+ All Categories
Home > Documents > Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13...

Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13...

Date post: 10-Jan-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
11
4/14/2011 1 FIB fabrication of CNT devices Lee Chow Department of Physics University of Central Florida 4/11/2011 1 Lecture #9 Lecture 9 4/11/2011 Lecture #9 2 Outline Basic properties of CNT Unique features of our F-CNT FIB fabrication of CNT devices Lecture #9 3 Physics C 60 , C 70 , C 80 , Carbon Nanotube Diamond fcc lattice Graphite, HOPG Graphene 4/11/2011 Lecture #9 4 Physics History of Fullerenes and Carbon Nanotubes In 1985 Kroto, Smalley, and colleagues discovered Fullerenes in a supersonic molecular beam. Nobel Prize in Chemistry 1996. Kratschmer, Huffman et al in 1990 developed carbon arc method to mass produce Fullerenes. In 1991, Ijima discovered carbon nanotubes in the cathode deposit of the carbon arc apparatus 4/11/2011 In 2004, Geim and Novoselov obtained graphene by mechanical exfoliation of graphite. Nobel prize in physics 2010. Lecture #9 5 Fullerene & Carbon Nanotube Physics 4/11/2011 Lecture #9 6 Synthesis of Carbon Nanotubes Carbon Arc Synthesis LaserOven Synthesis Catalytic Chemical Vapor Deposition Electrochemical Deposition Physics 4/11/2011
Transcript
Page 1: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

1

FIB fabrication of CNT devices

Lee Chow

Department of Physics

University of Central Florida

4/11/2011 1Lecture #9

Lecture 9

4/11/2011 Lecture #9 2

Outline

Basic properties of CNT

Unique features of our F-CNT

FIB fabrication of CNT devices

Lecture #9 3

Physics

C60, C70, C80, Carbon Nanotube

Diamond fcc lattice

Graphite, HOPG

Graphene

4/11/2011 Lecture #9 4

Physics

History of Fullerenes and Carbon Nanotubes

In 1985 Kroto, Smalley, and colleagues discovered Fullerenes in a supersonic molecular beam. Nobel Prize in Chemistry 1996.

Kratschmer, Huffman et al in 1990 developed carbon arc method to mass produce Fullerenes.

In 1991, Ijima discovered carbon nanotubes in the cathode deposit of the carbon arc apparatus

4/11/2011

In 2004, Geim and Novoselov obtained graphene by mechanical exfoliation of graphite. Nobel prize in physics 2010.

Lecture #9 5

Fullerene & Carbon Nanotube

Physics

4/11/2011 Lecture #9 6

Synthesis of Carbon Nanotubes

• Carbon Arc Synthesis

• Laser‐Oven Synthesis

• Catalytic Chemical Vapor Deposition

• Electrochemical Deposition

Physics

4/11/2011

Page 2: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

2

Carbon Arc MethodKratschmer, Huffman et al, Iijima, Ebbesen&Ajayan, Bethune et al

Synthesis Conditions

• 100 ~ 500 torr of He pressure

• 1/4” graphite rod

• 50 Amp of current

• Catalytic particles mixed

Physics

Lecture #9 8

Carbon Arc Technique

• Iijima discovered carbon nanotubes in the cathode deposits inside the carbon arc chamber.

• Nature, 354, 56 (1991).

Physics

4/11/2011

Laser‐Oven Synthesis (Smalley’s Group)

Physics

Lecture #9 10

Laser‐Oven Synthesis (Smalley’s Group)

Physics

4/11/2011

Lecture #9 11

Catalytic Chemical Vapor deposition

Apparatus

Physics

CH4/Ar/H2

T = 850° ‐ 1100° C

P = 10 ‐ 800 torr

Baker, Amelinckx, and, others

4/11/2011 Lecture #9 12

Catalytic Chemical Vapor deposition

Deposition Conditions

• 10 ~ 800 torr of pressure

• 600° ~ 1100° C of temperature

• Hydrocarbon gases mixed with He/Ar and H2

• Nanosize catalytic particles deposited on substrates

Physics

4/11/2011

Page 3: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

3

Lecture #9 13

Catalytic Chemical Vapor deposition

Physics

Catalytic nanoparticles

50 nm

10μm

Carbon nanotubes

4/11/2011 Lecture #9 14

Physics

Electrochemical Deposition

• The potential supply ~ 1000 V

• Si substrate coated with Fe/Ni nanoparticles

• Electrolyte: a mixture of methanol and benzyl alcohol

• Deposition time ~ 24 hours

• Deposition temperature ~ 20°C

• Current density ~ 12 mA/cm2

Zhou and Chow at UCF (US patent 6,758,957 B1)

4/11/2011

Lecture #9 15

Electrochemical Deposition

Bundles of carbon nanofilaments with a uniform distribution on the Si substrate

Physics

4/11/2011 Lecture #9 16

Electrochemical Deposition

Physics

4/11/2011

Lecture #9 17

Electrochemical Deposition

Physics

Internal structure of the electrochemically deposited carbon nanotubes

4/11/2011 Lecture #9 18

Synthesis of all‐carbon nanoprobes

We developed a multi‐step processing method to fabricate all‐carbon nanoprobes consisting of carbon nanotube as the core of carbon fiber. 

Physics

Kleckley, Chai, Zhou, and Chow (US Patent 6,582,673)

4/11/2011

Page 4: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

4

Lecture #9 19

Synthesis of all‐carbon nanoprobes

Physics

Kleckley, Chai, Zhou, and Chow

4/11/2011 4/11/2011 Lecture #9 20

At UCF we acquired an FEI’s FIB instrument and set up Materials Characterization Facility (MCF) with funding from Lucent Technologies.

Lecture #9 21

Physics

Focused Ion Beam fabrication of CNT Electron 

Source

4/11/2011 Lecture #9 22

Physics

W tip

small slot

Intermediate Fiber

small slot

We first etch a 100μm W wire to a sharp tip, then use FIB to fabricate a small slot.  Use a micro‐manipulator to pick up an intermediate carbon fiber.

4/11/2011

Lecture #9 23

Physics

Pick up an intermediate fiber

4/11/2011 Lecture #9 24

Physics

Pick up a fiber that contains CNT at the end of the fiber

4/11/2011

Page 5: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

5

Lecture #9 25

Physics

Attaching Carbon fiber to the W‐tip.

4/11/2011 Lecture #9 26

Physics

Individual CNT tip on W tip

4/11/2011

Lecture #9 27

Physics

FIB fabricated CNT on a commercial electron source for electron microscope

4/11/2011 4/11/2011 Lecture #9 28

It took us almost ten years to finally get the USPTO to approve our patent application.

Lecture #9 29

Physics

4/11/2011 4/11/2011 Lecture #9 30

As you can see, focused ion beam is pretty destructive to the target. So how come we will able to fabricate devices that is functional?

Page 6: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

6

Lecture #9 31

Fiber-protected carbon nanotube (F-CNT)

Physics

10μm

(US Patent #6,582,673, 2003)

4/11/2011 Lecture #9 32

Physics

CNT loop 1

Loop radius:

R=300nm

Electron emission from the side‐wall of CNT

4/11/2011

Lecture #9 33

Physics

45 60 75 900

40

80

120

Em

issi

on

cu

rren

t (n

A)

Applied Vlotage (V)

before cleaning after cleaning after cleaning

12 15 18 21 24-34

-32

-30

-28

-26

-24Linear Fit

y=-13.5-1.06x y=-12.5-0.855x y=-12.0-0.898x

Ln

(I/V

2 )

1000/V

Field emission results from CNT loop 1

4/11/2011 Lecture #9 34

Physics

35 40 45 500

40

80

120

Em

issi

on

cu

rren

t (n

A)

Applied Voltage (V)

before cleaning after cleaning after cleaning

20 22 24 26 28 30

-33

-30

-27

-24

Ln

(I/V

2 )1000/V

Linear Fit y=-0.78-1.16x y=-5.0-0.892x y=-3.8-0.949x

Field emission results after I = 1A burn

4/11/2011

Lecture #9 35

Physics

SEM image of the same CNT tip

At the top it formed a smaller loop with R = 36 nm.

The CNT was straighten by the field applied.

4/11/2011 Lecture #9 36

Physics

Focused Ion Beam  fabrication of CNT Atomic Force Microscope tip.

4/11/2011

Page 7: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

7

Lecture #9 37

Physics

Conventional AFM cantilever Tip

4/11/2011 Lecture #9 38

Physics

Adhering  individual CNT on AFM tip

4/11/2011

Lecture #9 39

Physics

AFM cantilever with CNT tip

The zoom‐out SEM image The zoom‐in SEM image

4/11/2011 Lecture #9 40

Physics

AFM images of CNT & conventional tip

CNT tip Conventional tip

4/11/2011

Lecture #9 41

Physics

AFM Image of gradings Using carbon Nanotube tip

4/11/2011 Lecture #9 42

Physics

CNT tip Si3N4 tip

Before scan Before scan

After two hour scan After one hour scan

4/11/2011

Page 8: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

8

Lecture #9 43

Physics

FIB fabrication of Channeling device

4/11/2011 Lecture #9 44

Physics

4/11/2011

Lecture #9 45

Channeling & critical angle

4/11/2011 Lecture #9 46

Physics

Using carbon nanotube as a channeling devices is a very interesting concept. It is not difficult to do simulation, but experimentally it is very challenging.

Two major difficulties:

1. The size of carbon nanotube

2. The damage caused by ion beam

We are in a unique situation that we may be able to overcome the above difficulties with our fiber‐protected carbon nanotube.

4/11/2011

Lecture #9 47

Physics

Fabrication of a 500 nm nanotube channeling device

4/11/2011 Lecture #9 48

Physics

4/11/2011

Page 9: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

9

Lecture #9 49

Physics

550 nm CNT channel device

Overview Close‐up and aligned

4/11/2011 Lecture #9 50

Physics

Images of the channel when it is tilted.

5° tilt of the sample 10° tilt of the sample

From TEM tilted images we estimate the length of the channel to be 560 nm.

4/11/2011

Lecture #9 51

Physics

Line scan of the intensity

4/11/2011 Lecture #9 52

Physics

Fabrication of a long nanotube channeling device

Deposit Pt coating Dig trenches on sides of CNT

Pick up CNT column

Put on Cu grid

4/11/2011

Lecture #9 53

Physics

Channeling results from a 3 μm nanotube device

4/11/2011 Lecture #9 54

Physics

Electron Intensity calibration

4/11/2011

Page 10: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

10

Lecture #9 55

Physics

Electron intensity comparison

A focusing effect due to carbon nanotube??

4/11/2011 Lecture #9 56

Physics

To demonstrate channeling effect convincingly, it is important to carry out rocking curve measurement.  We tilt the nanotube +1° and ‐1°.

Tilt +1° angle Tilt ‐1° angle

4/11/2011

Lecture #9 57

Physics

FIB fabrication of nanopores

Current research

4/11/2011 Lecture #9 58

Physics

Protein Nanopore Solid State nanopore

Si3N4

3 nm

4/11/2011

Lecture #9 59

Physics

TEM image of a CNT nanopore

Diameter of the hole ~ 12 nm

4/11/2011 Lecture #9 60

Physics

Alternative method to prepare CNT‐based nanopores

Sun and Crooks, J. Am. Chem. Soc., 2000, 122, 12340‐12345

4/11/2011

Page 11: Basic properties of CNT Unique features of our F …lc/5937_lecture_9.pdf4/14/2011 3 Lecture#9 13 Catalytic Chemical Vapor deposition Physics Catalytic nanoparticles 50 nm 10μm Carbon

4/14/2011

11

Lecture #9 61

Physics

A schematic diagram of a CNT‐based Coulter counter.

4/11/2011 Lecture #9 62

Physics

This is how the current signal looks

4/11/2011

Lecture #9 63

Physics

Protein nanopores Si3N4/SiO2

nanoporesCNT nanopores

Advantages:

Can be chemically engineered.

Well-studied.

Disadvantage:

DNA translocation is too fast, and can not be used for sequencing DNA.

Advantages:

Materials are well-developed.

Disadvantage:

Pore size is difficult to control using electron beams

Advantages:

Well defined pore size.

No charging problem.

Nanopores size from 1.2 nm (SWNT) to 10 nm (MWNT) is possible.

Comparison of different types of nanopores

4/11/2011 Lecture #9 64

Conclusions

• Focused ion beam is a very useful technique in the fabrication of nano‐devices and nano‐structures. 

• The Fiber‐protected configuration of F‐CNT has potential to be developed into various CNT devices.

• Three basic CNT devices have been demonstrated: (a) Electron emission source, (b) AFM tips, (c) CNT channel.

• But FIB has its limitations:   

• (1) Sequential process

• (2) Create defects and damages during the process

Physics

4/11/2011


Recommended