+ All Categories
Home > Documents > BAP MID fed fasted July 2015_Viktoriya final

BAP MID fed fasted July 2015_Viktoriya final

Date post: 12-Apr-2017
Category:
Upload: viktoriya-nikolova
View: 44 times
Download: 2 times
Share this document with a friend
1
A B C BOLD signal (%) BOLD signal (%) BOLD signal (%) Hunger ra)ngs: Subjects were hungrier on the Fasted than Fed visit determined by VAS ra9ngs (6.8 ± 1.9 vs. 2.6 ± 1.8, P<0.001). MID task performance: No significant differences in percentage of successful hits (P=0.31), nor in amount of money won between visits (P=0.65), indica9ng similar task performance. Effect of state hunger: BOLD signal in putamen was significantly greater when Fasted than Fed during an9cipa9on of win vs. neutral trial, (P<0.05) and win vs. loss trial (P=0.01) (Fig. 4A). No significant effect of fas9ng on BOLD signal in nucleus accumbens or caudate (Fig. 4B,C). BOLD signal in amygdala was also greater when fasted during an9cipa9on of win vs. neutral trial (P<0.05). Statetrait interac)on of hunger on BOLD signal: TFEQHunger scores were posi9vely correlated with BOLD signal in caudate during win trial an9cipa9on when par9cipants were Fasted (r=+0.48, P=0.04), but not when Fed (r= 0.33, P=0.18; statetrait interac9on difference in slopes P=0.035) (Fig. 5). Similar statetrait interac9on seen for BOLD signal during an9cipa9on of loss vs. neutral trial. Confounding variables: No significant differences in menstrual cycle phase, absolute head mo9on, mood (PANAS), sleepiness, anxiety between visits. “Hungry for Money”: StateTrait Interac=ons of Hunger on Striatal Responses to An=cipatory Monetary Reward Viktoriya Nikolova 1 , Sarah N Ali 2 , Roberta Bowie 2,3 , Giuliana Durighel 2 , John McGonigle 1 , Anne LingfordHughes 1 , David J NuP 1 , E. Leigh Gibson 3 , Jimmy D Bell 2 , Anthony P Goldstone 1,2,4 1 Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London; 2 Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, UK; 3 Dept. of Psychology, University of Roehampton, London, UK; 4 Computa)onal, Cogni)ve and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, UK ACKNOWLEDGEMENTS UK Medical Research Council, Imperial College Healthcare Charity for financial support; Robert Steiner MRI Unit staff, ICCAM study collaborators at Cambridge University and Manchester University, neuroradiologist Adam Waldman for assistance. Fas9ng increases putamen and amygdala responses to an9cipa9on of winning money. Statetrait interac9on of hunger increases caudate responses to an9cipatory monetary reward. Crossmodal influences of nutri9onal state and ea9ng behaviour on reward processing. Paradigms using nonfood cues may have u9lity to study reward processing across popula9ons and pathologies including obesity. Par)cipants: 18 healthy nonobese adults (10 male, mean ± SD age 29.6 ± 9.1 years, BMI 23.6 ± 2.9 kg/m 2 ), women scanned in follicular phase of menstrual cycle. Procedure: Randomised crossover design with 2 visits (median 14 days apart) with func9onal MRI performed (Fig. 1): (i) aher an overnight fast 14.8 ± 1.4 hours since supper (Fasted) (ii) 70 mins aher a 1200 kCal liquid breakfast (For9sip Compact) (Fed) Func)onal MRI Monetary Incen)ve Delay task: fMRI MID paradigm to measure BOLD signal during an9cipa9on of win or loss of hypothe9cal monetary reward using 3T Philips Achieva MR scanner and FSL analysis (Figs. 2 and 3). Trait hunger: Subscale of Three Factor Ea9ng Ques9onnaire (TFEQ), 14 items (score range 014) [6]. Appe=te ra=ngs: Visual Analogue Scales (10cm) including hunger. REFERENCES [1] Goldstone, A. P. et al. Am. J. Clin. Nutr. 99:131930, 2014. [2] Goldstone AP et al. Eur J Neurosci. 30:162535, 2009. [3] Carr, K. D. Physiol Behav. 91:45972, 2007. [4] Jia, Z. et al. Biol. Psychiatry 70:55360, 2011. [5] Nestor, L. et al Neuroimage 49:113343 2010 [6] Balodis, I. M. et al. Biol. Psychiatry 73:87786, 2013. [7] Stunkard, A. J., & Messick, S. J. Psycho. Res., 29:7183, 1985. [8] Provencher, V. et al. Obes. Res. 11:78392, 2003. [9] Mar9n, L. E. et al. Obesity, 18:254260, 2010. [email protected] [email protected] XYXYX Nutri)onal state and reward: Fas9ng increases brain reward system responses to food cues, and biases appeal and ac9va9on towards energy dense foods in humans [1,2]. In rodents, nega9ve energy balance enhances consump9on and rewardseeking behaviour to drugs of abuse [3]. Crossmodality nature of reward processing: Cocaine, alcohol and cannabis abusers show altered ac9va9on not only to drugs of abuse but also to monetary reward in the ventral striatum, caudate and putamen [4,5]. Obese (vs. healthy weight) subjects show increased ac9va9on to an9cipatory monetary reward in striatum, amygdala and thalamus [6]. Monetary reward paradigms permit comparison across addic9ons and are not subject to individual food preferences. Trait hunger: personality trait measuring percep9ons of intensity and frequency of hunger and associated ea9ng habits and aqtudes [7], associated with overea9ng and weight gain [8,9]. 1. Fas9ng will increase striatal ac9va9on to an9cipatory monetary reward. 2. Trait hunger scores will correlate posi9vely with striatal ac9va9on to an9cipatory monetary reward. 3. The influences of trait hunger on striatal responses to an9cipatory monetary reward will depend on state hunger (nutri9onal state). Figure 1. Study visit protocol. Timings of meals and scanning, including MID task fMRI runs and visual analogue scales. Figure 2. MID task outline. Each of 2 task runs contained 18 win, 18 loss and 18 neutral trials. Required speed of response (bu=on press) varied within runs to produce similar success rate (~60%) across sessions and subjects. Figure 3. Group average BOLD signal during win vs. neutral trial anLcipaLon phase of MID task averaged across fasted and fed visits (orange, n=18, cluster Z>2.3, P<0.05) with funcLonal ROIs overlaid in colour. Background image group average T1 scan. Coordinates in MNI space. Figure 4. BOLD signal comparison between fasted and fed visit during anLcipaLon of monetary win or loss trial in striatal fROIs. * P<0.05, ** P=0.01, paired samples ttest. INTRODUCTION RESULTS CONCLUSIONS METHODS HYPOTHESES Figure 5. Correla)ons between BOLD signal in caudate during MID task and TFEQHunger scores.
Transcript
Page 1: BAP MID fed fasted July 2015_Viktoriya final

A   B   C  

BO

LD s

igna

l (%

)

BO

LD s

igna

l (%

)

BO

LD s

igna

l (%

)

 

•  Hunger   ra)ngs:   Subjects   were   hungrier   on   the   Fasted   than   Fed   visit  determined  by  VAS  ra9ngs  (6.8  ±  1.9  vs.  2.6  ±  1.8,  P<0.001).    

•  MID   task   performance:   No   significant   differences   in   percentage   of  successful   hits   (P=0.31),   nor   in   amount   of   money   won   between   visits  (P=0.65),  indica9ng  similar  task  performance.  

•  Effect   of   state   hunger:  BOLD   signal   in   putamen  was   significantly   greater  when  Fasted  than  Fed  during  an9cipa9on  of  win  vs.  neutral  trial,  (P<0.05)  and  win  vs.   loss   trial   (P=0.01)   (Fig.  4A).  No  significant  effect  of   fas9ng  on  BOLD  signal  in  nucleus  accumbens  or  caudate  (Fig.  4B,C).  

•  BOLD  signal  in  amygdala  was  also  greater  when  fasted  during  an9cipa9on  of  win  vs.  neutral  trial  (P<0.05).  

           

   

•  State-­‐trait   interac)on   of   hunger   on   BOLD   signal:   TFEQ-­‐Hunger   scores  were   posi9vely   correlated   with   BOLD   signal   in   caudate   during   win   trial  an9cipa9on   when   par9cipants   were   Fasted   (r=+0.48,   P=0.04),   but   not  when   Fed   (r=   -­‐0.33,   P=0.18;   state-­‐trait   interac9on   difference   in   slopes  P=0.035)    (Fig.  5).    

•  Similar   state-­‐trait   interac9on   seen   for   BOLD   signal   during   an9cipa9on  of  loss  vs.  neutral  trial.  

•  Confounding   variables:   No   significant   differences   in   menstrual   cycle  phase,  absolute  head  mo9on,  mood  (PANAS),  sleepiness,  anxiety  between  visits.  

“Hungry  for  Money”:  State-­‐Trait  Interac=ons  of  Hunger    on  Striatal  Responses  to  An=cipatory  Monetary  Reward  

Viktoriya  Nikolova  1,  Sarah  N  Ali  2,  Roberta  Bowie  2,3,  Giuliana  Durighel  2,  John  McGonigle  1,    Anne  Lingford-­‐Hughes  1,  David  J  NuP  1,  E.  Leigh  Gibson  3,  Jimmy  D  Bell  2,  Anthony  P  Goldstone  1,2,4  

1  Centre  for  Neuropsychopharmacology,  Division  of  Brain  Sciences,  Imperial  College  London;  2  Metabolic  and  Molecular  Imaging  Group,  MRC  Clinical  Sciences  Centre,  Imperial  College  London,  UK;  3  Dept.  of  Psychology,  University  of  Roehampton,  London,  UK;  4  Computa)onal,  Cogni)ve  and  Clinical  Neuroimaging  Laboratory,  Division  of  Brain  Sciences,  Imperial  College  London,  UK  

ACKNOWLEDGEMENTS    UK  Medical  Research  Council,  Imperial  College  Healthcare  Charity  for  financial  support;  Robert  Steiner  MRI  Unit  staff,  ICCAM  study  collaborators  at  Cambridge  University  and  Manchester  University,  neuroradiologist  Adam  Waldman  for  assistance.  

 

•  Fas9ng   increases   putamen   and   amygdala   responses   to   an9cipa9on   of  winning  money.  

•  State-­‐trait   interac9on   of   hunger   increases   caudate   responses   to  an9cipatory  monetary  reward.  

•  Cross-­‐modal   influences   of   nutri9onal   state   and   ea9ng   behaviour   on  reward  processing.  

•  Paradigms   using   non-­‐food   cues   may   have   u9lity   to   study   reward  processing  across  popula9ons  and  pathologies  including  obesity.    

METHODS  •  Par)cipants:  18  healthy  non-­‐obese  adults  (10  male,  mean  ±  SD  age  29.6  ±  

9.1  years,    BMI  23.6  ±  2.9  kg/m2),  women  scanned   in   follicular  phase  of  menstrual  cycle.  

•  Procedure:  Randomised   cross-­‐over   design  with   2   visits   (median   14   days  apart)  with  func9onal  MRI  performed  (Fig.  1):  

         (i)  aher  an  overnight  fast  -­‐  14.8  ±  1.4  hours  since  supper  (Fasted)              (ii)  70  mins  aher  a  1200  kCal  liquid  breakfast  (For9sip  Compact)    (Fed)  •  Func)onal  MRI  Monetary   Incen)ve   Delay   task:   fMRI  MID   paradigm   to  

measure   BOLD   signal   during   an9cipa9on   of   win   or   loss   of   hypothe9cal  monetary   reward   using   3T   Philips   Achieva  MR   scanner   and   FSL   analysis  (Figs.  2  and  3).  

•  Trait   hunger:   Subscale   of   Three   Factor   Ea9ng   Ques9onnaire   (TFEQ),   14  items  (score  range  0-­‐14)  [6].    

•  Appe=te  ra=ngs:  Visual  Analogue  Scales  (10cm)  including  hunger.  

REFERENCES     [1]   Goldstone,   A.   P.   et   al.   Am.   J.   Clin.   Nutr.   99:1319-­‐30,   2014.   [2]   Goldstone   AP   et   al.   Eur   J   Neurosci.  30:1625-­‐35,   2009.   [3]  Carr,   K.  D.   Physiol  Behav.   91:459-­‐72,   2007.   [4]   Jia,   Z.   et   al.   Biol.   Psychiatry  70:553-­‐60,   2011.   [5]  Nestor,  L.  et  al  Neuroimage  49:1133-­‐43  2010  [6]  Balodis,  I.  M.  et  al.  Biol.  Psychiatry  73:877-­‐86,  2013.  [7]  Stunkard,  A.  J.,  &  Messick,  S.   J.  Psycho.  Res.,  29:71-­‐83,  1985.   [8]  Provencher,  V.  et  al.  Obes.  Res.  11:783-­‐92,  2003.   [9]  Mar9n,  L.  E.  et  al.  Obesity,  18:254-­‐260,  2010.   [email protected]  

[email protected]  

XYXYX  

 

•  Nutri)onal   state   and   reward:   Fas9ng   increases   brain   reward   system  responses  to  food  cues,  and  biases  appeal  and  ac9va9on  towards  energy  dense   foods   in   humans   [1,2].   In   rodents,   nega9ve   energy   balance  enhances   consump9on   and   reward-­‐seeking   behaviour   to   drugs   of   abuse    [3].  

•  Cross-­‐modality   nature   of   reward   processing:   Cocaine,   alcohol   and  cannabis   abusers   show  altered  ac9va9on  not  only   to  drugs  of   abuse  but  also   to   monetary   reward   in   the   ventral   striatum,   caudate   and   putamen  [4,5].     Obese   (vs.   healthy  weight)   subjects   show   increased   ac9va9on   to  an9cipatory  monetary  reward  in  striatum,  amygdala  and  thalamus  [6].  

•  Monetary  reward  paradigms  permit  comparison  across  addic9ons  and  are  not  subject  to  individual  food  preferences.    

•  Trait   hunger:   personality   trait   measuring   percep9ons   of   intensity   and  frequency   of   hunger   and   associated   ea9ng   habits   and   aqtudes   [7],  associated  with  overea9ng  and  weight  gain  [8,9].  

 

1.  Fas9ng  will  increase  striatal  ac9va9on  to  an9cipatory  monetary  reward.  2.  Trait   hunger   scores   will   correlate   posi9vely   with   striatal   ac9va9on   to  

an9cipatory  monetary  reward.  3.  The   influences   of   trait   hunger   on   striatal   responses   to   an9cipatory  

monetary  reward  will  depend  on  state  hunger  (nutri9onal  state).  

Figure  1.  Study  visit  protocol.  Timings  of  meals  and  scanning,  including  MID  task  fMRI  runs  and  visual  analogue  scales.  

Figure   2.   MID   task   outline.   Each   of   2   task   runs  contained  18  win,  18  loss  and  18  neutral  trials.    Required   speed   of   response   (bu=on   press)   varied  within   runs   to   produce   similar   success   rate   (~60%)  across  sessions  and  subjects.    

Figure  3.  Group  average  BOLD  signal  during  win  vs.   neutral   trial   anLcipaLon   phase   of  MID   task  averaged   across   fasted   and   fed   visits   (orange,  n=18,  cluster  Z>2.3,  P<0.05)  with  funcLonal  ROIs  overlaid   in   colour.   Background   image   group  average  T1  scan.  Coordinates  in  MNI  space.  

Figure  4.  BOLD  signal  comparison  between  fasted  and  fed  visit  during  anLcipaLon  of  monetary  win  or  loss  trial  in  striatal    fROIs.  *  P<0.05,  **  P=0.01,  paired  samples  t-­‐test.  

INTRODUCTION   RESULTS  

CONCLUSIONS  

METHODS  

HYPOTHESES  

Figure  5.  Correla)ons  between  BOLD  signal  in  caudate  during  MID  task  and  TFEQ-­‐Hunger  scores.    

Recommended