+ All Categories
Home > Documents > B. Azadegan , S. A. Mahdipour , W. Wagner 26.09.2013, Sevan

B. Azadegan , S. A. Mahdipour , W. Wagner 26.09.2013, Sevan

Date post: 05-Jan-2016
Category:
Upload: beate
View: 35 times
Download: 0 times
Share this document with a friend
Description:
Simulation of positron energy spectra generated by channeling radiation of GeV electrons in a tungsten single crystal. B. Azadegan , S. A. Mahdipour , W. Wagner 26.09.2013, Sevan. Outline Introduction Theory of channeling radiation in thick crystal Numerical results - PowerPoint PPT Presentation
Popular Tags:
17
1 B. Azadegan, S. A. Mahdipour, W. Wagner B. Azadegan, S. A. Mahdipour, W. Wagner 26.09.2013, 26.09.2013, Sevan Sevan Simulation of positron energy spectra generated by channeling radiation of GeV electrons in a tungsten single crystal Outline 1.Introduction 2.Theory of channeling radiation in thick crystal 3.Numerical results 4.Solution of Fokker-Plank equation 5.Positron production in a hybrid schame 6.Summary
Transcript
Page 1: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

1

B. Azadegan, S. A. Mahdipour, W. WagnerB. Azadegan, S. A. Mahdipour, W. Wagner

26.09.2013,26.09.2013, Sevan Sevan

Simulation of positron energy spectra generated by channeling radiation of GeV electrons in a tungsten

single crystal

Outline

1.Introduction

2.Theory of channeling radiation in thick crystal

3.Numerical results

4.Solution of Fokker-Plank equation

5.Positron production in a hybrid schame

6.Summary

Page 2: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

2

1. Introduction

Channelingradiation

1

)1(

2)(

220

2

E

EX

fiE 0

CR properties

quasi-monochromatic directed

intense

tunable

- Lorentz factor

- observation angle

Page 3: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

3

2. Theory of planar channeling radiation

ingx

nnevxV )(

Planar Continuum potential:

2

2))(

4(

4

14

1

.)(0

220 )/(

2 ngb

ii

rgi

j

gM

cn

i

jj eaeeaeaV

v

C 11 0 S i 11 0 G e 11 0 W 11 0

1 .0 0 .5 0 .0 0 .5 1 .00

2 0

4 0

6 0

8 0

1 0 0

In te rp lan ar p o s itio n Å

Pote

ntia

leV

rgi

gg

m

m

mevyxV

.),(

Axial Continuum potential:

2)2224

(4

14

1

.0

220 )/(

2 mgjuib

ii

j

jrgi

cmg eaeaea

Vv

Planar continuum potential of (110) plane of C, Si, Ge and W single crystal

Axial continuum potential of <100> axis of W single crystal

Page 4: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

4

Classical model MeVEe 100

x

xVFtxm

)()(Planar : Planar :

2. Theory of planar channeling radiation (classical)

0

),(

),(

zm

y

yxVym

x

yxVxm

Axial : Axial :

2

20

).(2

22

).1(

))((

4dt

n

nne

c

e

dd

Ed rkti

Angular energy distribution: Angular energy distribution:

2~

2

124

2

)2

1(1

x

Tc

e

zd

dEnn

nn

Total radiated energyTotal radiated energy in thick crystal: in thick crystal:

T tin exx

T

πnω

n

T0

~~

2 ;

2~ ;4

Page 5: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

5

3. Numerical results

0 5 . 1 0 1 5 1 . 1 0 1 4 1 .5 1 0 1 4 2 . 1 0 1 4 2 .5 1 0 1 4 3 . 1 0 1 40

5

1 0

1 5

t s

xA°

0 1 0 0 2 0 0 3 0 0 4 0 0

0

1 0

2 0

3 0

4 0

5 0

P hoton energy M eVdd

(b)

Θ0=0.25 mrad

0 5 . 1 0 1 5 1 . 1 0 1 4 1 .5 1 0 1 4 2 . 1 0 1 4 2 .5 1 0 1 4 3 . 1 0 1 4

0 .2

0 .1

0 .0

0 .1

0 .2

t s

xA°

0 1 0 0 2 0 0 3 0 0 4 0 00

5 0

1 0 0

1 5 0

2 0 0

P hoton energy M eV

dd (a)

Θ0=0.0

Planar: Planar:

Axial: Axial:

x 0 0 .3 1 9 Åy 0 0 .2 1 3 Å

0 .3 0 .2 0 .1 0 .0 0 .1 0 .2 0 .3

0 .3

0 .2

0 .1

0 .0

0 .1

0 .2

0 .3

x A°

yA°

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

P h o to n e n e rg y M e V

dEddz

cm

1

Trajectories and CR spectra forone incident point with a) zero b) 0.25 mrad incidence angles for 2 GeV electron channeled

along the (110) plane of a tungsten single crystal.

Trajectory (rosette motion) and CR spectra for one incident point

for 1 GeV electron channeled along the <100> axis of W

single crystal.

Page 6: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

6

4. Solution of Fokker-plank equation

Fokker-Plank equation:Fokker-Plank equation:

Boundary conditions:Boundary conditions:

Drift coefficient:Drift coefficient:

Diffusion coefficient:Diffusion coefficient:

EEss=13.6 MeV=13.6 MeV

Time parameter: Time parameter:

Page 7: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

7

For the numerical solution of the Fokker-Plank equation, a uniform distribution of the For the numerical solution of the Fokker-Plank equation, a uniform distribution of the electron across the transverse electron across the transverse xx coordinate, and a Gaussian scattering distribution tilted coordinate, and a Gaussian scattering distribution tilted by an angle by an angle θθ00, and with standard deviation , and with standard deviation yy for the angular divergence were assumed. for the angular divergence were assumed.

C

S iG e

W

a

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

2

4

6

8

1 0

1 2

E eVCT

m W

G e

S i

C

b

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

125

1 02 05 0

1 0 02 0 0

E e V

D1eVm

W

G e S i

C c0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

1

1 0

1 0 0

1 0 0 0

E e V

D2eV2

m C

S iG e

W

d

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1 0

E eV

F 0eV1

(a)(a) Time parameter Time parameter c.Tc.T(b) Drift coefficient D1,(c) Diffusion coefficient D2

(d) Initial probability density distribution F0 at z=0

calculated with standard deviation y=100 µrad and θ0=0 all as function of transverse

energy for 2 GeV electrons.

4. Solution of Fokker-plank equation

Page 8: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

8

4. Solution of Fokker-plank equation

probability density for 2 GeV electrons channeled along (110) plane probability density for 2 GeV electrons channeled along (110) plane

Page 9: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

9

4. Solution of Fokker-plank equation

C

S i

G eW

0 5 0 1 0 0 1 5 0 2 0 00 .0

0 .2

0 .4

0 .6

0 .8

z m

f chz

.

Electron dechanneling function: Electron dechanneling function:

Dechanneling length: Dechanneling length:

Page 10: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

10

4. Solution of Fokker-plank equation

L d ,W 2 .8 m EG eV

L d ,S i 1 9 .0 1 m EG eV

L d ,G e 7 .3 9 m EG eV

L d ,C 39.28 m EG eV

0 1 2 3 4 50

5 0

1 0 0

1 5 0

2 0 0

E e G eV

Ldm

Dechanneling lengths for (110)-planar channeling of electrons as function of the electron energy

Page 11: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

11

4. Solution of Fokker-plank equation

Radiation intensity in thick crystals: Radiation intensity in thick crystals:

3 8 .9 8 m

7 7 .9 6 m

1 1 6 .9 4 m

1 5 5 .9 3 m

1 9 4 .9 1 m

0 5 0 1 0 0 1 5 0 2 0 00

2

4

6

8

1 0

1 2

1 4

P hoton energy M eV

Inte

nsit

y

2 .8 2 m

5 .6 4 m8 .4 5 m

1 1 .2 7 m

1 4 .0 9 m

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00

1

2

3

4

5

P hoton energy M eVIn

tens

ity

Thickness dependence of radiation spectrum for 2 GeV electrons channeled along Thickness dependence of radiation spectrum for 2 GeV electrons channeled along (110) plane of a) diamond b) Tungsten (110) plane of a) diamond b) Tungsten

(a) C(a) C (b) W(b) W

Page 12: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

12

4. Solution of Fokker-plank equation

0 100 200 300 400

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

Dependence of radiation spectrum on incidence angle of electrons for 2 Dependence of radiation spectrum on incidence angle of electrons for 2 GeV electrons channeled along (110) plane of GeGeV electrons channeled along (110) plane of Ge

Inte

nsity

Inte

nsity

Photon energy (MeV)Photon energy (MeV)

Red Red θθ=0.0=0.0Blue Blue θθ=45.35 µrad=45.35 µrad Yellow Yellow θθ=90.69 µrad=90.69 µradOrange Orange θθ=136.04 µrad=136.04 µrad Pink Pink θθ=181.39 µrad =181.39 µrad Green Green θθ=272.0 µrad =272.0 µrad

Page 13: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

13

5. Positron production in a hybrid schame

Crystalline radiator

e-

Crystal

e+

e-

e-

Amorphous convertor

e+

e-

γ

e+

e-

(a) (b)

Schemes of non-conventional positron sources. a)One single crystal. b)Crystalline target combined with an amorphous convertor.

Positron spectra are simulated by means of Positron spectra are simulated by means of GEANT4GEANT4 Monte Carlo code taking the Monte Carlo code taking the CR/CB spectra as input dataCR/CB spectra as input data

Page 14: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

14

5. Positron production in a hybrid schame

Num

ber

of p

ositr

ons

Num

ber

of p

ositr

ons

Comparison of positron energy distributions between C, Si, Ge, W radiator Comparison of positron energy distributions between C, Si, Ge, W radiator crystalscrystals

Page 15: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

15

5. Positron production in a hybrid schame

Num

ber

of p

ositr

ons

Num

ber

of p

ositr

ons

Dependence of positron energy distribution on thickness of radiator crystal Dependence of positron energy distribution on thickness of radiator crystal for 2 GeV electrons channeled along (110) plane of W radiator crystalfor 2 GeV electrons channeled along (110) plane of W radiator crystal

Page 16: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

16

5. Positron production in a hybrid schame

radrad

Num

ber

of p

ositr

ons

Num

ber

of p

ositr

ons

Dependence of positron energy distributions on incidence angle of electrons Dependence of positron energy distributions on incidence angle of electrons for 2 GeV electrons channeled along (110) plane of Gefor 2 GeV electrons channeled along (110) plane of Ge

Page 17: B.  Azadegan , S. A.  Mahdipour , W. Wagner 26.09.2013, Sevan

17

Planar CR emitted by electrons channeled in thick crystals has been investigated Planar CR emitted by electrons channeled in thick crystals has been investigated theoretically on the base of the solution of Fokker-Plank equation.theoretically on the base of the solution of Fokker-Plank equation.

Dependence of CR spectrum on the incidence angle of electron has been investigated. Dependence of CR spectrum on the incidence angle of electron has been investigated.

Dependence of positron energy distribution on the thickness of radiator crystal and the Dependence of positron energy distribution on the thickness of radiator crystal and the incidence angle of electron has been investigated in a hybrid positron production scheme.incidence angle of electron has been investigated in a hybrid positron production scheme.

Positron energy distributions of C, Si, Ge and W radiator crystals have been compared.Positron energy distributions of C, Si, Ge and W radiator crystals have been compared.

W radiator crystal with small channeling length produce more positron in comparison with W radiator crystal with small channeling length produce more positron in comparison with C, Si and Ge.C, Si and Ge.

Comparison of positron energy distribution in planar and axial CR needs the solution of Comparison of positron energy distribution in planar and axial CR needs the solution of Fokker-Plank equation for axial CR in two dimentions.Fokker-Plank equation for axial CR in two dimentions.

6. Summary6. Summary


Recommended