+ All Categories
Home > Documents >  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2...

 · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2...

Date post: 01-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
40
Hard-To-Solve Bimatrix Games Rahul Savani Bernhard von Stengel Department of Mathematics London School of Economics
Transcript
Page 1:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Hard-To-Solve Bimatrix Games

Rahul Savani

Bernhard von Stengel

Department of MathematicsLondon School of Economics

Page 2:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Nash equilibria of bimatrix games

3 3 1 0A = 2 5 B = 0 2

0 6 4 3

Nash equilibrium =

pair of strategies x , y with

x best response to y andy best response to x.

Page 3:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Mixed equilibria

3 3 1 0A = 2 5 B = 0 2

0 6 4 3

0x = 1/3 yT = 1/3 2/3

2/3

3Ay = 4 xTB = 8/3 8/3

4

only pure best responses can have probability > 0

Page 4:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Best response polytope Q for player 2

= AQ = { y | Ay≤1, y≥0 }©1

©2©3

y4 y5

023

653

Q = { (y4, y5) |©1 : 3y4 + 3y5≤ 1©2 : 2y4 + 5y5≤ 1©3 : 6y5≤ 1

©4 : y4 ≥ 0©5 : y5 ≥ 0 }

y4

5y

4 1

23

5

Page 5:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Best response polytope Q for player 2

= AQ = { y | Ay≤1, y≥0 }©1

©2©3

y4 y5

023

653

Q = { (y4, y5) |©1 : 3y4 + 3y5≤ 1©2 : 2y4 + 5y5≤ 1©3 : 6y5≤ 1

©4 : y4 ≥ 0©5 : y5 ≥ 0 }

y4

5y

4 1

23

5

Page 6:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

B < 1P = { x | x > 0, x }

x3

x1

x2

x3

x1

x2

4

1

52

3

1 02

4 30

≤1≤1

= B

Best response polytope P for player 1

4

5

Page 7:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Equilibrium = completely labeled pair

pure equilibrium

2

3

5

4

4 1

231

5

Page 8:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Equilibrium = completely labeled pair

2

mixed equilibrium

3

5

4

4 1

231

5

Page 9:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

3

5

4

4 1

2

1

5

3

Page 10:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 11:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 12:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 13:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 14:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 15:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 16:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 17:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

Page 18:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

• finitely many "vertices"

for nondegenerate (generic) games:

• unique starting edge given missing label

• unique continuation

precludes "coming back" like here:

Page 19:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Complexity of Lemke-Howson

− finds at least one Nash equilibrium, pivots like Simplex algorithm for linear programming

− Simplex may be exponential [Klee-Minty cubes]

− exponentially many steps of Lemke-Howson for any dropped label?

− Yes! This is our result.

Page 20:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Our result

There are d × d games with exactly one Nashequilibrium, for which the Lemke-Howson algorithm

takes ≥ φ 3d/4 many steps for any dropped label(with Golden Ratio φ = (

5 + 1) / 2 = 1.618...)

We will show this extending

[Morris 1994] - exponentially long Lemke paths (finds symmetric equilibria of symmetric games)

[von Stengel 1999] - games with many equilibria

using dual cyclic polytopes

Page 21:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

1 1 0 1 01 0 1 0 11 0 0 1 10 0 1 1 10 1 1 1 0

0 0 0 1 10 0 1 1 00 1 1 0 01 1 0 0 01 0 0 0 1

Vertices as bit patterns

1 1 1 0 0

P Q

2 2

2

3 4 5 3 4 51 1

4

1

3

5

5

4 1

23

Page 22:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

1 1 0 1 01 0 1 0 11 0 0 1 10 0 1 1 10 1 1 1 0

0 0 0 1 10 0 1 1 00 1 1 0 01 1 0 0 01 0 0 0 1

Vertices as bit patterns

1 1 1 0 0

P Q

2 2

2

3 4 5 3 4 51 1

4

1

35

5

4 1

23

Page 23:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Dual cyclic polytopes

− vertices = strings of N bits with d bits "1",

− no odd substrings 010, 01110, 0111110, . . . [Gale evenness]

Example: d=4, N=6 d=2, N=6 (4 × 2 game)111100 000011 111001 000110110110 001100110011 011000101101 110000100111 100001011110011011001111

Page 24:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Permuted labels

P = dual cyclic polytope in dimension d with 2d facets

with facets labeled

?

©1

N

LLLLLL

©2

°

¯¯

¯¯

¯¯

©3

N

LLLLLL

©4

°

¯¯

¯¯

¯¯

©5

?

©6

N

LLLLLL

©7

°

¯¯

¯¯

¯¯

©8

N

LLLLLL

©9

°

¯¯

¯¯

¯¯

©10

N

LLLLLL

©11

°

¯¯

¯¯

¯¯

©12

Q = P

with facets labeled ©1 ©3 ©2 ©5 ©4 ©6 ©8 ©7 ©10 ©9 ©12 ©11

=⇒ only one non-artificial equilibrium:

0 0 0 0 0 0 1 1 1 1 1 11 1 1 1 1 1 0 0 0 0 0 0

Lemke–Howson will take long to find it!

Page 25:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Lemke-Howson on dual cyclic polytopes

P Q©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©71 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

Page 26:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Lemke-Howson on dual cyclic polytopes

P Q©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©71 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0 ­­­

Page 27:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Lemke-Howson on dual cyclic polytopes

P Q©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©71 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

Page 28:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Lemke-Howson on dual cyclic polytopes

P Q©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©71 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1

0 1 1 0 1 1 0 0 ­­­

Page 29:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Lemke-Howson on dual cyclic polytopes

P Q©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©71 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0 ­­­

0 0 0 1 1 0 1 1

0 1 1 0 1 1 0 0 ­­­

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 ­­­

0 1 1 0 0 0 1 1

0 0 0 1 1 1 1 0 ­­­

0 1 1 0 0 1 1 0

0 0 1 1 0 1 1 0 ­­­

0 0 1 1 0 1 1 0

0 1 1 0 0 1 1 0 ­­­

0 0 0 1 1 1 1 0

0 1 1 0 0 0 1 1 ­­­

0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 ­­­

0 1 1 0 1 1 0 0

0 0 0 1 1 0 1 1 ­­­

0 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 ­­­

1 1 1 1 0 0 0 0

Page 30:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

A(4) = path for d=4, label 11 2 3 4 5 6 7 8 1 3 2 4 6 5 8 71 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Page 31:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

B(6) = path for d=6, label 121 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 111 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 112 1 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 114 1 1 1 1 1 1 1 1 1 1 1 115 1 1 1 1 1 1 1 1 1 1 1 116 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 1 1 1 1 1 118 1 1 1 1 1 1 1 1 1 1 1 1

Page 32:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

A(4) is prefix of B(6)1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 111 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 112 1 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 114 1 1 1 1 1 1 1 1 1 1 1 115 1 1 1 1 1 1 1 1 1 1 1 116 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 1 1 1 1 1 118 1 1 1 1 1 1 1 1 1 1 1 1

Page 33:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

A(6) = path for d=6, label 11 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 111 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 112 1 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 114 1 1 1 1 1 1 1 1 1 1 1 115 1 1 1 1 1 1 1 1 1 1 1 116 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 1 1 1 1 1 1 118 1 1 1 1 1 1 1 1 1 1 1 119 1 1 1 1 1 1 1 1 1 1 1 120 1 1 1 1 1 1 1 1 1 1 1 121 1 1 1 1 1 1 1 1 1 1 1 122 1 1 1 1 1 1 1 1 1 1 1 123 1 1 1 1 1 1 1 1 1 1 1 124 1 1 1 1 1 1 1 1 1 1 1 125 1 1 1 1 1 1 1 1 1 1 1 126 1 1 1 1 1 1 1 1 1 1 1 127 1 1 1 1 1 1 1 1 1 1 1 128 1 1 1 1 1 1 1 1 1 1 1 129 1 1 1 1 1 1 1 1 1 1 1 130 1 1 1 1 1 1 1 1 1 1 1 131 1 1 1 1 1 1 1 1 1 1 1 132 1 1 1 1 1 1 1 1 1 1 1 133 1 1 1 1 1 1 1 1 1 1 1 134 1 1 1 1 1 1 1 1 1 1 1 135 1 1 1 1 1 1 1 1 1 1 1 136 1 1 1 1 1 1 1 1 1 1 1 137 1 1 1 1 1 1 1 1 1 1 1 138 1 1 1 1 1 1 1 1 1 1 1 139 1 1 1 1 1 1 1 1 1 1 1 140 1 1 1 1 1 1 1 1 1 1 1 141 1 1 1 1 1 1 1 1 1 1 1 142 1 1 1 1 1 1 1 1 1 1 1 143 1 1 1 1 1 1 1 1 1 1 1 144 1 1 1 1 1 1 1 1 1 1 1 1

Page 34:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

B(6) is prefix of A(6)1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 111 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 112 1 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 114 1 1 1 1 1 1 1 1 1 1 1 115 1 1 1 1 1 1 1 1 1 1 1 116 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 1 1 1 1 1 1 118 1 1 1 1 1 1 1 1 1 1 1 119 1 1 1 1 1 1 1 1 1 1 1 120 1 1 1 1 1 1 1 1 1 1 1 121 1 1 1 1 1 1 1 1 1 1 1 122 1 1 1 1 1 1 1 1 1 1 1 123 1 1 1 1 1 1 1 1 1 1 1 124 1 1 1 1 1 1 1 1 1 1 1 125 1 1 1 1 1 1 1 1 1 1 1 126 1 1 1 1 1 1 1 1 1 1 1 127 1 1 1 1 1 1 1 1 1 1 1 128 1 1 1 1 1 1 1 1 1 1 1 129 1 1 1 1 1 1 1 1 1 1 1 130 1 1 1 1 1 1 1 1 1 1 1 131 1 1 1 1 1 1 1 1 1 1 1 132 1 1 1 1 1 1 1 1 1 1 1 133 1 1 1 1 1 1 1 1 1 1 1 134 1 1 1 1 1 1 1 1 1 1 1 135 1 1 1 1 1 1 1 1 1 1 1 136 1 1 1 1 1 1 1 1 1 1 1 137 1 1 1 1 1 1 1 1 1 1 1 138 1 1 1 1 1 1 1 1 1 1 1 139 1 1 1 1 1 1 1 1 1 1 1 140 1 1 1 1 1 1 1 1 1 1 1 141 1 1 1 1 1 1 1 1 1 1 1 142 1 1 1 1 1 1 1 1 1 1 1 143 1 1 1 1 1 1 1 1 1 1 1 144 1 1 1 1 1 1 1 1 1 1 1 1

Page 35:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Suffix of A(6) = C(6) = A(4)+B(6)1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 5 4 6 8 7 10 9 12 111 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 112 1 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 114 1 1 1 1 1 1 1 1 1 1 1 115 1 1 1 1 1 1 1 1 1 1 1 116 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 1 1 1 1 1 1 118 1 1 1 1 1 1 1 1 1 1 1 119 1 1 1 1 1 1 1 1 1 1 1 120 1 1 1 1 1 1 1 1 1 1 1 121 1 1 1 1 1 1 1 1 1 1 1 122 1 1 1 1 1 1 1 1 1 1 1 123 1 1 1 1 1 1 1 1 1 1 1 124 1 1 1 1 1 1 1 1 1 1 1 125 1 1 1 1 1 1 1 1 1 1 1 126 1 1 1 1 1 1 1 1 1 1 1 127 1 1 1 1 1 1 1 1 1 1 1 128 1 1 1 1 1 1 1 1 1 1 1 129 1 1 1 1 1 1 1 1 1 1 1 130 1 1 1 1 1 1 1 1 1 1 1 131 1 1 1 1 1 1 1 1 1 1 1 132 1 1 1 1 1 1 1 1 1 1 1 133 1 1 1 1 1 1 1 1 1 1 1 134 1 1 1 1 1 1 1 1 1 1 1 135 1 1 1 1 1 1 1 1 1 1 1 136 1 1 1 1 1 1 1 1 1 1 1 137 1 1 1 1 1 1 1 1 1 1 1 138 1 1 1 1 1 1 1 1 1 1 1 139 1 1 1 1 1 1 1 1 1 1 1 140 1 1 1 1 1 1 1 1 1 1 1 141 1 1 1 1 1 1 1 1 1 1 1 142 1 1 1 1 1 1 1 1 1 1 1 143 1 1 1 1 1 1 1 1 1 1 1 144 1 1 1 1 1 1 1 1 1 1 1 1

Page 36:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Recurrences for longest paths

A(d) = LH path dropping label 1 in dim d

B(d) = LH path dropping label 2d in dim d

C(d) = suffix of A(d)

lengths of

B(2) C(2) A(2) B(4) C(4) A(4) B(6) C(6) A(6) . . .

are the Fibonacci numbers

2 3 5 8 13 21 34 55 89 . . .

Page 37:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Exponential path lengths

longest paths: drop label 1 or 2d, paths A(d), B(d)

path length ( φ3d/2 )

with Golden Ratio φ = (�

5 + 1) / 2 = 1.618...

shortest paths: drop label 3d/2, path B(d/2)+B(d/2+1)

path length ( φ3d/4 )= (1.434...d )

Page 38:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

So far:

− NE of a bimatrix game = combinatorial polytope problem

− label dual cyclic polytopes, equilibrium at end of exponentially long paths

− but: fully mixed equilibrium easily guessedby support enumeration algorithms

Page 39:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Extension to nonsquare games

− Extend to d × 2d games with hard-to-guesssupport (exponentially many guesses on average)and exponentially long paths

− Use dual cyclic polytopes with similar labelingas for d × d games.

Page 40:  · Best response polytope Q for player 2 = A °1 Q = f y j A y · 1, y ¸ 0 g °2 °3 y 4 y 5 0 2 3 6 5 3 Q = f (y 4;y 5) j °1: 3 y 4 + 3 y 5 · 1 °2: 2 y 4 + 5 y 5 ...

Nonsquare games

P = dual cyclic polytope in dimension d with 3d facets

Q = dual cyclic polytope in dimension 2d with 3d facets

P’s facets labeled

?

©1

N

LLLLLL

©2

°

¯¯

¯¯

¯¯

©3

?

©4

N

LLLLLL

©5

°

¯¯

¯¯

¯¯

©6

N

LLLLLL

©7

°

¯¯

¯¯

¯¯

©8

N

LLLLLL

©9

°

¯¯

¯¯

¯¯

©10

N

LLLLLL

©11

°

¯¯

¯¯

¯¯

©12

Q’s facets labeled ©1 ©3 ©2 ©4 ©6 ©5 ©8 ©7 ©10 ©9 ©12 ©11

equilibria: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 10 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 10 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 00 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0. . .

Equilibrium supports = exponentially small fraction of all supports


Recommended