+ All Categories
Home > Documents > Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ......

Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ......

Date post: 22-May-2018
Category:
Upload: lyminh
View: 218 times
Download: 2 times
Share this document with a friend
50
Beam Transfer Lines Distinctions between transfer lines and circular machines Linking machines together Trajectory correction Trajectory correction Emittance and mismatch measurement Blow-up from steering errors, optics mismatch and thin screens Phase-plane exchange Brennan Goddard CERN
Transcript
Page 1: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Beam Transfer Lines• Distinctions between transfer lines and circular machines• Linking machines together• Trajectory correction• Trajectory correction• Emittance and mismatch measurement• Blow-up from steering errors, optics mismatch and thin screens• Phase-plane exchange

Brennan GoddardCERN

Page 2: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Injection, extraction and transfer

CERN Complex• An accelerator has limited dynamic range.

• Chain of stages needed to h hi hreach high energy

• Periodic re-filling of storage rings, like LHCExternal experiments like• External experiments, like CNGS

Transfer lines transport thebeam between accelerators,and onto targets, dumps,instruments etc.

LHC: Large Hadron ColliderSPS: Super Proton SynchrotronAD: Antiproton DeceleratorISOLDE: Isotope Separator Online DevicePSB: Proton Synchrotron BoosterPS P t S h tPS: Proton SynchrotronLINAC: LINear AcceleratorLEIR: Low Energy RingCNGS: CERN Neutrino to Gran Sasso

Page 3: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Normalised phase space• Transform real transverse coordinates x, x’ by

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡⋅=⎥

⎤⎢⎣

⎡⋅=⎥

⎤⎢⎣

⎡'

011' x

xxx

SSS βαβN

'XX

1 xβ

⋅=X

⎦⎣⎦⎣⎦⎣⎦⎣ SSS ββ

'1 xx

S

βα

β

+'X 'xx SSS

βαβ

+⋅=X

Page 4: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Normalised phase space

Real phase space Normalised phase space

1

γαε−x’

ε='X

'X

γε 1

βε 1

γε=max'x

ε=maxX

⇒x

β

Area = πεArea = πε

⇒X

βε=maxxε=maxX

22 ''2 xxxx ⋅+⋅⋅+⋅= βαγε 22 'XX +=ε

Page 5: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

General transport

y

s

Beam transport: moving from s1 to s2 through n elements, each with transfer matrix Mi

xx

y ss

1

2

⎥⎤

⎢⎡

⋅⎥⎤

⎢⎡

=⎥⎤

⎢⎡

⋅=⎥⎤

⎢⎡

21'2 xSCxx

M

1

∏=n

21 MM⎥⎦

⎢⎣

⎥⎦

⎢⎣

⎥⎦

⎢⎣

⎥⎦

⎢⎣

→ ''''21'2 xSCxx

M ∏=

→i

n1

21 MM

( )

( ) ( )[ ] ( )⎥⎥⎥⎤

⎢⎢⎢⎡

ΔΔΔΔ

ΔΔ+Δ=→ β

μββμαμββ

ii1

sinsincos 2111

2

21MTwiss parameterisation

( ) ( )[ ] ( )⎥⎥⎦⎢

⎢⎣

Δ−ΔΔ+−Δ− μαμββμααμααββ sincossin1cos1

22

12121

21

Page 6: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Circular Machine

Circumference = L

( ) ⎥⎤

⎢⎡ +

==QQQ πβπαπ

12sin2sin2cos

2MMOne turn ( ) ⎥⎥⎦⎢

⎢⎣

−+−== →→ QQQL παππαβ 2sin2cos2sin11 2021 MMOne turn

• The solution is periodic p• Periodicity condition for one turn (closed ring) imposes α1=α2, β1=β2, D1=D2

• This condition uniquely determines α(s), β(s), μ(s), D(s) around the whole ring

Page 7: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Circular Machine

• Periodicity of the structure leads to regular motion– Map single particle coordinates on each turn at any location

– Describes an ellipse in phase space, defined by one set of α and βvalues ⇒ Matched Ellipse (for this location)

x’

βα 2

max1' += ax βαγ 22 ''2 ⋅+⋅⋅+⋅= xxxxa

xArea = πa β

αγ21+=

βax =max

Page 8: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Circular Machine

• For a location with matched ellipse (α, β), an injected beam of emittance ε, characterised by a different ellipse (α*, β*) generates (via filamentation) a large ellipse with the original α β but larger ε(via filamentation) a large ellipse with the original α, β, but larger ε

x’

α, β

x’

α, β

xx

Turn 1 Turn 2

After filamentation

εο, α∗ , β∗

After filamentation

εο, α∗ , β∗

ε > εο, α, βε > εο, α, βTurn 3 Turn n>>1

Matched ellipse determines beam shape

Page 9: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Transfer line

⎥⎦

⎤⎢⎣

⎡⋅=⎥

⎤⎢⎣

⎡→ '21'

2

2

xx

xx

MOne pass:

⎥⎦

⎤⎢⎣

⎡'1

xx

⎥⎦

⎤⎢⎣

⎡'2

2

xx

⎤⎡ β

⎦⎣ 1x ⎦⎣ 2x

( )

( ) ( )[ ] ( )⎥⎥⎥⎥

⎢⎢⎢⎢

Δ−ΔΔ+−Δ−

ΔΔ+Δ=→

μαμββμααμααββ

μββμαμββ

sincossin1cos1

sinsincos

22

12121

21

2111

2

21M

⎦⎣

• No periodic condition existsp• The Twiss parameters are simply propagated from beginning to end of line• At any point in line, α(s) β(s) are functions of α1 β1

Page 10: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Transfer line• On a single pass there is no regular motion

– Map single particle coordinates at entrance and exit.

– Infinite number of equally valid possible starting ellipses for single particleInfinite number of equally valid possible starting ellipses for single particle……transported to infinite number of final ellipses…

L→0Mx’

x’

α1, β1

α∗ β∗α2, β2

⎥⎤

⎢⎡ 2x

⎥⎦

⎤⎢⎣

⎡'1

1

xx

x

α∗1, β∗1 ⎥⎦

⎢⎣

'2x

x xTransfer Line

βα∗2, β∗2Entry Exit

Page 11: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Transfer Line• Initial α, β defined for transfer line by beam shape at entrance

x’ x’α∗, β∗x’ x’α∗, β∗

α, βα, β

x xx x

Gaussian beamNon-Gaussian beam(e.g. slow extracted)

Gaussian beamNon-Gaussian beam(e.g. slow extracted)

• Propagation of this beam ellipse depends on line elementsPropagation of this beam ellipse depends on line elements

• A transfer line optics is different for different input beams

Page 12: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Transfer Line

350

• The optics functions in the line depend on the initial values

Design β functions in a transfer line

200

250

300

[m]

- Design βx functions in a transfer line− βx functions with different initial conditions

50

100

150

Bet

aX [

1500 2000 2500 30000

50

S [m]

• Same considerations are true for Dispersion function:Same considerations are true for Dispersion function:– Dispersion in ring defined by periodic solution → ring elements

– Dispersion in line defined by initial D and D’ and line elements

Page 13: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Transfer Line

• Another difference….unlike a circular ring, a change of an element in a line affects only the downstream Twiss values (including di i )

300

350

dispersion)- Unperturbed βx functions in a transfer line− βx functions with modification of one quadrupole strength

150

200

250

Bet

aX [m

]

10% change in this QF strength

1500 2000 2500 30000

50

100

1500 2000 2500 3000S [m]

Page 14: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Linking Machines

• Beams have to be transported from extraction of one machine to injection of next machine– Trajectories must be matched, ideally in all 6 geometric degrees of freedom

(x,y,z,θ,φ,ψ)

• Other important constraints can includeOther important constraints can include– Minimum bend radius, maximum quadrupole gradient, magnet aperture,

cost, geology

Page 15: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Linking Machines

Extraction

Matched Twiss at extraction propagated to matched Twiss at injection

Transferα1x, β1x , α1y, β1yαx(s), βx(s) , αy(s), βy(s)

s

α2x, β2x , α2y, β2y

Injection

⎥⎤

⎢⎡

⎥⎤

⎢⎡ −

⎥⎤

⎢⎡ 1

222

''''2 ββ

SSSCCSCCSCSC

The Twiss parameters can be propagated when the transfer matrix M is known

⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡ 2 xSCxx

M⎥⎥⎥

⎦⎢⎢⎢

⋅⎥⎥⎥

⎦⎢⎢⎢

⎣ −−+−=

⎥⎥⎥

⎦⎢⎢⎢

⎣ 1

122

2

2

'''2'''''

γα

γα

SSCCSSSCCSCC⎥

⎦⎢⎣

⋅⎥⎦

⎢⎣

=⎥⎦

⎢⎣

⋅=⎥⎦

⎢⎣

→ ''''21'2

2

xSCxxM

Page 16: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Linking Machines• Linking the optics is a complicated process

– Parameters at start of line have to be propagated to matched parameters at the end of the line

– Need to “match” 8 variables (αx βx Dx D’x and αy βy Dy D’y)

– Maximum β and D values are imposed by magnet apertures

Other constraints can exist– Other constraints can exist • phase conditions for collimators,

• insertions for special equipment like stripping foils

– Need to use a number of independently powered (“matching”) quadrupoles

– Matching with computer codes and relying on mixture of theory, i i t iti t i l dexperience, intuition, trial and error, …

Page 17: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Linking MachinesF l t f li i lif th bl b d i i th• For long transfer lines we can simplify the problem by designing the line in separate sections– Regular central section – e.g. FODO or doublet, with quads at regular

i ( b di di l ) ith t d i ispacing, (+ bending dipoles), with magnets powered in series

– Initial and final matching sections – independently powered quadrupoles, with sometimes irregular spacing.

150

200

250

300

β [m

]

BETXBETY

0

50

100

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000S [m]Regular lattice (FODO)

SPS LHC(elements all powered in serieswith same strengths)

Final matching

section

Initial matching

section

SPS to LHC Transfer Line

Extractionpoint

Injectionpoint

Page 18: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Trajectory correction

• Magnet misalignments, field and powering errors cause the trajectory to deviate from the design

• Use small independently powered dipole magnets (correctors) toUse small independently powered dipole magnets (correctors) to steer the beam

• Measure the response using monitors (pick-ups) downstream of the corrector (π/2 3π/2 )corrector (π/2, 3π/2, …)

Corrector dipole Pickup Trajectory

QF QF

π/2

QF

QD QD

QF

• Horizontal and vertical elements are separated

• H-correctors and pick-ups located at F-quadrupoles (large βx )

V t d i k l t d t D d l (l β )• V-correctors and pick-ups located at D-quadrupoles (large βy)

Page 19: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Trajectory correction

• Global correction can be used which attempts to minimise the RMS offsets at the BPMs, using all or some of the available corrector magnets.

• Steering in matching sections, extraction and injection region requires particular care

D and β functions can be large → bigger beam size– D and β functions can be large → bigger beam size

– Often very limited in aperture

– Injection offsets can be detrimental for performance

Page 20: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Trajectory correction

Uncorrected trajectory.

y growing as a result f d i thof random errors in the

line.

The RMS at the BPMs is 3.4 mm, and ymax is , ymax12.0mm

Corrected trajectory.

The RMS at the BPMs is 0.3mm and ymax is 1mm

Page 21: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Trajectory correction

• Sensitivity to BPM errors is an important issue– If the BPM phase sampling is poor, the loss of a few key BPMs can

allow a very bad trajectory, while all the monitor readings are ~zero

Correction with some monitors disabled

y j y, g

With poor BPM phase sampling the correction algorithm produces a trajectory with 185mmtrajectory with 185mm ymax

Note the change of vertical scale

Page 22: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Steering (dipole) errors

• Precise delivery of the beam is important.– To avoid injection oscillations and emittance growth in rings

– For stability on secondary particle production targetsFor stability on secondary particle production targets

• Convenient to express injection error in σ (includes x and x’ errors)

Δ [ ] √ √ 2 2 β 2

Δa

Δa [σ] = √((X2+X’2)/ε) = √((γx2 + 2αxx’+ βx’2)/ε)

X

'X

Septum

XBumpermagnets kicker Mis-steered

injected beam

Page 23: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Steering (dipole) errors

• Static effects (e.g. from errors in alignment, field, calibration, …) are dealt with by trajectory correction (steering).

B t there are also d namic effects from• But there are also dynamic effects, from:– Power supply ripples

– Temperature variations

– Non-trapezoidal kicker waveforms

• These dynamic effects produce a variable injection offset which can vary from batch to batch or even within a batchvary from batch to batch, or even within a batch.

• An injection damper system is used to minimise effect on emittance

Page 24: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from steering error• Consider a collection of particles with amplitudes A

• The beam can be injected with a error in angle and position.

• For an injection error Δa (in units of sigma = √βε) the mis-injected• For an injection error Δay (in units of sigma = √βε) the mis-injected beam is offset in normalised phase space by d = Δax√ε

'X Mi i j t dMatched X Misinjectedbeam

Matchedparticles

X

A

d

Page 25: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from steering error• The new particle coordinates in normalised phase space are

θcosnew dXX 0 +=

θsinnew dXX '0

' +=

Mi i j t dMatched 'X

• For a general particle distribution, where A denotes amplitude in

Misinjectedbeam

Matchedparticles

X

'222 XXA +=

where A denotes amplitude in normalised phase space A

θ X

2/2A=ε

d

Page 26: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from steering errorS if l i th di t

( ) ( )'00

'222 dXdXXXA +++=+=22

θθ sincosnewnewnew

• So if we plug in the new coordinates….

( )

( ) 2'00'2002

2'00'200

dXXDXXA

dXXdXX

++++=

++++=

2

2

2

2

θθ

θθ

sincos

sincos

new ( )

( ) 2'00

0000

dXXD +++= 0 22 θθε sincos

new

0 0

2d+= 02ε

Giving for the emittance increase

2/2/ 022 dA εε +== newnew

• Giving for the emittance increase

( )2/102aΔε +=

Page 27: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from steering error

A numerical example….

Consider an offset Δa of 0.5 sigma for ginjected beam

Misinjected beam( )0 2/1 Δεε += 2anew

'X

0ε1.125=X

0.5√ε√ε

X

MatchedBeam

Page 28: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from betatron mismatch

• Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch.

• Filamentation will produce an emittance increase.

• In normalised phase space, consider Mismatchedbeam'Xp p ,

the matched beam as a circle, and the mismatched beam as an ellipse.

beamX

X

Matchedbeam

Page 29: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from betatron mismatch

[ ])sin()cos('),sin( 2222222 ooo xx φφαφφβεφφβε +−+=+=

General betatron motion – coordinates of particles on mismtached ellipse

⎤⎡⎤⎡⎤⎡ 2011 xX

applying the normalising transformation for the matched beam (subscript 1)

⎥⎦

⎤⎢⎣

⎡⋅⎥⎦

⎤⎢⎣

⎡⋅=⎥

⎤⎢⎣

2

2

111 '011

xx

βαβ22'X

X

an ellipse is obtained in normalised phase space

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−+

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−+=

2

121

1

2

1

22

2

121

1

2

2

12 2ββαα

ββ

ββ

ββαα

ββ

ββ

2222

22 'XX'XXA

an ellipse is obtained in normalised phase space

2121212 ⎟⎞

⎜⎛

⎟⎞

⎜⎛− ββββ

βββ

characterised by γnew, βnew and αnew, where

2

121

1

2

2

1

1

2

2

121

1

2⎟⎟⎠

⎜⎜⎝

−+==⎟⎟⎠

⎜⎜⎝

−=ββ

ααββ

ββ

γββ

βββ

ααββ

α newnewnew , ,

Page 30: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from betatron mismatch

Mismatched( ) ( )112

112

−−+=−++= HHAbHHAa ,

From the general ellipse properties

'Xbeam

b

22

where

X

ab

( )

⎟⎞

⎜⎛

+⎟⎟⎞

⎜⎜⎛

+

+=

2

2

1211

21

ββααββ

βγ newnewH

AX

⎟⎟

⎠⎜⎜

⎝+⎟⎟

⎠⎜⎜⎝

−+=1

2

2

121

1

2

2

1

2 ββαα

ββ A

λAa

MatchedBeam generally

giving

( ) ( )112

11112

1 −−+=−++= HHHHλ

λ ,

λλ

⋅==

AA

ba

)cos(1),sin( 1new1new φφλ

φφλ +=+⋅= A'XAX

Page 31: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from betatron mismatch

)(cos1)(sin 2202

220

2211newnew φφ

λφφλ +++⋅=+= AA'XXA 22

new

We can evaluate the square of the distance of a particle from the origin as

The new emittance is the average over all phases

⎟⎟⎠

⎞⎜⎜⎝

⎛ +++== 22

22 )(cos1)(sin21

21 φφ

λφφλε 11new

20

20

2 AAAnew

⎟⎟⎠

⎞⎜⎜⎝

⎛ +++=

⎟⎠

⎜⎝

22

22

2

)(cos1)(sin21

22

φφλ

φφλ

λ

1120A

0.5 0.5

⎟⎟⎠

⎞⎜⎜⎝

⎛ +=2

20

121

λλε

⎟⎟

⎜⎜

⎛+⎟⎟

⎞⎜⎜⎝

⎛−+==⎟

⎠⎞

⎜⎝⎛ += 2

2

121

21002

20 2

1121

ββ

ββαα

ββ

ββεε

λλεε Hnew

If we’re feeling diligent, we can substitute back for λ to give

⎟⎠

⎜⎝ ⎠⎝⎠⎝ 121222 ββββλ

where subscript 1 refers to matched ellipse, 2 to mismatched ellipse.

Page 32: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from betatron mismatchA numerical example….consider b = 3a for the mismatched ellipse

3/ abλ

Mismatched

3/ == abλ

'X

( )22 11 λλεε +

beamThen

X

( )0

0

67.1

12

ε

λλεε

=

+=new

oεa b=3a

X

MatchedBeam

Page 33: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance and mismatch measurement• A profile monitor is need to measure the beam size

– E.g. beam screen (luminescent) provides 2D density profile of the beam

• Profile fit gives transverse beam sizes σ• Profile fit gives transverse beam sizes σ.

• In a ring, β is ‘known’ so ε can be calculated from a single screen

Page 34: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance and mismatch measurement

• Emittance and optics measurement in a line needs 3 profile measurements in a dispersion-free region

• Measurements of σ0 σ1 σ2 plus the two transfer matrices M01 andMeasurements of σ0,σ1,σ2, plus the two transfer matrices M01 and M12 allows determination of ε, α and β

Ms0 s2s1

M 32→M21→M

2

22

1

21

0

20

βσ

βσ

βσε ===

σ0 σ1 σ2

Page 35: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance and mismatch measurement⎤⎡

⎥⎥⎥

⎢⎢⎢

⎡⋅⎥⎥⎥

⎢⎢⎢

−−+−

−=

⎥⎥⎥

⎢⎢⎢

0

0

0

2111

21

11111111

2111

21

1

1

1

'''2'''''

2

γαβ

γαβ

SSCCSSCSSCCC

SSCC

We have

( )

( ) ( )[ ] ( )⎥⎥⎥⎥

⎢⎢⎢⎢

−+−−

+=⎥

⎤⎢⎣

μΔαμΔββμΔααμΔααββ

μΔββμΔαμΔββ

sincossin1cos1

sinsincos

22

12121

21

2111

2

'1

'1

11

SCSC

where

( ) ( )20

0

22

0220222

20

0

21

01102

11 1212 αβ

αββαβ

αββ ++−=++−= SSCCSSCC ,so that

⎥⎦⎢⎣ βββ 221

Using 0

2

0

220

2

0

11

20

0 βσσ

ββσσ

βε

σβ ⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛== , ,

W00 21 βα =we find

( ) ( ) ( ) ( )222222 ////// SCSCSS +σσσσ( ) ( ) ( ) ( )( ) ( )2211

11222

1012202

////////

SCSCSCSCSS

−+−−= σσσσ Wwhere

Page 36: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance and mismatch measurement

Some (more) algebra with above equations gives

( ) ( ) ( ) 4/////1 222

222

22

2020

2WW −+−= SCSCSσσβ

2 β

And finally we are in a position to evaluate ε and α0

W1 β020 βσε =

Comparing measured α β0 with expected values gives numerical

W00 2βα =

Comparing measured αo, β0 with expected values gives numerical measurement of mismatch

Page 37: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from thin scattererS tt i l t ti i d i th b• Scattering elements are sometimes required in the beam– Thin beam screens (Al2O3,Ti) used to generate profiles.

– Metal windows also used to separate vacuum of transfer lines from vacuum in circular machines.

– Foils are used to strip electrons to change charge state

• The emittance of the beam increases when it passes through dueThe emittance of the beam increases when it passes through, due to multiple Coulomb scattering.

θs

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+=

radradinc

cs L

LLLZ

cMeVpmrad 10

2 log11.01]/[

1.14][β

θrms angle increase:⎠⎝ radradc p ][β

βc = v/c, p = momentum, Zinc = particle charge /e, L = target length, Lrad = radiation length

Page 38: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from thin scatterer

Ellipse afterscattering

Each particles gets a random angle change θs but there is no effect on the positions at the scatterer

'X

θβ+=

=

'0

'

0

XX

XXnew

sθβ+0XXnew

After filamentation the particles have different amplitudes and the beam has

X

Matchedellipse

a larger emittance

2/2Anew=ε

Page 39: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from thin scatterer+ '222 XXA

Ellipse afterfilamentation

( )2sθβ++=

+=

'020

222

XX

XXA newnewnew'X

uncorrelated( )22

22

2

2 ss

θβθβ

βθθβ

+++

+++=

''22

'0'200

XXXA

XXX

20

22

22

2

ss

ss

θβθβε

θβθβ

++=

+++=

'0

02002

X

XXXA new

0

X

Matchedellipse

202 sθβε +=

20 2 snew θβεε +=

Need to keep β small to minimise blow-up (small β means large spread in angles in beam distribution, so additional angle has small effect on distn.)

Page 40: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Blow-up from charge stripping foilF LHC h i Pb53+ i t i d t Pb82+ t 4 25G V/ i• For LHC heavy ions, Pb53+ is stripped to Pb82+ at 4.25GeV/u using a 0.8mm thick Al foil, in the PS to SPS line

• Δε is minimised with low-β insertion (βxy ~5 m) in the transfer liney

• Emittance increase expected is about 8%

120TT10 optics

80

100

Stripping foil

]

beta Xbeta Y

40

60

Bet

a [m

]

0 50 100 150 200 250 3000

20

S [m]

Page 41: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchange insertion• Acceptances of circular accelerators tend to be larger in horizontal

plane (bending dipole gap height small as possible)

• Several multiturn extraction process produce beams which have p pemittances which are larger in the vertical plane → larger losses

• We can overcome this by exchanging the H and V phase planes (emittance exchange)(emittance exchange)

Low energy machine After multi-turn Aft itt High energy machine

y

extraction After emittanceexchange

x

In the following, remember that the matrix is our friend…

Page 42: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchangePhase-plane exchange requires a transformation of the form:

⎟⎟⎞

⎜⎜⎛

⎟⎟⎞

⎜⎜⎛

⎟⎟⎞

⎜⎜⎛

0

0

2423

1413

1

1

'0000

' xx

mmmm

xx

⎟⎟⎟⎟

⎠⎜⎜⎜⎜

⎝⎟⎟⎟⎟

⎠⎜⎜⎜⎜

=

⎟⎟⎟⎟

⎠⎜⎜⎜⎜

⎝ 0

0

0

4241

3231

2423

1

1

1

'0000

00

' yyx

mmmm

mm

yyx

A skew quadrupole is a normal quadrupole rotated by an angle θ.

The transfer matrix S obtained by a rotation of the normal transfer matrix Mq:1S = R-1MqR

where R is the rotation matrix ⎟⎟⎟⎞

⎜⎜⎜⎛

θθθθ

sin0cos00sin0cos

⎟⎟⎟

⎠⎜⎜⎜

⎝ −−

θθθθ

cos0sin00cos0sin

( i lf f h t R d b h ki th t i t f d t(you can convince yourself of what R does by checking that x0 is transformed to x1 = x0cosθ +y0sinθ, y0 into -x0sinθ +y0cosθ, etc.)

Page 43: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchange⎞⎛

For a thin-lens approximation⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

10001000010001

δ

δqM

(where δ = kl = 1/f is the quadrupole strength)

So that⎟⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎜⎛

−⎟⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎜⎛

⎟⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎜⎛

−−

== −

0cos0sinsin0cos0

0sin0cos

01000010001

0cos0sinsin0cos00sin0cos

1

θθθθ

θθδ

θθθθ

θθ

RMRS q

⎟⎟⎞

⎜⎜⎛

⎟⎟⎠

⎜⎜⎝ −⎟⎟⎠

⎜⎜⎝ −⎟⎟⎠

⎜⎜⎝

02i120001

cos0sin0100cos0sin0

θδθδ

θθδθθ

⎟⎟⎟⎟

⎠⎜⎜⎜⎜

⎝ −

=

12cos02sin010002sin12cos

θδθδ

θδθδ

N l d45º k d

For the case of θ = 45º, ⎟⎟⎟⎞

⎜⎜⎜⎛

=0100001

δS

Normal quad45º skew quad

this reduces to ⎟⎟⎟

⎠⎜⎜⎜

=

1000100

δ

S

Page 44: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchangeThe transformation required can be achieved with 3 such skew quads in a lattice,

of strengths δ1, δ2, δ3, with transfer matrices S1, S2, S3

A B

Skew quad Skew quad Skew quad

δ1 δ2 δ3

The transfer matrix without the skew quads is C = B A .

⎟⎟⎟⎟

⎜⎜⎜⎜

=

y

x

CC

C

0000

0000

[ ]

( ) ( ) [ ]⎟⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎜⎛

−+−−

+

=xxxxxxx

xxxxxxx

x

x

φΔαφΔβφΔααφΔαα

φΔββφΔαφΔββ

sincossin1cos

sinsincos

12112

2111

2

C

and similar for C[ ]⎟⎟⎠

⎜⎜⎝

− xxxx

x

xx

φΔαφΔβββsincos 2

21

21and similar for Cy

Page 45: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchangeWith the skew quads the overall matrix is M = S3B S2A S1

⎟⎟⎟⎞

⎜⎜⎜⎛

⎤⎡⎤⎡

++ 23412233121121221341211 δδδδδ ababccabc

( ) ( )

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

++

+⎥⎦

⎤⎢⎣

⎡++

++⎥⎦

⎤⎢⎣

⎡++

+

=

34211234332341221134134

33423422

211234333

2332212232123422

211341343

21342221

δδδδδ

δδδδδ

δδδδδδδ

δδ

cabcbaabc

cababc

abcabcabc

abc

M

( ) ( )⎟⎟⎟⎟⎟

⎠⎜⎜⎜⎜⎜

⎝+⎥

⎤⎢⎣

⎡++

++⎥

⎤⎢⎣

⎡++

+

++

3234124421124443

23312112321244312

213422144

213412113

34211234332341221134134

δδδδδδδ

δδδδδδδδ

δδδδδ

abcabcabc

abcabcabc

cabcbaabc

⎟⎟⎟⎞

⎜⎜⎜⎛

000000

2423

1413

mmmmmm

Equating the terms with our target matrix form⎟⎟⎟

⎠⎜⎜⎜

⎝ 0000

4241

3231

mmmm

a list of conditions result which must be met for phase-plane exchangea list of conditions result which must be met for phase plane exchange.

Page 46: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchange

21341211

34

12

000

δδabccc

+===

( )32341244

21123433

32123422

21341211

000

δδδδδδ

abcabcabc

+=+=+=

( )( )23312112321124443

21134134321342221

00

δδδδδδδδδδ

abcabcabcabc

+++=+++=

The simplest conditions are c12 = c34 = 0.The simplest conditions are c12 c34 0.

Looking back at the matrix C, this means that Δφx and Δφy need to be integer multiples of π (i.e. the phase advance from first to last skew quad should be 180º, 360º, …))

W l h f th t th f th k d1234

33

3412

1121 ab

cab

c−=−=δδ

We also have for the strength of the skew quads3412

44

1234

2232 ab

cab

c−=−=δδ

Page 47: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchangeSeveral solutions exist which give M the target form.

One of the simplest is obtained by setting all the skew quadrupole strengths the same, and putting the skew quads at symmetric locations in a 90º FODO l ttilattice

A B (=A)

δ δ δFrom symmetry A = B, and the values of α and β at all skew quads are identical.

( )⎟⎟⎞

⎜⎜⎛ + xxxxx φΔβφΔαφΔ sinsincos

with the same form for yTherefore ( ) ( )⎟⎟⎟

⎠⎜⎜⎜

⎝−

−−

==xxx

x

xxxx

φΔαφΔβφΔα

sincossin1 2BA

The matrix C is similar, but with phase advances of 2Δφ

Page 48: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Emittance exchange

⎞⎛ βα 00

Since we have chose a 90º FODO phase advance, Δφx = Δφy = π/2, and 2Δφx = 2Δφy = π which means we can now write down A,B and C:

( )

⎟⎟⎟⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎜⎜⎜⎛

−−

==

xx

x

xx

αβα

βα

2

001

00

BA ⎟⎟⎟⎞

⎜⎜⎜⎛

−−

=00100001

Ci.e. 180º across the insertion in both planes

( )⎟⎟⎟⎟⎟⎟

⎠⎜⎜⎜⎜⎜⎜

⎝−

−− y

y

y

yy

αβ

α

βα

2100

00BA

⎟⎟⎟

⎠⎜⎜⎜

⎝ −−

10000100 insertion in both planes

⎠⎝

sδδδδ 1321 ====we can then write down the skew lens strength as

yxs

ββ321we can then write down the skew lens strength as

12For the 90º FODO with half-cell length L, 2

1,2LL sDF ==−= δδδ

Page 49: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Summary• Transfer lines present interesting challenges and differences from

circular machines– No periodic condition mean optics is defined by transfer line element

strengths and by initial beam ellipse

– Matching at the extremes is subject to many constraints

– Trajectory correction is rather simple compared to circular machineTrajectory correction is rather simple compared to circular machine

– Emittance blow-up is an important consideration, and arises from several sources

Phase plane rotation is sometimes required skew quads– Phase-plane rotation is sometimes required - skew quads

Page 50: Beam Transfer Lines ·  · 2017-06-241 2 0 1 sin2 cos2 sin2 M ... 0 50 100 0 250 500 750 1000 ... (0 '0) 2 '2 0 0 2 ' 2 0 0 '2 0 0 A X X DX X d

Keywords for related topics• Transfer lines

– Achromat bends

– Algorithms for optics matchingAlgorithms for optics matching

– The effect of alignment and gradient errors on the trajectory and optics

– Trajectory correction algorithms

– SVD trajectory analysis

– Kick-response optics measurement techniques in transfer lines

– Optics measurements including dispersion and δp/p with >3 screensOptics measurements including dispersion and δp/p with >3 screens

– Different phase-plane exchange insertion solutions


Recommended