) be specified for all parameters to be optimized.

When the EXTRACT statement changes the initial value of a parameter, the value of the assigned name associated with the parameter is changed as well.

Parameter Type Definition Default Units

<PNAME> number Specifies model parameter(s) to be optimized and their initial values. If no value is associated with

<Pname>

, the following keywords apply.

none units of parameter

INITIAL number The initial value for the optimized parameter.

Synonym: VALUE

none units for the parameter

LOWER number The lower bound for the optimized parameter(s).

none units for the parameter

UPPER number The upper bound for the optimized parameter(s).

none units for the parameter

Aurora Reference Guide 424X-2006.09

Page 445: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Note:

Based on the upper/lower ratio value, the program automatically decides whether to use a log-scale transform of the parameters. This eliminates sensitivity to parameter limits and provides substantially better convergence compared to versions prior to the 1999.4 release of Aurora.

COUPLE

The COUPLE statement specifies parameter sets to be bound by equality constraints.

COUPLE <Pname1> <Pname2> [INIT]

Description

The COUPLE statement specifies two parameters to be treated as having the same value during the optimization, by enforcing an equality constraint. The new set of parameters is added to the already existing coupled ones. The maximum number of couplings for the COUPLE statement is 14. The INIT keyword removes the already existing couplings.

This statement is useful for enforcing lumped drain and source resistances of a MOSFET to be equal during optimization. For example, in the case of the Level 54 model (when RDSMOD > 0):

COUPLE INIT RSW RDW

COUPLE RSWMIN RDWMIN

Note:

For versions of Aurora prior to 2002.2 the AU_EQUAL_RS_RD environment variable was used in order to enforce RS=RD for MOSFET models. This environment variable is no longer supported.

Parameter Type Definition Default

<PNAME1>, <Pname2>

logical Enforces <Pname1>=<Pname2> during optimization.

false

INIT logical Deletes the existing parameter couplings. false

Aurora Reference Guide 425X-2006.09

Page 446: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

CONTROL

The CONTROL statement specifies control parameters for the optimization algorithm.

CONTROL

[ERR.TOL=<n>] [PAR.TOL=<n>] [DX.MIN=<n>] [DX.MAX=<n>] [ITER.MAX=<n>] [LINSRCH]

Description

The CONTROL statement specifies the parameters used internally by the optimization algorithm. In normal situations, these parameters are not specified; default values are sufficient.

The parameters ERR.TOL and PAR.TOL specify convergence criteria for the optimization. The relative error in the final parameter values is normally less than PAR.TOL. The parameters DX.MIN and DX.MAX are the minimum and maximum perturbations in the parameter values used in the numerical calculation of the Jacobian matrix. The parameters PAR.TOL, DX.MIN, and DX.MAX have the units of the corresponding parameters, scaled by the

Parameter Type Definition Default Units

ERR.TOL number Relative change in sum of squares required for convergence.

1.0e-6 none

PAR.TOL number Relative uncertainty in the parameter values at convergence.

5.0e-4 none

DX.MIN number Minimum relative DELTA-X used to calculate the Jacobian matrix.

1.0e-7 none

DX.MAX number Maximum relative DELTA-X used to calculate the Jacobian matrix.

1.0e-2 none

ITER.MAX number Maximum number of iterations 36 none

LINSRCH logical Enables using a linear search algorithm with OPTIMIZE RETRY.

false

Aurora Reference Guide 426X-2006.09

Page 447: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

difference between the maximum and minimum values for the parameter. The parameter ITER.MAX specifies the maximum number of iterations.

Note:

When using an external circuit simulator, the recommended control options are: ERR.TOL= 1.0E-5 PAR.TOL= 1.0E-3 DX.MIN= 5.0E-3

OPTIMIZE

The OPTIMIZE statement initiates the actual extraction of model parameters.

OPTIMIZE

[MSGLEVEL=N] [RETRY=N] [RESULTS]

Description

The OPTIMIZE statement performs the actual extraction of parameters. The parameters previously specified in EXTRACT statements are optimized, while those specified in FIX statements are held constant. Parameters may also be specified as extracted or fixed in the initial parameter file. The model is fit to data included with INCLUDE statements, with less data eliminated by previous EXCLUDE statements. Weighting of data points is specified by the WEIGHT statement and/or on the TARGET and INCLUDE statements.

The MSGLEVEL parameter specifies the amount of information to be output during the extraction process. By default (MSGLEVEL=1), the RMS error is printed at each iteration. A value of zero results in no output, while values of 2 or more give more debugging information.

Parameter Type Definition Default Units

MSGLEVEL number The message level specifying the amount of information to be sent to the user’s terminal during optimization.

1 none

RETRY number Specifies the number of retries. 0 none

RESULTS logical Calculates and prints out the optimization results, including RMS error and parameter sensitivity coefficients, based on final parameter values

false -

Aurora Reference Guide 427X-2006.09

Page 448: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

If MSGLEVEL=0, the parameter values are printed after each iteration.

The RETRY parameter can be used in order to avoid a local minimum point. If the RETRY parameter is positive, the optimization algorithm is restarted from an initial point which is heuristically calculated, based on the previous initial and final points.

Note:

For the current version of Aurora, the maximum number of retries allowed is 2 (RETRY=2).

Results Table

A table describing the results of the optimization is printed in the output file and at the terminal in interactive mode. The optimized values of the extracted parameters become the initial values for succeeding optimization steps. The optimized parameter values are also assigned to the assigned names associated with the extracted parameters. Some models also change the values of assigned names associated with parameters that were not extracted. This usually occurs when parameters not defined are calculated internally by the model; the assigned name receives the calculated value, which may be printed with the PRINT keyword on the ASSIGN statement. Thus, for example, when the MOS/SPICE model calculates PHI from NSUB, the calculated value of PHI is assigned to PHI.

While the assigned name PHI has been assigned a value, the parameter PHI remains undefined.

REVERT

The REVERT statement returns parameters to their state prior to the last OPTIMIZE statement. It may also be used to restore parameter values from a parameter initialization file.

REVERT

[ {<Pname>... | ALL} ] [INITIAL=<c> [SPICE]]

Aurora Reference Guide 428X-2006.09

Page 449: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

its

Description

The REVERT statement returns one or more parameters to their state prior to the last OPTIMIZE statement. The initial value, lower and upper bounds, and extracted/fixed status are restored. The names of the specified parameters must be defined by the model used for the simulation.

If the INITIAL keyword is present, specified parameters are initialized from the specified parameter initialization file. The SPICE keyword specifies that the input parameter file is in SPICE format.

The REVERT statement is used to undo the effects of an OPTIMIZE statement that has produced undesirable results. The parameters may be restored to their previous values before continuing the extraction process. The REVERT statement is useful when multiple extractions from the same initial parameter values are desired. The REVERT statement is also useful when parameter values previously saved with a SAVE statement are needed.

When the REVERT statement changes the initial value of a parameter, the value of the assigned name associated with the parameter is changed as well.

Parameter Type Definition Default Un

<PNAME> logical Specifies model parameter(s) to be returned to their state before the previous optimization.

false

ALL logical Specifies that all model parameters are to be returned to their state before the previous optimization.

false

INITAL character

The identifier for a parameter initialization file. none

SPICE logical Specifies that the initialization file is in SPICE format.

false

Aurora Reference Guide 429X-2006.09

Page 450: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SAVE

The SAVE statement saves the current parameter values, lower and upper bounds, and optimization status in a file, in the format required by the INITIAL keyword of the MODEL and REVERT statements.

SAVE

[FILE=<c>]

Description

The SAVE statement saves the values of all parameters in the specified FILE. The format is that of a parameter initialization file, and is compatible with the INITIAL keyword of the MODEL and REVERT statements. The parameter values are saved in a table that contains the following five columns: ■ An “*” if the parameter is being optimized, or a blank if otherwise ■ The name of the parameter ■ The value of the parameter. If a value has not been specified, this column

and the following columns are left blank. ■ The lower bound for the parameter. If either of the lower or upper bounds

has not been specified, this column and the following are left blank. ■ The upper bound for the parameter

GSAVE

The GSAVE statement saves the current defined parameter values, lower and upper bounds, and optimization status in a file, in the format required by the INITIAL keyword of the MODEL and REVERT statements.

GSAVE

[FILE=<c>]

Parameter Type Definition Default Units

FILE character The identifier for the parameter output file. none

Aurora Reference Guide 430X-2006.09

Page 451: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The GSAVE statement saves the values of only the defined parameters in the specified FILE. The format is that of a parameter initialization file, and is compatible with the INITIAL keyword of the MODEL and REVERT statements. The parameter values are saved in a table that contains the following five columns: ■ An “*” if the parameter is being optimized, or a blank if otherwise ■ The name of the parameter ■ The value of the parameter. If a value has not been specified, this column

and the following columns are left blank. ■ The lower bound for the parameter. If either of the lower or upper bounds

has not been specified, this column and the following are left blank. ■ The upper bound for the parameter

SPSAVE

The SPSAVE statement saves the current defined parameter values in a SPICE model file.

SPSAVE

[FILE=<c>] [MODNAME=<c>] [MODTYPE=<c>]

Parameter Type Definition Default Units

FILE character The identifier for the parameter output file. none

Parameter Type Definition Default Units

FILE character The identifier for the SPICE output file. none

MODNAME character The model identifier. SPICEMOD

MODTYPE character The model type. (autodetect)

Aurora Reference Guide 431X-2006.09

Page 452: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Output

The following statements are used to print and plot information about the model and to obtain more information about the fit of the model to the data:

PRINT

The PRINT statement prints a description of the current model that included information on parameters, variables, and targets. PRINT is also used to produce user-formatted output files.

PRINT

[PARAMETE] [FIXED] [EXTRACT] [VARIABLE] [TARGETS] [ALL] [VALUES] [DESCRIPT] [FULL] [FILE=<c>] [C.VALUE=<c>] [APPEND] [CLOSE]

Statement Name Definition Page

PRINT Prints information about model variables, parameters, and targets, and creates output files according to user specifications.

-432

PLOT Plots model characteristics, input data, and/or relative error between the model and the data.

-434

PLOT.2D Initiates two-dimensional contour plots. -444

CONTOUR Plots contours of constant data values. -450

PLOT.3D Initiates three-dimensional surface projection plots. -452

3D.SURFACE Performs a three-dimensional surface projection plot. -461

LABEL Adds labels to a plot. -463

SUMMARIZE Prints additional information about the fit of the model to the data.

-469

WRTPAR Adds the extracted parameters with and their values into the plot.

-473

Aurora Reference Guide 432X-2006.09

Page 453: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Parameter Type Definition Default Units

PARAMETER logical Requests information on all parameters. False

FIXED logical Requests information on fixed parameters. False

EXTRACT logical Requests information on extracted parameters.

False

VARIABLE logical Requests information on all variables. False

TARGETS logical Requests information on all targets. False

ALL logical Requests information on parameters, variables and targets.

False

VALUES logical Specifies that the values of parameters, variables, and/or targets are printed.

False

DESCRIPT logical Specifies that the descriptions of parameters, variables, and/or targets are printed.

False

FULL logical Specifies that all information on parameters, variables, and/or targets is printed.

False

FILE character

Identifies a file to receive output specified by the C.VALUE keyword on this and succeeding

PRINT

statements.

None

C.VALUE character

Specifies a character string to be output to the file identified by the FILE keyword on this or a preceding PRINT statement.

None

APPEND logical The file specified FILE keyword is opened in append mode.

False

CLOSE logical Specifies that the file opened with the FILE keyword on this or a preceding PRINT statement is closed after writing any string specified by the C.VALUE keyword.

False

Aurora Reference Guide 433X-2006.09

Page 454: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The information printed includes a list of the variables, parameters, and targets defined for the model. The VALUES keyword causes the value(s) associated with a variable, parameter, or target to be printed along with other miscellaneous information. The VALUES output includes the units of the variable, parameter, or target. The DESCRIPT keyword causes the text descriptions to be printed, while FULL requests both kinds of information. If none of these keywords is specified, VALUES is assumed. The PRINT PARAMETE, PRINT EXTRACT, and PRINT FIXED statements are useful in interactive mode for checking the current values and bounds on the model parameters.

The FILE, C.VALUE, and CLOSE keywords are used to produce formatted output files. The FILE keyword identifies a file to be opened. The file will remain open until another PRINT statement with a FILE keyword is encountered, or until a PRINT statement with the CLOSE keyword is processed. The C.VALUE keyword specifies a line of text to be written to an open file.

Note:

Assigned names may be used to include parameter values in the text.

PLOT

The PLOT statement outputs plots of target values versus variable values.

PLOT <Tname>... VARIABLE=<c> [MODEL] [DATA] [INVERSE] [ERROR] [INCLUDE] [FILES=<c>] [ALL] [SELECTED] [X.SUBST=<c>] [MINIMUM=<n>] [MAXIMUM=<n>] [TYPE=<n>] [BOTTOM=<n>] [TOP=<n>] [LEFT=<n>] [RIGHT=<n>] [CLEAR] [AXES] [X.LOGARI] [Y.LOGARI] [TITLE=<c>] [LINE.TYP=<n>] [SYMBOL=<n>] [COLOR=<n>] [INVISIBL] [SAME] [ADD] [PAUSE] [ TIMESTAM [TI.SIZE=<n>] ] [DEVICE=<c>] [PLOT.OUT=<c>] [PLOT.BIN=<c>] [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [X.LABEL=<c>] [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>] [Y.LABEL=<c>] [T.SIZE=<n>] [C.SIZE=<n>]

Aurora Reference Guide 434X-2006.09

Page 455: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Parameter Type Definition Default Units

<TNAME> logical Specifies the target(s) to be plotted on the vertical axis (not required if SAME or ADD is specified).

False

VARIABLE character The name of the variable to be plotted on the horizontal axis. Not required if SAME or ADD is specified.

None

X.SUBST character The name of the target that substitutes the variable on the X axis.

None

MODEL logical Specifies that modeled target values be plotted. Data points are connected by lines.

True, unless ERROR is specified

DATA logical Specifies that input data values be plotted using centered symbols.

True, unless ERROR is specified

INVERSE logical Specifies that the inverse of the modeled target and/or input data values be plotted.

False

ERROR logical Specifies that the unweighted relative error between the model and the input data be plotted. Plotted values are connected by lines.

False

INCLUDE logical Specifies that data points included for optimization be plotted. If this parameter is false, the set of data points selected by previous SELECT statements is plotted.

False

FILES character The identifier(s) of the data input file(s) from which data is to be plotted. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3”.

None

Aurora Reference Guide 435X-2006.09

Page 456: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

ALL logical Specifies that the selection information specified with SELECT statements is ignored during the selection of target values.

False

SELECTED logical Specifies that modeled target values are to be plotted, independently of the available input data points. Points to be plotted are defined by preceding

SELECT

statements.

False

MINIMUM number The minimum target value to be plotted. -1,0e38 units for target

MAXIMUM number The maximum target value to be plotted. +1.0e38 units for

target

TYPE number The plot type: 1=cartezian, 2=polar chart, 3=Smith chart)

1

BOTTOM number The target value associated with the bottom of the vertical axis.

Minimum target value

units for target

TOP number The target value associated with the top of the vertical axis.

Maximum target value

units for target

LEFT number The variable value associated with the left end of the horizontal axis.

Minimum variable value

units for variable

RIGHT number The variable value associated with the left end of the horizontal axis.

Maximum variable value

units for variable

CLEAR logical Specifies that the graphics display area is cleared before beginning the plot.

True

AXES logical Specifies that axes are to be drawn. True

Parameter Type Definition Default Units

Aurora Reference Guide 436X-2006.09

Page 457: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

X.LOGARI logical Specifies that the horizontal axis is logarithmic.

False

Y.LOGARI logical Specifies that the vertical axis is logarithmic. True

TITLE character The character string to be used as the title of the plot.

Character string in the most recent TITLE statement

LINE.TYPE number The type of line used for MODEL and ERROR data. A value of 1 specifies solid lines. Line types greater than 1 generate dashed lines, with the dash size increasing with the value of line type.

1 none

SYMBOL number The type of centered symbol used for plotting input data values. The value of this parameter must be in the range 1 to 15. Values of this parameter are associated with the following symbols:1 Square2 Circle3 Triangle4 Plus5 Upper case X6 Diamond7 Up-arrow8 Roofed upper case X9 Upper case Z10 Upper case Y11 Curved square12 Asterisk13 Hourglass14 Bar15 Star

4 none

COLOR number The color index to be used for the model, data, and error plots.

See text none

Parameter Type Definition Default Units

Aurora Reference Guide 437X-2006.09

Page 458: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

INVISIBL logical Specifies that no graphical output should actually be produced with

STUDIO VIEW

. A plot with this parameter specified is primarily of use for forcing evaluation of the model (see also next option, VISUAL).

VISUAL logical Specifies that graphical output is produced using STUDIO VISUALIZE, not STUDIOVIEW.

To use this plotting option, turn off STUDIOVIEW

and use INVISIBL and VISUAL together.

False

SAME logical Specifies that the above parameters default to values used in the previous PLOT statement. A PLOT statement can be easily repeated with minor changes.

False

ADD logical Specifies that the above parameters (except SAME) default to values used in the previous PLOT statement, except that AXES and CLEAR default to false. Information can be easily added to an existing plot.

False

PAUSE logical Aurora

pauses when the plot is complete. The program continues when a blank line is entered.

Last value specified or false

TIMESTAM logical Specifies that the date and time be plotted in the lower right corner of the plot. This option is not available on all computer systems.

False

TI.SIZE number Height of the characters used to plot the date and time.

Last value specified or 0.25

cm

Parameter Type Definition Default Units

Aurora Reference Guide 438X-2006.09

Page 459: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

DEVICE number Name of the graphics output device. Valid names are defined by the file aupdev. If the value of this parameter is “DEFAULT,” the first entry in aupdev preceded by “*” is chosen.

Last value specified or “DEFAULT”

PLOT.OUT character The identifier for the file in which the character sequences controlling the graphics device are saved. This file is output to the graphics device to reproduce the graphical output. This output is only available for the direct device drivers such as those used when the

DEVICE

parameter is HP2648, HP2623, HP7550, TEK4010, TEK4100, REGIS, or POSTSCRIPT.

<base>.dplt

if the DF entry is “T” in the file

aupdev

PLOT.BIN character The identifier for the file in which the binary information describing the graphical output is saved.

<base>.plt

if the BF entry is “T” in the file

aupdev

X.OFFSET number The distance between the left edge of the graphics display area and the left end of the horizontal axis.

Last value specified, or 2.0

cm

X.LENGTH number The length of the horizontal axis. Last value specified or screen width-X.OFFSET-1.25

Parameter Type Definition Default Units

Aurora Reference Guide 439X-2006.09

Page 460: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

X.SIZE number The height of the characters used to label the horizontal axis.

Last value specified or 0.25

cm

X.LABEL character The character string to be used as the label for the horizontal axis.

Variable name specified on PLOT statement with its value

Y.OFFSET number The distance between the bottom edge of the graphics display area and the bottom end of the horizontal axis.

Last value specified or 2.0

cm

Y.LENGTH number The length of the vertical axis. Last value specified or screen height-Y.OFFSET-1.25

cm

Y.SIZE number The height of the characters used to label the vertical axis.

Last value specified or 0.25

cm

Y.LABEL character The character string to be used as the label for the vertical axis.

Target name specified on the PLOT statement with units

Parameter Type Definition Default Units

Aurora Reference Guide 440X-2006.09

Page 461: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The PLOT statement is used to plot input data values, modeled data values, and the relative error between the two. At least one target name must be specified by <Tname>, unless the SAME or ADD keyword is present. The variable to be plotted on the x axis is specified by the VARIABLE keyword. A target that replaces the variable on the X axis can be specified by using the X.SUBST keyword.

Note:

Aurora supports plotting against minor variables (e.g., you can plot Id vs. length, or Von vs. temperature). An example has been added illustrating this capability (<tmapath>/aurora_2001.2.0/examples/minor_plots/test.in).

Note:

Starting with the 2004.12 version of Aurora, plotting against minor variables is available when using external simulators.

When DATA is specified, a symbol defined by SYMBOL and C.SIZE is plotted at each data point. When MODEL is specified, a line of type LINE.TYP is drawn through modeled target values. ERROR specifies that the relative error between the model and the data is to be plotted; the error is calculated in the same way as for parameter extraction (including use of the MINIMUM parameter on the TARGET statement), except that no weighting is performed.

PRTMOD character The character string to be used as a file name to which ASCII modeled data is written and used to print simulated curve data. Two columns of data are printed; X and Y.

None

T.SIZE number The height of the characters used in the plot title.

Last value specified or 0.4

cm

C.SIZE number The size of the centered symbols used for

DATA

plots.

Last value specified or 0.25

cm

Parameter Type Definition Default Units

Aurora Reference Guide 441X-2006.09

Page 462: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

A line of LINE.TYP is used. The MODEL and DATA parameters are ignored when ERROR is specified.

ColorFor color output devices, the COLOR keyword specifies a color index for the model, data, and error plots. A color index of 1 specifies black (on white) or white (on black), and is always used for axes and title. If a color index greater than 1 is specified, the appropriate color is used for the data, model, and error plots. If no color index is specified, an index of 2 is used for the model, 5 for the error, and 7 for the data. The number of color indices available and the color associated with each index depend on the output device being used.

Normally, a subset of the input data determined by preceding SELECT statements and by the MINIMUM, MAXIMUM, and FILES keywords is plotted. The selection of data for plotting is analogous to the selection of data for the INCLUDE, EXCLUDE, and WEIGHT statements: Only data points (a) with variable values specified by preceding SELECT statements; (b) with target values greater than or equal to MINIMUM and less than or equal to MAXIMUM; and (c) which were read from the specified FILES are used. Modeled values are calculated for each selected input data point.

The selection of data to be plotted may be modified by the INCLUDE, ALL, and SELECT keywords. If the INCLUDE parameter is true, only target values previously included for extraction are plotted. (The FILES keyword is ignored in this case). The ALL keyword specifies that all input data points are plotted, regardless of preceding SELECT or INCLUDE statements.

The SELECTED parameter specifies that model characteristics are plotted independently of any input data. The variable values to be plotted are specified by preceding SELECT statements. The values used for the variables are the same as those that would be selected from an input data set, except that if a range of values with no increment is specified, only the start and end values are used; and if all values of a variable are selected, the default value is used. The MODEL, DATA, ERROR, INCLUDED, FILES, and ALL parameters are ignored when SELECTED is specified.

Caution!

The SELECTED parameter allows maximum flexibility for model characteristics in terms of variables values and ranges. However, when using it, ALL the minor variables (W, L, T, etc.) should be previously selected (see the SELECT statement). Otherwise the program assigns default values which can be different from the ones for the current data.

Aurora Reference Guide 442X-2006.09

Page 463: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

End of AxesThe BOTTOM, TOP, LEFT, and RIGHT parameters specify the data values at the ends of the axes. If not given, appropriate values are determined from the data to be plotted. (If the SAME or ADD parameter is present, the values used in the previous PLOT statement are used.) CLEAR and AXES indicate whether the plotting area is to be cleared and axes are to be drawn, respectively. X.LOGARI and Y.LOGARI specify that the axes should be logarithmic rather than linear. A title may be specified by the TITLE parameter, and its size adjusted by the T.SIZE parameter.

Previous PlotThe SAME parameter makes it easy to redraw the previous plot. It causes all parameters to default to the values used in the previous PLOT statement. In particular, the start and end points of the axes will have the same values, even if different data is plotted. (As usual, the defaults may be overridden.) ADD does the same thing as SAME, except that the default values of AXES and CLEAR are assumed to be false. Thus ADD is useful for adding information to an existing plot, using the same axes.

Setting the PAUSE option causes Aurora to stop when the plot is complete, to allow for viewing or hard copy of the plot. To continue the program, enter a blank line (a space followed by a carriage return) on the terminal.

Device TypeThe DEVICE keyword specifies the type of plot device. The device type is remembered from one PLOT statement to the next; if not specified, the same plot device as in the previous PLOT statement. Valid device names are defined by the aupdev file. The X.OFFSET, Y.OFFSET, X.LENGTH, and Y.LENGTH parameters control the size and position of the plot, while the X.SIZE, Y.SIZE, T.SIZE, C.SIZE, and TI.SIZE parameters control the sizes of the various annotations. Whenever one of these parameters is given, the specified value becomes the default for succeeding PLOT statements.

Note that the PLOT statement may cause the current model to be evaluated, which may, in turn, cause the values of the assigned names associated with some of the model parameters to change. This typically occurs when parameters that were not defined by the user are calculated internally by the model. The assigned name receives the calculated value, which may be printed with the PRINT keyword on the ASSIGN statement. For example, when the MOS/SPICE model calculates PHI from NSUB, the calculated value of PHI is

Aurora Reference Guide 443X-2006.09

Page 464: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

assigned to PHI. Note that while the assigned name PHI has been assigned a value, the parameter PHI remains undefined.

PLOT.2D

The PLOT.2D statement is used to initialize the graphical display device for two-dimensional plots of formatted data files.

PLOT.2D DATA=<c> [X.COLUMN=<n>] [Y.COLUMN=<n>] [Z.COLUMN=<n>] [LINE.TYP=<n>] [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>] [CLEAR] [LABELS] [MARKS] [SCALE] [TITLE=<c>] [T.SIZE=<n>] [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [X.LABEL=<c>] [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>] [Y.LABEL=<c>] [COLOR=<n>] [PAUSE] [TIMESTAM] [TIME.SIZ=<n>] [DEVICE=<c>] [PLOT.OUT=<c>] [PLOT.BIN=<c>]

Parameter Type Definition Default Units

DATA character The identifier for the file containing the data to plot. This file contains measured data, simulated data from another simulator, or data produced by Aurora PRINT statements.

None

X.COLUMN number The index of the column in the file specified by the DATA parameter that contains the horizontal coordinates of the data to be plotted.

1 none

Y.COLUMN number The index of the column in the file specified by the DATA parameter that contains the vertical coordinates of the data to be plotted.

2 none

Z.COLUMN number The index of the column in the file specified by the DATA parameter that contains the data to plot.

3 none

Aurora Reference Guide 444X-2006.09

Page 465: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

LINE.TYP number The type of line used to plot the 2D plot axes. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.

1 none

X.MIN number The horizontal coordinate at the left edge of the display area.

Minimum X.COLUMN

data value

none

X.MAX number The horizontal coordinate at the right edge of the display area.

Maximum X.COLUMN data value

none

Y.MIN number The vertical coordinate at the top edge of the display area.

Minimum Y.COLUMN data value

none

Y.MAX number The vertical coordinate at the bottom edge of the display area.

Maximum Y.COLUMN data value

CLEAR logical Specifies that the graphics display area is cleared before beginning the plot.

True

LABELS logical Specifies that distance labels be plotted along the left and bottom sides of the plot.

True

MARKS logical Specifies that tic marks be plotted along the horizontal and vertical axes.

True

Parameter Type Definition Default Units

Aurora Reference Guide 445X-2006.09

Page 466: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SCALE logical Specifies that the size of the plot is to be reduced from the specified size in either the x or y direction so that the same scale factor can be used in both the x and

y

directions. This parameter facilitates visualization of the data in its proper aspect ratio.

False

TITLE character The character string to be used as the title of the plot.

Character string in the most recent TITLE statement

T.SIZE number The height of the characters in the character string used as the plot title.

0.4 cm

X.OFFSET number The distance by which the left edge of the boundary is offset from the left edge of the graphics display area.

2.0 cm

X.LENGTH number The horizontal length of the plot. Screen width-X.OFFSET-1.25

cm

X.SIZE number The height of the characters used to label the horizontal boundary at the bottom of the plot.

0.25 cm

X.LABEL character The character string used to label the horizontal axis.

X

Y.OFFSET number The distance by which the bottom boundary is offset from the bottom edge of the graphics display area.

2.0 cm

Y.LENGTH number The vertical height of the plot. Screen height-Y.OFFSET-1.25

cm

Parameter Type Definition Default Units

Aurora Reference Guide 446X-2006.09

Page 467: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Y.SIZE number The height of the characters used to label the vertical boundary at the left edge of the plot.

0.25 cm

T.LABEL character The character string used to label the vertical axis.

Y

COLOR number The index of the color used to plot the boundaries, distance marks, labels, and title. The color associated with each color index is dependent upon the color graphics device used. This parameter has no effect if a color graphics device is not used.

1 none

PAUSE logical Specifies that program execution pauses after the completion of all graphical output associated with this statement. A space followed by a carriage return must be entered to continue execution.

False

TIMESTAM logical Specifies that the date and time be plotted in the lower right corner of the plot. This option is not available on all computer systems.

False

TIME.SIZ number The height of the characters used to plot date and time.

0.25 cm

DEVICE character The name of the graphics output device. Valid names are defined by the file aupdev. If the value of this parameter is “DEFAULT,” the first entry in

aupdev

preceded by “*” is chosen.

Last value specified or “DEFAULT”

Parameter Type Definition Default Units

Aurora Reference Guide 447X-2006.09

Page 468: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

Aurora creates two-dimensional plots from a formatted data file on a graphical display device, such as a graphics terminal or a pen plotter. A sequence of input statements defines the quantities to be plotted. This sequence is initiated with a PLOT.2D statement, and includes one or more CONTOUR and LABEL statements. TITLE and COMMENT statements also appear within the two-dimensional plot sequence. The sequence is terminated by a subsequent PLOT, PLOT.2D, or PLOT.3D statement.

DisplayA two-dimensional plot is begun by initializing and optionally clearing the display device. By disabling the clear operation on subsequent plots, two or more independent plots can be displayed simultaneously. This feature is useful for comparing data from different data files or for comparing data with a model.

FileThe DATA parameter on the PLOT.2D statement specifies the file containing the data to plot, and CONTOUR statements are used to specify which contours to

PLOT.OUT character The identifier for the file in which the character sequences controlling the graphics device are saved. This file may be output to the graphics device to reproduce the graphical output. This output is only available for direct device drivers, such as those used when the DEVICE parameter is HP2648, HP2623, HP7550, TEK4010, TEK4100, REGIS, or POSTSCRIPT.

<base>.dplt if the DF entry is “T” in the file

aupdev

)

PLOT.BIN character The identifier for the file in which the binary information describing the graphical output is saved.

<base>.bplt if the BF entry is “T” in the file

aupdev

)

Parameter Type Definition Default Units

Aurora Reference Guide 448X-2006.09

Page 469: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

plot. For example, the following statements plot experimental data contained in the file EXPER:

PLOT.2D DATA=EXPERCONTOUR FIRST=1e14 LAST=3e15 DELTA=1e14

LinesThe file specified by the DATA parameter contains the following two types of lines: ■ Lines that are blank or contain a slash (/) as the first nonblank characters

are ignored and can be used to document the file. ■ Other lines define the data at one point in the distribution. These lines must

contain the following values: ■ Value number X.COLUMN is the x coordinate of the point. This coordinate

must be nondecreasing and change the most slowly. It should increase only after the y coordinate has cycled through all its values.

■ Value number Y.COLUMN is the y coordinate of the point. This coordinate must repeatedly cycle through the y coordinates at each value of the x coordinate. This coordinate must be monotonically increasing and must change most rapidly. It should cycle through all its values before the x coordinate increases. Also, each cycle must contain the same y coordinates in the same order.

■ Value number Z.COLUMN is the value of the quantity to be plotted at the specified x and y coordinates. These lines must contain at least N numerical values in free-field format, where N is the maximum of the indices (X.COLUMN, Y.COLUMN, and Z.COLUMN) for the values listed above. Other values on the line are ignored.

ExampleThe file EXPER contains the following entries:

/ x coordinate y coordinate conc

0.000 0.000 4.55668e+4

0.000 0.100 8.54021e+4

0.000 0.200 1.51341e+15

Aurora Reference Guide 449X-2006.09

Page 470: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The x and y locations are obtained from columns 1 and 2 in this file, while the concentrations are obtained from column 3. Note how the y coordinates cycle through all their values before the x coordinate increases, and each cycle of y coordinates is the same.

Print and CloseThe file specified with the DATA parameter may be produced by PRINT statements. However, the file must be closed before it can be specified with the DATA parameter in a PLOT.2D statement. This can be accomplished by specifying the CLOSE parameter in the last PRINT statement used to generate the file.

Graphical OutputThe two-dimensional graphical output is designed to be compatible with a variety of graphics display devices. The name of the graphics output device is specified with the DEVICE parameter. Once the DEVICE parameter is specified, it becomes the default graphics device for the remainder of the plots in the input file.

CONTOUR

The CONTOUR statement plots contours of constant data value.

CONTOUR

FIRST=<n> [LAST=<n>] [DELTA=<n>] [LINE.TYP=<n>] [COLOR=<n>] [FILL] [PAUSE]

0.100 0.000 2.04184e+15

0.100 0.100 2.08941e+15

0.100 0.200 1.60297e+15

0.200 0.000 9.03292e+14

0.200 0.100 3.61940e+14

0.200 0.200 1.96934e+14

Aurora Reference Guide 450X-2006.09

Page 471: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

A single contour is plotted by specifying its value with the FIRST parameter. Numerous contours are plotted by also specifying the DELTA parameter, giving the separation between each contour. If DELTA is specified, the value of the last contour must also be specified with the LAST parameter.

Parameter Type Definition Default Units

FIRST number The value associated with the initial contour. None atoms/

cm3

LAST number The value associated with the final contour. None none

DELTA number The difference between successive contour values. The sign of this parameter is reversed if necessary to maintain consistency with the relative values of FIRST and LAST.

None none

LINE.TYP number The type of line used for the contour plot. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.

1 none

COLOR number The index of the color used for the contour plot. The color associated with each color index is dependent upon the color graphics device used. This parameter has no effect if a color graphics device is not used.

1 none

FILL logical Specifies that the area between the contours is to be filled with the specified color.

False

PAUSE logical Specifies that program execution pause after completion of all graphical output associated with this statement. A space followed by a carriage return must be entered to continue execution.

False

Aurora Reference Guide 451X-2006.09

Page 472: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The type of line used during the plotting of the data is changed from the default solid line to a variety of dotted and dashed lines. This allows easier distinction between various plots. The values of all contours that appear on the plot are also printed on the standard output device. This facilitates determination of the value of each contour.

PLOT.3D

The PLOT.3D statement is used to initialize the graphical display device for three-dimensional plots of formatted data files and defines the placement, size, and rotation of the plot axes.

PLOT.3D

DATA=<c> [X.COLUMN=<n>] [Y.COLUMN=<n>] [Z.COLUMN=<n>] [THETA=<n>] [PHI=<n>] [CLEAR] [AXES] [LABELS] [MARKS] [TITLE=<c>] [T.SIZE=<n>] [VIEWPORT] [CENTER] [FILL.VIE] [XV.LENGT=<n>] [XV.OFFSE=<n>] [YV.LENGT=<n>] [YV.OFFSE=<n>] [X.MIN=<n>] [X.MAX=<n>] [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [Y.MIN=<n>] [Y.MAX=<n>] [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>] [Z.MIN=<n>] [Z.MAX=<n>] [Z.LENGTH=<n>] [Z.SIZE=<n>] [Z.LOGARI] [X.LABEL=<c>] [Y.LABEL=<c>] [Z.LABEL=<c>] [LINE.TYP=<n>] [COLOR=<n>] [TIMESTAM] [TIME.SIZ=<n>] [DEVICE=<c>] [PLOT.OUT=<c>] [PLOT.BIN=<c>]

Parameter Type Definition Default Units

DATA character The identifier for the file containing the data to plot. This file may contain measured data, from another simulator, or data produced by Aurora

PRINT

statements.

none

Aurora Reference Guide 452X-2006.09

Page 473: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

X.COLUMN number The index of the column in the file specified by the DATA parameter that contains the horizontal coordinates of the data to be plotted.

1 none

Y.COLUMN number The index of the column in the file specified by the DATA parameter that contains the vertical coordinates of the data to be plotted.

2 none

Z.COLUMN number The index of the column in the file specified by the DATA parameter that contains the data to be plotted.

3 none

THETA number The angle of rotation of the plot axes about the x axis (z into y).

50.0 degrees

PHI number The angle of rotation of the plot axes about the z axis (y into x).

50.0 degrees

CLEAR logical Specifies that the graphics display area be cleared before beginning the plot.

true

AXES logical Specifies that the x, y, and z axes be plotted. true

LABELS logical Specifies that labels be plotted along the axes.

true

MARKS logical Specifies that marks be plotted along the axes.

true

TITLE character The character string to be used as the plot title.

Character string in the most recent TITLE statement

T.SIZE number The height of the characters in the character string used as the plot title.

0.4 cm

VIEWPORT logical Specifies that the viewport window be plotted.

true

Parameter Type Definition Default Units

Aurora Reference Guide 453X-2006.09

Page 474: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

CENTER logical Specifies that the plot be centered in the viewport window. If the value of this parameter is false, then the top vertex of the plot is placed at the top of the viewport.

True

FILL.VIE logical Specifies that the plot be scaled to the maximum size that will fit inside the viewport window.

True

XV.LENGT number The width of the viewport. Screen width-XV.OFFSE

cm

XV.OFFSE number The horizontal distance by which the left edge of the viewport is offset from the left edge of the graphics display area.

0.0 cm

YV.LENGT number The height of the viewport. Screen height-YV.OFFSE-1.25

cm

YV.OFFSE number The vertical distance by which the bottom edge of the viewport is offset from the bottom edge of the graphics display area.

0.0 cm

X.MIN number The value associated with the minimum extent of the x axis.

Minimum X.COLUMN data value

none

X.MAX number The value associated with the maximum extent of the

x

axis.

Maximum X.COLUMN data value

none

X.OFFSET number The horizontal distance by which the plot is shifted from its default location in the viewport.

0.0 cm

Parameter Type Definition Default Units

Aurora Reference Guide 454X-2006.09

Page 475: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

X.LENGTH number The length of the

x

axis when THETA=0, PHI=0.

0.5*

min(XV.LENGT,YV.LENGT)

X.SIZE number The height of characters used to label the

x

axis.

0.25 cm

Y.MIN number The value associated with the minimum extent of the

y

axis.

Minimum Y.COLUMN data value

none

Y.MAX number The value associated with the maximum extent of the

y

axis.

Maximum Y.COLUMN data value

none

Y.OFFSET number The vertical distance by which the plot is shifted from its default location in the viewport.

0.0 cm

Y.LENGTH number The length of the

y

axis when this axis lies vertically in the viewport plane (THETA=270, PHI=0).

0.5 * min(XV.LENGT,YV.LENGT)

cm

Y.SIZE number The height of the characters used to label the

y

axis.

0.25 cm

Z.MIN number The value associated with the minimum extent of the

z

axis.

Minimum Z.COLUMN data value

none

Parameter Type Definition Default Units

Aurora Reference Guide 455X-2006.09

Page 476: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Z.MAX number The value associated with the maximum extent of the

z

axis.

Maximum Z.COLUMN data value

none

Z.LENGTH number The length of the

z

axis when THETA=0,PHI=0.

0.5 * min(XV.LENGT,YV.LENGT)

cm

Z.SIZE number The height of the characters used to label the

z

axis.

0.25 cm

Z.LOGARI logical Specifies that the

z

axis is logarithmic.

true

X.LABEL character The character string to be used as the label for the

x

axis.

X

Y.LABEL character The character string to be used as the label for the

y

axis.

Y

Z.LABEL character The character string to be used as the label for the

z

axis.

Z

Parameter Type Definition Default Units

Aurora Reference Guide 456X-2006.09

Page 477: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

LINE.TYP number The type of line used to plot the viewport window. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.

1 none

COLOR number The index of the color used to plot the viewport window and axes. The color associated with each color index is dependent upon the color graphics device used. This parameter has no effect if a color graphics device is not used.

1 none

TIMESTAM logical Specifies that the date and time be plotted in the lower right corner of the plot. This option is not available on all computer systems.

False

TIME.SIZ number The height of the characters used to plot the date and time.

0.25 cm

DEVICE character Name of the graphics output device. Valid names are defined by the file aupdev. If the value of this parameter is “DEFAULT”, the first entry in

aupdev

preceded by “*” is chosen.

The last value specified or “DEFAULT”

PLOT.OUT character The identifier for the file in which the character sequences controlling the graphics device are saved. This file may be output to the graphics device to reproduce the graphical output. This output is only available for direct device drivers such as those used when the DEVICE parameter is HP2648, HP2623, HP7550, TEK4010, TEK4100, REGIS, or POSTSCRIPT.

<base>.dplt

if the DF entry is “T” in the file aupdev

Parameter Type Definition Default Units

Aurora Reference Guide 457X-2006.09

Page 478: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

Aurora can create three-dimensional plots of data from a formatted data file on a graphical display device, such as a graphics terminal or a pen plotter. A sequence of input command statements defines the quantities to be plotted. This sequence is initiated with a PLOT.3D statement, includes one or more 3D.SURFACE and LABEL statements, and is terminated by the next subsequent PLOT, PLOT.2D, or PLOT.3D statement. TITLE and COMMENT statements can also appear within the three-dimensional plot sequence.

ViewportThe diagram below illustrates the viewport, plot axes, and rotation angles. The viewport serves as a reference frame for the placement of the plot axes. The x and y axes correspond to the data specified with the X.COLUMN and Y.COLUMN parameters, respectively. The data in the column specified by the Z.COLUMN parameter is plotted along the z axis.

PLOT.BIN character The identifier for the file in which the binary information describing the graphical output is saved.

<base>.bplt

if the BF entry is “T” in the file aupdev

Parameter Type Definition Default Units

Aurora Reference Guide 458X-2006.09

Page 479: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Figure 1 Diagram of viewport, plot axes, and rotation angles

The orientation of the plot axes with respect to the viewport plane is specified by the angles THETA and PHI. Values of zero for THETA and PHI produce a plot with the x and z axes lying in the viewport plane and the y axis extending out of the plane, directly toward the observer. THETA and PHI can have positive or negative values. They will be reduced modules 360 to v

alues between -360 and +360 degrees.

ExampleMeasured data, simulated data, or data produced by Aurora PRINT statements is plotted by specifying the DATA parameter on the PLOT.3D statement. For example, the following statements plot data contained in the file EXPER:

PLOT.3D DATA=EXPER3D.SURFACE

LinesThe file specified by the DATA parameter may contain the following two types of lines:

theta

phi

Z

X

Y

Viewport

(0.0.0)

Aurora Reference Guide 459X-2006.09

Page 480: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ Lines that are blank or contain a slash (/) as the first nonblank character are ignored and can be used to document the file.

■ Other lines define the data at one point in the distribution. These lines must contain the following values:

■ Value number X.COLUMN is the x coordinate of the point. This coordinate must be nondecreasing and must be the coordinate that changes most slowly. That is, this coordinate should increase only after the y coordinate has cycled through all its values.

■ Value number Y.COLUMN is the y coordinate of the point. This coordinate must repeatedly cycle through the y coordinates at each value of the x coordinate. This coordinate must be monotonically increasing and must be the coordinate that changes most rapidly. That is, this coordinate should cycle through all its values before the x coordinate increases. Also, each cycle must contain the same y coordinates in the same order.

■ Value number Z.COLUMN is the value of the quantity to be plotted at the specified x and y coordinates. These lines must contain at least N numerical values in free-field format, where N is the maximum of the indices (X.COLUMN, Y.COLUMN, and Z.COLUMN) for the values listed above. Other values on the line are ignored.

ExampleThe file EXPER contains the following entries:

/ x coordinate y coordinate boron

0.000 0.000 4.55668e+4

0.000 0.100 8.54021e+4

0.000 0.200 1.51341e+15

0.100 0.000 2.04184e+15

0.100 0.100 2.08941e+15

0.100 0.200 1.60297e+15

0.200 0.000 9.03292e+14

0.200 0.100 3.61940e+14

Aurora Reference Guide 460X-2006.09

Page 481: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The x and y locations are obtained from columns 1 and 2 in this file, while the boron concentrations are obtained from column 3. Note how the y coordinates cycle through all their values before the x coordinate increases, and each cycle of y coordinates is the same.

Print and CloseThe file specified with the DATA parameter may be produced by PRINT statements. However, the file must be closed before it can be specified with the DATA parameter in a PLOT.3D statement. This can be accomplished by specifying the CLOSE parameter in the last PRINT statement used to generate the file.

Graphics OutputThe three-dimensional graphical output is designed to be compatible with a variety of graphics display devices. The name of the graphics output device is specified with the DEVICE parameter. Once the DEVICE parameter is specified, it becomes the default graphics device for the remainder of the plots in the input file.

3D.SURFACE

The 3D.SURFACE statement plots the projection of a three-dimensional view of the specified data onto a two-dimensional viewport.

3D.SURFACE [HIDDEN] [VISIBLE] [LOWER] [UPPER] [X.LINE] [Y.LINE] [MASK] [Z.MIN=<n>] [Z.MAX=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

0.200 0.200 1.96934e+14

Aurora Reference Guide 461X-2006.09

Page 482: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Parameter Type Definition Default Units

HIDDEN logical Specifies that surface lines hidden to the viewer by other parts of the surface be plotted.

False

VISIBLE logical Specifies that surface lines hidden to the viewer by other parts of the surface be plotted.

True

LOWER logical Specifies that surface lines associated with the bottom side of the surface be plotted.

True

UPPER logical Specifies that surface lines associated with the top side of the surface be plotted.

True

X.LINE logical Specifies that surface lines parallel to the x axis be plotted.

True

Y.LINE logical Specifies that surface lines parallel to the y axis be plotted

True

MASK logical Specifies that surface lines above the maximum clipping level or below the minimum clipping level be removed and do not affect the visibility of any other plotted surface lines.

False

Z.MIN number The impurity concentration defining the minimum clipping plane.

Minimum data value in Z.COLUMN column

Z.MAX number The impurity concentration defining the maximum clipping plane

Maximum data value in Z.COLUMN column

LINE.TY number The type of line used to plot the data. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.

1 none

Aurora Reference Guide 462X-2006.09

Page 483: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The 3D.SURFACE statement is only used within plot sequences initiated by the PLOT.3D statement and terminated by the next subsequent PLOT, PLOT.2D, or PLOT.3D statement. Any combination of visible lines, hidden lines, upper surface lines, lower surface lines, x grid lines, y grid lines, or lines lying between specified minimum and maximum clipping planes are plotted. The axes, if specified to be plotted on the preceding PLOT.3D statement, are plotted immediately following the first specified surface to be plotted. The axes are clipped to conform with the view of this first surface.

Various concentration ranges are distinguished by using multiple 3D.SURFACE statements with different clipping plane values and distinct COLOR and/or LINE.TYP values for each concentration range.

LABEL

The LABEL statement plots character strings, centered symbols, and lines as part of a plot associated with the PLOT statement.

LABEL [ {LABEL=<c> | SYMBOL=<n>} ] [X=<n>] [Y=<n>] [ANGLE=<n>] [ {START.LE | START.CE | START.RI} ] [LX.START=<n>] [LY.START=<n>] [LX.FINIS=<n>] [LY.FINIS=<n>] [ARROW] [CM] [C.SIZE=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

COLOR number The index of the color used for the plot. The color associated with each color index is dependent upon the color graphics device used. This parameter has no effect if a color graphics device is not used.

1 none

PAUSE logical Specifies that program execution pause after the completion of all graphical output associated with this statement. A space followed by a carriage return must be entered to continue execution.

False

Parameter Type Definition Default Units

Aurora Reference Guide 463X-2006.09

Page 484: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Parameter Type Definition Default Units

LABEL character The character string used to label the plot. None

SYMBOL number The type of centered symbol used to label the plot. The value of this parameter must be in the range 1 to 15. Values of this parameter are associated with the following symbols:1 Square2 Circle3 Triangle4 Plus5 Upper case X6 Diamond7 Up-arrow8 Roofed upper case X9 Upper case Z10 Upper case Y11 Curved square12 Asterisk13 Hourglass14 Bar15 Star

None none

X number The horizontal location associated with the lower left corner of the first character in the character string or the center of the centered symbol. If the CM parameter is specified, this parameter specifies the location in cm relative to the left edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the horizontal axis.

Left side of the plot for the first LABEL statement after a PLOT; otherwise determined by the previous LABEL statement

cm or horizontal axis units

Aurora Reference Guide 464X-2006.09

Page 485: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Y number The vertical location associated with the lower left corner of the first character in the character string or the center of the centered symbol. If the CM parameter is specified, then this parameter specifies the location in cm relative to the bottom edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the vertical axis.

Top side of the plot for the first LABEL statement after a PLOT; otherwise determined by the previous LABEL statement

cm or vertical axis units

ANGLE number The angle relative to the horizontal of the bottom of the character string or centered symbol.

0.0 degrees

START.LE

logical Specifies that the line start at the left side of the character string or centered symbol.

False

START.CE

logical Specifies that the line starts at the center of the character string or centered symbol.

False

START.RI logical Specifies that the line starts at the right side of the character string or centered symbol.

False

LX.START

number The horizontal starting point of the line. If the CM parameter is specified, this parameter specifies the location in cm relative to the left edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the horizontal axis.

Left side of the plot for the first LABEL statement after a PLOT statement; otherwise the previous value of LX.FINIS

cm or horizontal axis units

LY.START number The vertical starting point of the line. If the CM parameter is specified, this parameter specifies the location in cm relative to the bottom edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the vertical axis.

Top side of the plot for the first LABEL statement after a PLOT statement; otherwise the previous value of LY.FINIS

cm or vertical axis units

Parameter Type Definition Default Units

Aurora Reference Guide 465X-2006.09

Page 486: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

LX.FINIS number The horizontal end point of the line. If the CM parameter is specified, this parameter specifies the location in cm relative to the left edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the horizontal axis.

Horizontal starting point of the line

cm or horizontal axis units

LY.FINIS number The vertical end point of the line. If the CM parameter is specified, this parameter specifies the location in cm relative to the bottom edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the vertical axis.

Vertical starting point of the line

cm or vertical axis units

ARROW logical Specifies that an arrowhead be plotted at the end of the line.

False

CM logical Specifies that the X and

Y

parameters specify the location in cm relative to the left and bottom edges, respectively, of the graphics display area.

False

C.SIZE number The height of the characters in the character string or centered symbol.

0.25 cm

LINE.TYP number The type of line used to plot the line. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.

1 none

COLOR number The index of the color used to plot the character string, centered symbol, and line. The color associated with each color index is dependent upon the color graphics device used. This parameter has no effect if a color graphics device is not used.

1 none

Parameter Type Definition Default Units

Aurora Reference Guide 466X-2006.09

Page 487: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

LABEL statements may appear at any point in the input file after the first PLOT statement. LABEL statements can plot character strings, centered symbols, lines, and arrows. For example, the following statement plots a label:

LABEL LABEL="This is a label"

SizeThe sizes of characters and centered symbols plotted by the LABEL statement are specified by the C.SIZE parameter. Characters have a height of C.SIZE and a width of 0.5713*C.SIZE. The spacing between the left sides of two successive characters in a label is C.SIZE. The length of a label containing n characters is (n-0.4286)*C.SIZE. Centered symbols have a height of C.SIZE and a width of C.SIZE.

LocationThe X and Y parameters specify the location of the lower left corner of the first character in the character string or the center of the centered symbol. Default values are used for the X and Y parameters, if they are not specified.

Default ValuesIf no previous LABEL statements have appeared since the last PLOT statement, the default values for X and Y are selected as follows:

1. A default value is used for X which places the start of the character string or centered symbol at the left side of the current plot.

2. A default value is used for Y which places the start of the character string or centered symbol at the top side of the current plot. For example, the following statements plot axes with a label in the top left corner of the plot:

PAUSE logical Specifies that program execution pause after the completion of all graphical output associated with this statement. A space followed by a carriage return must be entered to continue execution.

False

Parameter Type Definition Default Units

Aurora Reference Guide 467X-2006.09

Page 488: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

PLOT LABEL LABEL="This label appears in the top left corner"

3.

Conditions for DefaultIf previous LABEL statements have appeared since the last PLOT statement, the default values for X and Y are selected based on the following conditions: ■ If neither X nor Y is specified, default values are used for X and Y that place

the character string or centered symbol below the previously plotted string or symbol.

■ If only X is specified, a default value is used for Y that places the start of the character string or centered symbol at the same vertical location as the previously plotted string or symbol.

■ If only Y is specified, a default value is used for X that places the start of the character string or centered symbol at the same horizontal location as the previously plotted string or symbol. For example, the following statements plot a label and a centered square symbol:

LABEL X=.1 Y=1e20 + LABEL=”A centered square is plotted under this label” LABEL SYMBOL=1

The start of the label is placed at coordinates (0.1,1e20) on the plot. The centered square is plotted under the first character in the label.

Line and ArrowheadA line is plotted if either the LX.FINIS or LY.FINIS parameters is specified. An arrowhead is plotted at the end of the line if the ARROW parameter is specified. For example, the following statement plots a line between the coordinates (0.1,1e19) and (0.2,1e20) with an arrowhead at the end of the line:

LABEL LX.START=.1 LY.START=1e19 LX.FINIS=.2 LY.FINIS=1e20 ARROW

Default Starting CoordinatesIf either the LX.START or LY.START parameters is not specified, default starting coordinates are selected based on the following conditions:

Aurora Reference Guide 468X-2006.09

Page 489: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ If START.LE, START.CE, or START.RI is specified, default starting coordinates are selected that place the starting point of the line at the specified edge or center of the character string or centered symbol. For example, the following statement plots a label with a line from the right edge of the label to the coordinates (0.1,1e20):

LABEL LABEL="The line starts at the right" START.RI + LX.FINIS=.1 LY.FINIS=1e20

■ If neither START.LE, START.CE, nor START.RI is specified and a line has been plotted previously since the last PLOT statement, default starting coordinates are selected that place the starting point of the line at the end of the previous line. For example, the following statements plot a line between the coordinates (0.1,1e19), (0.2,1e20), and (0.3,1e21):

LABEL LX.START=.1 LY.START=1e19 + LX.FINIS=.2 LY.FINIS=1e20 LABEL LX.FINIS=.3 LY.FINIS=1e21

The coordinates of the final point of the first line are used as the coordinates for the starting point of the second line. ■ If neither START.LE, START.CE, nor START.RI is specified and a line has

not been plotted previously since the last PLOT statement, default starting coordinates are selected that place the starting point of the line at the top left corner of the plot.

SUMMARIZE

The SUMMARIZE statement prints a summary of model, data, or error values for various combinations of variables.

SUMMARIZE [<Tname>]... [<Vname>]... [ERROR] [MODEL] [DATA][INCLUDE] [FILES=<c>] [ALL] ( [OUTFILE=<c>] [OUTREG =<n>] [APPEND] [VAR.1=<c>] [MINOR] [TABLE] [USEALIAS] [REVERSE] [GRID] )

Parameter Type Definition Default Units

<TNAME> logical The target(s) for which information will be printed. False

Aurora Reference Guide 469X-2006.09

Page 490: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

<VNAME> logical The variable(s) to be treated as independent (see description below).

False

ERROR logical Specifies that the relative error in the modeled target values be included in the summary. The unweighted minimum, maximum, average, and RMS errors are printed.

True

MODEL logical Specifies that minimum and maximum computed target values be included in the summary.

False

DATA logical Specifies that minimum and maximum target values from the input data be included in the summary.

False

INCLUDE logical Specifies that only data included for optimization be summarized. If this parameter is false, the input data points specified by previous SELECT statements are summarized.

True

FILES character The identifier(s) of the data input file(s) from which data is to be taken. If more than one file is specified, the identifiers are separated by commas and/or blanks and enclosed in double quotes, e.g., “file1, file2, file3.”

None

ALL logical Specifies that all input data be summarized. Previous SELECT and INCLUDE statements are ignored.

False

OUTFILE character The identifier(s) of an output file(s) in which computed target values are to be saved, in Aurora data format.

None

APPEND logical Appends to an existing output file when OUTFILE is used.

False

OUTREG number The new REGION value for the data saved with

OUTFILE.

None

MINOR logical Generates the minor variable information when saving a data file with OUTFILE.

True

Parameter Type Definition Default Units

Aurora Reference Guide 470X-2006.09

Page 491: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The SUMMARIZE statement prints the minimum, maximum, average (arithmetic mean), and RMS error in the target(s) <Tname> for each combination of the variable(s) <Vname>. If the MODEL or DATA keyword is specified, the minimum and maximum target values as calculated from the model or read from the input data file(s) are also printed. The INCLUDE keyword specifies that only those data points included for optimization are summarized. INCLUDE is true by default; if it is negated, all data defined by the current selection criteria are summarized. If the ALL keyword is present, the selection criteria are ignored, and all data are summarized. If the FILES keyword is given, only data read from the specified file(s) are summarized.

If no <Tname>s are specified and INCLUDE is true, all targets are summarized; if INCLUDE is false, all primary targets are summarized. Information is printed for every combination of values of the specified <Vname>s. Thus, for example,

SUMMARIZ W Lprints a summary for every combination of values of W and L. If no <Vname>s are given, a summary of all the specified data is printed as one item.

Error DeterminationThe most common use of the SUMMARIZE statement is to determine how the error between the model and data depends on one or more variables. For

TABLE logical Generates the data table header when saving a data file with OUTFILE.

True

VAR.1 character The first variable in the data tasble. None

USEALIAS logical Uses the variable and target names specified with the ALIAS statement in the file created with OUTFILE.

False

REVERSE logical Reverses the order of the data table in the file created with OUTFILE.

False

GRID logical Generates the GRID information for Level 56 model files when OUTFILE is used.

False

Parameter Type Definition Default Units

Aurora Reference Guide 471X-2006.09

Page 492: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

example, the statement given above shows how the error depends on the variables W and L. The SUMMARIZE statement is also used to indicate the data values present in the input data files. Thus, the statement

SUMMARIZ Vgs Vbs ^ERROR FILE="data2" ALLshows which combinations of the variables Vgs

and Vbs

are present in the input file data2.

“Data” GenerationAnother use of the SUMMARIZE statement is to generate an Aurora data file, based on computed (simulated) target values. The statement below generates a data file containing the computed threshold voltage values for a CMI model:

SUMMARIZ Von Vds Vbs Vgs ^DATA ^ERROR ^INCLUDE +MODEL OUTFILE="data2" OUTREG=5This example also illustrates that targets not included in the input data (“

^DATA”) can be also “summarized”, based on computed (“MODEL”) values.

Note:

The number of data points that can be summarized by a single SUMMARIZE statement is limited to the number that can be included for optimization. Thus, it may not be possible to summarize large sets of input data unless some selection criteria are used. The SUMMARIZE statement requires that the model be evaluated at each included or selected data point. Substantial computer time may be required to summarize very large sets of data.

EvaluationEvaluation of the model may cause the values of the assigned names associated with some of the model parameters to change. This typically occurs when parameters not defined by the user are calculated internally by the model; the assigned name receives the calculated value, which may be printed with the PRINT keyword on the ASSIGN statement. For example, when the MOS/SPICE model calculates PHI from NSUB, the calculated value of PHI is assigned to PHI. While the assigned name PHI has been assigned a value, the parameter PHI remains undefined.

Aurora Reference Guide 472X-2006.09

Page 493: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Level 56 (LUT) model file supportStarting with Aurora 2002.2 the SUMMARIZE statement provides support for the Level 56 “model” (table) *.ivin, *.cvin, *.vonin files. The specific keywords used in conjuction with OUTFILE are: VAR.1, USEALIAS, REVERSE and GRID.

WRTPAR

The WRTPAR statement prints the extracted parameters from in the preceding OPTIMIZE in the displayed plot.

WRTPAR [PAR]

Model Definition

The following statements are used only when defining a new model or changing an existing model. They should be used with care, because they cause the model definition file to be rewritten.

Parameter Type Definition Default Units

PAR logical Flag to enable/disable printing of the extracted parameter values (default value enables printing)

True

Statement Name Definition Page

INITIALIZE Specifies the start of a model definition sequence. -474

DEFINE Defines a variable, parameter, or target for a new model. -474

END Specifies the end of a model definition sequence. -477

Aurora Reference Guide 473X-2006.09

Page 494: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

INITIALIZE

The INITIALIZE statement begins the definition of a new model.

INITIALIZE MODEL=<c> INDEX=<n>

Description

The specified model name is used to access the model in MODEL statements. The model index associates the model with a FORTRAN subroutine that calculates the model targets for values of parameters and variables. The subroutine MODEL calculates targets for model number n.

DEFINE

The DEFINE statement defines variables, parameters, and primary targets during the definition of a new model.

DEFINE NAME=<c> [DESCRIPT=<c>] [UNITS=<c>] { ( VARIABLE [DEFAULT=<n>] {MAJOR | MINOR} ) | PARAMETE [NOSPICE] | ( TARGET MINIMUM=<n> ) }

Parameter Type Definition Default Units

MODEL character The name of the model. none

INDEX number The index associated with the model. This value must be an integer from one to nine.

none none

Aurora Reference Guide 474X-2006.09

Page 495: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

This statement defines model variable, parameter, and primary target names. It is used only in initializing a new model, and must appear after an INITIALIZE statement and before the corresponding END statement. The DESCRIPT and UNITS parameters are used for documentation and are listed by the PRINT

Parameter Type Definition Default Units

NAME character The name of the variable, parameter, or primary target to be defined.

none

DESCRIPT character The text description of the variable, parameter, or primary target. This information is used to document the model.

none

UNITS character The units (up to 12 characters) of the variable, parameter, or primary target. This information is used to document the model.

none

VARIABLE logical Specifies that a variable is defined. false

DEFAULT number The default value for the variable. none units for variable

MAJOR logical Specifies that the variable class is major. false

MINOR logical Specifies that the variable class is minor. true

PARAMETE logical Specifies that a parameter is defined. false

NOSPICE logical Specifies that the parameter is Aurora-specific and is not recognizible by a circuit simulator.

false

MINIMUM number A minimum absolute target value, below which absolute rather than relative error is used in calculating the fitting error during optimization.

none units for target

TARGET logical Specifies that a primary target is defined. false

Aurora Reference Guide 475X-2006.09

Page 496: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

statement. The value of the UNITS parameter is used in the axis labels on plots, and may be up to 12 characters long.

Major and Minor VariablesFor efficiency of operation, Aurora classifies each variable as either major or minor. A maximum of five major variables and 15 minor variables may be defined for each model. The input data to Aurora may not use more than 100 combinations of the minor variable values. Minor variables typically are used to distinguish devices and temperatures, while major variables are used to specify the bias conditions.

DefaultThe DEFAULT value is assumed when no SELECT condition has been specified for a variable, and for the PLOT SELECTED statement when SELECT ALL has been specified.

Logical ParametersThe names of model variables appear as logical parameters in the VARIABLE, SCALE, SELECT, and SUMMARIZE statements to allow specification of the variables to which these statements apply. The names are referred to in the descriptions of these statements in the general form <Vname>. A single model variable name may also be specified as a character parameter value in the ALIAS, TARGET, and PLOT statements.

The names of model parameters appear as logical parameters in the FIX, EXTRACT, and REVERT statements to allow specification of the parameters to which these statements apply. The names are referred to in the descriptions of these statements in the general form <Pname>.

The names of model targets appear as logical parameters in the SCALE, INCLUDE, EXCLUDE, WEIGHT, PLOT, and SUMMARIZE statements to allow specification of the targets to which these statements apply. The names are referred to in the descriptions of these statements in the general form <Tname>. Model target names may also be specified by character strings in the ALIAS and TARGET statements.

MinimumThe MINIMUM keyword specifies the minimum target value for which relative errors will be calculated. When the absolute value of the target is less than

Aurora Reference Guide 476X-2006.09

Page 497: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

MINIMUM, the error will be calculated as the difference between the modeled and measured values divided by MINIMUM. A positive (nonzero) MINIMUM must be specified for each target that is defined.

END

The DEFINE statement defines variables, parameters, and primary targets during the definition of a new model.

The END statement terminates the sequence of DEFINE statements associated with the INITIALIZE statement.

END

[<c>]

The character string associated with the END statement is ignored by the program, and serves only to document the user input.

Documentation and Control

The following statements document the input file and control execution of Aurora:

Statement Name Definition Page

TITLE Documents the input file and program output. -482

COMMENT Documents the input file. -483

OPTION Controls program output and function. -484

HELP Prints information describing statements and parameters. -486

CALL Enters statements into the input from files. -488

INTERACTIVE Starts interactive input mode. -493

BATCH Terminates interactive input mode. -494

I.PRINT Prints input statements. -495

Aurora Reference Guide 477X-2006.09

Page 498: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Introduction

The control statements provide extended capabilities for controlling program execution, including interactive operation, insertion of input statements from other files, and saving of interactively entered input statements in output files.

HelpThe HELP statement prints information describing a statement and its associated parameters. The available information consists of the statement syntax, the default parameter values, the units used for numerical and array parameters, and synonyms for parameter names. The HELP statement is used during interactive input mode to determine valid parameter names and combinations of parameters.

I.SAVE Saves input statements in a file. -497

IF Begins a sequence of one or more conditionally processed input statement blocks.

-499

ELSE Terminates a conditionally processed input statement block and begins an alternative conditionally processed input statement block.

-501

IF.END Terminates a sequence of one or more conditionally processed input statement blocks.

-502

LOOP Begins an input statement loop. -502

L.MODIFY Modifies processing of an input statement loop. -508

L.END Terminates input statement loops. -510

ASSIGN Assigns values to an assigned name. -511

ECHO Outputs text to the user’s terminal. -520

RETURN Terminates further processing of input statements in a file. -521

STOP Terminates program execution. -522

IGNORE Prevents processing of subsequent input statements in a file.

-522

Aurora Reference Guide 478X-2006.09

Page 499: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Batch and Interactive Input ModesThe program is always either in batch input mode, reading input statements from the batch input file; or in interactive input mode, reading input statements entered interactively from your terminal.

At the beginning of program execution, you must provide a file specification for the command input file, also referred to as the batch input file. If this file specification is blank, the program immediately enters interactive input mode, and input statements must be entered from your terminal. Otherwise, the file specification is used to read the command input file.

The INTERACTIVE and BATCH statements allows you to switch between batch and interactive input modes.

Statement Line Numbers Input statements are numbered with sequentially increasing line numbers. Input statements obtained from the batch input file are numbered using integers that start with 1 for the first statement. For each group of input statements entered interactively, the statements are numbered using the format “xxx/yyy”. The number “xxx” is the line number of the statement preceding the first statement in the group. The number “yyy” starts with “001” for the first statement in the group, and increases with successive statements in the group.

Input statements are processed in the order of increasing line number. The statement with line number “xxx/001” is processed immediately after the statement with line number “xxx”. For a group of “yyy” input statements entered interactively, the statement with line number “xxx/yyy” is processed immediately before the statement with line number “xxx”+1.

Example The following example illustrates the statements and line numbers printed on the standard output for a case including interactive input:

1... STMT1 PARM1=1 2... INTERACTIVE 3... STMT3 PARM3=3

2/001... STMT2 PARM2=2 2/002... BATCHIn this example, the STMT1, INTERACTIVE, and STMT3 statements are obtained from the batch input file, while the STMT2 and BATCH statements are entered interactively. The statements obtained from the batch input file are printed first, followed by the statements entered interactively. The statements in

Aurora Reference Guide 479X-2006.09

Page 500: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

the above example are processed in the order STMT1, INTERACTIVE, STMT2, BATCH, and STMT3.

Currently Available Input StatementsThe program may obtain input statements by reading the batch input file, by reading interactive input from yo

ur terminal, and by processing CALL statements that read input statements from files or from the set of previously obtained input statements. At the beginning of program execution, the batch input file is read completely and, where possible, CALL statements are processed. Interactive input is read when interactive input mode is entered.

At any time during program execution, all input statements that have been read are considered to be “currently available.” The currently available input statements are available for processing by the CALL, I.PRINT, and I.SAVE statements. Statements are currently available, even if they follow the input statement currently being processed.

Output of Statement InformationThe I.PRINT statement prints a range of the currently available input statements. This statement can be used during interactive input mode to determine which statements have been previously entered.

The I.SAVE statement saves input statements, including those entered interactively, in output files. These files are used as command input files during subsequent program execution.

Output to the User’s TerminalThe ECHO statement outputs text to your terminal. This statement is used with the PROMPT parameter on the ASSIGN statement to provide interactive terminal input and output.

Controlling Program Execution The CALL statement reads input statements from a file or copies them from the currently available input statements. The CALL statement is used to repeatedly input groups of statements. It can also be combined with ASSIGN statements to produce template files containing variable input values in the form of assigned names.

Aurora Reference Guide 480X-2006.09

Page 501: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The IF, ELSE, and IF.END statements control conditional processing of input statement blocks. These statements are used to choose one block of statements for processing from a sequence of alternative statement blocks. Choosing which statement block to process depends on the values of assigned names, numerical expressions, and character expressions.

The LOOP, L.MODIFY, and L.END statements control repeated processing of input statements in loops. These statements efficiently specify a variety of different conditions for program execution. Statement loops contain arbitrary combinations of input statements and control the variation of numerical and array parameters and assigned names.

The ASSIGN statement assigns numerical and character values to assigned names. The values of assigned names are varied during statement looping. Assigned names appear in numerical expressions that define the values of numerical and array parameters. Assigned names are used in character expressions to define titles, labels, and file specifications.

The RETURN statement terminates further processing of input statements in a file. This statement can be used to prevent processing of statements at the end of the command input file or a file read with a CALL statement.

The STOP statement terminates the execution of the program from within the command input file or a file read with a CALL statement.

The IGNORE statement prevents processing of subsequent input statements in a file. This statement can be used to ignore statements at the end of the command input file or a file read with a CALL statement.

OptimizationUp to 200000 data points can be used for optimization. The LOOP statement can be used to perform optimization by specifying the OPTIMIZE parameter. The statements in the optimization loop are processed repeatedly, varying the values of assigned names until the error in the specified targets is minimized. The assigned names that are varied are defined by using the OPTIMIZE parameter in the ASSIGN statement. The targets are defined with the SETTARG statement.

The state of the simulation is saved before the first pass through an optimization loop. The simulation is restored to this saved state at the beginning of each pass through the loop.

When the optimization is complete, the number of function evaluations, the total RMS errors, and the final values of assigned names are printed along with the final values and RMS error for each target. The derivatives of each target with

Aurora Reference Guide 481X-2006.09

Page 502: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

respect to each assigned name are also printed. Aurora has the capability to recover the best RMS result in case of an optimization error.

Sensitivity AnalysisThe LOOP statement is used to perform sensitivity analysis by specifying the SENSITIV parameter. The statements in the sensitivity analysis loop are processed repeatedly, varying the value of each assigned name to calculate the variation in each target value. The assigned names that are varied are defined by using the SENSITIV parameter in the ASSIGN statement. The targets are defined with the EXTRACT statement.

The state of the simulation is saved before the first pass through a sensitivity analysis loop. The simulation is restored to this saved state at the beginning of each pass through the loop.

When the sensitivity analysis is complete, the number of function evaluations and the values of assigned names and targets are printed. The derivatives of each target with respect to each assigned name are also printed.

TITLE

The TITLE statement is used to specify character strings that document the user input and the program output.

TITLE

[<c>]

Description

The following is a description of the TITLE statement.

Character StringsThe character string associated with the first line of the TITLE statement is saved for use in documenting printed and plotted output. The character string comprises the first line of printed output for each type of output requested in subsequent PRINT statements or for output requested by statements with a

Aurora Reference Guide 482X-2006.09

Page 503: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SUMMARY parameter. The character string is also used as the default title string for output requested in subsequent PLOT and PLOT.3D statements.

The character string associated with the first line of the TITLE statement is used in documenting printed output. The character string is also used as the default title string for output requested in subsequent PLOT.1D, PLOT.2D, or PLOT.3D statements.

The character strings associated with the first fifteen lines of the TITLE statement are saved for use in documenting printed and plotted output. These character strings are saved in files generated by the SAVEFILE statement and are printed when these files are used as input by the INITIALIZE or LOADFILE statements. The character strings comprise the first set of printed output for each type of output requested in a subsequent PRINT statement. The character string on the first line is also used as the default title string for output requested in a subsequent PLOT statement.

ExampleFor example, the following TITLE statement uses two continuation lines to define a total of three character strings:

TITLE The first character string.+ The second character string.+ The third character string.The character string associated with the first line of the TITLE statement is used as the default title string for output requested in subsequent PLOT, PLOT.2D, or PLOT.3D statements.

There may be any number of TITLE statements present, and they may be located at any point in the input file.

COMMENT

The COMMENT statement is used to specify character strings that document user input and program output.

COMMENT

[<c>]

or

Aurora Reference Guide 483X-2006.09

Page 504: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

$

[<c>]

Description

The character string associated with the first line of the COMMENT statement is saved for use in documenting printed output. The character string comprises the second line of printed output for each type of output requested in subsequent PRINT statements or for output requested by statements with a SUMMARY parameter.

Character StringsCharacter strings associated with COMMENT statements serve only to document the input file, and are ignored by the program.

The character strings associated with the first 15 lines of the COMMENT statement are saved for use in documenting printed output. These character strings are saved in files generated by the SAVEFILE statement, and are printed when these files are used as input by the INITIALIZE or LOADFILE statements. The character strings comprise the second set of printed output for each type of output requested in a subsequent PRINT statement.

ExampleThe following COMMENT statement uses two continuation lines to define a total of three character strings:

COMMENT The first character string.+ The second character string.+ The third character string.There may be any number of COMMENT statements present, and they may be located at any point in the input file. Note that blank lines may also be used to improve readability of the input.

OPTION

The OPTION statement specifies certain options affecting program output and function.

Aurora Reference Guide 484X-2006.09

Page 505: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

OPTION

[TERMINAL] [INFORMAT] [DIAGNOST] [I.ERROR]

Description

The OPTION statement may appear at any point in the input file outside of PLOT plot sequences. The options selected with these parameters are set to the values in the coefficient file read by an INITIALIZE statement

They are also set to a specified value by an OPTION statement.

To be effective, an OPTION statement must appear after an INITIALIZE statement. For example, the following statement disables normal output to your terminal:

OPTION ^TERMINAL

Parameter Type Definition Default

TERMINAL logical Specifies that alphanumeric output to the user’s terminal is to be enabled. On some systems, alphanumeric output may interfere with graphical output, making it desirable to disable the alphanumeric output sent to the user’s terminal.

Current value

INFORMAT logical Specifies that output to the informational output device is to be enabled.

Current value; initially false

DIAGNOST logical Specifies that output to the diagnostic output device is to be enabled. The data sent to this device includes various information primarily useful only for purposes of diagnosing incorrect program execution.

Current value; initially false

I.ERROR logical Specifies that interactive input mode is entered if a fatal error occurs during program execution. This option is provided to allow diagnosis of the execution to determine the cause of the error. The simulation should not be continued because the state of the simulation may not be reliable.

False

Aurora Reference Guide 485X-2006.09

Page 506: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The OPTION statement may appear at any point in the input file. For example, the following statement disables normal output to your terminal:

OPTION ^TERMINALThe OPTION statement allows you to set flags to obtain debugging information and CPU statistics. It also allows you to determine how the version of Medici being used is configured.

OPTION

[G.DEBUG] [N.DEBUG] [ CPU.STAT [CPU.FILE=<c>] ]

HELP

The HELP statement prints information describing a statement and its associated parameters. A question mark (?) is a synonym for the HELP statement.

HELP

[NAME=<c>] [ {PARAMETE=<c> | VERBOSE} ]

Parameter Type Definition Default

G.DEBUG logical Specifies that general debugging information is printed to the standard output.

False

N.DEBUG logical Specifies that numerical parameter debugging information is printed to the standard output.

False

CPU.STAT logical Specifies that a CPU profile of the solution process is to be printed to the file specified by

CPU.FILE

.

False

CPU.FILE character The identifier for the file to receive printed CPU information when the CPU.STAT parameter is specified.

<base>.cpu

Aurora Reference Guide 486X-2006.09

Page 507: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

A HELP statement without parameters prints general information describing the HELP statement and the statements for which help is available. If the NAME parameter is specified, information is printed describing the specified statement and its associated parameters. For example, the following statement prints help information describing the ASSIGN statement:

HELP NAME=ASSIGNEither the PARAMETE or VERBOSE parameter can be specified to print information describing the units, default values, and synonyms for parameters. If the PARAMETE parameter is specified, information is printed for the specified parameter. For example, the following statement prints help information for the NAME parameter on the ASSIGN statement:

HELP NAME=ASSIGN PARAMETE=NAMEIf the VERBOSE parameter is specified, information is printed for all parameters in the statement. For example, the following statement prints help information describing the ASSIGN statement and all of its parameters:

HELP NAME=ASSIGN VERBOSEIf the HELP statement is entered interactively, the help information is printed on the terminal. If the HELP statement is entered through the batch input file or through a CALL statement, the help information is printed on the standard output.

Parameter Type Definition Default

NAME character The name of the statement for which information is printed.

None

PARAMETE character The name of the parameter for which information is printed, describing the units, default values, and synonyms.

None

VERBOSE logical Specifies that information is printed describing the units, default values, and synonyms for all parameters in the statement.

False

Aurora Reference Guide 487X-2006.09

Page 508: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

CALL

The CALL statement enters additional statements (the “CALL contents”) into the input, by either reading them from a file or copying them from the currently available input statements.

CALL

{FILE=<c> | ( [FIRST=<c>] [LAST=<c>] [EXPAND] )} [ONCE] [PRINT]

Parameter Type Definition Default

FILE character The identifier for the formatted input file from which the input statements are read.

None

FIRST character The line number of the first input statement to be copied.

Statement after the current CALL statement

LAST character The line number of the last input statement to be copied.

Statement before the current CALL statement

EXPAND logical Specifies that CALL statements being copied are converted to comments and the CALL contents associated with these CALL statements are copied. If the value of this parameter is false, CALL statements are copied in their original form, and the CALL contents associated with these CALL statements are not copied.

True

Aurora Reference Guide 488X-2006.09

Page 509: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The statements entered by the CALL statement are placed immediately after the CALL statement. If the FILE parameter is specified, the CALL contents are read

from the file identified by this parameter. For example, the following CALL statement reads input statements from the file FILE1 and enters them after the CALL statement:

CALL FILE=FILE1If either or both of the FIRST and LAST parameters are specified, the CALL contents consist of the currently available input statements between and including the statements identified by these parameters. These statements must be located entirely before or after the current CALL statement. That is, the current CALL statement may not be included in the CALL contents. The I.PRINT statement may be used to print the currently available input statements with their associated line numbers. The FIRST and LAST parameters are intended primarily for use when the CALL statement is entered interactively, allowing previously entered statements to be repeated easily. For example, the following CALL statement copies the input statements from line 1/005 through line 1/008 and enters them after the CALL statement:

ONCE logical Specifies that input statements are only entered the first time the CALL statement is processed during statement looping and remain unchanged afterward. If the value of this parameter is false, input statements are reentered each time the CALL statement is processed. This allows the input statements entered during a statement loop to be changed by varying the identifier or contents of the input file within the loop. This parameter has no effect if the CALL statement is not within a statement loop.

True

PRINT logical Specifies that the input statements entered by the CALL statement are printed on the standard output as part of the list of input statements. If the value of this parameter is false, only the CALL statement itself is printed.

True

Parameter Type Definition Default

Aurora Reference Guide 489X-2006.09

Page 510: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

CALL FIRST=1/5 LAST=1/8

Statement Modification When the FIRST and LAST parameters are used to specify a range of statements to be copied, some of these statements are modified or removed in the following ways before being copied:■ INTERACTIVE and BATCH statements are converted to comments. These

statements help to identify which statements in the CALL contents were entered interactively, but they are only processed the first time they are encountered.

■ HELP and I.PRINT statements are removed. These statements do not serve a useful purpose in the CALL contents and are only processed the first time they are encountered.

■ CALL statements are converted to comments and the CALL contents are copied if any of the following conditions is satisfied:

■ The CALL contents are not copied, and the CALL statement is copied in its original form if all of the following conditions are satisfied:

Default

The default values for the FIRST and LAST parameters are chosen to simplify copying groups of statements immediately preceding or following the current CALL statement. Only the FIRST parameter is necessary to copy a group of statements immediately preceding the current CALL statement. For example, the following CALL statement copies the input statements from line 1/005 through the statement immediately preceding the CALL statement and enters them after the CALL statement:

CALL FIRST=1/5Similarly, only the LAST parameter is necessary to copy a group of statements immediately following the current CALL statement. If neither of the FIRST and LAST parameters is specified, the FILE parameter must be specified. If the value of the FIRST parameter is greater than the value of the LAST parameter, the values of these parameters are interchanged.

Aurora Reference Guide 490X-2006.09

Page 511: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Nested Statements

The CALL contents entered by a CALL statement may contain other CALL statements. CALL statements may be nested in this way to at most 15 levels, as long as the available input storage is not exceeded. Any of these CALL sta

tements may obtain input statements by reading them from files or by copying them from the currently available input statements.

Repeated Statements

The CALL statement can be used to simplify the repetition of groups of statements. A group of statements placed in a file can be entered through the CALL statement multiple times in a single input file or repeatedly in different input files.

Example

The following is an example of a file named FILE1:

STMT1 PARM1=1 STMT2 PARM2=2The following input statements enter the statements in FILE1 at two locations in the same input file:

STMT3 PARM3=3 CALL FILE=FILE1STMT4 PARM4=4 CALL FILE=FILE1STMT5 PARM5=5The statements in the above example are equivalent to the following input statements:

STMT3 PARM3=3 STMT1 PARM1=1 STMT2 PARM2=2STMT4 PARM4=4 STMT1 PARM1=1 STMT2 PARM2=2STMT5 PARM5=5

Aurora Reference Guide 491X-2006.09

Page 512: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Template Files

The CALL statement can also be combined with the ASSIGN statement and assigned names to generate template files with variable input values. A template file can be constructed by replacing portions of the input, such as character strings, parameter names, and parameter values, with assigned names and numerical expressions including assigned names. An input file which uses the template file must first include ASSIGN statements which set the values of assigned names appearing in the template file and then include a CALL statement which enters the statements from the template file. The values of assigned names in the template file are established by the ASSIGN statements preceding the CALL statement in the input file.

Example

The following is an example of a template file named FILE2:

STMT1 PARM1=@VAL1The following input statements assign values to the assigned name VAL1 and call the above template file:

ASSIGN NAME=VAL1 N.VALUE=5CALL FILE=FILE2ASSIGN NAME=VAL1 N.VALUE=10CALL FILE=FILE2The preceding statements are equivalent to the following input statements:

STMT1 PARM1=5STMT1 PARM1=10

The value of the EXPAND parameter is true.

The statement range does not include the CALL statement.

The statement range includes a portion, but not all, of the CALL contents.

The value of the EXPAND parameter is false.

The statement range includes the CALL statement.

The statement range includes either all or none of the CALL contents.

Aurora Reference Guide 492X-2006.09

Page 513: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

INTERACTIVE

The INTERACTIVE statement starts interactive input mode, allowing statements to be entered interactively from the terminal.

INTERACTIVE

[ONCE]

Description

Interactive input mode is started using any of the following methods:■ An INTERACTIVE statement is entered through the batch input file. In this

case the program will resume processing statements from the batch input file when interactive input is terminated.

■ A blank file specification is given for the command input file when prompted at the beginning of program execution. In this case an INTERACTIVE statement is automatically added as the first input statement. All statements are entered interactively, and the program will terminate when interactive input is terminated.

■ A program execution error is encountered subsequent to the occurrence of an OPTION statement that specifies a true value for the I.ERROR parameter. In this case, the program will resume processing statements from the batch input file when interactive input is terminated.

When interactive input mode is started, the program indicates this by printing a message on the terminal, printing a three-character interactive input prompt identifying the program, and awaiting input of statements.

Parameter Type Definition Default

ONCE logical Specifies that interactive input mode is only started the first time the INTERACTIVE statement is processed during statement looping. This parameter has no effect if the INTERACTIVE statement is not within a statement loop.

False

Aurora Reference Guide 493X-2006.09

Page 514: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Statement Continuation A statement may be continued on a subsequent line by ending the current input line with a plus (+). Continuation may be used repeatedly to generate input statements consisting of any number of input lines. The program indicates that continuation lines are expected by changing the interactive input prompt to “+>” until the statement is complete. A continued statement can be completed by not ending the last line with a plus or by the input of a blank line.

Statement LoopingWhen an INTERACTIVE statement is processed during statement looping, statements may be entered in either of the following two modes:■ If the ONCE parameter is specified, one set of statements may be entered

interactively the first time the INTERACTIVE statement is processed. These same statements are processed during subsequent passes through the loop.

■ If the ONCE parameter is not specified, a new set of statements may be entered interactively each time the INTERACTIVE statement is processed. The input statements entered interactively during the previous pass through the loop are replaced with the new set of interactively entered statements.

TerminationInteractive input mode may be terminated either by entering a BATCH statement or by entering an end-of-file during interactive input from the terminal. Typical end-of-file characters are control-D (eOT) and control-Z (SUB).

BATCH

The BATCH statement terminates interactive input mode.

BATCH [<c>]

Aurora Reference Guide 494X-2006.09

Page 515: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The BATCH statement may only be entered by direct interactive input. It may not be entered through the batch input file and may not be entered interactively through a CALL statement.

A BATCH statement is automatically added to the input when an end-of-file is encountered during interactive input from the terminal. Typical end-of-file characters are control-D (eOT) and control-Z (SUB). Thus, interactive input mode may be terminated either with a BATCH statement or an end-of-file character.

The character strings associated with the BATCH statement are ignored by the program, and serve only to document the user input.

I.PRINT

The I.PRINT statement prints the currently available input statements with their associated line numbers.

I.PRINT

{( [FIRST=<c>] [LAST=<c>] ) | [ALL]} [EXPAND]

Parameter Type Definition Default

FIRST character The line number of the first input statement to be printed.

10 statements before the current I.PRINT statement

LAST character The line number of the last input statement to be printed.

10 statements after the current I.PRINT statement

ALL logical Specifies that all input statements are to be printed.

False

Aurora Reference Guide 495X-2006.09

Page 516: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The FIRST, LAST, and ALL parameters specify the range of statements to be printed by the I.PRINT statement. For example, the following statement prints the input statements from line 1/005 through line 1/008:

I.PRINT FIRST=1/5 LAST=1/8

Statement ModificationSome statements are modified or removed in the following ways before being printed:■ CALL statements are converted to comments, and the CALL contents are

printed if any of the following conditions is satisfied:

The value of the EXPAND parameter is true.

The statement range does not include the CALL statement.

The statement range includes a portion, but not all, of the CALL contents.■ The CALL contents are not printed and the CALL statement is printed in its

original form if all of the following conditions are satisfied:

The value of the EXPAND parameter is false.

The statement range includes the CALL statement.

The statement range includes either all or none of the CALL contents.

OutputThe output from the I.PRINT statement consists of the current line number, the loop counters, and the input statements with their associated line numbers. If

EXPAND logical Specifies that CALL statements being printed are converted to comments and the CALL contents associated with these CALL statements are printed. If the value of this parameter is false, CALL statements are printed in their original form, and the CALL contents associated with these CALL statements are not printed.

True

Parameter Type Definition Default

Aurora Reference Guide 496X-2006.09

Page 517: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

the I.PRINT statement is entered interactively, the output is printed on the terminal. If the I.PRINT statement is entered through the batch input file or through a CALL statement, the output is printed on the standard output.

I.SAVE

The I.SAVE statement saves input statements in a file.

I.SAVE

FILE=<c> [NOW] [FIRST=<c>] [LAST=<c>] [EXPAND]

Description

When the I.SAVE statement is entered with a false value for the NOW parameter, the FILE parameter specifies the identifier of a single file in which

Parameter Type Definition Default

FILE character The identifier for the formatted output file in which the input statements are saved.

None

NOW logical Specifies that the input statements are saved immediately. If the value of this parameter is false, the input statements are saved when program execution terminates.

True if FIRST or LASTspecified; otherwise, false

FIRST character The line number of the first input statement to be saved.

First available statement

LAST character The line number of the last input statement to be saved.

Last available statement

EXPAND logical Specifies that CALL statements being saved are converted to comments and the CALL contents associated with these CALL statements are saved. If the value of this parameter is false, CALL statements are saved in their original form and the CALL contents associated with these CALL statements are not saved.

True

Aurora Reference Guide 497X-2006.09

Page 518: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

part or all of the input statements will be saved when program execution terminates. For example, the following statement saves all input statements in the file FILE1 when program execution terminates:

I.SAVE FILE=FILE1The FIRST and LAST parameters specify the range of statements to be saved. For example, the following statement saves the input statements from line 1/005 through line 1/010 in the file FILE1 when program execution terminates:

I.SAVE FILE=FILE1 FIRST=1/5 LAST=1/10 ^NOWRepeated I.SAVE statements with a false value for the NOW parameter merely replace the file identifier and the statement range. At the termination of program execution the specified range of input statements will be saved in the file identified by the last such I.SAVE statement.

When the I.SAVE statement is entered with a true value for the NOW parameter, part or all of the currently available input statements are saved in the file identified by the FILE parameter. The FIRST and LAST parameters specify the range of statements to be saved. For example, the following statement immediately saves the input statements from line 1/005 through line 1/010 in the file FILE1:

I.SAVE FILE=FILE1 FIRST=1/5 LAST=1/10

Statement ModificationSome statements are modified or removed in the following ways before being saved:■ INTERACTIVE and BATCH statements are converted to comments. These

statements help to identify which statements in the saved output were entered interactively, but they are only processed when they are encountered in the original input.

■ HELP and I.PRINT statements are removed. These statements do not serve a useful purpose in the saved output, and are only processed when they are encountered in the original input.

■ CALL statements are converted to comments, and the CALL contents are saved if any of the following conditions is satisfied:

The value of the EXPAND parameter is true.

The statement range does not include the CALL statement.

Aurora Reference Guide 498X-2006.09

Page 519: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The statement range includes a portion, but not all, of the CALL contents.■ The CALL contents are not saved, and the CALL statement is saved in its

original form if all of the following conditions are satisfied:

The value of the EXPAND parameter is false.

The statement range includes the CALL statement.

The statement range includes either all or none of the CALL contents.

The primary use for the I.SAVE statement is to save input statements which are entered interactively. The I.SAVE output file can be used later as a batch input file or can be input using the CALL statement, either in the same program execution or in a subsequent execution.

IF

The IF statement begins a sequence of one or more conditionally processed input statement blocks.

IF

[COND]

Description

T

he IF statement defines the beginning of a sequence of conditionally processed blocks of statements. An IF.END statement is used to indicate the end of the sequence of statement blocks. The first statement block in the sequence begins with the IF statement, while subsequent statement blocks begin with

Parameter Type Definition Default

COND logical Specifies that the block of input statements between the IF statement and the next ELSE statement or IF.END statement are to be processed. If the value of this parameter is false, the block of input statements is not processed.

True

Aurora Reference Guide 499X-2006.09

Page 520: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

ELSE statements. Each statement block ends with either an ELSE statement or the IF.END statement.

Only one statement block in a sequence of blocks is processed. The statement block processed is the first in the sequence with a true value for the COND parameter on the IF or ELSE statement which begins the block. None of the statement blocks in a sequence is processed if the IF statement and all ELSE statements in the sequence have a false value for the COND parameter.

Matching StatementsEach IF statement must be paired with a matching IF.END statement, with possibly intervening ELSE statements. IF and IF.END statements must independently match within statement loops, outside of statement loops, within input entered while in interactive input mode, and within input entered through the batch input file.

Nested StatementsPairs of IF and IF.END statements may be nested to a maximum depth of 20 levels.

ExampleThe following example illustrates the use of the IF, ELSE, and IF.END statements to enter the name of an object, test for recognized names, and output information regarding the object:

ECHO "Specify the object shape"ASSIGN NAME=SHAPE C.VALUE="none" PROMPT="shape="

IF COND=(@SHAPE="triangle") ECHO "3 sides"ELSE COND=(@SHAPE="none") ECHO "shape not specified"ELSE ECHO "invalid shape"IF.END

ASSIGN OutputThe following output is generated for various inputs provided to the ASSIGN statement:

Aurora Reference Guide 500X-2006.09

Page 521: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

shape=triangle3 sides

shape=shape not specified

shape=rectangleinvalid shape

ELSE

The ELSE statement terminates a conditionally processed input statement block associated with an IF or ELSE statement and begins a new conditionally processed input statement block.

ELSE

[COND]

Description

The ELSE statement defines the beginning of one statement block within a sequence of conditionally processed blocks of statements begun by an IF statement. The statement block is terminated either by another ELSE statement or by the IF.END statement that terminates the sequence of statement blocks.

The block of statements is processed if the value of the COND parameter is true and no previous statement blocks in the sequence have been processed.

Parameter Type Definition Default

COND logical Specifies that the block of input statements between the ELSE statement and the next ELSE statement or IF.END statement are to be processed. If the value of this parameter is false, the block of input statements is not processed.

True

Aurora Reference Guide 501X-2006.09

Page 522: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IF.END

The IF.END statement terminates sequences of conditionally processed input statement blocks associated with the IF statement.

IF.END

[<c>]

The character strings associated with the IF.END statement are ignored by the program, and serve only to document the user input.

LOOP

The LOOP statement begins an input statement loop and specifies the number of times to process the statements within the loop. Optimization or sensitivity analysis may be performed by a single loop. The values of numerical and array parameters and assigned names may be varied on statements within loops.

LOOP

[STEPS=<n>] [PRINT] [ {OPTIMIZE | SENSITIV} ]

Parameter Type Definition Default Units

STEPS number The maximum number of passes through the loop. The statements between the LOOP statement and its matching L.END statement are processed once during each pass through the loop. The loop will terminate when the number of passes equals the value of the STEPS parameter. If OPTIMIZE or SENSITIV is specified, the loop will also terminate when the optimization or sensitivity analysis is completed. The value of the STEPS parameter must be a positive integer.

100 for OPTIMIZE or SENSITIV; otherwise, 1

none

Aurora Reference Guide 502X-2006.09

Page 523: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The LOOP statement defines the beginning of a sequence of statements processed repeatedly. An L.END statement is used to indicate the end of the statement sequence. The statement sequence is processed the number of times specified by the STEPS parameter or, if OPTIMIZE or SENSITIV is specified, until the optimization or sensitivity analysis is completed.

Repeated ProcessingThe repeated processing of a statement sequence is similar to the case where the sequence of statements is explicitly repeated multiple times in the program input. The only difference is that during statement looping, a statement in the

PRINT logical Specifies that the values of parameters and assigned names which vary under control of this loop level are printed each time they are varied. For numerical and array parameters, the statement name, line number, loop level, loop counter, parameter name, and parameter value are printed before processing the statement containing the varied parameter value. For assigned names, the assigned name, line number, loop level, loop counter, and assigned value are printed after processing the ASSIGN statement defining the varied assigned name value.

False

OPTIMIZE logical Specifies that this loop performs optimization of assigned name values which are defined by ASSIGN statements specifying the OPTIMIZE parameter. Only one loop in a nest of loops may specify the OPTIMIZE or SENSITIV parameters.

False

SENSITIV logical Specifies that this loop performs sensitivity analysis for assigned name values that are defined by ASSIGN statements specifying the SENSITIV parameter. Only one loop in a nest of loops may specify the OPTIMIZE or

SENSITIV

parameters.

False

Parameter Type Definition Default Units

Aurora Reference Guide 503X-2006.09

Page 524: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

sequence is referenced by the same input line number during each pass through the loop. The L.MODIFY statement may be used to modify the original values of the STEPS and PRINT parameters specified in the LOOP statement.

Matching StatementsEach LOOP statement must be paired with a matching L.END statement. LOOP and L.END statements must match within input entered while in interactive input mode and also must independently match within input entered through the batch input file.

Nested StatementsPairs of LOOP and L.END statements may be nested to a maximum depth of 10 levels. For nested loops, the loop levels are numbered starting with 1 at the outer loop and increasing to a value less than or equal to 10 at the inner loop. The current loop level associated with a statement is the level of the innermost loop which contains that statement. Only one loop in a nest of loops may specify the OPTIMIZE or SENSITIV parameters.

Varied Parameter ValuesThe values of numerical and array parameters on statements within loops may be varied by either a constant difference or a constant ratio between successive passes through a loop. This is specified by using a more general form for a parameter value

<start>:<increment>:<level>

where <start> is the initial value of the parameter for the first pass through the loop, <increment> is the difference or ratio between the parameter values for successive passes, and <level> identifies the loop level that controls variation of the parameter. The colon (:) is used to separate portions of the value specification, and may be preceded or followed by any number of spaces. The first colon may only appear if the <increment> is specified, and the second colon may only appear if the <level> is specified. Parameter values varied in this manner may not be controlled by a loop level that is performing optimization or sensitivity analysis.

Aurora Reference Guide 504X-2006.09

Page 525: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Loop Counter

Each loop uses a unique counter which varies from 1 to the value specified by the STEPS parameter for that loop. Before the first LOOP statement is processed, the loop level is initialized to 0. When a LOOP statement is processed, the loop level is incremented by 1, and the counter associated with the loop is initialized to 1. If optimization or sensitivity analysis is being performed, the state of the simulation is saved. The counter remains constant during processing of all statements following the LOOP statement until the matching L.END statement is encountered. When the matching L.END statement is processed, the counter is incremented by 1 and compared to the STEPS parameter specified on the matching LOOP statement. The loop terminates if the counter exceeds STEPS or if optimization or sensitivity analysis is completed. If the loop terminates, the loop level is decremented by 1, and the next statement processed is that following the L.END statement. If the loop does not terminate, the loop level remains unchanged, the next statement processed is that following the matching LOOP statement, and, if optimization or sensitivity analysis is being performed, the previously saved state of the simulation is restored.

Loop Levels

The variation of a parameter value may be controlled by any loop at a level less than or equal to the current loop level. The counter associated with the controlling loop determines the value of the parameter. For example, in the following input, the parameters PARM1, PARM2, and PARM3 are controlled by loop levels 1, 2, and 3, respectively:

LOOP STEPS=2 LOOP STEPS=2 LOOP STEPS=2 STMT PARM1=0:1:1 PARM2=0:1:2 PARM=0:1:3 L.END L.ENDL.END

<start>The <start> is the only required portion of the parameter value specification, and may consist of any valid numerical expression. If the <increment> is not specified, the parameter value remains constant and the <level> may not be

Aurora Reference Guide 505X-2006.09

Page 526: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

specified. The <increment> is ignored if the parameter value occurs outside of loops. In this case, the <level> may only be specified if its value is zero or negative.

<increment>The <increment> may consist of any valid numerical expression. If the parameter value is to vary by a constant ratio, the <increment> must be nonzero and its first character must be an asterisk (*). In this case, the parameter value is determined by

value = <start> * <increment>**(count-1)

where count is the counter for the loop level specified by <level>. If the asterisk is not present, the parameter value will vary by a constant difference and the <increment> may be any value. In this case, the parameter value is determined by

value = <start> + <increment>*(count-1)

<level>The <level> may consist of any valid numerical expression. The <level> is truncated to an integer, after which it must be less than or equal to the current loop level. If the <level> is not specified, it defaults to the current loop level, causing the parameter value to be varied each time the statement is processed. If the <level> is zero, the parameter variation is disabled and the parameter remains constant. This feature allows the variation of a parameter to be disabled without requiring deletion of the <increment>. If the <level> is positive, it directly specifies the loop level which controls the parameter value. If the <level> is negative, the loop level which controls the parameter value is the sum of the current loop level and <level>, but if this sum is not positive, the parameter variation is disabled as if the <level> were zero. This feature allows a parameter to be controlled by a loop one or more levels lower than the current loop level, without explicitly specifying the loop level.

Examples

The following example illustrates the use of statement looping for a single loop and a statement containing the numerical parameters PARM1 and PARM2:

LOOP STEPS=3 STMT PARM1=0:5 PARM2=1:*-1L.END

Aurora Reference Guide 506X-2006.09

Page 527: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Under control of the loop, the parameter PARM1 assumes values of 0, 5, and 10, while the parameter PARM2 assumes values of 1, -1, and 1.

The following example illustrates a more complicated use of statement looping for a statement containing the numerical parameter PARM1 and the array parameter PARM2:

LOOP STEPS=3 LOOP STEPS=2 ASSIGN NAME=BASE N.VALUE=10 RATIO=2 STMT PARM1=0:5 PARM2=(10:*2:1 , @BASE+10:10:-1) L.ENDL.END

Under the control of the inner loop, the following variations in values occur: ■ The assigned name BASE starts with the value of 10 and varies by a

constant ratio of 2. The numerical parameter PARM1 starts with the value of 0, and varies by a constant difference of 5.

■ Element 1 of the array parameter PARM2 starts with the value of 10, and varies by a constant ratio of 2. (The loop level is specified explicitly as 1.)

■ Element 2 of the array parameter PARM2 starts with the value of BASE+10, and varies by a constant difference of 10. (The loop level is specified as 1 less than the current level of 2.)

■ The variation of the value of the assigned name BASE causes the starting value for element 2 of the array parameter PARM2 to vary between 20 and 30.

The values of the loop counters and varied parameter values and assigned names during processing of the statement are as follows:

count #1 count #2 PARM1 PARM2 BASE PARM2(2)

1 1 0 10 10 20

1 2 5 10 20 30

2 1 0 20 110 30

2 2 5 20 20 40

3 1 0 40 10 40

Aurora Reference Guide 507X-2006.09

Page 528: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

L.MODIFY

The L.MODIFY statement modifies the processing of a currently active statement loop associated with a LOOP statement.

L.MODIFY

[LEVEL=<n>] [STEPS=<n>] [ {NEXT | BREAK} ] [PRINT]

3 2 5 40 20 50

Parameter Type Definition Default Units

LEVEL number The loop level associated with the LOOP statement for which processing is being modified. The value of this parameter must be less than or equal to the current loop level. If the value of this parameter is zero, the modification of statement processing is disabled. If the value of this parameter is negative, the loop level used is the sum of this parameter value and the current loop level.

Current loop level

none

STEPS number The number of times the statements between the LOOP statement and its matching L.END statement are processed for the specified loop level. The value of this parameter must be a positive integer, and may be less than or equal to the current value of the loop counter for the specified loop level. A value of 1 will prevent any subsequent passes through the loop from being performed.

Current value for specified loop level

none

NEXT logical Specifies that the next statement processed will be the L.END statement for the specified loop level. The statements between the L.MODIFY statement and the L.END statement for the specified loop level are not processed during this pass through the loop.

False

count #1 count #2 PARM1 PARM2 BASE PARM2(2)

Aurora Reference Guide 508X-2006.09

Page 529: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

The L.MODIFY statement can be used to modify the number of passes through a loop and whether values of parameters and assigned names which vary under control of a loop are printed. Based on the results of previous statements, you may choose to modify the number of subsequent passes through the loop. An L.MODIFY statement specifying the STEPS parameter can be used to increase or decrease the total number of passes through the loop. If the value of the STEPS parameter is modified to be less than or equal to the current value of the loop counter, no subsequent passes through the loop will be performed.

For example, the following statement sets the number of passes through the current loop level to 5:

L.MODIFY STEPS=5

BREAK logical Specifies that the next statement processed will be the statement following the L.END statement for the specified loop level. No subsequent passes through the loop will be performed. The statements between the L.MODIFY statement and the L.END statement for the specified loop level are not processed during this pass through the loop.

False

PRINT logical Specifies that the values of parameters and assigned names which vary under control of the specified loop level are printed each time they are varied. For numerical and array parameters, the statement name, line number, loop level, loop counter, parameter name, and parameter value are printed before processing the statement containing the varied parameter value. For assigned names, the assigned name, line number, loop level, loop counter, and assigned value are printed after processing the ASSIGN statement defining the varied assigned name value.

Current value for specified loop level

Parameter Type Definition Default Units

Aurora Reference Guide 509X-2006.09

Page 530: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

L.END

The L.END statement terminates input statement loops associated with the LOOP statement.

L.END

[BREAK] [ALL]

Description

The BREAK parameter can be used to disable multiple passes through a loop. It is intended primarily for use when the L.END statement and statements in the loop are entered interactively. In this case, based on the results of the first time the statements in the loop are processed, you may choose to prevent subsequent passes through the loop by specifying the BREAK parameter when the L.END statement is entered.

The ALL parameter can be used to terminate all loops currently in effect with a single L.END statement. LOOP and L.END statements must independently match within input entered while in interactive input mode and within input entered through the batch input file. If an L.END statement specifying the ALL parameter is entered while in interactive input mode, only loops entered while in interactive input mode will be terminated. If an L.END statement specifying the ALL parameter is entered through the batch input file, all loops currently in effect will be terminated.

The following example illustrates the termination of three loop levels with a single L.END statement:

LOOP STEPS=2 LOOP STEPS=2 LOOP STEPS=2 STMT L.END ALL

Parameter Type Definition Default

BREAK logical Specifies that the loop terminates after the first pass. False

ALL logical Specifies that all loops currently available for termination are terminated.

False

Aurora Reference Guide 510X-2006.09

Page 531: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

If the ALL parameter were not specified, three consecutive L.END statements would have been required.

ASSIGN

The ASSIGN statement assigns values to an assigned name.

ASSIGN

{ ( NAME=<c> [PRINT] { ( N.VALUE=<a> [ {DELTA=<n> | RATIO=<n>} ] ) | ( N.VALUE=<a> {OPTIMIZE | SENSITIV} LOWER=<n> UPPER=<n> ) | ( L.VALUE=<a> ) | ( C.VALUE=<c> [DELTA=<n>] ) | ( [C1=<c>] [C2=<c>] [C3=<c>] [C4=<c>] [C5=<c>] [C6=<c>] [C7=<c>] [C8=<c>] [C9=<c>] [C10=<c>] ) } [E.NAME=<c>] [PROMPT=<c>] [LEVEL=<n>] ) | ( PRINT [INITIAL] [NAME=<c>] ) }

Parameter Type Definition Default Units

NAME character The assigned name to which a value is being assigned or for which the current value is printed. The name must consist only of letters, digits, and periods (.), and may not exceed eight characters.

None

PRINT logical Specifies that the current values of assigned names are printed. If the NAME parameter is specified, only the value of the specified assigned name is printed. If the INITIAL parameter is specified, only the values of initially assigned names are printed.

False

Aurora Reference Guide 511X-2006.09

Page 532: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

N.VALUE array The numerical value(s) assigned to the assigned name. If a single value is specified and neither OPTIMIZE nor SENSITIV is specified, the DELTA or RATIO parameters may be specified to vary the value of the assigned name. If multiple values are specified, the value of the assigned name is varied by choosing successive values from the list of values specified with this parameter. Only a single value may be specified if OPTIMIZE or SENSITIV is specified. No more than 100 values may be defined with this parameter. The value(s) specified with this parameter may be replaced by one or more values specified with the PROMPT or E.NAME parameters.

None none

DELTA number The constant difference by which the value of the assigned name is varied. This parameter is only allowed if the C.VALUE parameter is specified or if a single value is specified with the N.VALUE parameter and neither OPTIMIZE nor SENSITIV is specified.

None none

RATIO number The constant ratio by which the value of the assigned name is varied. The value of this parameter must be nonzero. This parameter is only allowed if a single value is specified with the N.VALUE parameter and neither OPTIMIZE nor SENSITIV is specified.

OPTIMIZE logical Specifies that the value of the assigned name is controlled by an optimization loop.

False

SENSITIV logical Specifies that the value of the assigned name is controlled by a sensitivity analysis loop.

False

LOWER number The lower bound for the value of the assigned name during optimization or sensitivity analysis.

None none

UPPER number The upper bound for the value of the assigned name during optimization or sensitivity analysis.

None none

Parameter Type Definition Default Units

Aurora Reference Guide 512X-2006.09

Page 533: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

L.VALUE array The logical value(s) assigned to the assigned name. If multiple values are specified, the value of the assigned name is varied by choosing successive values from the list of values specified with this parameter. At most 100 values may be defined with this parameter. The value(s) specified with this parameter may be replaced by one or more values specified with the PROMPT or E.NAME parameters.

None none

C.VALUE character The character value assigned to the assigned name. The value specified with this parameter may be replaced by a value specified with the PROMPT or E.NAME parameters.

None

C1 character The first in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C2 character The second in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C3 character The third in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C4 character The fourth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

Parameter Type Definition Default Units

Aurora Reference Guide 513X-2006.09

Page 534: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

C5 character The fifth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C6 character The sixth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C7 character The seventh in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C8 character The eighth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C9 character The ninth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

C10 character The tenth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.

None

Parameter Type Definition Default Units

Aurora Reference Guide 514X-2006.09

Page 535: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Description

No more than two hundred assigned names may be defined. An assigned name may be given either a numerical, logical, or character value which may be

E.NAME character The name of an environment variable containing an alternative to the value specified by the N.VALUE, L.VALUE, or C.VALUE parameter. If the environment variable is not set or its value is blank, the value specified by the N.VALUE, L.VALUE, or C.VALUE parameter is used. This parameter is only allowed with the N.VALUE, L.VALUE, and C.VALUE parameters. The value(s) specified with this parameter may be replaced by one or more values specified with the PROMPT parameter.

None

PROMPT character The character string used to prompt you for the interactive input of an alternative to the value specified by the N.VALUE, L.VALUE, C.VALUE, or E.NAME parameter. If this character string is blank, “>” is used instead. This character string is output on the terminal, and the alternative value is read from the terminal input. If the character string read from the terminal input is blank, the value specified by the N.VALUE, L.VALUE, C.VALUE, or E.NAME parameter is used. This parameter is only allowed with the N.VALUE, L.VALUE, and C.VALUE parameters.

None

LEVEL number The loop level which controls variation of the value of the assigned name. The value of this parameter must be less than or equal to the current loop level. If the value of this parameter is zero, the variation of the assigned name is disabled. If the value of this parameter is negative, the loop level used is the sum of this parameter value and the current loop level.

Current loop level

none

INITIAL logical Specifies that the values of initially assigned names are printed.

False

Parameter Type Definition Default Units

Aurora Reference Guide 515X-2006.09

Page 536: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

constant or may vary within statement loops. If the value of an assigned name is varied during statement looping, the assigned name will be given a new value during each pass through the loop that controls its variation.

Assigned NameThe definition of an assigned name may be repeatedly changed using successive ASSIGN statements. The definition established by execution of an ASSIGN statement remains in effect until the definition is changed by execution of another ASSIGN statement or by execution of the same ASSIGN statement during a subsequent pass through a statement loop.

Assigned names with numerical and logical values may be used interchangeably in numerical and character expressions. Assigned names with character values may be used in numerical expressions as arguments to relational operators, logical functions, and conversion functions. Assigned names with character values may also be used to specify statement names and one or more complete parameter name/value pairs. This is illustrated in the last example at the end of this section.

N.VALUE ParameterThe N.VALUE parameter is used to assign numerical values to the assigned name. If a single value is specified with the N.VALUE parameter, the value of the assigned name may be varied during statement loopin, either by a constant increment by specifying the DELTA parameter or by a constant ratio by specifying the RATIO parameter. If multiple values are specified with the N.VALUE parameter, the DELTA and RATIO parameters may not be specified. In this case the N.VALUE parameter specifies a list of values from which successive values are taken during each pass through a statement loop. After the last value in the list is taken, the sequence begins again with the first value in the list.

At most 20 assigned names may be defined using the OPTIMIZE or SENSITIV parameters within one optimization or sensitivity analysis loop. If the OPTIMIZE or SENSITIV parameters are specified, the initial value of the assigned name is specified with the N.VALUE parameter. The optimization or sensitivity analysis loop determines appropriate values for the assigned name for all passes through the loop except the first. The range of allowed values for the assigned name is specified with the LOWER and UPPER parameters. It is important to choose values for these parameters which are as close as possible to the value specified for N.VALUE. This will maximize the efficiency and accuracy of the optimization and sensitivity analysis.

Aurora Reference Guide 516X-2006.09

Page 537: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

L.VALUE ParameterThe L.VALUE parameter is used to assign logical values to the assigned name. If multiple values are specified with the L.VALUE parameter, the L.VALUE parameter specifies a list of values from which successive values are taken during each pass through a statement loop. After the last value in the list is taken, the sequence begins again with the first value in the list.

C.VALUE ParameterThe C.VALUE parameter is used to assign a character value to the assigned name. If the DELTA parameter is not specified, the value of the assigned name is constant. If the DELTA parameter is specified, its value is truncated to an integer and used to increment the value of the assigned name during statement looping. The incrementing of character values is primarily useful for varying file identifiers and title strings during statement looping.

Character ValueWhen a character value is incremented, characters in any of the character sequences “0-9”, “a-z”, and “A-Z” may be changed, while other characters are left unchanged. A character will always be changed to another character in the same character sequence. A character value is incremented by starting with the rightmost character in the value and moving forward or backward through the character sequence containing it by the number of characters specified by the DELTA parameter. Each time either end of the sequence is passed, the next character to the left in the value is changed by moving forward or backward by one character. For example, the following input statements assign character values using an increment of 4 to the assigned name NAME1:

LOOP STEPS=6 ASSIGN NAME=NAME1 C.VALUE=aa.0 DELTA=4L.END

The above input statements would result in the assigned name NAME1, assuming the following sequence of character values:

aa.0aa.4aa.8ab.2ab.6ac.0

Aurora Reference Guide 517X-2006.09

Page 538: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

C1 Through C10 ParametersThe parameters C1 through C10 are used to assign one of a list of character values to the assigned name. These parameters specify a list of from 1 to 10 values from which successive values are taken during each pass through a statement loop. After the last value in the list is taken, the sequence begins again with the first value in the list.

E.NAME ParameterThe E.NAME parameter can be used to override the values specified by the N.VALUE, L.VALUE, and C.VALUE parameters. The E.NAME parameter specifies the name of an environment variable. If the specified environment variable is set, its value is used instead of the value specified by the N.VALUE, L.VALUE, or C.VALUE parameter. For example, the following input statement assigns the value “original” to the assigned name NAME1 if the NEWNAME environment variable is not set:

ASSIGN NAME=NAME1 C.VALUE="original" E.NAME=NEWNAME

However, if the NEWNAME environment variable is set to the value “new” before executing Aurora, then the above input statement assigns the value “new” to the assigned name NAME1.

PROMPT ParameterThe PROMPT parameter can be used to override the values specified by the N.VALUE, L.VALUE, C.VALUE, and E.NAME parameters. The PROMPT parameter specifies a character string to be used to prompt you for the interactive input of the assigned name value from the terminal. If the input string is not blank, its value is used instead of the value specified by the N.VALUE, L.VALUE, C.VALUE, or E.NAME parameter. For example, the following input statement uses the character string “INPUT>” to prompt for the value of the assigned name NAME1:

ASSIGN NAME=NAME1 C.VALUE="original" PROMPT="INPUT>"

If the input provided in response to the prompt is blank, the statement assigns the value “original” to the assigned name NAME1. However, if the response to the prompt is “new”, then the above statement assigns the value “new” to the assigned name NAME1.

Aurora Reference Guide 518X-2006.09

Page 539: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Reference Assigned NameAn assigned name is referenced in an input statement by preceding the name with “@”.

Examples For example, the following input statements assign values to the assigned names NAME1 and NAME2 and use these assigned names to define the values of the parameters PARM1 and PARM2:

ASSIGN NAME=NAME1 C.VALUE="String"ASSIGN NAME=NAME2 N.VALUE=5STMT PARM1=@NAME1 PARM2=@NAME2

The above input statements are equivalent to the following input statement:

STMT PARM1="String" PARM2=5

As a second, more extensive example, the following input statements illustrate the use of ASSIGN statements in a loop:

ASSIGN NAME=NAME2 C.VALUE="PARM2=2"LOOP STEPS=2 ASSIGN NAME=NAME1 C1="STMT1 PARM1=1" C2="STMT2 PARM1=2" LOOP STEPS=3 ASSIGN NAME=NAME3 C.VALUE="String0" DELTA=1 ASSIGN NAME=NAME4 N.VALUE=5 RATIO=2 ASSIGN NAME=NAME5 N.VALUE=(10,20) @NAME1 @NAME2 PARM3=@NAME3 PARM4=@NAME4 PARM5=@NAME5 L.ENDL.END

The assigned name NAME2 is given a character value that specifies the parameter name and value for the numerical parameter PARM2.

The assigned name NAME1 is given a list of 2 character values from which successive values are taken during each pass through the outer loop, to specify the value for the statement name and the parameter name and value for the numerical parameter PARM1.

The assigned name NAME3 is given a character value which is incremented by 1 during each pass through the inner loop, to specify the value for the character parameter PARM3.

The assigned name NAME4 is given a single numerical value which is multiplied by 2 during each pass through the inner loop to specify the value for the numerical parameter PARM4.

Aurora Reference Guide 519X-2006.09

Page 540: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The assigned name NAME5 is given a list of 2 numerical values from which successive values are taken during each pass through the inner loop, to specify the value for the numerical parameter PARM5.

The above statement loops are equivalent to the following input statements:

STMT1 PARM1=1 PARM2=2 PARM3="String0" PARM4=5 PARM5=10STMT1 PARM1=1 PARM2=2 PARM3="String1" PARM4=10 PARM5=20STMT1 PARM1=1 PARM2=2 PARM3="String2" PARM4=20 PARM5=10

STMT2 PARM1=2 PARM2=2 PARM3="String0" PARM4=5 PARM5=10STMT2 PARM1=2 PARM2=2 PARM3="String1" PARM4=10 PARM5=20STMT2 PARM1=2 PARM2=2 PARM3="String2" PARM4=20 PARM5=10

ECHO

The ECHO statement outputs text to the user’s terminal.

ECHO

[<c>]

Description

The character strings associated with the first fifteen lines of the ECHO statement are output to the user’s terminal.

The ECHO statement can be used with the PROMPT parameter on the ASSIGN statement to provide interactive terminal input and output.

ExampleFor example, the following statements prompt you for the number of loop steps and output the specified value

ECHO Input the number of loop steps+ (default:10)ASSIGN NAME=TYPE N.VALUE=10 PROMPT="steps="ECHO " "+ @TYPE" steps were requested".

Aurora Reference Guide 520X-2006.09

Page 541: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

OutputThese statements produce the following output if you do not specify a number of steps:

Input the number of loop steps(default:10)steps=

10 steps were requested

If you specify 20 steps, the following output is produced:

Input the number of loop steps(default:10)steps=20

20 steps were requested

RETURN

The RETURN statement terminates further processing of input statements in a file.

RETURN

[<c>]

Description

Input statements following a RETURN statement are not executed. This statement can be used to prevent processing of statements at the end of the command input file or a file read with a CALL statement. The RETURN statement is equivalent to a STOP statement when it occurs in the command input file because no further statement processing occurs, causing program execution to terminate.

The character strings associated with the RETURN statement are ignored by the program, and serve only to document the user input.

Aurora Reference Guide 521X-2006.09

Page 542: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

STOP

The STOP statement terminates the execution of the program. EXIT and QUIT are synonyms for the STOP statement.

STOP

[<c>]

Description

Input statements following a STOP statement are not executed. This statement can be used to terminate program execution from within the command input file or a file read with a CALL statement.

The character strings associated with the STOP statement are ignored by the program and serve only to document the user input. A STOP statement is not necessary to terminate program execution.

IGNORE

The IGNORE statement prevents processing of subsequent input statements in a file.

IGNORE

[<c>]

Description

Any input statements following an IGNORE statement are printed, but are not checked for proper syntax and are not executed. This statement can be used to ignore statements at the end of the command input file or a file read with a CALL statement. The IGNORE statement is equivalent to a STOP statement when it occurs in the command input file because no further statement processing occurs, causing program execution to terminate.

Aurora Reference Guide 522X-2006.09

Page 543: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

The character strings associated with the IGNORE statement are ignored by the program, and serve only to document the user input.

<effectivity>—following <text:para>:pagination (pr,dp,md,au,tx)

Summary

This section summarizes the input statements recognized by Aurora. The format used for the parameter list associated with a statement is identical to that used in the detailed statement descriptions. The special characters < >, [ ], |, { }, and ( ) are used to indicate parameter types, optional parameters, and valid parameter combinations. The summaries are organized alphabetically by statement name, and include references to the section and page of the manual where a detailed description of the statement can be found.

3D.SURFACE - on p. -461

[HIDDEN] [VISIBLE] [LOWER] [UPPER] [X.LINE] [Y.LINE] [MASK] [Z.MIN=<n>] [Z.MAX=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

ALIAS - on p. -399

[MODEL=<c>] [DATA=<c>][CANCEL]

ASSIGN - on p. -511

{ ( NAME=<c> [PRINT] { ( N.VALUE=<a> [ {DELTA=<n> | RATIO=<n>} ] )| ( N.VALUE=<a> {OPTIMIZE | SENSITIV} LOWER=<n> UPPER=<n> )| | ( L.VALUE=<a> ) | ( C.VALUE=<c> [DELTA=<n>] ) | ([C1=<c>] [C2=<c>] [C3=<c>] [C4=<c>] [C5=<c>][C6=<c>][C7=<c>] [C8=<c>] [C9=<c>] [C10=<c>] ) } [E.NAME=<c>] [PROMPT=<c>] [LEVEL=<n>] ) | ( PRINT [INITIAL] [NAME=<c>] ) }

Aurora Reference Guide 523X-2006.09

Page 544: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

BATCH - on p. -494

[<c>]

BYPASS - on p. -400

NAME=<c> [CANCEL]

CALL - on p. -488

{FILE=<c> | ( [FIRST=<c>] [LAST=<c>][EXPAND] )} [ONCE] [PRINT]

COMMENT - on p. -483

[<c>]or$ [<c>]

CONTOUR - on p. -450

FIRST=<n> [LAST=<n>] [DELTA=<n>] [LINE.TYP=<n>] [COLOR=<n>] [FILL] [PAUSE]

CONTROL - on p. -426

[ERR.TOL=<N>] [PAR.TOL=<N>] [DX.MIN=<N>] [DX.MAX=<N>] [ITER.MAX=<N>] [LINSRCH]

COUPLE - on p. -425

COUPL

<Pname1>

<Pname2>

Aurora Reference Guide 524X-2006.09

Page 545: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

[INIT]

DATA - on p. -402

INPUT=<c>[SUMMARY]

DEFINE - on p. -474

NAME=<c> [DESCRIPT=<c>] [UNITS=<c>] { ( VARIABLE [DEFAULT=<n>] {MAJOR | MINOR} ) | PARAMETE[NOSPICE] | ( TARGET MINIMUM=<n> ) }

ECHO - on p. -520

[<c>]

ELSE - on p. -501

[COND]

END - on p. -477

[<C>]

EXCLUDE - on p. -409

[<Tname>]... [MINIMUM=<n>] [MAXIMUM=<n>] [FILES=<c>] [ALL]

EXTRACT - on p. -422

<Pname>=<n> ... or<Pname> ... [INITIAL=<n>] [LOWER=<n>][UPPER=<n>]

Aurora Reference Guide 525X-2006.09

Page 546: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

FIX - on p. -419

<Pname>=<n> ...

or

[ {<Pname> ... | ALL} ] [ {VALUE=<n> | UNDEFINE} ]

GETVALUE - on p. -412

[NAME=<C>] [GOAL=<C>] [VALUE=<C>] [FILES=<C>] [ALL] [MODEL] [INCLUDE] [ | {MINIMUM | MAXIMUM } | TOTAL

| RMS | INDEX=<n> | EQUAL=<n> ( [CROSS=<n>] | [RISE=<n>] [FALL=<n>])

]

GSAVE - on p. -430

GSAVE

[FILE=<c>]

HELP - on p. -486

[NAME=<c>] [ {PARAMETE=<c> | VERBOSE}]

IF - on p. -499

[COND]

Aurora Reference Guide 526X-2006.09

Page 547: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IF.END - on p. -502

[<c>]

IGNORE - on p. -522

[<c>]

INCLUDE - on p. -407

[<Tname>]... [MINIMUM=<n>] [MAXIMUM=<n>] [WEIGHT=<n>] [FILES=<c>] [ALL] [LOG] [INVERSE] [PRIMARY]

INITIALIZE - on p. -474

MODEL=<c>INDEX=<n>

INTERACTIVE - on p. -493

[ONCE]

I.PRINT - on p. -495

{( [FIRST=<c>] [LAST=<c>] ) | [ALL]}[EXPAND]

I.SAVE - on p. -497

FILE=<c> [NOW] [FIRST=<c>] [LAST=<c>][EXPAND]

LABEL - on p. -463

[ {LABEL=<c> | SYMBOL=<n>} ] [X=<n>][Y=<n>] [ANGLE=<n>] [ {START.LE | START.CE | START.RI} ] [LX.START=<n>] [LY.START=<n>] [LX.FINIS=<n>] [LY.FINIS=<n>] [ARROW][CM] [C.SIZE=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

Aurora Reference Guide 527X-2006.09

Page 548: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

LANG - on p. -391

LANG

TYPE=SPICE | MAST

L.END - on p. -510

[BREAK] [ALL]

L.MODIFY - on p. -508

[LEVEL=<n>] [STEPS=<n>] [ {NEXT | BREAK}] [PRINT]

LOOP - on p. -502

[STEPS=<n>] [PRINT] [OPTIMIZE][SENSITIV]

MACRO - on p. -390

MACRO

FILE=<c>

MODEL - on p. -382

[ NAME=<c> INITIAL=<c> [SIMULATO=<c>]]

OPTIMIZE - on p. -427

[MSGLEVEL=<n>][RETRY=<n>]

OPTION - on p. -484

[I.ERROR]

Aurora Reference Guide 528X-2006.09

Page 549: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

PLOT - on p. -434

<Tname>... VARIABLE=<c> [MODEL] [DATA][INVERSE] [ERROR] [INCLUDE] [FILES=<c>] [ALL] [SELECTED] [X.SUBST=<c>] [MINIMUM=<n>] [MAXIMUM=<n>] [BOTTOM=<n>] [TOP=<n>] [LEFT=<n>] [RIGHT=<n>] [CLEAR] [AXES] [X.LOGARI] [Y.LOGARI] [TITLE=<c>] [LINE.TYP=<n>] [SYMBOL=<n>] [COLOR=<n>] [INVISIBL] [SAME] [ADD] [PAUSE] [ TIMESTAM [TI.SIZE=<n>] ] [DEVICE=<c>] [PLOT.OUT=<c>] [PLOT.BIN=<c>] [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [X.LABEL=<c>] [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>] [Y.LABEL=<c>] [T.SIZE=<n>] [C.SIZE=<n>]

PLOT.2D - Page A-444

DATA=<c> [X.COLUMN=<n>] [Y.COLUMN=<n>][Z.COLUMN=<n>] [LINE.TYP=<n>] [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>] [CLEAR] [LABELS] [MARKS] [SCALE] [TITLE=<c>] [T.SIZE=<n>] [X.OFFSET=<n>]

[X.LENGTH=<n>] [X.SIZE=<n>] [X.LABEL=<c>] [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>] [Y.LABEL=<c>] [COLOR=<n>] [PAUSE] [TIMESTAM] [TIME.SIZ=<n>] [DEVICE=<c>] [PLOT.OUT=<c>] [PLOT.BIN=<c>]

PLOT.3D - Page A-452

DATA=<c> [X.COLUMN=<n>] [Y.COLUMN=<n>][Z.COLUMN=<n>] [THETA=<n>] [PHI=<n>] [CLEAR] [AXES] [LABELS] [MARKS] [TITLE=<c>] [T.SIZE=<n>] [VIEWPORT] [CENTER] [FILL.VIE] [XV.LENGT=<n>] [XV.OFFSE=<n>] [YV.LENGT=<n>] [YV.OFFSE=<n>] [X.MIN=<n>] [X.MAX=<n>] [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [Y.MIN=<n>] [Y.MAX=<n>] [Y.OFFSET=<n>] [Y.LENGTH=<n>]

Aurora Reference Guide 529X-2006.09

Page 550: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

[Y.SIZE=<n>] [Z.MIN=<n>] [Z.MAX=<n>] [Z.LENGTH=<n>] [Z.SIZE=<n>] [Z.LOGARI] [X.LABEL=<c>] [Y.LABEL=<c>] [Z.LABEL=<c>] [LINE.TYP=<n>] [COLOR=<n>] [TIMESTAM] [TIME.SIZ=<n>] [DEVICE=<c>] [PLOT.OUT=<c>] [PLOT.BIN=<c>]

PRINT - on p. -432

[PARAMETE] [FIXED] [EXTRACT] [VARIABLE][TARGETS] [ALL] [VALUES] [DESCRIPT] [FULL] [FILE=<c>] [C.VALUE=<c>] [CLOSE] [APPEND]

RETURN - on p. -521

[<c>]

REVERT - on p. -428

[ {<Pname>... | ALL} ] [INITIAL=<c>[SPICE]]

SAVE - Page A-430

[FILE=<c>]

SCALE - Page A-399

[<Vname>]... [<Tname>]...FACTOR=<n>

SCS - on p. -392

SCS

FILE=<c>

Aurora Reference Guide 530X-2006.09

Page 551: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SELECT - on p. -405

<Vname>=<n> ... or[<Vname>] ... {ALL | ( START=<n> END=<n> [INCREMEN=<n>]) | VALUE=<a>}

SEPARATE - on p. -416

[<Tname>]...[VAR1=<c>] [VAR2=<c>] [OUTFILE=<c>] [FILES=<c>] [RESIDUAL]

SETTARG - on p. -393

NAME=<C> [GOAL=<N>] [VALUE=<N>][WEIGHT=<N>]

SIMULATOR - on p. -383

NAME=<c> [C1=<c>] [C2=<c>] [C3=<c>][C4=<c>] [C5=<c>]

SKIP - on p. -401

LINES=<n>

SPSAVE - on p. -431

[FILE=<c>]

STOP - Page A-522

[<c>]

SUMMARIZE - on p. -469

[<Tname>]... [<Vname>]... [ERROR] [MODEL] [DATA] [INCLUDE] [FILES=<c>] [ALL] ( [OUTFILE=<c>] [OUTRE

Aurora Reference Guide 531X-2006.09

Page 552: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

G =<n>] [APPEND] [VAR.1=<c>] [MINOR] [TABLE] [USEALIAS] [REVERSE] [GRID] )

TABLE - on p. -394

<C>

TARGET - on p. -385

TARGET

NAME=<c> [WEIGHT=<n>] [MINIMUM=<n>] [ { ( EQUALS A=<c> ) | ( {SUM | DIFFEREN | RATIO} A=<c> B=<c>) | ( {SUM | DIFFEREN | RATIO} A=<c> B=<c> ) | ( DERIVATI A=<c> B=<c> [DELTA=<n>] [SMOOTH=<n>] [DIVIDE] [D.EXP=<n>] [T.EXP=<n>] )

| ( INV_DER A=<c> B=<c> [DELTA=<n>] [SMOOTH=<n>] [DIVIDE] [D.EXP=<n>] [T.EXP=<n>] )

| ( POWER=<n> A=<c> ) } [DESCRIPT=<c>] [UNITS=<c>] ]

TITLE - on p. -482

[<C>]

VARIABLE - on p. -396

<Vname>=<n> ... or<Vname> ... { ( [START=<n>] [END=<n>] [INCREMEN=<n>] [NUMBER=<n>] ) | VALUE=<a> }

Aurora Reference Guide 532X-2006.09

Page 553: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

WEIGHT - on p. -410

[<Tname>]... [MINIMUM=<n>] [MAXIMUM=<n>] [WEIGHT=<n>] [FILES=<c>] [ALL]

WRTPAR- on p. -473

WRTPAR [PAR]

Aurora Reference Guide 533X-2006.09

Page 554: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 534X-2006.09

Page 555: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 535X-2006.09

Page 556: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 536X-2006.09

Page 557: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 537X-2006.09

Page 558: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 538X-2006.09

Page 559: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 539X-2006.09

Page 560: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 540X-2006.09

Page 561: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 541X-2006.09

Page 562: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 542X-2006.09

Page 563: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 543X-2006.09

Page 564: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 544X-2006.09

Page 565: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 545X-2006.09

Page 566: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 546X-2006.09

Page 567: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 547X-2006.09

Page 568: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 548X-2006.09

Page 569: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 549X-2006.09

Page 570: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 550X-2006.09

Page 571: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 551X-2006.09

Page 572: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 552X-2006.09

Page 573: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 553X-2006.09

Page 574: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 554X-2006.09

Page 575: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 555X-2006.09

Page 576: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 556X-2006.09

Page 577: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 557X-2006.09

Page 578: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 558X-2006.09

Page 579: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 559X-2006.09

Page 580: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 560X-2006.09

Page 581: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 561X-2006.09

Page 582: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 562X-2006.09

Page 583: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 563X-2006.09

Page 584: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 564X-2006.09

Page 585: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 565X-2006.09

Page 586: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 566X-2006.09

Page 587: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 567X-2006.09

Page 588: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 568X-2006.09

Page 589: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 569X-2006.09

Page 590: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 570X-2006.09

Page 591: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 571X-2006.09

Page 592: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 572X-2006.09

Page 593: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 573X-2006.09

Page 594: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 574X-2006.09

Page 595: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 575X-2006.09

Page 596: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 576X-2006.09

Page 597: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 577X-2006.09

Page 598: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 578X-2006.09

Page 599: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 579X-2006.09

Page 600: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 580X-2006.09

Page 601: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 581X-2006.09

Page 602: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 582X-2006.09

Page 603: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 583X-2006.09

Page 604: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 584X-2006.09

Page 605: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 585X-2006.09

Page 606: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 586X-2006.09

Page 607: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 587X-2006.09

Page 608: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 588X-2006.09

Page 609: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 589X-2006.09

Page 610: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 590X-2006.09

Page 611: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 591X-2006.09

Page 612: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Reference Guide 592X-2006.09

Page 613: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

44S-Parameters Key Derivations

This chapter provides the derivations of key equations of the S-parameters module.

Derivations of Key Equations

The derivation of key equations for the Aurora S-parameters module focuses on:■ S-parameters to h-parameters and to y-parameters■ Getting β from h-parameters■ Base resistance derivations

S-parameters to h-parameters

In Figure 1, Port 1, the inport, consists of connection points 1 and 2; Port 2, the outport, consists of points 3 and 4. For a bipolar transistor in the common emitter mode, for example, connection point 1 could be the base, 2 and 4 the emitter, and 3 the collector.

Figure 1 Two port network

S-parameters are defined in terms of normalized power variables, rather than voltage and current. Define the voltage at Port i to be Vi, where i =1 or 2, representing the Port number. Similarly, let Ii be the current at Port i.

1

2

3

4

593

Page 614: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Now define two new normalized power variables which are complex numbers, Ai and Bi, where Z is the characteristic impedance (usually 50 ohms), and

(1)

(2)

Notice that Ai and Bi have units of (Volt-Amps)1/2, so the incident and exiting power at Port i is

(3)

(4)

and the total power at Port i is the incident minus the exiting power.

To define the S-parameters (scattering parameters) write

(5)

(6)

The above relations completely define the S-parameters for a two-port network.

Now consider the same two-port network, but choose independent voltage and current variables, instead of normalized power variables. The z-parameters are defined so that I1 and I2 are the independent variables, and V1 and V2 are the dependent. Similarly, the y-parameters are defined so that V1 and V2 are the independent variables, and I1 and I2 are the dependent variables. In particular, write

(7)

(8)

(9)

(10)

Measuring certain z or y-parameters can lead to difficulties (see Cutler, Semiconductor Circuit Analysis, pp. 266-68). It is sometimes more convenient to consider combinations of currents and voltages as the independent variables, so the h-parameters (h for hybrid) are defined as

Ai 1 2⁄( ) Vi Z Ii Z+⁄( )=

Bi 1 2⁄( ) Vi Z Ii–⁄ Z( )=

Incident Poweri 1 2⁄( )= Ai2

Exiting Poweri 1 2⁄( ) Bi2

=

Bi S11A1 S12A2+=

B2 S21A1 S22+ A2=

V1 z11I1 z12+ I2=

V2 z21I1 z22+ I2=

I1 y11V1 y12+ V= 2

I2 y21 V1 y22+ V2=

594

Page 615: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(11)

(12)

Here the choice is I1 and V2 as the independent variables and V1 and I2 as the dependent variables. This is in analogy with the S-parameters case in which A1 and A2 were chosen as the independent variables and B1 and B2 as the dependent variables.

To obtain the h-parameters from the S-parameters, substitute Equation 1 and Equation 2 into Equations 5 and 6 and rearrange terms to solve for V1 and I2 in terms of I1 and V2. This allows you to equate the four h-parameters to algebraic combinations of S-parameters. Same thing applies to the four y-parameters. The results are listed at the end of this chapter.

Figure 2 Simplified common emitter hybrid pi model

Obtaining β from h-parameters

To obtain β from the h-parameters, consider a simplified hybrid pi common-emitter model of Figure 2. (You will be shown how to add extra terms to this model later.) In this circuit, Vπ is the voltage across rπ (in this case, Vπ = Vbe), and the following relations hold:

(13)

(14)

V1 h11= I1 h12V2+

I2 h21I1 h22+ V2=

ro

Vbe Vce

rp Cp

Ib Ic

Ie

ICp

Irp

gm Vp

gm

qIc

kT-------=

Cπ τFgm Cbe+=

595

Page 616: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(15)

(16)

where Cbe is the base-emitter junction capacitance,

(17)

and Va is the forward Early voltage. Ideally, Va is infinite, so rowould not be included.

With ro removed from the circuit, the following relations using Kirchoff’s voltage and current laws can be written as:

(18)

(19)

(20)

(21)

Solve the above equations for Vbe to get

(22)

and then rewrite Equation 11as:

(23)

Comparing Equation 22 with Equation 23, equate the factors multiplying Ib so that you can write

(24)

and equating factors multiplying Vce you get

rπβ0

gm------=

r01

ηgm----------=

η kTqVa---------=

Ie Ib Ic+ + 0=

Ic gm= Vbe

Vbe Irπrπ

Icπ

ωCπ( )----------------= =

Ib IrπICπ

0=+ +

Vbe

1 rπωCπ+-------------------------Ib=

Vbe h11Ib h12Vce+=

h11rπ

1 rπωCπ+-------------------------=

596

Page 617: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(25)

Similarly, substituting Equation 22 for Vbe in Equation 19 you get

(26)

Again, comparing Equation 26 with Equation 12 and equating factors multiplying Ib

and Vce allows for writing

(27)

(28)

Finally, notice that β derives from Equation , if both sides of the equation are divided by Ib,

so that

(29)

for the common-emitter mode. Only the derivation for the simplified hybrid pi model has been shown; the more general case is discussed later.

Figure 3 Simplified common collector hybrid pi model

A simplified common-collector hybrid pi model shown in Figure 3 allows the writing of the following equations, similar to the common-emitter case:

(30)

h12 0=

Ic

gmrπ

1 rπωCπ+-------------------------Ib=

h21gmrπ

1 rπωCπ+-------------------------=

h22 0=

βIc

Ib---- h21= =

rp

Cp

Ib

Ic

Ie

gm Vp

Vbc Vec

Ic gmVπ=

597

Page 618: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

where again, Vπ is the voltage across rπ, so that

(31)

As for the common-emitter case, write the following equations using Kirchoff’s voltage and current laws along with the above two relations:

(32)

(33)

(34)

The above equations are easily solved for Ic in terms of Ib so that one can write

(35)

(36)

Now write Equations 1111 and 1212 for the common-collector case as

(37)

(38)

Rewriting Equation 35 to get Vbc in terms of Ib and Vec and comparing to Equation 38, you can immediately write

(39)

(40)

Similarly, solving for Ie in terms of Ib and Vec

and comparing to Equation 39, you have

(41)

Vπ Vbc Vec–=

Ic gm Vbc Vec–( )=

Ie Ib Ic 0=+ +

Vbc

Ibrπ

1 rπωCπ+------------------------- Vec=–

Ic

gmrπ

1 rπωCπ+-------------------------Ib=

βIc

I----

b

gmrπ

1 rπωCπ+-------------------------= =

Vbc h11Ib h12Vec+=

Ie h21Ib h22Vec+=

h11rπ

1 rπωCπ+-------------------------=

h12 1=

h21 1gmrπ

1 rπωCπ+-------------------------+–=

598

Page 619: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(42)

Comparing the expression for β, Equation 37, with Equations 4041 and 4241, you can write the following expression for β in terms of h21 and h12 as

(43)

This last expression for β is written in this way to show the result for the general case (only the derivation for the simplified hybrid pi model has been shown; the more general case is discussed later).

Obtaining fT from β versus Frequency

The value of fT is obtained from the β versus frequency data by assuming a single pole roll-off for the frequency dependence of β. Specifically, this means β takes the form

(44)

In the above equation, β(f) is the theoretical value of β as a function of frequency f, β0 is the DC value of β, and fβ is a constant (the frequency at which β falls by 3 db). Invert the above equation to obtain fβ in terms of β and β0. This gives

(45)

For f > > fβ, Equation 46 can be approximated by

(46)

The cut-off frequency, fT, is defined as the frequency at which β(f) falls to unity. So, setting β(f) = 1 in Equation 47,

and replacing f with fT, enables writing

(47)

h22 0=

β h21

h12------- 1–=

β f( )β0

1 jffβ----+

----------------=

fβf

β0 β f( )⁄( )21–

----------------------------------------------=

β f( )β0fβ

f----------=

fT β0fβ=

599

Page 620: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Combine Equation 46 and Equation 4847 to get:

(48)

Excess Phase, PTF

Using Equations and 47 with f = fT results in

(49)

Then the phase of β(fT) is

(50)

For an ideal device, β0 approaches infinity, so that the ideal equation is

(51)

The parameter PTF is the phase of the measured value of β at fT less -90 degrees.

Correcting τF for Resistances and Capacitances

The derivations up to this point have been relatively simple. However, the algebra now becomes so complex that the complete derivations are not listed. The following discussion points the way, based on what has preceded.

The simplified hybrid pi model for the common-emitter mode, Figure 2, now needs to be enhanced to include missing bipolar components. All the relevant missing pieces are included in Figure 4.

fT

β0f

β0 β f( )( )21–

---------------------------------------=

β fT( )β0

1 jβ0+-----------------

β0

1 β20+

------------------------ 1 jβ0–[ ]= =

Phase β fT( )( ) arcImag β fT( )( )Real β fT( )( )-------------------------------⎝ ⎠

⎛ ⎞tan arc β0¬( )tan= =

Phase β fT( )( ) π¬( ) 2⁄ 90deg¬= =

600

Page 621: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Figure 4 Enhanced common emitter hybrid pi model

For this enhanced model, Vπ is still the voltage across rπ, but now this voltage is given by

(52)

Proceed as in “Obtaining β from h-parameters,” p. -595 to solve Kirchoff’s voltage and current laws. However, the present case becomes considerably more complicated. Synopsys TCAD has found that it is more desirable to start with the derivation described in “Getting β from h-parameters” and modify it by adding one new circuit component at a time, solving the equations, adding another component, and so on, until the full circuit of Figure 4 has been analyzed. It is much easier to proceed from a simpler circuit solution, then add a single circuit element to see how its inclusion modifies the previous solution. Trying to solve the problem all at once makes it algebraically tedious.

For the common-emitter mode, if the approximations are made

(53)

(54)

This results in

(55)

Note in the above equation that the base resistance, rb, does not appear. Equation 55 can be rewritten using Equation 15 as

re

rbVbe Vce

rp CpIb

Ic

Ie

ICpIrp

gm Vp

Cm

rc

ICs

IrbCs

Vπ Vbe Irbrb Iere––=

1 re rc+( )ωCμ+ 1→

gm ωCμ– gm→

β f( ) h21rπgm

1 jrπ2πf Cπ Cμ Cs+ +( ) gmCμ re rc+( )+[ ]+------------------------------------------------------------------------------------------------------------= =

601

Page 622: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(56)

Comparing Equation 56 with Equation 44, you can see that

(57)

Now multiply Equation 57 by 1/β0, and use Equations 15 and 47 47 to write

(58)

which can finally be written as

(59)

where in Equation 49, Cπ is the sum of the base-emitter diffusion capacitance, and the base-emitter junction capacitance is explicitly used (i.e., Equations 13Equation 14 and 14 Equation 15 have been used). The fact that Cμ is the base-collector junction capacitance Cbc has also been used.

In a similar way, for the common-collector mode, an equation corresponding to Equation 55 is derived

(60)

as well as an equation corresponding to Equation 59

(61)

Figure 5 was used in deriving Equation 61

βf h21β0

1 jrπ2πf Cπ Cμ Cs+ +( ) gmCμ re rc+( )+[ ]+------------------------------------------------------------------------------------------------------------= =

12πfβ----------- rπ Cπ Cμ Cs+ +( ) gmCμ re rc+( )+[ ]=

12πfT----------- 1

gm------ Cπ Cμ Cs+ +( ) re rc+( )+ Cμ=

12πfT----------- τF

kTqIc------- Cbe Cbc Cs+ +( ) re rc+( )Cbc+ +=

β f( ) h21

h12------- 1–

rπgm

1 jrπ2πf Cπ gmCμrc+[ ]+--------------------------------------------------------------= =

12πfT----------- τF

kTqIc-------Cje rcCbc+ +=

602

Page 623: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Figure 5 Enhanced common collector hybrid pi model

Relationship of Large Signal τF to Small Signal τF

The base-emitter diffusion capacitance is calculated from the transit time, τF.

However, this can be described in terms of the large signal transit time, , or

the small signal transit time,

(62)

whereas for small signals, the equation is

(63)

where in writing Equation ,63 Equation 14 has been used and the junction capacitance Cbe subtracted. Substituting Equation 13 in Equation 63 results in

(64)

Equating Equations 62 and 6464 gives

(65)

In the above equation, replace the partial derivative with respect to Vbe by using

gm Vp

rb

rc

IrbICs

Vbc Vecrp

CpIe

Ic

ICp

Irp

Cm

re

Cs

Ib

τFLS

τFSS

Cdiffusion∂

∂Vbe----------- τFLS

Ic( )=

Cdiffusion τFssgm=

Cdiffusion τFssqIc kT⁄( )=

∂∂Vbe----------- τFLS

Ic( ) τFssqIc kT⁄( )=

603

Page 624: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(66)

so that Equation 65 becomes

(67)

To first order, so the following can be written

(68)

Then, Equation 69 applied to Equation 67 gives

(69)

Integrating Equation 69 over Ic gives the desired result

(70)

Base Resistance Derivations

This description highlights the calculations for obtaining the base resistance. Nothing is fundamentally different in these calculations than what has been done previously. Starting with Figure 2, for the common emitter configuration, add an extra resistance, rb, between the top of rπ and Vbe. Add another resistance, re, between the bottom of Cπ and ground. These additions will have the effect of changing Equation 20 to

(71)

Solve for Vbe as before to get

(72)

Then use the following definitions of the y-parameters to solve for the y’s.

∂∂Vbe-----------

∂Ic∂∂Vbe∂Ic-------------------=

∂Ic∂∂Vbe∂Ic------------------- τFLS

Ic( ) τFssqIc kT⁄( )=

∂Ic

∂Vbe----------- qIc kT⁄=

∂∂Ic------- τFLS

Ic( ) τFss=

τFLSIc( ) 1

Ic---- τFss

0

Ic

∫ Ic( )dIc=

Vbe Ibrb Iere–– Irπrπ

ICπ

ωCπ( )----------------= =

Vbe Ib

rπ 1 gmre+( )1 rπωCπ+( )

------------------------------- rb+ re–=

604

Page 625: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(73)

(74)

For this simplified hybrid pi model,

(75)

(76)

(77)

(78)

The above equations for the y’s can be solved for rb to obtain (for the general case, not only for the simplified hybrid pi model)

(79)

where

(80)

Similarly, for the common collector case, the general solution is

(81)

Aurora uses Equations 80 through81 82 to calculate the base resistance as a function of both frequency and collector current.

h-Parameter Derivations

(82)

Ib y11Vbe y12Vce+=

Ic y21Vbe y22Vce+=

y11rπ 1 gmre+( )1 rπωCπ+

------------------------------- rb re–( )+1¬

=

y12 0=

y21gmrπ

1 rπωCπ+( ) rb re–( ) 1 gmre+( )rπ+----------------------------------------------------------------------------------------=

y22 0=

rb1

gmeff

----------⎝ ⎠⎛ ⎞ Real

y11 y12+

gmeeffy12 y21–+

---------------------------------------⎝ ⎠⎛ ⎞

1¬=

gmeff

1gm------ re+

1¬=

rb1

gmeff

---------- Realy12¬

gmeffy21 y12–+

-------------------------------------⎝ ⎠⎛ ⎞

1¬=

h11

Z-------

1 s11+( ) 1 s22+( ) s12s121–

1 s11–( ) 1 s22+( ) s12s21+-----------------------------------------------------------------=

605

Page 626: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

(83)

(84)

(85)

In the above, Z is the characteristic impedance (usually 50 or 75 ohms).

y-Parameter Derivations

(86)

(87)

(88)

(89)

References

There are no complete texts available that cover all aspects of S-parameters relating to bipolar devices. Most of the literature available is spotty, obtuse, and sometimes misleading. However, by consulting some of the following references, you can obtain a reasonable background on the subject. The following list contains not only the references but their particular strengths; some of the references are listed more than once because they cover more than one specific area. The best single reference is by Paul J. van Wijnen, listed under Measurement Techniques.

h122s12

1 s11–( ) 1 s22+( ) s12s21+---------------------------------------------------------------=

h212s21–

1 s11–( ) 1 s22+( ) s12s21+---------------------------------------------------------------=

Zh221 s22–( ) 1 s11–( ) s12s21–

1 s11–( ) 1 s22+( ) s12s21+---------------------------------------------------------------=

Zy111 s22+( ) 1 s11–( ) s12s21+

1 s22+( ) 1 s11+( ) s12s21–---------------------------------------------------------------=

Zy122– s12

1 s22+( ) 1 s11+( ) s12s21–---------------------------------------------------------------=

Zy212s21–

1 s22+( ) 1 s11+( ) s12s21–---------------------------------------------------------------=

Zy221 s22–( ) 1 s11+( ) s12s21+

1 s22+( ) 1 s11+( ) s12s21–---------------------------------------------------------------=

606

Page 627: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

General S-Parameter Background Material

Adam, Stephen F., Microwave Theory and Applications, Prentice-Hall.

Cutler, Phillip, Semiconductor Circuit Analysis, McGraw-Hill.

Gonzalez, Guillermo, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall.

van Wijnen, Paul J., On the Characterization and Optimization of High-Speed Silicon Bipolar Transistors, 1992. Self-published by the author. Available from Cascade Microtech, Beaverton, Oregon.

White, Joseph F., Microwave Semiconductor Engineering, Van Nostrand-Reinhold.

Smith Charts

Gonzalez, Guillermo, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall.

Measurement Techniques

Bechdolt, R., and Kevin Moore, “FT and RB S-Parameter Characterization Using the Common-Collector Mode.” Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, pp.267-270, September, 1989.

van Wijnen, Paul J., On the Characterization and Optimization of High-Speed Silicon Bipolar Transistors, 1992. Self-published by the author. Available from Cascade Microtech, Beaverton, Oregon.

S-parameters applied to Bipolar Devices

Bechdolt, R., and Kevin Moore, “FT and RB S-Parameter Characterization using the Common -Collector Mode.” Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, pp.267-270, September, 1989.

Getreu, Ian, Modeling the Bipolar Transistor, Tektronix, 1976.

van Wijnen, Paul J., On the Characterization and Optimization of High-Speed Silicon Bipolar Transistors, 1992. Self-published by the author. Available from Cascade Microtech, Beaverton, Oregon.

Thorough Bibliographies for Further References

van Wijnen, Paul J., On the Characterization and Optimization of High-Speed Silicon Bipolar Transistors, 1992. Self-published by the author. Available from Cascade Microtech, Beaverton, Oregon.

607

Page 628: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

608

Page 629: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

AAAurora Model Interface

This appendix provides an example of Aurora’s model interface.

Aurora Model Interface

This appendix illustrates the organization of Aurora’s built-in model subroutines. If you wish to add a new model, refer to Chapter 6, “Adding New Models to Aurora” in the Aurora User’s Guide.

Calculations vary from one model to another, but the interface between Aurora and the built-in model subroutines is fixed. Aurora references the built-in models via FORTRAN subroutine calls of the form:

CALL MDEL<n>( INITFL, PARDEF, PAR, VAR, LUDIA, TARG )where <n> denotes a number corresponding to the model index. Thus, the model subroutine should be declared as

SUBROUTINE MDEL<n>( INITFL, PARDEF, PAR, VAR, LUDIA, TARG )LOGICAL INITFL, PARDEF(<npar>)INTEGER LUDIAREAL VAR(<nvar>)DOUBLE PRECISION PAR(<npar>), TARG(<ntarg>)where <nvar>, <npar>, and <ntarg> are the number of variables, parameters, and targets, respectively, used by the model. INITFL indicates whether new parameters are presented to the model; PARDEF indicates which parameters have been given values; PAR contains the values of the parameters; VAR contains the values of the variables; and LUDIA is the logical unit number of an output file that may be used for error messages or debugging output. The model subroutine returns the calculated target values in array TARG.

609

Page 630: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Model Evaluation

Evaluation of the model is a two-step process.

1. The model subroutine is called first with INITFL true to initialize a set of parameters. In this case, only INITFL, PARDEF, PAR, and LUDIA have valid values. Save the parameters passed in PAR in local storage for later use, and make calculations that depend only on the parameter values.

2. The model subroutine is then called with INITFL false; in this case, INITFL, VAR, and LUDIA have valid values. The subroutine calculates the target values using the variable values from VAR and the previously saved parameters. The results are returned in TARG. Repeat this step many times to evaluate the model for different combinations of variables using the same set of parameter values.

The arguments PARDEF and PAR are valid when INITFL is true. PARDEF contains a logical value for each parameter; PARDEF(I) is true if parameter number I has been assigned a value by a FIX or EXTRACT statement or in an initial parameter file. (The FIX UNDEF statement sets PARDEF false for the named parameters.) PAR contains the values of the parameters. Note that PAR(I) is valid only if the corresponding PARDEF(I) is true. Parameters are assigned to PARDEF and PAR in the order in which they appeared in DEFINE PARAMETER statements in the model initialization file.

Arguments VAR and TARG are valid only when INITFL is false. VAR contains the variable values in the order in which they appeared in DEFINE VARIABLE statements in the model initialization file. Calculated target values should be returned in TARG. The order of targets in TARG is the same as the order of DEFINE TARGET statements in the model initialization file.

LUDIA is the logical unit number of a file opened for output. Error messages and debugging information may be written to this unit using FORTRAN-formatted write statements. This output appears in the diagnostic output file <base>.dia.

Model Restrictions

The following restrictions are placed on the built-in model subroutines:

610

Page 631: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

■ The model must not use more than 500 parameters, 50 variables, and 50 targets.

■ The names of subprograms and common blocks used by the model subroutine must not conflict with names used in the rest of Aurora. (This requirement is automatically met if the conventions described inOutline of a Simple Model Implementation are followed. The model must not perform I/O operations to any logical unit used by Aurora (other than LUDIA). The logical unit numbers used by Aurora are defined in the FORTRAN BLOCK DATA routine COMMN.

Arithmetic Precision

To obtain accurate parameter values, it should be specified that the model calculations be done in DOUBLE PRECISION arithmetic.

Outline of a Simple Model Implementation

While the preceding section defines the model interface, this section describes how to use the interface for a simple model implementation. The code used in the examples given works with any ANSI standard FORTRAN-77 compiler and with most older compilers.

Subroutine Statement

Figure 1 shows the outline of a typical model subroutine. The model subroutine begins with the subroutine statement and argument declarations described previously. Recall that <n> is the model index, and that <npar>, <nvar>, and <ntarg> are the number of parameters, variables, and targets used by the model. The IMPLICIT statement is optional; it declares all variables with names starting with the letters A-H and O-Z to be double precision unless explicitly specified otherwise.

Local Variables

The next step is to declare local variables used in the model subroutine. Variables holding parameter values should be saved in a labeled common block to facilitate saving these values with the SAVE statement, and to pass

611

Page 632: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

parameter values to a subroutine. MDCM<n> (replace the <n> with the model index) is the suggested name for the common block used by model <n>. This name will not conflict with other names used by Aurora. DEFALT is an array of default parameter values; the list in the DATA statement should contain a value for each parameter.

The subroutine has two sections, one to initialize the parameters and one to calculate the target values. ■ The first section of code is executed when INITFL is true. It processes the

parameters, placing the parameter values and any pre-computed quantities in the labeled common MDCM<n>.

■ The second section, executed when INITFL is false, uses these saved values plus the variable values in VAR to compute the target values, which are returned in TARG. The code used here assumes that temperature has been declared as the itemp variable, and that TOLD is a variable in MDCM<n>. If the model does not depend on temperature, omit the associated code.

In many cases, it is desirable to call subroutines to do portions of the model evaluation. To avoid name conflicts with other subroutines in Aurora, name user subroutines are organized as: MODL<n><x>, where <n> is the model index and <x> is any letter or number.

Example 1 Outline of a typical model subroutine

SUBROUTINE MODEL<n>( INIPAR, PARDEF, PAR, VAR, LUDIAP, TARG )IMPLICIT DOUBLE PRECISION (A-H,O-Z)CC DECLARE SUBROUTINE ARGUMENTSLOGICAL INIPAR, PARDEF(<npar>)INTEGER LUDIAPREAL VAR(<nvar>)DOUBLE PRECISION PAR(<npar>), TARG(<nrarg>)CC DECLARE LOCAL VARIABLES.....<local variable declarations go here>COMMON /MDCM<n>/<list of parameter variables>SAVE /MODCM1/DOUBLE PRECISION DFALT(<npar>)DATA DEFALT/<list of default values>/CC START OF EXECUTABLE CODEIF (.NOT. INITFL) GOTO 500CC SET DEFAULT PARAMETER VALUES

612

Page 633: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

DO 100 I = 1,<npar>IF(.NOT. PARDEF(I))) PAR(I) = DEFAULT(I)100 CONTINUECC PUT PARAMETER VALUES IN LOCAL STORAGE... < save parameters in MDCM<n>RETURN500 CONTINUECC CALCULATE TARGETS FOR NEW VARIABLESTEMP = VAR(itemp)IF( TEMP. EQ TOLD) GOTO 600CC UPDATE PARAMETERS FOR NEW TEMPERATURE... < temperature-dependent calculations; results in MDCM<n>>TOLD = TEMP600 CONTINUECC TARGET CALCULATIONS... <based on parameters in MDCM<n> and variables in VAR>TARG(1) = < value of the first target>...TARG(<ntarg>) = <value of (<ntarg>th target>RETURNEND

Reporting Errors in the Model

As a matter of good programming practice, the model code should check for certain error conditions and report problems. The recommended procedure for reporting errors is to call MODERR to alert you of an error.

Two means of reporting errors are available: ■ Write to logical unit number LUDIA to send information to <base>.dia, the

diagnostic output file. ■ Call the subroutine MODERR. MODERR generates an error 16:

Error in evaluating model equations. See diagnostic output file.

and reports a model error code specified in the call. MODERR is called by:

613

Page 634: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

CALL MODERR(ICODE,ISEVER)

where ICODE is an integer specifying a user-defined error code and ISEVER is an integer specifying the severity of the error. If ISEVER is one, an error is printed, and the statement that referenced the model is terminated. If ISEVER is zero, a warning is generated, and execution continues. MODERR keeps track of the ICODEs that have been reported to avoid repeating messages.

Assigning Values to Parameter Names

The model may pass values back to you by assigning a value to the Assigned name associated with each parameter. This procedure is often used to return values of parameters calculated by the model, because they were not defined by the user. To assign a value to the name associated with a parameter, call the PARSET subroutine:

CALL PARSET(INDEX,DVALUE)where INDEX is the index of the parameter and DVALUE is a double precision value. This affects the value of the Assigned name associated with the parameter, but not the value of the parameter itself.

Using Model Code from a Circuit Simulator

It is sometimes desirable to extract the code for a model directly from a circuit simulator. Not only does this ensure that the same model used for parameter extraction is used for simulation, it saves time in implementing a model.

Calculation Distribution

However, complications may occur in implementing a model in this way. Model calculations in the circuit simulator may be distributed throughout the code. In SPICE, for example, parameters are read in subroutine READIN, preprocessed in subroutine MODCHK, adjusted for temperature in subroutine TMPUPD, and used in the model subroutines proper (DIODE, BJT, JFET, or MOSFET).

To use a model from SPICE, identify those portions of each subroutine that relate to the desired model, resolve differences and conflicts between variable names in the various routines, eliminate code not needed in Aurora (e.g.,

614

Page 635: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

prediction steps and matrix loading), and combine the result into a cohesive unit.

Code from MODCHK goes into the parameter initialization section of the Aurora subroutine, while code from TMPUPD and the model proper goes into the second section.

Parameter Storage and Use

The way parameters are stored and used creates a difficulty in the SPICE MOS model. Every time the model is evaluated, SPICE copies the parameters from blank common to a named common used by the model. The subroutines for MOS levels 1, 2, and 3 reference this named common and, in some cases, modify the parameter values. This is acceptable in SPICE, as the common is re-initialized before each call, but is not acceptable in Aurora, where the parameters in common are initialized only once for each set of parameters. The model subroutines must be modified so that the values of the parameters in common are not changed.

Modeling Series Resistances

The basic device model used in a circuit simulator computes the currents in a device given the voltage, assuming that there are no series resistances. Resistances specified by the user or calculated by the model are added by the simulator and solved as part of the circuit. In Aurora, any series resistances to be modeled must be included in the model. This may require an iterative scheme to solve for the internal voltages given the external voltages and the series resistances. You are responsible for coding such an algorithm. The standard MOS and bipolar transistor models in Aurora have routines for including series resistance.

Debugging and Testing a New Model

Aurora contains several features that simplify the tasks of locating errors and testing the performance of a new model.

The easiest way to evaluate a new model is to plot its characteristics with the PLOT SELECTED statement. The SELECTED option specifies that points defined by SELECT statements are plotted. No measured data is required to plot model characteristics in this way. Sometimes plotted characteristics are

615

Page 636: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

wrong in an uninformative way (the target values may be all zero, for example). In these cases, you must investigate the values of variables internal to the model subroutine. Assign these variables to dummy targets, which you may then plot. Use this procedure to verify the values of variables and parameters passed to the model routine.

Another way to test models is to define secondary targets as derivatives of primary targets. These derivatives may be plotted to check for discontinuities in the primary targets. Some circuit simulators require that the device models compute the derivatives of current with respect to voltage. This calculation may be checked with the following methods:■ Declaring and computing the derivatives as primary targets ■ Defining the same derivatives (using different names) as secondary targets ■ Comparing the derivatives using the two different definitions

This is an excellent check of both the computed currents and their derivatives.

Creating a Model Initialization File

The model initialization file is a specialized command input file used to convey the results of the preceding steps to Aurora. Figure 1shows a sample initialization file. The first statement in the initialization file (other than TITLE or COMMENT) is an INITIALIZE statement, which specifies the chosen model name and index. Following the INITIALIZE statement is a series of DEFINE statements—one for each variable, target, and parameter to be declared. The order of the DEFINE statements is important: variables, targets, and parameters are presented to the model subroutine in the order in which they are declared by the DEFINE statements.

For variables, the DEFINE statement includes the name of the variable, whether it is major or minor, its default value (optional), and a text description (also optional). The name and optional text descriptions are included in the DEFINE statement for targets and parameters. (Text descriptions are available via the PRINT DESCRIPT statement.) A default minimum value must also be supplied for each target to use in calculating the error. The units of each variable, target, and parameter may also be specified. These units document and annotate PLOT axes. The initialization sequence is terminated by an END statement. Syntax of the INITIALIZE, DEFINE, and END statements is given inChapter 3 of this manual.

616

Page 637: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Initializing the Model

To initialize the model, run Aurora as described in , giving it the file specification of the initialization file created in the previous step. Aurora reports errors encountered in processing the initialization file. If errors are reported, the file must be corrected and resubmitted to Aurora.

Verifying Model Initialization

Once the model has been initialized and the initial parameter file has been created, verify the entire process. Run Aurora with a command input file containing the following three statements: ■ MODEL statement with no parameters, to verify that the new model name

has been assigned to the proper model index■ MODEL statement that specifies the new model name and initial parameter

file■ PRINT ALL FULL statement to list the model information

Aurora must process this input file without errors and generate a list of the model variables, targets, and parameters. This list may be used for reference in coding the new model.

617

Page 638: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

618

Page 639: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

BBMedici to Aurora Compatibility

This Appendix describes Aurora’s relationship to the Medici TCAD simulation tool.

The device simulator from Synopsys TCAD, Medici, generates output files (.ivl files) that could contain current-voltage (IV), capacitance-voltage (CV), or S-parameters (S11, S12, S21, S22, etc.), among other types of data. Medici-generated data can be used as a substitute for measured data for parameter extraction with Aurora.

To convert Medici-generated data into the Aurora data format, a conversion utility is available in Aurora, beginning with version 3.3. The conversion program is called ivl parser. The following section describes the usage of this converter to obtain Aurora data format from Medici .ivl files.

Usage

To run the ivl parser utility, type:

ivlparser <.ivl File> <Aurora Format File> [-format [aurora][-sort [ descending| ascending]][-absolute [all]] [-invert [all][-notable] [-nominor] [-tabs] [-grid][-scale <scalefactor>][-length <length>] [-width <width>] [-temperature <temperature>]> <Aurora Output File>

.ivl File: <file generated by Medici as an output data file that you wish to convert to Aurora format>

619

Page 640: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Format File: <file that describes the minor and major variables to be extracted from the Medici ivl file and placed in the output Aurora data file>

The format in which the Variables are specified in the format file is presented in Format File Syntax.

Aurora Output File: <the Aurora formatted output of the conversion program>

Note:

ivl parser is located in the directory, <tma_path>/aurora_v3.3/Aurora_GUI/bin. You may have to set the unix PATH variable to include the above directory.

620

Page 641: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Command-Line Options

Format File Syntax

Minor <variable name> = <value>

Major <variable name> <alias> Toler <value>

Target <variable name> <alias>[noscale] [invscale] [inverse] [abs]

Command Description

-format aurora Specifies the output format to be Aurora compatible.

-sort An optional flag that sorts the data in ascending/descending order.

-absolute [all] Prints out the absolute value of the target. The all flag prints the absolute value of variables and targets.

- invert [all] Inverts the sign of the target.The all flag inverts the sign of the variables and targets.If the -invert and the -absolute options are specified together, the -absolute option overrides the -invert option.

-notable Excludes the table statement in the Aurora output file.

-nominor Excludes the minor statement in the Aurora output file.

-tabs Puts a tab between the data columns.

-grid Prints a bias grid of the variables.

-scale <scalefactor> Multiplies the targets by the scale factor.

-length <length> Overrides the length of the device specified in the format file.

-width <width> Overrides the width of the device specified in the format file.

-temperature <temperature> Overrides the temperature of the device specified in the format file.

-help Prints the help message.

621

Page 642: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Note:

In the Minor variable description, space is required between the variable name, the equals (=) sign, and the corresponding value entry.

Note:

The Toler keyword specifies a minimum absolute value. If any absolute value of the variable is smaller than Toler, it is set to zero.The Toler keyword is also used for setting the number of significant digits for the variable values.

Note:

The noscale keyword specifies that the target should not be multipled by the scale factor (specified with the -scale command-line option). The invscale keyword specifies that the target is divided by the scale factor. The inverse keyword specifies that the inverse of the target is used. The abs keyword specifies that the absolute value of the target is used.

The minor variables are output as in the Aurora data file in the right syntax. All the values of the major variables are printed in a columnar format in the order specified in the format file. If an alias is specified, then the corresponding alias is printed out for the variable in the Aurora output file.

The following example illustrates a typical format file to extract gate characteristics (linear region curve) from a Medici file that contains the appropriate IV data:

Minor W = 3.5e-07Minor L = 3.5e-07Minor T = 2.7e+01Major V(gate) VGSMajor V(substrate) VBSMajor V(drain) VDSTarget I(drain) ID

To extract drain characteristics (saturation region curve) from a Medici file that contains the appropriate IV data use:

Minor W = 3.5e-07Minor L = 3.5e-07Minor T = 2.7e+01Major V(drain) VDSMajor V(gate) VGSMajor V(substrate) VBSTarget I(drain) ID

622

Page 643: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

CCAurora Data Conversion Utility

Aurora includes a conversion utility, audataconvert to convert data from nmos to pmos, and vice-versa. This process is especially useful in converting measured nmos or pmos data to the format used with the built-in HSPICE models.

Usage

To run the audataconvert utility, type:

audataconvert <auroradata File> [-prefix <prefixstring>] [-suffix <suffixstring>] [-help] [-format <aurora|atem>] [-type <nmos|pmos>] [-o <outfilename>]

auroradata File: <input file that you wish to convert>

Note:

audataconvert is located in the directory, <tma_path>/aurora_v2001.2/Aurora_GUI/bin. You may have to set the UNIX PATH variable to include the above directory.

623

Page 644: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Command-Line Options

Conversion Example

The following example demonstrates the conversion of an nmos file to a pmos file that is used with the HSPICE Level 49 model in Aurora.

% audataconvert nmos40x40x27.dat -format aurora -type pmos -o pmos40x40x27.dat

nmos40x40x27.dat:$ Aurora MOS Measurement

VARIABLE W = 4.000E-05VARIABLE L = 4.000E-05VARIABLE T = 2.700E+01VARIABLE DEVID = 0VARIABLE REGION = 0

$Force VDS$Force VGS$Force VBSTABLE VGS VBS VDS ID0.000E+00 0.000E+00 1.000E-01 2.3494E-091.000E-01 0.000E+00 1.000E-01 2.3649E-092.000E-01 0.000E+00 1.000E-01 2.3739E-093.000E-01 0.000E+00 1.000E-01 2.4084E-094.000E-01 0.000E+00 1.000E-01 2.7489E-09

Command Description

-prefix <prefix string> Specifies a prefix to be affixed to the name of the output file that is generated automatically. This is not used when the out-put file name is specified.

-suffix <suffix string> Specifies a suffix to be affixed to the name of the output file that is generated automatically. This is not used when the out-put file name is specified.

-format <aurora|atem> Format of the output data file. It can be in Aurora format orATEM data format.

-type <pmos| nmos> Specifies the device type of the output file.

-o <output file name> Specifies the output file name to the converter.

-help Prints the help message.

624

Page 645: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

5.000E-01 0.000E+00 1.000E-01 6.8044E-096.000E-01 0.000E+00 1.000E-01 47.359E-097.000E-01 0.000E+00 1.000E-01 255.44E-098.000E-01 0.000E+00 1.000E-01 742.79E-099.000E-01 0.000E+00 1.000E-01 1.4235E-061.000E+00 0.000E+00 1.000E-01 2.1845E-061.100E+00 0.000E+00 1.000E-01 2.9709E-061.200E+00 0.000E+00 1.000E-01 3.7615E-061.300E+00 0.000E+00 1.000E-01 4.5474E-061.400E+00 0.000E+00 1.000E-01 5.3234E-061.500E+00 0.000E+00 1.000E-01 6.0920E-061.600E+00 0.000E+00 1.000E-01 6.8464E-061.700E+00 0.000E+00 1.000E-01 7.5919E-061.800E+00 0.000E+00 1.000E-01 8.3279E-061.900E+00 0.000E+00 1.000E-01 9.0516E-062.000E+00 0.000E+00 1.000E-01 9.7682E-062.100E+00 0.000E+00 1.000E-01 10.477E-062.200E+00 0.000E+00 1.000E-01 11.175E-062.300E+00 0.000E+00 1.000E-01 11.870E-062.400E+00 0.000E+00 1.000E-01 12.555E-062.500E+00 0.000E+00 1.000E-01 13.230E-062.600E+00 0.000E+00 1.000E-01 13.900E-062.700E+00 0.000E+00 1.000E-01 14.565E-062.800E+00 0.000E+00 1.000E-01 15.225E-062.900E+00 0.000E+00 1.000E-01 15.874E-063.000E+00 0.000E+00 1.000E-01 16.520E-063.100E+00 0.000E+00 1.000E-01 17.155E-063.200E+00 0.000E+00 1.000E-01 17.790E-063.300E+00 0.000E+00 1.000E-01 18.415E-063.400E+00 0.000E+00 1.000E-01 19.034E-063.500E+00 0.000E+00 1.000E-01 19.644E-063.600E+00 0.000E+00 1.000E-01 20.250E-063.700E+00 0.000E+00 1.000E-01 20.840E-063.800E+00 0.000E+00 1.000E-01 21.440E-063.900E+00 0.000E+00 1.000E-01 22.035E-064.000E+00 0.000E+00 1.000E-01 22.605E-064.100E+00 0.000E+00 1.000E-01 23.184E-064.200E+00 0.000E+00 1.000E-01 23.760E-064.300E+00 0.000E+00 1.000E-01 24.315E-064.400E+00 0.000E+00 1.000E-01 24.870E-064.500E+00 0.000E+00 1.000E-01 25.415E-064.600E+00 0.000E+00 1.000E-01 25.960E-064.700E+00 0.000E+00 1.000E-01 26.490E-064.800E+00 0.000E+00 1.000E-01 27.020E-064.900E+00 0.000E+00 1.000E-01 27.540E-065.000E+00 0.000E+00 1.000E-01 28.045E-060.000E+00 -2.500E+00 1.000E-01 2.6109E-091.000E-01 -2.500E+00 1.000E-01 2.6124E-09

625

Page 646: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

2.000E-01 -2.500E+00 1.000E-01 2.6139E-093.000E-01 -2.500E+00 1.000E-01 2.6159E-094.000E-01 -2.500E+00 1.000E-01 2.6194E-095.000E-01 -2.500E+00 1.000E-01 2.6205E-096.000E-01 -2.500E+00 1.000E-01 2.6239E-097.000E-01 -2.500E+00 1.000E-01 2.6264E-098.000E-01 -2.500E+00 1.000E-01 2.6284E-099.000E-01 -2.500E+00 1.000E-01 2.6324E-091.000E+00 -2.500E+00 1.000E-01 2.6559E-091.100E+00 -2.500E+00 1.000E-01 3.1720E-091.200E+00 -2.500E+00 1.000E-01 14.295E-091.300E+00 -2.500E+00 1.000E-01 131.69E-091.400E+00 -2.500E+00 1.000E-01 526.34E-091.500E+00 -2.500E+00 1.000E-01 1.1360E-061.600E+00 -2.500E+00 1.000E-01 1.8290E-061.700E+00 -2.500E+00 1.000E-01 2.5504E-061.800E+00 -2.500E+00 1.000E-01 3.2809E-061.900E+00 -2.500E+00 1.000E-01 4.0105E-062.000E+00 -2.500E+00 1.000E-01 4.7374E-062.100E+00 -2.500E+00 1.000E-01 5.4580E-062.200E+00 -2.500E+00 1.000E-01 6.1705E-062.300E+00 -2.500E+00 1.000E-01 6.8764E-062.400E+00 -2.500E+00 1.000E-01 7.5749E-062.500E+00 -2.500E+00 1.000E-01 8.2669E-062.600E+00 -2.500E+00 1.000E-01 8.9510E-062.700E+00 -2.500E+00 1.000E-01 9.6313E-062.800E+00 -2.500E+00 1.000E-01 10.299E-062.900E+00 -2.500E+00 1.000E-01 10.965E-063.000E+00 -2.500E+00 1.000E-01 11.625E-063.100E+00 -2.500E+00 1.000E-01 12.270E-063.200E+00 -2.500E+00 1.000E-01 12.915E-063.300E+00 -2.500E+00 1.000E-01 13.560E-063.400E+00 -2.500E+00 1.000E-01 14.190E-063.500E+00 -2.500E+00 1.000E-01 14.815E-063.600E+00 -2.500E+00 1.000E-01 15.439E-063.700E+00 -2.500E+00 1.000E-01 16.049E-063.800E+00 -2.500E+00 1.000E-01 16.659E-063.900E+00 -2.500E+00 1.000E-01 17.260E-064.000E+00 -2.500E+00 1.000E-01 17.854E-064.100E+00 -2.500E+00 1.000E-01 18.445E-064.200E+00 -2.500E+00 1.000E-01 19.030E-064.300E+00 -2.500E+00 1.000E-01 19.600E-064.400E+00 -2.500E+00 1.000E-01 20.170E-064.500E+00 -2.500E+00 1.000E-01 20.729E-064.600E+00 -2.500E+00 1.000E-01 21.284E-064.700E+00 -2.500E+00 1.000E-01 21.830E-064.800E+00 -2.500E+00 1.000E-01 22.369E-064.900E+00 -2.500E+00 1.000E-01 22.910E-06

626

Page 647: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

5.000E+00 -2.500E+00 1.000E-01 23.435E-060.000E+00 -5.000E+00 1.000E-01 2.7754E-091.000E-01 -5.000E+00 1.000E-01 2.7769E-092.000E-01 -5.000E+00 1.000E-01 2.7804E-093.000E-01 -5.000E+00 1.000E-01 2.7829E-094.000E-01 -5.000E+00 1.000E-01 2.7865E-095.000E-01 -5.000E+00 1.000E-01 2.7884E-096.000E-01 -5.000E+00 1.000E-01 2.7915E-097.000E-01 -5.000E+00 1.000E-01 2.7944E-098.000E-01 -5.000E+00 1.000E-01 2.7984E-099.000E-01 -5.000E+00 1.000E-01 2.8025E-091.000E+00 -5.000E+00 1.000E-01 2.8084E-091.100E+00 -5.000E+00 1.000E-01 2.8115E-091.200E+00 -5.000E+00 1.000E-01 2.8155E-091.300E+00 -5.000E+00 1.000E-01 2.8204E-091.400E+00 -5.000E+00 1.000E-01 2.8834E-091.500E+00 -5.000E+00 1.000E-01 4.5279E-091.600E+00 -5.000E+00 1.000E-01 37.940E-091.700E+00 -5.000E+00 1.000E-01 262.09E-091.800E+00 -5.000E+00 1.000E-01 758.33E-091.900E+00 -5.000E+00 1.000E-01 1.3935E-062.000E+00 -5.000E+00 1.000E-01 2.0780E-062.100E+00 -5.000E+00 1.000E-01 2.7794E-062.200E+00 -5.000E+00 1.000E-01 3.4829E-062.300E+00 -5.000E+00 1.000E-01 4.1854E-062.400E+00 -5.000E+00 1.000E-01 4.8860E-062.500E+00 -5.000E+00 1.000E-01 5.5814E-062.600E+00 -5.000E+00 1.000E-01 6.2715E-062.700E+00 -5.000E+00 1.000E-01 6.9535E-062.800E+00 -5.000E+00 1.000E-01 7.6317E-062.900E+00 -5.000E+00 1.000E-01 8.3051E-063.000E+00 -5.000E+00 1.000E-01 8.9705E-063.100E+00 -5.000E+00 1.000E-01 9.6294E-063.200E+00 -5.000E+00 1.000E-01 10.282E-063.300E+00 -5.000E+00 1.000E-01 10.930E-063.400E+00 -5.000E+00 1.000E-01 11.570E-063.500E+00 -5.000E+00 1.000E-01 12.205E-063.600E+00 -5.000E+00 1.000E-01 12.830E-063.700E+00 -5.000E+00 1.000E-01 13.455E-063.800E+00 -5.000E+00 1.000E-01 14.070E-063.900E+00 -5.000E+00 1.000E-01 14.680E-064.000E+00 -5.000E+00 1.000E-01 15.285E-064.100E+00 -5.000E+00 1.000E-01 15.885E-064.200E+00 -5.000E+00 1.000E-01 16.475E-064.300E+00 -5.000E+00 1.000E-01 17.054E-064.400E+00 -5.000E+00 1.000E-01 17.630E-064.500E+00 -5.000E+00 1.000E-01 18.200E-064.600E+00 -5.000E+00 1.000E-01 18.765E-06

627

Page 648: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

4.700E+00 -5.000E+00 1.000E-01 19.319E-064.800E+00 -5.000E+00 1.000E-01 19.870E-064.900E+00 -5.000E+00 1.000E-01 20.410E-065.000E+00 -5.000E+00 1.000E-01 20.945E-06

pmos40x40x27.dat:

$ Input File: nmos40x40x27.dat$ Output File: pmos40x40x27.dat:

VARIABLE W = 4.000e-05VARIABLE L = 4.000e-05VARIABLE T = 27VARIABLE REGION = 0VARIABLE DEVID = 0

TABLE VGS VBS VDS ID-0 0 -0.1 -2.3494e-09-0.1 0 -0.1 -2.3649e-09-0.2 0 -0.1 -2.3739e-09-0.3 0 -0.1 -2.4084e-09-0.4 0 -0.1 -2.7489e-09-0.5 0 -0.1 -6.8044e-09-0.6 0 -0.1 -4.7359e-08-0.7 0 -0.1 -2.5544e-07-0.8 0 -0.1 -7.4279e-07-0.9 0 -0.1 -1.4235e-06-1 0 -0.1 -2.1845e-06-1.1 0 -0.1 -2.9709e-06-1.2 0 -0.1 -3.7615e-06-1.3 0 -0.1 -4.5474e-06-1.4 0 -0.1 -5.3234e-06-1.5 0 -0.1 -6.092e-06-1.6 0 -0.1 -6.8464e-06-1.7 0 -0.1 -7.5919e-06-1.8 0 -0.1 -8.3279e-06-1.9 0 -0.1 -9.0516e-06-2 0 -0.1 -9.7682e-06-2.1 0 -0.1 -1.0477e-05-2.2 0 -0.1 -1.1175e-05-2.3 0 -0.1 -1.187e-05-2.4 0 -0.1 -1.2555e-05-2.5 0 -0.1 -1.323e-05-2.6 0 -0.1 -1.39e-05-2.7 0 -0.1 -1.4565e-05-2.8 0 -0.1 -1.5225e-05-2.9 0 -0.1 -1.5874e-05

628

Page 649: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

-3 0 -0.1 -1.652e-05-3.1 0 -0.1 -1.7155e-05-3.2 0 -0.1 -1.779e-05-3.3 0 -0.1 -1.8415e-05-3.4 0 -0.1 -1.9034e-05-3.5 0 -0.1 -1.9644e-05-3.6 0 -0.1 -2.025e-05-3.7 0 -0.1 -2.084e-05-3.8 0 -0.1 -2.144e-05-3.9 0 -0.1 -2.2035e-05-4 0 -0.1 -2.2605e-05-4.1 0 -0.1 -2.3184e-05-4.2 0 -0.1 -2.376e-05-4.3 0 -0.1 -2.4315e-05-4.4 0 -0.1 -2.487e-05-4.5 0 -0.1 -2.5415e-05-4.6 0 -0.1 -2.596e-05-4.7 0 -0.1 -2.649e-05-4.8 0 -0.1 -2.702e-05-4.9 0 -0.1 -2.754e-05-5 0 -0.1 -2.8045e-05-0 2.5 -0.1 -2.6109e-09-0.1 2.5 -0.1 -2.6124e-09-0.2 2.5 -0.1 -2.6139e-09-0.3 2.5 -0.1 -2.6159e-09-0.4 2.5 -0.1 -2.6194e-09-0.5 2.5 -0.1 -2.6205e-09-0.6 2.5 -0.1 -2.6239e-09-0.7 2.5 -0.1 -2.6264e-09-0.8 2.5 -0.1 -2.6284e-09-0.9 2.5 -0.1 -2.6324e-09-1 2.5 -0.1 -2.6559e-09-1.1 2.5 -0.1 -3.172e-09-1.2 2.5 -0.1 -1.4295e-08-1.3 2.5 -0.1 -1.3169e-07-1.4 2.5 -0.1 -5.2634e-07-1.5 2.5 -0.1 -1.136e-06-1.6 2.5 -0.1 -1.829e-06-1.7 2.5 -0.1 -2.5504e-06-1.8 2.5 -0.1 -3.2809e-06-1.9 2.5 -0.1 -4.0105e-06-2 2.5 -0.1 -4.7374e-06-2.1 2.5 -0.1 -5.458e-06-2.2 2.5 -0.1 -6.1705e-06-2.3 2.5 -0.1 -6.8764e-06-2.4 2.5 -0.1 -7.5749e-06-2.5 2.5 -0.1 -8.2669e-06-2.6 2.5 -0.1 -8.951e-06

629

Page 650: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

-2.7 2.5 -0.1 -9.6313e-06-2.8 2.5 -0.1 -1.0299e-05-2.9 2.5 -0.1 -1.0965e-05-3 2.5 -0.1 -1.1625e-05-3.1 2.5 -0.1 -1.227e-05-3.2 2.5 -0.1 -1.2915e-05-3.3 2.5 -0.1 -1.356e-05-3.4 2.5 -0.1 -1.419e-05-3.5 2.5 -0.1 -1.4815e-05-3.6 2.5 -0.1 -1.5439e-05-3.7 2.5 -0.1 -1.6049e-05-3.8 2.5 -0.1 -1.6659e-05-3.9 2.5 -0.1 -1.726e-05-4 2.5 -0.1 -1.7854e-05-4.1 2.5 -0.1 -1.8445e-05-4.2 2.5 -0.1 -1.903e-05-4.3 2.5 -0.1 -1.96e-05-4.4 2.5 -0.1 -2.017e-05-4.5 2.5 -0.1 -2.0729e-05-4.6 2.5 -0.1 -2.1284e-05-4.7 2.5 -0.1 -2.183e-05-4.8 2.5 -0.1 -2.2369e-05-4.9 2.5 -0.1 -2.291e-05-5 2.5 -0.1 -2.3435e-05-0 5 -0.1 -2.7754e-09-0.1 5 -0.1 -2.7769e-09-0.2 5 -0.1 -2.7804e-09-0.3 5 -0.1 -2.7829e-09-0.4 5 -0.1 -2.7865e-09-0.5 5 -0.1 -2.7884e-09-0.6 5 -0.1 -2.7915e-09-0.7 5 -0.1 -2.7944e-09-0.8 5 -0.1 -2.7984e-09-0.9 5 -0.1 -2.8025e-09-1 5 -0.1 -2.8084e-09-1.1 5 -0.1 -2.8115e-09-1.2 5 -0.1 -2.8155e-09-1.3 5 -0.1 -2.8204e-09-1.4 5 -0.1 -2.8834e-09-1.5 5 -0.1 -4.5279e-09-1.6 5 -0.1 -3.794e-08-1.7 5 -0.1 -2.6209e-07-1.8 5 -0.1 -7.5833e-07-1.9 5 -0.1 -1.3935e-06-2 5 -0.1 -2.078e-06-2.1 5 -0.1 -2.7794e-06-2.2 5 -0.1 -3.4829e-06-2.3 5 -0.1 -4.1854e-06

630

Page 651: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

-2.4 5 -0.1 -4.886e-06-2.5 5 -0.1 -5.5814e-06-2.6 5 -0.1 -6.2715e-06-2.7 5 -0.1 -6.9535e-06-2.8 5 -0.1 -7.6317e-06-2.9 5 -0.1 -8.3051e-06-3 5 -0.1 -8.9705e-06-3.1 5 -0.1 -9.6294e-06-3.2 5 -0.1 -1.0282e-05-3.3 5 -0.1 -1.093e-05-3.4 5 -0.1 -1.157e-05-3.5 5 -0.1 -1.2205e-05-3.6 5 -0.1 -1.283e-05-3.7 5 -0.1 -1.3455e-05-3.8 5 -0.1 -1.407e-05-3.9 5 -0.1 -1.468e-05-4 5 -0.1 -1.5285e-05-4.1 5 -0.1 -1.5885e-05-4.2 5 -0.1 -1.6475e-05-4.3 5 -0.1 -1.7054e-05-4.4 5 -0.1 -1.763e-05-4.5 5 -0.1 -1.82e-05-4.6 5 -0.1 -1.8765e-05-4.7 5 -0.1 -1.9319e-05-4.8 5 -0.1 -1.987e-05-4.9 5 -0.1 -2.041e-05-5 5 -0.1 -2.0945e-05

631

Page 652: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

632

Page 653: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

DDTaurus to Aurora Compatibility

This Appendix describes Aurora’s relationship to the Synopsys TCAD tool, Taurus-Device.

The device simulator from Synopsys TCAD, Taurus-Device, generates output files (.data files) that could contain current-voltage (IV), capacitance-voltage (CV), or S-parameters (S11, S12, S21, S22, etc.), among other types of data. Taurus-generated data can be used as a substitute for measured data for parameter extraction with Aurora.

To convert Taurus-generated data into the Aurora data format, a conversion utility is available in Aurora, beginning with version 3.3. The conversion program is called dataparser. The following section describes the usage of this converter to obtain Aurora data format from Taurus .data files.

Usage

To run the dataparser utility, type:

dataparser <.data File> <Aurora Format File> [-format [aurora][-sort [ descending| ascending]][-absolute [all]] [-invert [all][-notable] [-nominor] [-tabs] [-grid][-scale <scalefactor>][-length <length>] [-width <width>] [-temperature <temperature>]> <Aurora Output File>

.data File: <file generated by Taurus as an output data file that you wish to convert to Aurora format>

633

Page 654: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Aurora Format File: <file that describes the minor and major variables to be extracted from the Taurus data file and placed in the output Aurora data file>

The format in which the Variables are specified in the format file is presented in Format File Syntax.

Aurora Output File: <the Aurora formatted output of the conversion program>

Note:

dataparser is located in the directory, <tma_path>/aurora_v3.3/Aurora_GUI/bin. You may have to set the unix PATH variable to include the above directory.

634

Page 655: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Command-Line Options

Format File Syntax

Minor <variable name> = <value>

Major <variable name> <alias> Toler <value>

Target <variable name> <alias> [noscale] [invscale] [inverse] [abs]

Command Description

-format aurora Specifies the output format to be Aurora compatible.

-sort An optional flag that sorts the data in ascending/descending order.

-absolute [all] Prints out the absolute value of the target. The all flag prints the absolute value of variables and targets.

- invert [all] Inverts the sign of the target.The all flag inverts the sign of the variables and targets.If the -invert and the -absolute options are specified together, the -absolute option overrides the -invert option.

-notable Excludes the table statement in the Aurora output file.

-nominor Excludes the minor statement in the Aurora output file.

-tabs Puts a tab between the data columns.

-grid Prints a bias grid of the variables.

-scale <scalefactor> Multiplies the targets by the scale factor.

-length <length> Overrides the length of the device specified in the format file.

-width <width> Overrides the width of the device specified in the format file.

-temperature <temperature> Overrides the temperature of the device specified in the format file.

-help Prints the help message.

635

Page 656: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Note:

In the Minor variable description, space is required between the variable name, the equals (=) sign, and the corresponding value entry.

Note:

The Toler keyword specifies a minimum absolute value. If any absolute value of the variable is smaller than Toler, it is set to zero. The Toler keyword is also used for setting the number of significant digits for the variable values.

Note:

The noscale keyword specifies that the target should not be multipled by the scale factor (specified with the -scale command-line option). The invscale keyword specifies that the target is divided by the scale factor. The inverse keyword specifies that the inverse of the target is used. The abs keyword specifies that the absolute value of the target is used.

The minor variables are output as in the Aurora data file in the right syntax. All the values of the major variables are printed in a columnar format in the order specified in the format file. If an alias is specified, then the corresponding alias is printed out for the variable in the Aurora output file.

The following example illustrates a typical format file to extract gate characteristics (linear region curve) from a Taurus file that contains the appropriate IV data:

Minor W = 3.5e-07Minor L = 3.5e-07Minor T = 2.7e+01Major V(gate) VGSMajor V(substrate) VBSMajor V(drain) VDSTarget Itot(drain) ID

To extract drain characteristics (saturation region curve) from a Taurus file that contains the appropriate IV data use:

Minor W = 3.5e-07Minor L = 3.5e-07Minor T = 2.7e+01Major V(drain) VDSMajor V(gate) VGSMajor V(substrate) VBSTarget Itot(drain) ID

636

Page 657: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

EEParameter Sorting Utility

Aurora includes a parameter sorting utility, auparsort to arrange the parameters in a user-defined order. It supports parameter files in Aurora format and SPICE parameter files generated with Aurora.

Usage

To run the auparsort utility, type:

auparsort <reference file> <input parameter file> <output parameter file>

The “reference file” contains the parameters listed in a user-defined order.

The utility requires that both the reference and the input parameter files include one parameter per line.

637

Page 658: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

638

Page 659: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

FFAurora Environment Variables

This appendix describes the environment variables that can be used with Aurora.

List of Environment Variables

The following table lists the environment variables used in Aurora and their descriptions of what happens when the environment variables are set.

Parameter Definition

AU_33_COMPATIBILITY1 Strategy files are saved in a format which is compatible with the older versions of Aurora. Values: none

AU_UNDO_REPLACE_DATA The operation of replacing a data file in a strategy can be reverted. The undo operation can be very time consuming. Values: none

AU_UNDO_REMOVE_STEP The operation of removing a step from a strategy can be reverted. The undo operation can be very time consuming. Values: none

AU_UNDO_CREATE_STEP The operation of creating a new step in a strategy can be reverted. The undo operation can be very time consuming. Values: none

AU_REMOVE_OLD_PARAMETERS No longer used. See AU_KEEP_OLD_PARAMETERS.

AU_KEEP_OLD_PARAMETERS1 Indicates that when loading an existing strategy, the model parameters, which are no longer defined in the model definition files, should be kept. Otherwise the obsolete parameters are removed when loading a strategy. Values: none

SLIDER_CHANGE_PLOT No longer used. See SLIDER_KEEP_PLOT.

639

Page 660: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

SLIDER_KEEP_PLOT1 Indicates that, when clicking on a strategy step,

Slider

will update the parameter values, while keeping the same plots. By default, the plots are changed, while keeping the same parameters.

Values: none

SLIDER_FILE No longer used. A Slider file is now always generated.

SLIDER_STANDALONE Slider can be invoked in Standalone mode. Otherwise it can be invoked from the Aurora GUI only.

Values: none

DO_NOT_SLIDER Disables invoking Slider from the Aurora GUI.

Values: none

HP_DATA_WORD1 Set to 16 to operate the HP4155A/HP4156A in HP4145 syntax command mode.

Default value: 13

POSITIVE STEP SIGN1 If set to TRUE, indicates to the Measurement Application to use a positive step for the first swept variable.

AU_DRIVERS_PRINT_CMDS1 If set, results in explicitly printing the commands sent to the measurement equipment, when launching the measurement.

AU_DRIVERS_DEBUG Printing debug info when launching the measurement.

AU_MEAS_METHOD Specifies the measurement method to be used with the measurement drivers. Can be set to 1 or 2. It defaults to 2 on Linux and to 1 on all other platforms.

DONOT_REMOVE_FINAL_FILES1 Disables removing the optimizer input and output files when exiting the GUI. Also, input files generated for plotting will not be erased.

Values: none

DONT_REMOVE_INIT_FILES1 Indicates that initialization files which are automatically generated when building a model should be preserved.

Values: none

Parameter Definition

640

Page 661: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Notes:

1. Also available through the GUI Option Dialog.

DISPLAY_MEASUREMENT_MENU Enables loading a pre-existing data file in the measurement window.

Values: none

NO_TERMINAL_WINDOW Disables the Aurora GUI to display the output of the optimizer on screen.

Values: none

NEW_FILE_FORMAT_ONLY Indicates that the major variable values list will be automatically sorted when reading a data file into the GUI for building a new strategy or modifying an existing one.

Values: none

MODELS_DIR Indicates to the GUI the directory where the initialization files (*.fil) are to be found. It is only used when launching the auroraGUI executable directly, instead of using the auroragui script.

LD_LIBRARY_PATH Sets the path to the shared libraries on Solaris (Sun) and Digital UNIX (DEC).

SHLIB_PATH Sets the path to the shared libraries on HP-UX (HP).

LIBPATH Sets the path to the shared libraries on AIX (IBM).

CMI_LIB_MODELS No longer used.

CMI_HSPICE_CGD_CGS If set, CMI models use the same sign as StarHspice for transcapacitance targets (e.g., cgdb, cgsb, etc.). Otherwise, transcapacitance targets are always positive.

AU_EQUAL_RS_RD No longer used. See the COUPLE statement for forcing RS=RD instead.

VISUALIZE_LANDSCAPE Needs to be defined in order to print the Final Plots with landscape orientation.

AU_CHANGE_COMPLIANCE1 If set, the compliance polarity will be changed when switching the polarity, in the MOSFET or BJT Measurement Setup. Values: none.

Parameter Definition

641

Page 662: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

642

Page 663: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Glossary

This glossary contains terms frequently used in the Aurora User’s Guide and the Aurora Reference Manual. A list of abbreviations and acronyms is included as the last section in the Glossary. For references to more information about a term, see the Index of either manual.

absolute error Error in arithmetic due to round-off. (See relative error.)

AC junction capacitance parameterObtained by measurement with capacitance meters and least squares fitting. (See DC parameter.)

AC transit time parameterObtained with S-parameters. (See DC parameter.)

analog applicationsApplications using analog circuits.

Aurora A general purpose optimization program for fitting analytical models to data.

back-biasBias applied to the body or substrate.

base resistanceResistance at the base terminal of the bipolar junction transistor.

bias conditionVoltage and current applied to the device under test.

binning Produces many sets of model parameters, each set valid over a small range of geometries.

bipolar modelModel representing the behavior of the bipolar junction transistor at different operating conditions.

643

Page 664: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

built-in device Taken from the Berkeley SPICE model. (Compare internal device.)

bulk terminalSubstrate or body terminal of the device.

capacitance meter Instrument to measure capacitance values of the device under test.

capacitance-related targetOutput of the device under test; useful in determining device capacitance.

channel subthreshold Channel in the MOSFET below the threshold voltage.

circuit netlistCircuit simulator input file.

data input fileMeasured data or simulated data from a device simulation.

DC model parameter Parameters guiding the behavior of the DC characteristics of the device.

DC parametric tester Semiconductor equipment, like HP4145, that measures the DC characteristics of the device.

de-embedding process Removes extra effects from S-parameter measurements due to package or probe pad and interconnect.

device conductanceMeasure of the device-conducting properties (inverse of the device resistance).

device gainAbility of the device to multiply the change in the input at its output.

device propertyGeometry factor such as length, width, and area, and other properties such as polarity.

die numberNumber assigned to a die location on the wafer.

diode device A two-terminal semiconductor device that has a p-n junction.

644

Page 665: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

direct extraction method All size-independent parameters obtained simultaneously in a single extraction step. (See indirect extraction method.)

drain current Current at the drain terminal of the MOSFET/JFET.

drain voltage Voltage at the drain terminal of the MOSFET/JFET.

drawn channel length Channel length specified when designing the device.

driver-calling Invoking the equipment driver.

effective channel length Actual channel length obtained during device operation.

effective channel widthActual channel width obtained during device operation.

emitter terminal One of the terminals of the bipolar junction transistor.

empirical model Analytical model based on experimental results.

external deviceCommercial circuit simulator. Using Aurora in external mode to exercise external models directly and bypass internal (built-in) Aurora models.

extract statement Command in Aurora to optimize a particular parameter.

extraction Any algorithm, other than nonlinear least squares curve fitting, used to obtain a parameter or set of parameters.

fingered device Represents a large area-to-periphery ratio in the junction capacitance optimization model. (See square device.)

fitting Curve fitting the measured data to the modeled values.

fit wellAs close as possible.

645

Page 666: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

flat-band voltage Gate bias required to obtain flat energy bands in the MOS system.

geometry-dependent parameterParameter dependent on length and width.

geometry-independent parameterParameter independent of the device length and width.

global optimization Optimization using all model parameters simultaneously.

Gummel data Collector current and base current data obtained by varying base voltage in a bipolar junction transistor.

higher order correction termTerms that have little effect on the quality of fit to measured data.

h-parameterHybrid parameter. (See S-parameter.)

indirect extraction method A two-step optimization process. (See direct extraction method.)

internal device(Compare built-in device.)

initial guessStarting value for a parameter in the optimization process.

initial parameter fileSpecifies initial values and lower and upper bounds for model parameters.

junction capacitance Capacitance obtained inthe p-n junction system.

LCR meterInductance, capacitance, and resistance meter.

least squares curve fittingProcedure for extracting parameters.

lumped element resistorsTotal resistance of a device.

macro-modeling Used for least squares optimization, fitting a complete circuit rather than a single transistor to an output.

646

Page 667: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

major variableTakes on the largest number of values.

mask channel width Width of the device for which the mask was designed.

measurement data fileContains the test plan name. (See measurement results file.)

measured value (Compare simulated value.)

measurements results fileContains results after a series of measurements are performed. (See measurement data file.)

minor variableTakes on a relatively small number of values.

mobility A parameter that represents the flow of charge carriers in the device.

mobility degradationDegradation of the mobility during device operation, due to effects such as velocity saturation on gate field.

model geometryDevice length and width.

model index Model numbers internally used by Aurora.

model initialization file A specialized command input file used to convey the results of the preceding steps to Aurora.

model name Unique string of less than 80 characters, that references a model on the MODEL statement.

model parameterProperties of a model.

narrow-channel effect Effects on the device behavior, due to a scaling down of the device width.

n-channel MOS device that has an n type inversion channel during its operation.

647

Page 668: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

network analyzer Equipment to measure S-parameters of a device.

on-chip measurementMeasurement of parameters related to devices present on an IC chip.

optimizationA procedure for finding control parameter values that result in response values as close as possible to specified targets.

output characteristic I-V curves of the device.

parameterIn Aurora, parameters are considered properties of a model, rather than physical interpretations described to a device.

parameter initialization fileThe first mode is used for developing models and optimization strategies. The file provides default values and lower and upper bounds for the parameters. You must choose initial guesses and narrower bounds, and specify which parameters are to be optimized.

The second mode is used for routine parameter extractions. The file contains good initial guesses and tight bounds for the parameters, and may specify which parameters are to be extracted.

parameter switch Parameter flag.

parsing routine Program that parses the output or input files.

p-channel MOS device that has a p type inversion channel during its operation.

physical model parameterModel parameter derived directly from the device characteristics, without curve fitting.

plotting stepA strategy step that involves a plot of the target versus a variable.

primary targetsDevice currents computed directly by the model. (See target and secondary targets.)

648

Page 669: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

probe pads and interconnects set Pads on the test chip for electrical contact.

prober Equipment to measure device characteristics from a wafer.

relative error Number of correct digits in a computer’s results. (See absolute error.)

reverse betas Reverse direction characterization.

reverse data BJT data with collector and emitter reversed.

reverse parameter Parameters involved in the reverse characteristics (collector and emitter are reversed) of a BJT.

revert Restores parameters to values prior to last optimization step.

scale well As close as possible.

second-order effectNot a direct effect.

secondary targetsSums, differences, ratios, or derivations of primary targets. (See primary targets.)

selective local optimization Data subsets will optimize only relevant subsets of parameters.

sign conventionSigns used in the input and output data.

simulated value(Compare measured value.)

skew modelsBest and worst case models.

slope Derivative of the target to the variable.

649

Page 670: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

smoothing Approximating data, attempting to retrieve the information, and suppressing uncertainty.

source/drain series resistance Resistance of the source and drain diffusion regions.

S-parameterScatter parameters, defined in terms of normalized power variables, rather than voltage and current.

square deviceRepresents a large area-to-periphery ratio in junction capacitance optimization. (See fingered device.)

standard parameterParameter that is part of the model.

strategyComplete set of optimization steps.

strategy input file Controls the steps of the optimization. (See data input file and initial parameter file.)

subthresholdDevice operation region below the threshold voltage.

sweep Measure.

switching matrix Equipment used in measuring device characteristics, with the ability to easily switch device geometries under test.

target A value to be fit, such as device currents, capacitances, conductances, or gains.

Tau Intercept valueX-axis intercept obtained by drawing a tangent on the curve of 1/ft vs 1/IC.

test plan Multiple tests on multiple devices and wafer mapping multi-die testing.

upper or lower boundBounds of a parameter value.

650

Page 671: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

variable Defines measurement conditions, and distinguishes one device from another.

wafer map Map of the die sites on a wafer.

well-behaved data Nearly normally distributed.

Acronyms

ASM Aurora S-Parameters Module

BJ/SPICEAurora’s Internal Bipolar Junction Transistor Model

BJTBipolar Junction Transistor

BJT/EXTSPICEBipolar Junction Transistor/External SPICE Simulator Model

BSIM Berkeley Short-Channel IGFET Model. A semiempirical model for MOS transistors

BSIM/EXTSPICEBSIM/External SPICE model

BSIM/SPICEAurora’s Internal BSIM model

CMI Common Model Interface

DIBLDrain-Induced Barrier Lowering

DIODE/SPICEAurora’s Internal Diode Spice Model

DUT Device Under Test

DVMData Visualization Module

651

Page 672: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

FETField-Effect Transistor

GPIB General Purpose Interface Bus

IGFET Insulated-Gate Field-Effect Transistor

JCAPJunction Capacitor

JCAP/EXTSPICEJunction Capacitor/External SPICE Simulator Model

JCAP/SPICEAurora’s Internal Junction Capacitor Model

LCRInductance Capacitance and Resistance

MOSMetal-Oxide Semiconductor

MOSFETMetal-Oxide Semiconductor Field-Effect Transistor

MOS/EXTSPICEMetal-Oxide Semiconductor/External SPICE Simulator Model corresponding to LEVEL 1, 2 and 3

MOS/SPICEAurora’s Internal MOS LEVEL 1, 2 and 3 Model

MOS9/SPICEAurora’s Internal implementation of Phillips MOS MODEL 9.

RSM Response Surface Methodology

SPICE Semiconductor Parameter Integrated Circuit Extraction

652

Page 673: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

Index

Symbols- 381

Numerics1-12 3813D.SURFACE 461

description 463

Aabsolute error 643AC junction capacitance parameter 643AC transit time parameter 643ALIAS 399analog applications 643ASSIGN 511

assigned name 516C1 through C10 parameters 518character value 517C.VALUE parameter 517description 515E.NAME parameter 518examples 519L.VALUE parameter 517N.VALUE parameter 516PROMPT parameter 518reference assigned name 519

Aurora 643Aurora data conversion utility 623Aurora GUI Fig. 2Aurora interface 609

arithmetic precision 611debugging and testing a new model 615error reporting 613evaluation of models 610local variables 611model restrictions 610outline of a simple model implementation 611subroutine statement 611verify initialization 617

Aurora Measurement GUI Fig. 3Aurora overview 1–5

general features 1initial parameter file 4input files 4internal versus external models 4measurement output files 4

Bback-bias 643base resistance 604, 643base resistance derivations 604, 605, 606basic model parameters

MOSFET’sLevel 2 100Level 28 112Level 3 102Level 47 117Level 49 123, 146, 187, 200, 212Level 50 175, 179, 182, 241, 242, 257, 258

BATCH 494description 495

bias condition 643bin description parameters, MOSFET Level 49 130, 157, 197, 208, 219binning 643bipolar model 643BJT/EXTSPICE model 358

targets 359variables 358

BJT/SPICE model 60, 67, 310, 315, 320, 325, 330

AC BJT/SPICE parameters 63parameters 63targets, description 62, 71, 301variables 60, 67, 297, 335

BSIM/EXTSPICE model 355, 357, 358targets 355variables 355

BSIM/SPICE model 15

653

Page 674: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexC

extraction procedures 16targets 18variables 17velocity 22

BSIM2/SPICE model 23parameters 26targets 24variables 23

BSIM3/SPICE model 29parameters 31resistance parameters 35sheet resistance parameter 35source and drain diffusion resistances 35targets 30

BSIM3v3WPE model 173

BSIM3v3/SPICE model 36parameters 39sheet resistance parameter 45targets 38

BSIM4 Juncap2 model 167built-in device 644bulk terminal 644BYPASS 400

CCALL 488

default 490description 489, 493example 491, 492nested statements 491repeated statements 491statement modification 490template files 492

capacitance meter 644capacitance-related target 644channel subthreshold 644character expressions 377

examples of 378length 378syntax 378

circuit netlist 644command line options 624COMMENT 483

character strings 484description 484

example 484component precedence 376CONTOUR 450CONTROL 426conventions

typographical xviiconversion example 624correcting tF for resistances and capacitances 600

DDATA 402

description 402summary files 403table structure and variables 403

data conversion utility 623command line options 624conversion example 624usage 623

data input file 644Data Selection and Weighting 403–412Data Selection and Weighting, input statements

EXCLUDE 409INCLUDE 407, 412, 416SELECT 405WEIGHT 410

Data Specification 394–403Data Specification, input statements

ALIAS 399BYPASS 400DATA 402SCALE 399SKIP 401TABLE 394VARIABLE 396

DC model parameter 644DC parametric tester 644de-embedding process 644DEFINE 474

default 476description 475logical parameters 393, 476major and minor variables 476

derivations of key equations 593deriving b from h-parameters 595deriving fT from b versus frequency 599device conductance 644

654

Page 675: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexE

device property 644DEXTRACT statement 423, 424DFIX 420die number 644diffusion layer process parameters, MOSFET Level 13 107diode device 644DIODE/SPICE model

parameters 57, 346, 352targets 57, 346, 351variables 56, 345, 350

direct extraction method 645Documentation and Control 477–523

batch and interactive input modes 479controlling program execution 480currently available input statements 480example 479help 478introduction 478optimization 481output of statement information 480output to the user’s terminal 480sensitivity analysis 482statement line numbers 479

Documentation and Control, input statementsASSIGN 511BATCH 494CALL 488COMMENT 483ECHO 520ELSE 501HELP 486IF 499IF.END 502IGNORE 522INTERACTIVE 493I.PRINT 495I.SAVE 497L.END 510L.MODIFY 508LOOP 502OPTION 484RETURN 521STOP 522TITLE 482

drain current 645drain voltage 645drawn channel length 645

driver-calling 645

EECHO 520

description 520example 520output 521

effective channel length 645effective channel length, MOSFET’s

parametersLevel 2 100Level 3 102Level 49 128, 154, 195, 206, 217

effective channel width 645parameters, MOSFET’s, Level 2 100parameters, MOSFET’s, Level 3 102parameters, MOSFET’s, Level 49 128, 154, 195,

206, 217ELSE 501emitter terminal 645empirical model 645END 477enhanced common collector hybrid pi model Fig. 603enhanced common emitter hybrid pi model Fig. 601enhancements

GUI changes and enhancements 641excess phase, PTF 600EXCLUDE 409external device 645EXTRACT statement 422, 423, 424, 425extract statement 645extraction 16, 645

Ffiles

initial parameter 4input 4measurement output 4

fingered device 645fit well 645fitting 645FIX 419flat-band voltage 646format of input statements 369

655

Page 676: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexG

Ggeneral features 1geometry-dependent parameter 646geometry-independent parameter 646global optimization 646GSAVE 430, 431GUI changes and enhancements 641Gummel data 646

HHELP 486higher order correction term 646h-parameter 593, 646

IIF 499

ASSIGN output 500description 499example 500matching statements 500nested statements 500

IF.END 502IGNORE 522INCLUDE 407, 412, 416indirect extraction method 646initial guess 646initial parameter file 4, 646INITIALIZE 474input files 4input limits of input statements 370Input Statement Descriptions 369–381

character expressions 377component precedence 376examples of numerical expressions 377format 369input limits 370introduction 369numerical expressions 373other parameter names 371parameters 371statement format description 379statements with parameters 370statements without parameters 371syntax 370

INTERACTIVE 493

statement continuation 494statement looping 494termination 494

internal device 646internal versus external models 4introduction xvii–??

typographical conventions xviiI.PRINT 495

description 496output 496statement modification 496

I.SAVE 497description 497statement modification 498

JJCAP/EXTSPICE model 359

targets 360variables 359

JCAP/SPICE model 76, 78, 80junction capacitor model 76, 78, 80parameters 77, 80, 82targets 77, 79, 81variables 76, 79, 81

JFET/SPICE model 82parameters 84targets 84, 336variables 83, 335

juncap2 junction model 167junction capacitance 646junction parameters 165junction parameters, MOSFET’s

Level 49 133, 163, 199, 211, 222

LLABEL 463

conditions for default 468default starting coordinates 468default values 467description 467line and arrowhead 468location 467size 467

LANG 391LCR meter 646least squares curve fitting 646

656

Page 677: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexM

L.END 510description 510

L.MODIFY 508description 509

LOOP 502description 503examples 506increment 506level 506loop counter 505loop levels 505matching statements 504nested statements 504repeated processing 503start 505varied parameter values 504

lower or upper bound 650lumped element resistors 646

MMACRO 390macro-modeling 646major variable 476, 647mask channel width 647measured value 647measurement data file 647measurements results file 4, 647Medici to Aurora compatibility 619, 633

command line options 621, 635format file syntax 621, 635usage 619, 633

minor variable 476, 647mobility 647mobility degradation 647mobility parameters

MOSFET’sLevel 2 101Level 3 103

MODEL 382assigned name 383description 382

Model Definition 473–??Model Definition, input statements

DEFINE 474END 477INITIALIZE 474

Model Descriptions 7–367BJT/EXTSPICE model 358BSIM/EXTSPICE model 355, 357, 358BSIM/SPICE model 15BSIM2/SPICE model 23BSIM3/SPICE model 29BSIM3v3/SPICE model 36introduction 7JCAP/EXTSPICE model 359JFET/SPICE model 82MOS/EXTSPICE model 352MOS/SPICE model 8MOS9/SPICE model 49Star-HSPICE 85

model evaluation 610model geometry 647model index 647model initialization file 647model name 647model parameter 420, 421, 647Model Specification 381Model Specification, input statements

LANG 391MACRO 390MODEL 382SCS 392SIMULATOR 383TARGET 385, 393

models, internal versus external 4MOS/EXTSPICE model 352

level parameter 353targets 354variables 353

MOS/SPICE modelnonstandard parameters 12parameters 10

description 11resistance parameters 12targets 10variables 9variables, polarity 354

MOS9/SPICE model 49parameters 51targets 51

MOSFET’scharge conservation model parameters 98diodes 92diodes model parameters 91

657

Page 678: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexN

gate capacitance model parameters 96gate overlap capacitance model parameters 96geometry model parameters 93, 231Meyer capacitance model parameters 97noise model parameters 98

Nnarrow-channel effect 647n-channel 647network analyzer 648noise parameters, MOSFET’s

Level 49 132, 158, 198, 209, 220numerical expressions 373

arithmetic operators 374assigned names 374character expressions 374conversion functions 376delimiters 374examples of 377logical functions 376logical operators 375logical values 374numerical functions 375numerical values 373relational operators 375

Oon-chip measurement 648Optimization 419–431optimization 481, 648Optimization, input statements

CONTROL 426DEXTRACT 423DFIX 420EXTRACT 422, 425FIX 419GSAVE 430, 431OPTIMIZE 427REVERT 428SAVE 430

OPTIMIZE 427description 427results table 428

OPTION 484outline of a simple model implementation 611outline of a typical model subroutine Fig. 612

Output 432–473output characteristic 648Output, input statements

3D.SURFACE 461CONTOUR 450LABEL 463PLOT 434PLOT.2D 444PLOT.3D 452PRINT 432SUMMARIZE 469WRTPAR 473

Pparameter 648parameter initialization file 648parameter switch 648parameter types 371

array 372character 373logical 372numerical 372

parameters, 3D.SURFACE statementCOLOR 463HIDDEN 462LINE.TY 462LOWER 462MASK 462PAUSE 463UPPER 462VISIBLE 462X.LINE 462Y.LINE 462Z.MAX 462Z.MIN 462

parameters, ALIAS statementCANCEL 400DATA 400MODEL 400

parameters, ASSIGN statementC1 513C10 514C2 513C3 513C4 513C5 514C6 514C7 514

658

Page 679: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexP

C8 514C9 514C.VALUE 513DELTA 512E.NAME 515INITIAL 515LEVEL 515LOWER 512L.VALUE 513NAME 511N.VALUE 512OPTIMIZE 512PRINT 511PROMPT 515RATIO 512SENSITIV 512UPPER 512

parameters, BYPASS statementNAME 401

parameters, CALL statementEXPAND 488FILE 488FIRST 488LAST 488ONCE 489PRINT 489

parameters, CONTOUR statementCOLOR 451DELTA 451FILL 451FIRST 451LAST 451LINE.TYP 451PAUSE 451

parameters, CONTROL statementDX.MAX 426DX.MIN 426ERR.TOL 426ITER.MAX 426PAR.TOL 426

parameters, DATA statementINPUT 402RESET 402SUMMARY 402

parameters, DEFINE statementDEFAULT 475DESCRIPT 475MAJOR 475MINIMUM 475

MINOR 475NAME 475PARAMETE 475TARGET 475UNITS 475VARIABLE 475

parameters, DEXTRACT statementINITIAL 424LOWER 424P(name) 424UPPER 424

parameters, DFIX statementALL 421P(name) 421UNDEFINE 421VALUE 421

parameters, ELSE statementCOND 501

parameters, EXCLUDE statementALL 410FILES 409MAXIMUM 409MINIMUM 409T(name) 409

parameters, EXTRACT statementINITIAL 422, 425LOWER 422P(name) 422, 425UPPER 422

parameters, FIX statementALL 420, 426P(name) 420UNDEFINE 420VALUE 420

parameters, GETVALUE statementALL 413CROSS 414DISPLAY 414EQUAL 414ERRMAX 413FALL 414FILES 413GOAL 413INCLUDE 413INDEX 414MAXIMUM 413MINIMUM 413MODEL 413NAME 413

659

Page 680: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexP

RISE 414RMS 413TOTAL 413USE_PREV 414VALUE 413

parameters, GSAVE statementFILE 431

parameters, HELP statementNAME 487PARAMETE 487VERBOSE 487

parameters, IF statementCOND 499

parameters, INCLUDE statementALL 407, 417FILES 407, 417INVERSE 408LOG 407MAXIMUM 407MINIMUM 407, 417PRIMARY 408T(name) 407, 417WEIGHT 407

parameters, INITIALIZE statementINDEX 474MODEL 474

parameters, INTERACTIVE statementONCE 493

parameters, I.PRINT statementALL 495EXPAND 496FIRST 495LAST 495

parameters, I.SAVE statementEXPAND 497FILE 497FIRST 497LAST 497NOW 497

parameters, LABEL statementANGLE 465ARROW 466CM 466COLOR 466C.SIZE 466LABEL 464LINE.TYP 466LX.FINIS 466LX.START 465

LY.FINIS 466LY.START 465PAUSE 467START.CE 465START.LE 465START.RI 465SYMBOL 464X 464Y 465

parameters, L.END statementALL 510BREAK 510

parameters, L.MODIFY statementBREAK 509LEVEL 508NEXT 508PRINT 509STEPS 508

parameters, LOOP statementOPTIMIZE 503PRINT 503SENSITIV 503STEPS 502

parameters, MODEL statementINITIAL 382NAME 382SIMULATO 382

parameters, OPTIMIZE statementMSGLEVEL 427RESULTS 427RETRY 427

parameters, OPTION statementCPU.FILE 486CPU.STAT 486DIAGNOST 485G.DEBUG 486I.ERROR 485INFORMAT 485N.DEBUG 486TERMINAL 485

parameters, PLOT statementADD 438ALL 436AXES 436BOTTOM 436CLEAR 436COLOR 437C.SIZE 441DATA 435

660

Page 681: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexP

DEVICE 439ERROR 435FILES 435INCLUDE 435INVERSE 435INVISIBL 438LEFT 436LINE.TYPE 437MAXIMUM 436MINIMUM 436MODEL 435PAUSE 438PLOT.BIN 439PLOT.OUT 439PRTMOD 441RIGHT 436SAME 438SELECTED 436SYMBOL 437T(name) 435TIMESTAM 438TI.SIZE 438TITLE 437TOP 436T.SIZE 441VARIABLE 435VISUAL 438X.LABEL 440X.LENGTH 439X.LOGARI 437X.OFFSET 439X.SIZE 440Y.LABEL 440Y.LENGTH 440Y.LOGARI 437Y.OFFSET 440Y.SIZE 440

parameters, PLOT.2D statementCLEAR 445COLOR 447DATA 444DEVICE 447LABELS 445LINE.TYP 445MARKS 445PAUSE 447PLOT.BIN 448PLOT.OUT 448

SCALE 446TIME.SIZ 447TIMESTAM 447TITLE 446T.LABEL 447T.SIZE 446X.COLUMN 444X.LABEL 446X.LENGTH 446X.MAX 445X.MIN 445X.OFFSET 446X.SIZE 446Y.COLUMN 444Y.LENGTH 446Y.MAX 445Y.MIN 445Y.OFFSET 446Y.SIZE 447Z.COLUMN 444

parameters, PLOT.3D statementAXES 453CENTER 454CLEAR 453COLOR 457DATA 453DEVICE 457FILL.VIE 454LABELS 453LINE.TYP 457MARKS 453PHI 453PLOT.BIN 458PLOT.OUT 458THETA 453TIME.SIZ 457TIMESTAM 457TITLE 454T.SIZE 454VIEWPORT 454X.COLUMN 453X.LABEL 456X.LENGTH 455X.MAX 455X.MIN 454X.OFFSET 455X.SIZE 455XV.LENGT 454

661

Page 682: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexP

XV.OFFSE 454Y.COLUMN 453Y.LABEL 457Y.LENGTH 455Y.MAX 455Y.MIN 455Y.OFFSET 455Y.SIZE 456YV.LENGT 454YV.OFFSE 454Z.COLUMN 453Z.LABEL 457Z.LENGTH 456Z.LOGARI 456Z.MAX 456Z.MIN 456Z.SIZE 456

parameters, PRINT statementALL 433CLOSE 433C.VALUE 433DESCRIPT 433EXTRACT 433FILE 433FIXED 433FULL 433PARAMETER 433TARGETS 433VALUES 433VARIABLE 433

parameters, REVERT statementALL 429INITAL 429P(name) 429

parameters, SAVE statementFILE 430

parameters, SCALE statementFACTOR 399T(name) 399V(name) 399

parameters, SELECT statementALL 405END 405INCREMEN 405START 405V(name) 405VALUE 405

parameters, SIMULATOR statementC1 383

C2 383C3 384C4 384C5 384NAME 383

parameters, SKIP statementLINES 401

parameters, SUMMARIZE statementALL 470DATA 470, 471ERROR 470FILES 470, 471INCLUDE 470MODEL 470T(name) 469V(name) 470

parameters, TARGET statementA 387B 387DELTA 387DERIVATI 387DESCRIPT 388DIFFEREN 386EQUALS 386INV_DER 387MINIMUM 386NAME 386, 393RATIO 386SMOOTH 387SUM 386UNITS 388WEIGHT 386, 387, 393

parameters, VACANCY statementC.I 485

parameters, VARIABLE statementEND 397INCREMEN 397NUMBER 397START 397V(name) 397VALUE 397

parameters, WEIGHT statementALL 411FILES 411MAXIMUM 411MINIMUM 411T(name) 411WEIGHT 411

parameters, WRTPAR statement

662

Page 683: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexQ

PAR 473parsing routine 648p-channel 648physical model parameter 648PLOT 434

color 442description 441device type 443end of axes 443previous plot 443

PLOT.2D 444description 448display 448example 449file 448graphical output 450lines 449print and close 450

PLOT.3D 452description 458example 459, 460graphics output 461lines 459print and close 461viewport 458

plotting step 648primary targets 648PRINT 432probe pads and interconnects set 649prober 649process parameters, MOSFET’s

Level 49 131, 157, 198, 209, 220

QQuick Reference 523

Rrelative error 649Response Surface Methodology (RSM) model

model evaluation 366multiple parameter sets 366parameters 362partial derivative calculation 366targets 361variables 360

RETURN 521

reverse betas 649reverse data 649reverse parameter 649REVERT 428revert 649

SSAVE 430SCALE 399scale well 649SCS 392secondary targets 649second-order effect 649SELECT 405

description 406examples 406variables 406

selective local optimization 649sign convention 649simplified common collector hybrid pi mode Fig. 597simplified common emitter hybrid pi model Fig. 595simulated value 649SIMULATOR 383

command string 384description 384

skew models 649SKIP 401slope 649smoothing 650source/drain series resistance 650S-parameter 593, 650S-Parameters Key Derivations 593–607

base resistance derivations 604, 605, 606correcting tF for resistances and capacitances

600derivations of key equations 593deriving b from h-parameters 595deriving fT from b versus frequency 599excess phase, PTF 600references 606S-parameters to h-parameters 593transit time, large signal to small signal 603

square device 650standard parameter 650Star-HSPICE models 85

663

Page 684: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexT

parameters 90targets 88variables 86

statement format description 379parameter definition table 379syntax of parameter lists 379

Statement Summary 523statements

3D.SURFACE 461ALIAS 399ASSIGN 511BATCH 494BYPASS 400CALL 488COMMENT 483CONTOUR 450CONTROL 426DATA 402DEFINE 474DEXTRACT 423DFIX 420ECHO 520ELSE 501END 477EXCLUDE 409EXTRACT 422, 425FIX 419GSAVE 430, 431HELP 486IF 499IF.END 502IGNORE 522INCLUDE 407, 412, 416INITIALIZE 474INTERACTIVE 493I.PRINT 495I.SAVE 497LABEL 463LANG 391L.END 510L.MODIFY 508LOOP 502MACRO 390MODEL 382OPTIMIZE 427OPTION 484PLOT 434PLOT.2D 444

PLOT.3D 452PRINT 432RETURN 521REVERT 428SAVE 430SCALE 399SCS 392SELECT 405SIMULATOR 383SKIP 401STOP 522SUMMARIZE 469TABLE 394TARGET 385, 393TITLE 482VARIABLE 396WEIGHT 410WRTPARE 473

STOP 522strategy 650strategy input file 650subthreshold 650SUMMARIZE 469

description 471error determination 471evaluation 472, 473

sweep 650switching matrix 650syntax

character expressions 378other parameter names 371parameter lists 379statements with parameters 370statements without parameters 371

syntax of input statements 370syntax of parameter lists

defining groups 380group hierarchy 381list of groups 380multiple names 381optional groups 380value types 380

TTABLE 394

character string 395data value 395

664

Page 685: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexU

default 396description 394examples 396table organization 395

Tan Intercept value 650TARGET 385, 393

description 388documentation 390secondary target 388weight and error values 389

target 650temperature

parametersMOSFET’s

Level 13 108Level 28 112Level 49 129, 155, 196, 207, 218

test plan 650threshold voltage

parameters, MOSFET’sLevel 2 100Level 3 102

TITLE 482character strings 482description 482example 483

transistorsprocess parameters, MOSFET’s

Level 13 103

Level 28 108transit time, large signal to small signal 603two port network Fig. 593typographical conventions xvii

Uupper or lower bound 650

VVARIABLE 396

default 398description 397examples 398

variable 403, 406, 476, 651

Wwafer map 651WEIGHT 410well-behaved data 651well-proximity effects 173WPE model, BSIM3v3 173WRTPAR 473

Yy-parameter 604

665

Page 686: Aurora Reference Guide - jmbussat/Physics290E/Fall-2006/TCAD_documentati… · BSIM/SPICE Model ... Level 54 (BSIM4) Variables, Targets and Model Parameters ... Targets for HSPICE

IndexY

666


Recommended