+ All Categories
Home > Documents > Avila-Bochi formula for certain products of 22...

Avila-Bochi formula for certain products of 22...

Date post: 01-Sep-2019
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
24
SL(2, R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula for certain products of 2 × 2 matrices Jo˜ ao Lopes Dias Departamento de Matem´ atica, ISEG and Cemapre Universidade T´ ecnica de Lisboa 23 Apr 2009 1 / 24
Transcript
Page 1: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Avila-Bochi formula for certain products of 2× 2matrices

Joao Lopes Dias

Departamento de Matematica, ISEG and CemapreUniversidade Tecnica de Lisboa

23 Apr 2009

1 / 24

Page 2: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Outline

1 SL(2,R)-cocycles

2 Herman’s theorem

3 Avila-Bochi improvement

2 / 24

Page 3: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

SL(2, R)-cocycles

Let

(X,µ) compact probability space

f : X → X µ-preserving, ergodic

A : X → SL(2,R) measurable∫log ‖A‖ dµ < +∞

An(x) = A(fn−1(x)) . . . A(x)

3 / 24

Page 4: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

KAN Iwasawa decomposition

A(x) = Rϕ(x)H(x)N(x) = Rϕ(x) T (x)

where

Rx =[cos(2πx) − sin(2πx)sin(2πx) cos(2πx)

], T (x) =

[c(x) b(x)0 c(x)−1

]and c(x) ≥ 1

4 / 24

Page 5: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Remark

For A ∈ SL(2,R):

‖A‖ = sup‖v‖2=1 ‖Av‖2

‖A‖ =√ρ(ATA) =

√β +

√β2 − 1 where β = 1

2

∑ij A

2ij

‖A‖+ ‖A‖−1 =√

2(β + 1) = |c+ c−1 + ib|‖A‖ = ‖A−1‖ ≥ 1

5 / 24

Page 6: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Outline

1 SL(2,R)-cocycles

2 Herman’s theorem

3 Avila-Bochi improvement

6 / 24

Page 7: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

(Upper) (fiber) Lyapunov exponent

λ(A) = limn→+∞

1n

∫X

log ‖An(x)‖ dµ(x)

(generalizes to complex matrices)

Theorem (Herman)∫ 1

0λ(RθA) dθ ≥

∫X

log(‖A(x)‖+ ‖A(x)‖−1

2

)dµ(x)

7 / 24

Page 8: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Example (Herman’s)

ϕ(x) = x, c(x) = c, b(x) = 0. Thus, RθA(x) = A(x+ θ) and

λ(A) = λ(RθA) ≥ log(c+ c−1

2

)

8 / 24

Page 9: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Proof

Let

Sz = z

[z+z−1

2 − z−z−1

2iz−z−1

2iz+z−1

2

]

S0 = 12

[1 −ii 1

]Se2πit = e2πitRt

Fix x ∈ X. LetCz = Sze2πiϕ(x)T (x)

Ce2πiθ = e2πi(θ+ϕ(x))RθA(x)λ(RθA) = λ(Ce2πiθ)

9 / 24

Page 10: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Lemma

The map C→ R+0 ,

z 7→ λ(Cz)

is subharmonic.

Therefore, ∫ 1

0λ(Ce2πiθ) dθ ≥ λ(C0) = λ(S0 T )

10 / 24

Page 11: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Now,

LS0T (x)L−1 =

[c(x)+c(x)−1+ib(x)

2b(x)−ic(x)−1

20 0

]

=[α(x) β(x)

0 0

]where L =

[1 0−i 1

]‖(LS0TL

−1)n(x)‖ =∏n−1i=1 |α(f ix)|

∥∥∥[ α(x) β(x)0 0

]∥∥∥λ(S0T ) = λ(LS0TL

−1) ≥ lim1n

n−1∑i=0

log |α(f ix)|

11 / 24

Page 12: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Using Birkhoff’s ergodic theorem∫ 1

0λ(RθA) dθ ≥ λ(LS0TL

−1)

≥∫X

log |α(x)| dµ(x)

=∫X

log|c(x) + c(x)−1 + ib(x)|

2dµ(x)

=∫X

log(‖A(x)‖+ ‖A(x)‖−1

2

)dµ(x)

End of the proof of theorem.

12 / 24

Page 13: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Outline

1 SL(2,R)-cocycles

2 Herman’s theorem

3 Avila-Bochi improvement

13 / 24

Page 14: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Avila-Bochi improvement

Theorem (Avila-Bochi-Herman)∫ 1

0λ(RθA) dθ =

∫X

log(‖A(x)‖+ ‖A(x)‖−1

2

)dµ(x)

Example (Herman’s revisited)

A(x) = Rx

[c 00 1c

],

λ(A) = λ(RθA) = log(c+ c−1

2

)

14 / 24

Page 15: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Fix x ∈ X. Let

Bθ,n = (RθA)n(x) = RθA(fn−1x) . . . RθA(x)

N(A) = log(‖A‖+ ‖A‖−1

2

)

Theorem (Avila-Bochi formula)∫ 1

0log ρ(Bθ,n) dθ =

n−1∑i=0

N(A(f ix)) =∫ 1

0N(Bθ,n) dθ

15 / 24

Page 16: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Proof of Theorem A-B-H

∫ 1

0λ(RθA) dθ = lim

1n

∫ 1

0log ‖Bθ,n‖ dθ (dominated conv thm)

= lim1n

∫ 1

0N(Bθ,n) dθ (| logA− logN(A)| ≤ log 2)

= lim1n

n−1∑i=0

N(A(f ix)) (A-B formula)

=∫XN(A(x)) dµ(x) (Birkhoff)

=∫X

log(‖A(x)‖+ ‖A(x)‖−1

2

)dµ(x)

16 / 24

Page 17: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Proof of Avila-Bochi formula

Let for every z ∈ C

Sz = z

[z+z−1

2 − z−z−1

2iz−z−1

2iz+z−1

2

]Cz = SzA(x)

Se2πiθ = e2πiθRθ

(Ce2πiθ)n = e2πinθBθ,n

ρ(Bθ,n) = ρ((Ce2πiθ)n)det((C0)n) = det(S0)n = 0, thus 0 is e-value of (C0)n

17 / 24

Page 18: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Proposition (A-B)

1 z 7→ log ρ((Cz)n) harmonic on D, continuous on D2 log ρ((C0)n) =

∑n−1i=0 N(A(f ix))

Remark

Herman proved that z 7→ λ(Cz) is subharmonic

First equality of Avila-Bochi formula

∫ 1

0log ρ(Bθ,n) dθ =

∫ 1

0log ρ((Ce2πiθ)n) dθ = log ρ((C0)n)

18 / 24

Page 19: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Remark∫ 10 log ρ(Rθ′Bθ,n) dθ =

∫ 10 log ρ(Bθ,n) dθ∫ 1

0 log ρ(Rθ′Bθ,n) dθ′ = N(B0,n)

Second equality of Avila-Bochi formula

n−1∑i=0

N(A(f ix)) =∫ 1

0log ρ(Bθ,n) dθ

=∫ 1

0

∫ 1

0log ρ(Rθ′Bθ,n) dθ dθ′

=∫ 1

0N(Bθ,n) dθ

19 / 24

Page 20: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Proof of Prop A-B

Want to show that (Cz)n = (SzA)n(x) and its e-valuesλ1(z), λ2(z), (holomorphic maps on C) verify:

z 7→ log ρ((Cz)n) = log maxi|λi(z)|

is harmonic on D, continuous on Dρ((C0)n) = maxi |λi(0)| =

∏n−1i=0

‖A(f ix)‖+‖A(f ix)‖−1

2

Finally

Enough to prove that |λ1(z)| 6= |λ2(z)|, z ∈ D, and computemaxi |λi(0)|

20 / 24

Page 21: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Remark

|λ1| = |λ2| iff(trC)2

4 detC=

(λ1 + λ2)2

4λ1λ2∈ [0, 1]

det(Cz)n = z2n

Let the rational function Q : C∗ → C, holomorphic, be

Q(z) =trCz2zn

deg(Q) ≤ 2n and deg(Q′) ≤ 2n

Thus|λ1(z)| = |λ2(z)| iff Q(z) ∈ [−1, 1]

21 / 24

Page 22: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

So

Want to show that Q(D) ∩ [−1, 1] = ∅

Q(e2πiθ) = 12 tr(Bθ,n) ∈ [−1, 1] iff Bθ,n is non-hyperbolic

(| tr | ≤ 2)

Q(∂D) ⊂ R

22 / 24

Page 23: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Lemma (A-B)

If ∂D ∩Q−1([−1, 1]) has at least 2n connected components, then

Q(D) ∩ [−1, 1] = ∅

Proof.

deg(Q′) ≤ 2n hence ≤ 2n zeros of Q′

Each component of the complement in ∂D has a zero of Q′

Thus, there are no zeros of Q′ in Q−1([−1, 1])So, each component is diffeo to [−1, 1]

23 / 24

Page 24: Avila-Bochi formula for certain products of 22 matricescemapre.iseg.ulisboa.pt/archive/seminars/133.pdfSL(2;R)-cocycles Herman’s theorem Avila-Bochi improvement Avila-Bochi formula

SL(2,R)-cocyclesHerman’s theorem

Avila-Bochi improvement

Lemma (A-B)

∂D ∩Q−1([−1, 1]) has at least 2n connected components

Proof.

Uses a topological argument...

24 / 24


Recommended