+ All Categories
Home > Documents > B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone!...

B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone!...

Date post: 18-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
31
A. Findlay B. Mikulec
Transcript
Page 1: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

A.  Findlay  

B.  Mikulec  

Page 2: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Introduc)on  � The  PSB  within  the  CERN  accelerator  complex  �  Injection  � PSB  beam  types  � Adjusting  the  intensity  and  transverse  parameters  � PSB  dynamic  working  point  � Extraction  and  beam  transfer  to  PS  and  ISOLDE  � What  will  be  new  in  2011?  

� Covered  by  A.  Findlay:  capture,  acceleration,  longitudinal  parameters  and  synchronisation  

09.02.2011   OP  lectures   2  

Page 3: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

The  PSB  within  the  PS  Complex  

09.02.2011   OP  lectures   3  

Page 4: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Injec)on  –  Transfer  from  Linac2  

�  Linac2  (source,  RFQ,  3  accelerating  tanks)  à  LT  line  until  LT.BHZ30  à  LTB  line  until  LTB.BHZ40  à  BI  line  

�  Linac4  will  reuse  the  transfer  lines  downstream  of  LT.BHZ20  

09.02.2011   OP  lectures   4  

Linac2  LT.BHZ10  

LTE  

LTL  

LBE  

LBS  

LT.BHZ20  

LT.BHZ30  LTB.BHZ40  

PS  Booster  

To  PS  and  ISOLDE  

LT  line   BI  line  LTB  line  

Page 5: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

The  PSB  Layout  �  Injection:  BI  line  

�  Separated  by  wall  from  PS  zone  

�  Splitting  of  Linac2  beam  into  4  vertical  levels  

�  Inject  in  PSB  section  16/1  �  PSB  ring  divided  into  16  sections  

�  Extraction  from  section  15  and  recombination:  BT  line  

�  Beam  transfer:  BTM+BTY  lines  (to  ISOLDE)  and  BTP  line  (to  PS)  

09.02.2011   OP  lectures   5  

bât.361  

Page 6: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

The  Basic  PSB  Sec)on  

� Above  example:  PSB  section  6  |  L1          |  Bend1                |L2|QFO|L3|    QDE  |  L4  |QFO|L5|  Bend2    |  

�  5  straight  sub-­‐sections  (space  for  equipment  in  L1,  L3  and  L4)  �  PSB  lattice:  0.5D  –  L4  –  F  –  L5  –  B  –  L1  –  B  –  L2  –  F  –  L3  –  0.5D  

�  QFO  (focusing  quadrupole):  magnetic  length  ~0.50  m  �  QDE  (defocusing  quadrupole):  magnetic  length  ~0.88  m  

09.02.2011   OP  lectures   6  

Page 7: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

View  inside  the  PSB  tunnel  PSB  Injection  Region   PSB  section  12  

09.02.2011   OP  lectures   7  

Page 8: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Injec)on  –  Ver)cal  SpliAng  (1)  �  Linac2  continuous  pulse  has  to  be  split  into  4  superimposed  PSB  rings  (36  cm  vertical  distance)  �  Aim  of  4  rings:  reduced  direct  space  charge  effects  to  limit  losses  for  high  intensity  beams  

�  Distributor  BI.DIS  �  Separate  beams  

�  Septum  BI.SMV  �  Increase  separation  

�  Bending  BI.BVT  �  Cancel  angle  

09.02.2011   OP  lectures   8  

Page 9: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Injec)on  –  Ver)cal  SpliAng  (2)  Action  of  BI.DIS   Action  of  BI.SMV  

09.02.2011   OP  lectures   9  

No  kick:  head  dump  Kicks  0-­‐1-­‐2-­‐3:  inject  into  rings  4-­‐3-­‐2-­‐1  Kick  4:  tail  dump  

BI.DVT40  and  BI.SMV  increase    separation  angle  

Page 10: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Mul)-­‐Turn  Injec)on  �  Injection  of  up  to  equivalent  of  13  Linac2  turns  

�  The  number  of  turns  acts  on  the  Linac2  pulse  length  and  the  distributor  timing  

�  Use  4  slow  kickers  (BIi.KSW  in  sections  16L4,  1L1,  1L4  and  2L1)  and  the  horizontal  septum  BI.SMH1L1  �  To  create  an  injection  bump  of  the  circulating  beam  �  To  change  the  angle  and  bring  injected  beam  onto  orbit  

09.02.2011   OP  lectures   10  

Mind!  ☝  Playing  with  

BIXi.SKSWPR  has  an  influence  on  the  transverse  emittance!  

Page 11: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Principle  of  Mul)-­‐Turn  Injec)on  � Goal:  find  optimum  between  a  brilliant  beam  and  low  space-­‐charge  effects  by  filling  uniformly  acceptance  � Horizontal  tune  at  injection:  ~4.28  (beam  ellipse  advances  by  slightly  more  than  90°  per  turn)  

�  Add  horizontal  movement  due  to  slow  kickers  

09.02.2011   OP  lectures   11  

Disadvantages:  ☹  Emittance  increases  

with  number  of  injected  turns  

☹  Important  losses  at  septum  blade  

Page 12: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Linac4:  New  BI.DIS  and  BI.SMV  

09.02.2011   OP  lectures   12  

Page 13: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Linac4:  H-­‐  Charge-­‐Exchange  Injec)on  

�  Need  stripping  foil  +  internal  dump  �  Slow  chicane    bump  with  4  new  

magnets  �  Superimpose  faster  painting  bump  

(BIi.KSW)  for  offset  and  to  limit  space-­‐charge  effects  for  high  intensities  09.02.2011   OP  lectures   13  

0 340 1072 1329 1587 2319 2654

0

20

40

60

80

100

120

140

160

Drift Space [mm]

Ampl

itude

[mm

]

PSB Injection Geometry for 380mm magnets, 350mm magnetic length, 66mrad, 359mT, 126mTm

32

151

125.7

Injection BumpH+ Beam

InjectedH- Beam

FoilStripping

DUMP

BS1 BS2 BS3 BS4

H0 80.3

H-

Stripping  Foil  Mechanism  

4  new  BIi.BSW  

�  Obtain  very  small  transverse  emittances  as  H-­‐  beam  from  Linac4  and  circulating  p  beam  can  overlap  in  phase  space  

�  Transverse  phase  space  painting  

Page 14: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Basic  Beam  Types  � H1,  h2,  h2+1  beams  à  see  Alan’s  presentation  � High  intensity  ISOLDE-­‐type  beams  � CNGS,  SFTPRO  

�  CT  extracted  or  MTE  type  �  LHC  beams  

�  Single-­‐bunch  (LHCPROBE,  LHCINDIV)  � Multi-­‐bunch  LHC  beams    

�  Single-­‐  or  double-­‐batch  PS  transfer  

� MD  beams  

09.02.2011   OP  lectures   14  

Page 15: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Intensity  Regula)on  (1)  1.  Number  of  turns:  modify  injected  intensity  

�  For  ISOLDE  beams,  CNGS,  SFTPRO,  TOF,  AD  �  Beware!  Transverse  emittance  increase  with  intensity!  

2.  Transverse  shaving  (vertical  shavers  in  4L4,  horizontal  shavers  in  10L4):  

�  Prefer  vertical  shaving  for  stability  reasons  �  For  EAST  beams  as  well  as  lower  intensity  LHC25,  

LHC50  and  LHC75  �  Corresponding  emittance  decreases!  �  Loose  beam  on  beamscope  window  (8L2)  

09.02.2011   OP  lectures   15  

Page 16: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Intensity  Regula)on  (2)  3.  Longitudinal  shaving:  start  capturing  the  beam  with  

low  longitudinal  acceptance;  adiabatic  acceptance  increase  (change  vector  5  of  C02  GFA  function)  

�  For  LHCPROBE,  LHCINDIV  

09.02.2011   OP  lectures   16  

Mind  when  changing  the  intensity!  ☝  The  emittance  might  change  –  think  if  

this  is  important  for  that  beam  and  always  choose  the  correct  method!  

☝  Losses  might  occur  due  to  different  space  charge  forces  à  very  often  the  tune  has  to  be  readjusted  with  the  Q-­‐strips  (see  later)   0

2

4

6

8

10

0 50 100 150 200 250 300

! x +

!y (!

m)

[norm

.]

Np (x 1010

p)

LHC25 at PSB extraction, spread over the 4 rings

Page 17: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Adjus)ng  Transverse  EmiRances  � Transverse  emittances  for  a  fixed  intensity  can  be  adjusted  by  �  Tuning  the  injection:  

�  BIXi.SKSWPR:  slow  injection  kicker  timing  (position  of  injection  bump)  

�  Injection  position  and  angle  

�  Approaching  a  resonance  line  to  increase  emittance  

09.02.2011   OP  lectures   17  

Page 18: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Transverse  EmiRance  Measurements  �  In  the  rings  during  the  acceleration  cycle:  

�  Beamscope  (very  rarely  used;  destructive  method):  associated  dipoles  have  to  be  enabled  before  

�  Fast  wire  scanners  (1  per  plane  per  ring)  �  In  the  BTM  line  after  extraction:  

�  SEM  grids  (3  grids  needed  to  measure  emittance)  �  Remark:  different  optics  (quadrupole  settings)  are  automatically  set  for  each  measurement  plane  (can  get  stuck  in  this  process  leading  to  losses  for  normal  beam  transfer!)  

09.02.2011   OP  lectures   18  

Page 19: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Examples  for  EmiRance  Plots  

09.02.2011   OP  lectures   19  

•  1σ  normalised  emittance  •  Adjust  filter+gain  for  FWS  •  Adjust  gain  for  SEM  grids  and  remove  

broken  channels  Don’t  forget  to  enter  correct  Δp/p  from  tomoscope  for  horizontal  measurement!  

Page 20: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Dynamic  Working  Point  � High  intensity  beams:  

�  Inject  at  Qv~4.65,  Qh~4.29  

�  Extract  at  Qv~4.20,  Qh~4.19  

�  Lower  intensity  beams:  �  Reduce  vertical  working  point  below  half-­‐integer  

�  Same  extraction  working  point  

09.02.2011   OP  lectures   20  

Tune  measurement  with  sampler  (mostly  for    programmed  tune)  or  with  BBQ  system  

Page 21: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Working  Point  and  Resonances  

4 4.2 4.4 4.6 4.8 5

4

4.2

4.4

4.6

4.8

5

09.02.2011   OP  lectures   21  

� Have  to  avoid  destructive  resonances  

� Tune  spread  (space  charge!)  highest  at  low  energy  � Use  Q-­‐strips  ~during  first  200  ms  after  injection  to  minimise  losses  

� Throughout  cycle  use  multipoles  to  compensate  resonance  effects  (losses)  

PSB  resonances  up  to  4th  order;  Red:  systematic  resonances  (PSB  superperiodicity)    Solid  blue:  normal  resonances  Dashed  blue:  skew  resonances      

Page 22: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Main  Power  Supply  (MPS)  �  MPS  supplies  main  bendings  

and  quadrupoles  �  Trim1+4  power  supply  for  

bendings  to  compensate  for  field  difference  in  outer  rings  �  GFA  increases  with  energy  

�  Q-­‐strips  (QCF  and  QCD):  additional  power  supply  to  tweak  tune  after  injection  �  GFA  during  ~first  200  ms  

�  SBDL:  extra  windings  for  bendings  per  ring  to  fine-­‐tune  B-­‐field  (frequency)  �  Used  mainly  at  extraction  

after  synchronisation  

09.02.2011   OP  lectures   22  

MIND:  All  these  GFAs  start  at  105  ms  and  not  at  0  ms!!!  

Page 23: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Beam  Extrac)on  � Generate  horizontal  ejection  bump  using  BE.BSW  (installed  in  14L4,  15L1  and  15L4)  

� Kick  the  beam  out  of  the  rings  with  fast  kicker  BEi.KFA14L1  such  that  it  gets  deflected  by  extraction  septum  BE.SMH15L1  

09.02.2011   OP  lectures   23  

BE.KFA14L1" BE.BSW14L4"

orbit without "bump"

BE.BSW15L1"

ejection bump"septum"BE.SMH15L1" extracted beam"

Page 24: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Beam  Recombina)on  � Beam  recombination  in  BT  line  

� Destinations:  PS  /  BTM  line  /  ISOLDE  GPS  or  HRS  � Ring  extraction  in  the  order:  3  –  4  –  2  –  1  

09.02.2011   OP  lectures   24  

R1

R4

R3

R2

S

Y

X

Bending

BVT

BVT

BVT

Septum

SMV

SMV

SMV

Kicker

Page 25: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Correct  Recombina)on    � Check  OASIS  signals!  (pick-­‐ups  and  kicker)  

!09.02.2011   OP  lectures   25  

Page 26: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Bunch  Distance  �  8  equidistant  bunches  with  Δt=286.4  ns  (79  m)  to  fill  PS  @  h=8  (double  for  h1  beams)  

�  For  LHC  multi-­‐bunch  beams  Δt=327  ns  to  fill  PS  @  h=7  (1  bucket  empty)  �  Add  h1  voltage  in  PSB  to  increase  spacing  (h2+h1  scheme)  

09.02.2011   OP  lectures   26  

3"4"

2"1"

from 3"from 4"

from 2"t1"

from 1"

Page 27: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

PSB  Par)cle  Transfer  

! !

09.02.2011   OP  lectures   27  

Clients:  PS  and  ISOLDE  Additional  destination:  BDUMP  

Page 28: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

VERY  Rough  Summary  � The  PSB  is  a  unique  accelerator  made  of  4  rings  

�  It’s  total  circumference  is  equal  to  the  PS  �  Some  controls  are  common  to  all  4  rings,  others  are  individual  or  for  2  rings  

� Multi-­‐turn  injection  spreads  the  beam  in  phase  space,  but  influences  the  transverse  emittance  

� Available  beam  instrumentation  should  be  used  extensively  (with  proper  setting  up)  and  the  beam  characteristics  surveyed  on  a  regular  basis  

� Multitude  of  beams;  at  limit  with  24  users    

09.02.2011   OP  lectures   28  

Page 29: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

Outlook  2011  Opera)on  � The  LHC  will  be  very  demanding  in  terms  of  fast  response  to  requested  changes  and  beam  quality  

� But  there  are  also  all  our  other  clients  deserving  equal  attention  

09.02.2011   OP  lectures   29  

Page 30: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

What  Will  be  New  in  the  Future?  2011   2012  and  later  

�  INCA  �  Deployment  ~June  

�  3  corrector  dipoles  per  ring  and  plane  (24  in  total)  under  FGC3  control  (3L4,  8L1  and  16L1)  

�  Orbit  correction  with  these  dipoles  using  YASP  

�  ABS  with  YASP  �  All  3  points:  summer?  

�  Multipole  renovation  (FGC3)  �  Connection  with  Linac4  in  2013/2014???  �  Change  injection  region  �  Commissioning  of  all  beams  

�  PSB  2  GeV  Upgrade??  (2018???)  

09.02.2011   OP  lectures   30  

Page 31: B. Mikulec# A.Findlay - CERN...The*PSB*Layout! Injection:#BIline! SeparatedbywallfromPS# zone! SplittingofLinac2beam# into4verticallevels#! InjectinPSBsection16/1

09.02.2011   OP  lectures   31  


Recommended