+ All Categories
Home > Documents > Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration...

Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration...

Date post: 22-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
50
Bibliography 1. Abolghasemi M., Jalali M.A., Attractors of a rotating viscoelastic beam. International Jour- nal of Non-Linear Mechanics, 2003, Vol. 38, No. 5, 739–751. 2. Agladze K.I., Krinsky V.I., Pertsov A.M., Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature, 1984, 308, 834–835. 3. Aldraihem O.J., Baz A., Dynamic stability of stepped beams under moving loads. Journal of Sound and Vibration, 2002, Vol. 250, No. 5, 835–848. 4. Alfutov N.A., Fundamentals on Computation of Stability of Elastic Systems. Moscow, Mashinostroyeniye, 1991, in Russian. 5. Amabili M., Non-linear vibrations of doubly curved shallow shells. International Journal of Non-Linear Mechanics, 2005, Vol. 40, No. 5, 683–710. 6. Amabili M., Pellicano F., Paidoussis M.P., Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: Truncation effect without flow and ex- periments. Journal of Sound and Vibration, 2000, Vol. 237, No. 4, 617–640. 7. Amabili M., Pellicano F., Paidoussis M.P., Non-linear dynamic and stability of circular cylindrical shells containing flowing fluid. Part IV: Large-amplitude vibrations with flow. Journal of Sound and Vibration, 2000, Vol. 237, No. 4, 641–666. 8. Amabili M., Pellicano F., Vakakis A.F., Nonlinear vibrations and multiple resonances of fluid-filled, circular shells. Part I: Equations of motion and numerical results. Journal of Vibration and Acoustics, 2000, Vol. 122, No. 4, 346–354. 9. Amabili M., Pellicano F., Vakakis A.F., Non-linear vibrations and multiple resonances of fluid-filled circular shells. Part II: Perturbation analysis. Journal of Vibration and Acoustics, 2000, Vol. 122, No. 4, 355–364. 10. Amelchenko V.V., Krysko V.A., Investigation of flexible rectangular plates in post-critical state using computers. Differential Equations and Computational Mathematics. Saratov State University, Saratov, 1972, in Russian. 11. Andreyev L.V., Obodan N.I., Lebedev A.G., Stability of Shells Under Non-axial Deforma- tion. Moscow, Nauka, 1988, in Russian. 12. Andronov A.A., Pontriagin L.S., Theory of “robust” systems. DAN SSSR, 1937, Vol. 14, 1–42, in Russian. 13. Andronov A.A., Witt A.A., Khaikin S.E., Theory of Vibrations. Nauka, Moscow, 1981, in Russian. 14. Arnold V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. 15. Awrejcewicz J., Bifurcation and Chaos in Coupled Oscillators. World Scientific, Singa- pore, 1991. 16. Awrejcewicz J., Bifurcation and Chaos in Simple Dynamical Systems. World Scientific, Sin- gapore, 1989.
Transcript
Page 1: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography

1. Abolghasemi M., Jalali M.A., Attractors of a rotating viscoelastic beam. International Jour-nal of Non-Linear Mechanics, 2003, Vol. 38, No. 5, 739–751.

2. Agladze K.I., Krinsky V.I., Pertsov A.M., Chaos in the non-stirred Belousov-Zhabotinskyreaction is induced by interaction of waves and stationary dissipative structures. Nature,1984, 308, 834–835.

3. Aldraihem O.J., Baz A., Dynamic stability of stepped beams under moving loads. Journalof Sound and Vibration, 2002, Vol. 250, No. 5, 835–848.

4. Alfutov N.A., Fundamentals on Computation of Stability of Elastic Systems. Moscow,Mashinostroyeniye, 1991, in Russian.

5. Amabili M., Non-linear vibrations of doubly curved shallow shells. International Journal ofNon-Linear Mechanics, 2005, Vol. 40, No. 5, 683–710.

6. Amabili M., Pellicano F., Paidoussis M.P., Non-linear dynamics and stability of circularcylindrical shells containing flowing fluid. Part III: Truncation effect without flow and ex-periments. Journal of Sound and Vibration, 2000, Vol. 237, No. 4, 617–640.

7. Amabili M., Pellicano F., Paidoussis M.P., Non-linear dynamic and stability of circularcylindrical shells containing flowing fluid. Part IV: Large-amplitude vibrations with flow.Journal of Sound and Vibration, 2000, Vol. 237, No. 4, 641–666.

8. Amabili M., Pellicano F., Vakakis A.F., Nonlinear vibrations and multiple resonances offluid-filled, circular shells. Part I: Equations of motion and numerical results. Journal ofVibration and Acoustics, 2000, Vol. 122, No. 4, 346–354.

9. Amabili M., Pellicano F., Vakakis A.F., Non-linear vibrations and multiple resonances offluid-filled circular shells. Part II: Perturbation analysis. Journal of Vibration and Acoustics,2000, Vol. 122, No. 4, 355–364.

10. Amelchenko V.V., Krysko V.A., Investigation of flexible rectangular plates in post-criticalstate using computers. Differential Equations and Computational Mathematics. SaratovState University, Saratov, 1972, in Russian.

11. Andreyev L.V., Obodan N.I., Lebedev A.G., Stability of Shells Under Non-axial Deforma-tion. Moscow, Nauka, 1988, in Russian.

12. Andronov A.A., Pontriagin L.S., Theory of “robust” systems. DAN SSSR, 1937, Vol. 14,1–42, in Russian.

13. Andronov A.A., Witt A.A., Khaikin S.E., Theory of Vibrations. Nauka, Moscow, 1981, inRussian.

14. Arnold V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag,New York, 1978.

15. Awrejcewicz J., Bifurcation and Chaos in Coupled Oscillators. World Scientific, Singa-pore, 1991.

16. Awrejcewicz J., Bifurcation and Chaos in Simple Dynamical Systems. World Scientific, Sin-gapore, 1989.

Page 2: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

376 Bibliography

17. Awrejcewicz J., Nonlinear Dynamics of Machines. Łodz TU Press, Łodz, 1994, in Polish.18. Awrejcewicz J., Oscillations of Discrete Deterministic Systems. WNT, Warsaw, 1996, in

Polish.19. Awrejcewicz J., Secrets of Nonlinear Dynamics. Łodz TU Press, Łodz, 1997, in Polish.20. Awrejcewicz J., Synchronization and Chaos. Łodz TU Press, Łodz, 1995, in Polish.21. Awrejcewicz J., Krysko A.V., Analysis of complex parametric vibrations of plates and shells

using Bubnov-Galerkin approach. Archive of Applied Mechanics, 73, 2003, 495–504.22. Awrejcewicz J., Krysko A.V., Some problems of analysis and optimization of plates and

shells. Journal of Sound and Vibration, 264(2), 2003, 343–376.23. Awrejcewicz J., Krysko V.A., Dynamics and Stability of Flexible Sectorial Shells Thermo-

dynamically Loaded. WNT, Warsaw, 2002, in Polish.24. Awrejcewicz J., Krysko V.A., Dynamics and Stability of Shells with Thermal Excitations.

WNT, Warsaw, 1999, in Polish.25. Awrejcewicz J., Krysko V.A., Nonclassical Thermoelastic Problems in Nonlinear Dynamics

of Shells. Springer-Verlag, Berlin, 2003.26. Awrejcewicz J., Krysko V.A., Numerical Analysis of Shells Oscillations with Thermal Load.

WNT, Warsaw, 1998, in Polish.27. Awrejcewicz J., Krysko V.A., Oscillations of Continuous Systems WNT, Warsaw, 2000, in

Polish.28. Awrejcewicz J., Krysko V.A., Techniques and Methods of Plates and Shells Analysis. Łodz

TU Press, Łodz, 1996, in Polish.29. Awrejcewicz J., Krysko V.A., 3D theory versus 2D approximate theory of the free or-

thotropic (isotropic) plates and shells vibrations. Part 1: Derivation of governing equations.Journal of Sound and Vibration, 1999, Vol. 226, No. 5, 807–829.

30. Awrejcewicz J., Krysko V.A., 3D theory versus 2D approximate theory of the free or-thotropic (isotropic) plates and shells vibrations. Part 2: Numerical algorithms and analysis.Journal of Sound and Vibration, 1999, Vol. 226, No. 5, 831–871.

31. Awrejcewicz J., Krysko V.A., Feigenbaum scenario exhibited by thin plate dynamics. Non-linear Dynamics, 2001, Vol. 24, 373–398.

32. Awrejcewicz J., Krysko V. A., Nonlinear coupled problems in dynamics of shells. Interna-tional Journal of Engineering Science, Vol. 41, No. 6, 2003, 587–607.

33. Awrejcewicz J., Krysko V.A., Krysko A.V., Complex parametric vibrations of flexible rect-angular plates. Meccanica, Vol. 39, No. 3, 2004, 221–244.

34. Awrejcewicz J., Krysko V.A., Krysko A.V., On the economical solution method for a systemof linear algebraic equations. Mathematical Problems in Engineering, 2004, Vol 4, 377–410.

35. Awrejcewicz J., Krysko V.A., Krysko A.V., Regular and chaotic behavior of flexible plates,In: Proceedings of the Third International Conference on Thin-Walled Structures, June 5–7,2001, Krakow, Poland, Eds. J. Zaras, K. Kowal-Michalska and J. Rhodes, Elsevier Science,2001, 349–356.

36. Awrejcewicz J., Krysko V.A., Krysko A.V., Spatial-temporal chaos and solitons exhibited byvon Karman model. International Journal of Bifurcation and Chaos, 2002, Vol. 12, No. 7,1465–1513.

37. Awrejcewicz J., Krysko V.A, Krysko A.V., Vakakis A., Solitons and chaos exhibited by flex-ible plates sinusoidally excited, In: J.M. Balthazar, P.B. Goncalves, R.M. Brasil, I.L. Caldas,F.B. Rizatto (Eds.), Nonlinear Dynamics, Chaos, Control and Their Applications to Engi-neering Sciences, Vol. 5: Chaos Control and Time Series, 2002, 258–267.

38. Awrejcewicz J., Krysko V.A., Kutsemako A.N., Oscillations of non-uniform shells. Journalof Sound and Vibration, 1999, Vol. 10, No. 3, 116–141.

39. Awrejcewicz J., Krysko V.A., Misnik P., Three Dimensional Problems of Plates Theory in aTemperature Field. WNT, Warsaw, 2003, in Polish.

40. Awrejcewicz J., Krysko V.A., Narkaitis G.G., Bifurcations of a thin plate-strip excitedtransversally and axially. Nonlinear Dynamics, 2003, Vol. 32, 187–209.

41. Awrejcewicz J., Krysko V.A., Nazar’iantz V., Chaotic vibrations of flexible infinite lengthcylindrical panels using the Kirchhoff-Love model. Communications in Nonlinear Scienceand Numerical Simulation, 2007, Vol. 12, No. 4, 519–542.

Page 3: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 377

42. Awrejcewicz J., Krysko V.A., On the vibration of the Euler-Bernoulli beam with clampedends deflection constraints. Special Issue of International Journal of Bifurcation and Chaos,2005, Vol. 15, No. 3, 1864–1878.

43. Awrejcewicz J., Krysko V.A., Ovsiannikova O., Novel procedure to compute a contact zonemagnitude vibrations of two-layered uncoupled plates. Special Issue of Mathematical Prob-lems in Engineering, 2005, Vol. 4, 425–435.

44. Awrejcewicz J., Krysko V.A., Period doubling bifurcation and chaos exhibited by anisotropic plate. Zeitschrift fur Angewandte Mathematik und Mechanik, 2000, Vol. 80,267–268.

45. Awrejcewicz J., Krysko V.A., Wavelets-based analysis of parametric vibrations of flexibleplates. International Journal of Applied Mechanics, 2003, Vol. 39, No. 10, 2003, 3–43.

46. Awrejcewicz J., Krysko V.A., Vakakis A.F., Nonlinear Dynamics of Continuous Elastic Sys-tems. Springer-Verlag, Berlin, 2004.

47. Awrejcewicz J., Lamarque C.-H., Bifurcation and Chaos in Nonsmooth Mechanical Systems.World Scientific, Singapore, 2003.

48. Awrejcewicz J., Mosdorf R., Numerical Analysis of Some Problems of Chaotic Dynamics.WNT, Warsaw, 2003, in Polish.

49. Bacinov C.D., Nonlinear vibrations of plates with simultaneous action of static and vibra-tional loads. Priklandnaya Mekhanika, 1971, Vol. 7, No. 10, 126–130, in Russian.

50. Balamurugan V., Narayanan S., Finite element formulation and active vibration controlstudy on beams using smart constrained layer damping (SCLD) treatment. Journal of Soundand Vibration, 2002, Vol. 249, No. 2, 227–250.

51. Battelli F., Feckan M., Chaos in the beam equation. Journal of Differential Equations, 2005,Vol. 209, No. 1, 172–227.

52. Benamar R., Bennouna M.M., White R.G., The effects of large vibration amplitudes onthe mode shapes and natural frequencies of thin elastic structures. Part III: Fully clampedrectangular isotropic plates measurements of the mode shape amplitude dependence and thespatial distribution of harmonic distortion. Journal of Sound and Vibration, 1999, Vol. 175,377–395.

53. Bennouna M.M., White R.G., The effects of large vibration amplitudes on the fundamentalmode shape of a clamped-clamped uniform beam. Journal of Sound and Vibration, 1984,Vol. 96, No. 3, 309–331.

54. Bernstein S.A., Strength of Materials. Vyshaia Shkola, Moscow, 1961, in Russian.55. Bhat B.R., Wagner H., Natural frequencies of a uniform cantilever with a tip mass slender

in the axial direction. Journal of Sound and Vibration, 1976, Vol. 45, No. 2, 304–307.56. Bhat B.R., Kulkarni M.A., Natural frequencies of a cantilever with slender tip mass. AIAA

Journal, 1976, Vol. 14, 536–537.57. Birger I.A., General methods of plasticity. Prikladnaya Mathematika i Mekhanika, 1951,

Vol. 15, 6–20, in Russian.58. Bishop S.R., Thompson M.G., Foale S., Prediction of period-1 impacts in a driven

beam. Proceedings of Mathematical, Physical and Engineering Sciences, 1996, Vol. 452,2579–2592.

59. Bodenschatz F., Pesch W., Ahlers G., Recent developments in Rayleigh – Benard convec-tion. Annual Review of Fluid Mechanics, 32, 709–778.

60. Bogarian K.O., On convergence of the Bubnov-Galerkin and Ritz methods. Doklady ANSSSR, 1961, Vol. 191, No. 2, 267–269, in Russian.

61. Bolotin W.W., The problem of vibrations of bridges under moving loading. AN SSSR, De-partment of Technical Science. Mechanics of Machines Construction, 1961, No. 4, 109–115,in Russian.

62. Bubnov I.G., Review of S.P. Timoshenko’s work, “On the Stability of Elastic Systems.”Collected Works, 1956, Leningrad, 136–139, in Russian.

63. Budiansky B., Theory of buckling and post-buckling behavior of elastic structures. Advancesin Applied Mechanics, 1974, Vol. 14, Academic Press, New York.

64. Budiansky B.L., A Reassessed of deformation theories of plasticity. Journal of Applied Me-chanics, 1959, Vol. 26, No. 2, 160–172.

Page 4: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

378 Bibliography

65. Butenin N.V., Neilmark Yu.I., Fufayev N.F., Introduction into Theory of Nonlinear Vibra-tions. Moscow, Nauka, 1976, in Russian.

66. Chan K.-T., Wang X.-Q., Leung T.-P., Free vibration of a Timoshenko beam partially loadedwith distributed mass. Journal of Sound and Vibration, 1997, Vol. 206, No. 3, 353–369.

67. Chan K.-T., Wang X.-Q., Leung T.-P., Free vibration of beams with two sections of dis-tributed mass. Journal of Vibration and Acoustics, 1998, Vol. 120, 944–948.

68. Chang S.I., Lee J.M., Bajaj A.K., Krousgrill C.M., Subharmonic responses in harmonicallyexcited rectangular plates with one-to-one internal resonance. Chaos, Solitons and Fractals,1997, Vol. 8, No. 4, 479–498.

69. Chen Y., On the vibration of beams or rods carrying a concentrated mass. American Societyof Mechanical Engineers Journal of Applied Mechanics, 1963, Vol. 30, No. 2, 310–312.

70. Chen J.C., Babcock C.D., Nonlinear vibration of cylindrical shells. American Institute ofAeronautics and Astronautics Journal, 1975, Vol. 13, 868–876.

71. Chen L.-W., Hwang J.-R., Axisymmetric dynamic stability of transversely isotropic Mindlincircular plates. Journal of Sound and Vibration, 1988, Vol. 121, No. 2, 307–315.

72. Chen L.-Q., Yang X.-D., Transverse nonlinear dynamics of axially accelerating viscoelasticbeams based on 4-term Galerkin truncation. Chaos, Solitons and Fractals, 2006, Vol. 27,No. 3, 748–757.

73. Cheng C.-J., Fan X.-J., Nonlinear mathematical theory of perforated viscoelastic thin plateswith its applications. International Journal of Solids and Structures, 2001, Vol. 38, No. 36–37, 6627–6641.

74. Chetayev N.G., Stability of Motion. Nauka, Moscow, 1955, in Russian.75. Cusumano J.P., Sharkady M.T., Kimble B.W., Experimental measurements of dimensional-

ity and spatial coherence in the dynamics of a flexible-beam impact oscillator. PhilosophicalTransactions: Physical Sciences and Engineering, 1994, Vol. 347, No. 1683, 421–438.

76. Dediukin I.Yu., Krysko V.A., On criterions of dynamical instabilities of shells. PrikladnayaMekhanika, 1954, Kiev, Vol. 30, No. 10, 56–60, in Russian.

77. Donnell L.H., A New theory for the buckling of thin cylinders under axial compression andbending. Transactions of ASME, 1934, Vol. E, No. 56, 795–806.

78. Donnell L.H., Wan C.C., Effect of imperfections on buckling of thin cylinders and columnsunder axial compression. Journal of Applied Mechanics, 1950, Vol.17, No. 1, 73–83; Dis-cussion on the paper in Journal of Applied Mechanics, 1950, Vol. 17, No. 3, 340–342.

79. Douglas B.E., Yang J.C.S., Transverse compressional damping in the vibratory response ofelastic-viscoelastic-elastic beams. AIAA Journal, 1978, Vol. 16, 925–930.

80. Douglas B.E., Compressional damping three-layer beams incorporating nearly incompress-ible viscoelastic cores. Journal of Sound and Vibration, 1986, Vol. 104, 343–347.

81. Doughty T.A., Davies P., Bajaj A.K., A comparison of three techniques using steady statedata to identify non-linear modal behavior of an externally excited cantilever beam. Journalof Sound and Vibration, 2002, Vol. 249, No. 4, 785–813.

82. Dowell E.H., Ventres C.S., Modal equations for the nonlinear flexural vibrations of a cylin-drical shell. International Journal of Solids and Structures, 1968, Vol. 4, 975–991.

83. Drucker D.C., A more fundamental dynamic buckling of clamped shallow spherical shells.NASA, TN, 1962, Vol. D-1510.

84. Duncan W.J. - ARC RJ. M. 1848, 1938.85. Dwivedy S.K., Kar R.C., Dynamics of a slender beam with an attached mass under combi-

nation parametric and internal resonances, Part II: Periodic and chaotic responses. Journalof Sound and Vibration, 1999, Vol. 222, No. 2, 281–305.

86. Dwivedy S.K., Kar R.C., Non-linear dynamics of a slender beam carrying a lumped massunder principal parametric resonance with three-mode interactions. International Journal ofNon-Linear Mechanics, 2001, Vol. 36, No. 6, 927–945.

87. Dwivedy S.K., Kar R.C., Simultaneous combination and 1:3:5 internal resonances in aparametrically excited beam-mass system. International Journal of Non-Linear Mechanics,2003, Vol. 38, No. 4, 585–596.

88. Dzishkariani A.V., On approximating Ritz method for one non-linear equation. ScientificWorks of Tblissi Mathematical Institute of AN SSSR, 1970, Vol. 36, 29–46, in Russian.

Page 5: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 379

89. Dzishkariani A.V., On convergence velocity of the Bubnov-Galerkin method. Journal ofComputational Mathematics and Mathematical Physics, 1964, Vol. 4, No. 2, 343–348, inRussian.

90. El-Bassiouny A.F., Single-mode control and chaos of cantilever beam under primary andprincipal parametric excitations. Chaos, Solitons and Fractals, 2006, Vol. 30, No. 5,1098–1121.

91. Fegelman K.J.L., Grosch K., Dynamics of a flexible beam contacting a linear spring at lowfrequency excitation: Experiment and analysis. Journal of Vibration and Acoustics, 2002,Vol. 124, No. 2, 237–249.

92. Feigenbaum M.J., Quantitative universality for a class of nonlinear transformations., Journalof Statistical Physics, 1978, Vol. 19, No. 1, 25–52.

93. Feigenbaum M.J., The universal metric properties of nonlinear transformations. Journal ofStatistical Physics, 1979, Vol. 21, No. 6, 669–706.

94. Feigenbaum M.J., Kadanoff L.P., Shenker S.J., Quasiperiodicity in dissipative systems.A renormalization group analysis. Physica D5, 1982, 370–386.

95. Feodosev V.F., On the method of solutions of stability of deformable bodies. PrikladnayaMatematika i Mekhanika, 1963, Vol. 27, No. 2, 265–275, in Russian.

96. Filippov A.P., Vibrations of Continuous Systems. Mashinostoyenye, Moscow, 1970, inRussian.

97. Filippov A.P., Kochmaniuk S.S., Dynamical Influence of Moving Loading on Rods.Naukowa Dumka, Kiev, 1968, in Russian.

98. Finlfyson B.A., The Method of Weighted Residuals and Variational Principles. AcademicPress, New York, 1972.

99. Flugge W., Die stabilitat der Kreiszylinderschale. Ingenieur Archiu., 1932, Vol. 3, No. 5,463–506.

100. Fletcher C., Computational Galerkin Methods. Springer-Verlag, Berlin, 1984.101. Galerkin B. G., Vestnik Inzhinerov, 1915, No. 19, 897–908, in Russian.102. Galerkin B.G., Rods and plates. Application of series in some problems of equilibriums of

rods and plates. Vestnik Inzhinerov, Vol. 1, No. 19, 897–908, in Russian.103. Galerkin B.G., Rods and Plates. AN SSSR, Moscow, 1952, Vol. 1, 168–195, in Russian.104. Galinov K.Z., On general theory of plates and shells with finite displacements and deforma-

tions. PMM, 1951, Vol. 5, No. 6, 723–742, in Russian.105. Ganapathi M., Varadan T.K., Large amplitude vibrations of circular cylindrical shells. Jour-

nal of Sound and Vibration, 1996, Vol. 192, No. 1, 1–14.106. Gawinecki J., Existence, uniqueness and regularity of the first boundary - initial value prob-

lem for thermal stresses equations of classical and generalized thermomechanics. Journal ofTechnical Physics, 1983, Vol. 24, No. 4, 467–479.

107. Gawinecki J., Faedo-Galerkin method in the classical theory of heat stresses. Bulletin WAT,1984, Vol. 33, No. 2, 17–34, in Polish.

108. Gawinecki J., On the first initial-boundary value problem for the equations of thermalstresses. Bulletin of the Academy of Polish Science Series of Technical Sciences, 1981, Vol.29, No. 7–8, 400–404.

109. Gawinecki J., On the first initial-boundary value problem for thermal stresses equations ofgeneralized thermomechanics. Bulletin of the Academy of Polish Science Series of TechnicalSciences, 1981, Vol. 29, No. 7–8, 405–411.

110. Gelos R., Domingues H., Laura P., Application of the optimized Galerkin method to thedetermination of the fundamental frequency of a vibrating circular plate subjected to non-uniform in plane loading. Journal of Sound and Vibration, Vol. 114, No. 3, 598–900.

111. Goel R.P., Vibrations of a beam carrying a concentrated mass. Journal of Applied Mechanics,1973, Vol. 40, No. 3, 821–822.

112. Gollub J.P., Benson S.V., Chaotic response to periodic perturbation of a convecting fluid.Physical Review Letters, 1978, 41(14), 948–951.

113. Grebogi C., Ott E., Yorke J.A., Chaotic attractors in crisis. Physical Review Letters, 1982,48, 1507–1510.

Page 6: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

380 Bibliography

114. Grigoluk E.I. Kabanov V.V., Stability of Shells. Nauka, Moscow, 1978, in Russian.115. Grigoluk E.I., Kabanov V.V., Stability of circled cylindrical shells. Mechanics of Solid Elas-

tic Bodies, VINITI, Moscow, 1969, in Russian.116. Grigoluk E.I., On the Bubnov-Galerkin method. Investigation of Theory of Plates and Shells.

University Press, 1975, Vol. XI, 3–41, in Russian.117. Guo X., Mei C., Application of aeroelastic modes on nonlinear supersonic panel flutter at

elevated temperatures. Computers and Structures, 2006, Vol. 84, No. 24–25, 1619–1628.118. Han W., Petyt M., Geometrical nonlinear vibration analysis of thin, rectangular plates using

the hierarchical finite element method-I: The fundamental mode of isotropic plates. Com-puters and Structures, 1997, Vol. 63, No. 2, 295–308.

119. Hai W., Duan Y., Pan L., An analytical study for controlling unstable periodic motion inmagneto-elastic chaos. Physics Letters A, 1997, Vol. 234, No. 3, 198–204.

120. Heckl M.A., Coupled waves on a periodically supported Timoshenko beam. Journal ofSound and Vibration, 2002, Vol. 252, No. 5, 849–882.

121. Higuchi K., Dowell E.H., Effect of constant transverse force on chaotic oscillations of si-nusoidally excited buckled beam. International Journal of Non-Linear Mechanics, 1991,Vol. 26, No. 3–4, 419–426.

122. Hopf E., Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen. Math-ematische Nachrichten, 1951, No. 4, 213–231.

123. Ibrahim R.A., Afaneh A.A., Lee B.H., Structural modal multiblefurcation with internal reso-nance. I-Deterministic approach. II-Stochastic approach. Journal of Vibration and Acoustics,1993, Vol. 115, 182–201.

124. Ilyushin A.A., Plasticity. Gostekhizdat, Moscow, 1948, in Russian.125. Izwieshchenye od Instituta Inzhynerov Putiej Soobshchenya Imperatora Alexandra I. Vestnik

Putey Soobshcheniya, No. 26, June 25th, 1911, in Russian.126. Jackson E.A., On the control of complex dynamic systems. Physica D, 1991, Vol. 50, No. 3,

341–366.127. Jackson E.A., The entertainment and migration controls of multiple-attractor systems. Phys-

icas Letters A, 1990, Vol. 151, No. 9, 478–484.128. Jenkins G., Watts D., Spectral Analysis and Its Applications. Holden Day, Merrifield, 1968.129. Ji J.-C., Yu L., Chen Y.-S., Bifurcation and amplitude modulated motions in a parametrically

excited two-degree-of-freedom non-linear system. Journal of Sound and Vibration, 1999,Vol. 228, No. 5, 1125–1144.

130. Kantor B.Ya., Nonlinear Problems of Theory of Non-Homogeneous Shallow Shells. NaukovaDumka, Kiev, 1971, in Russian.

131. Kantor B., Ya., Contact Problems of Nonlinear Theory of Rotational Shells. Kiev, NaukovaDumka, 1990, in Russian.

132. Kantorovich L.V., Krylov V.I., Approximate Methods of Higher Analysis. Fizmatgiz,Moscow, 1962, in Russian.

133. Kantorov L.V., Krylov V.I., Approximate Methods of Higher Analysis. Fizmatgiz, Moscow,1962, in Russian.

134. Keldysh M.V., On the Galerkin method to solve boundary value problems. Izviestia ANSSSR, Mathematical Series, 1942, Vol. 6, No. 6, 309–330, in Russian.

135. Kirichenko V.F., Krysko V.A., Khametova N.A., On influence on thermo-elastic coupling oftemperature and deformation fields on stability of shallow shells. Prikladnaya Mekhanika,1988, Vol. 24, No. 1, 46–50, in Russian.

136. Kirichenko V.F., Krysko V.A., On solution existence of one nonlinear coupled problem ofthermoelasticity. Differential Equations, 1984, Vol. 20, No. 9, 1583–1588, in Russian.

137. Koiter W.T., Over de Stabiliteit Van Het Elastisch Evenwicht. Ph.D. Thesis. Amster-dam, 1945.

138. Kolomec A.A., Kutsemako A.N., Nonlinear Free Vibrations of a Closed Cylindrical Shell.Strength of Constructions in External Conditions. Saratov State University, Saratov, 1992,115–119, in Russian.

Page 7: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 381

139. Kolomec A.A., Kutsemako A.N., Dynamical stability loss of a cylindrical shell subject tonon-uniform external pressure. In: Proceedings of the Conference Numerical Method De-voted to Analysis of Elasticity and Plasticity Problems, Saratov State University, Saratov,1986, 166–169, in Russian.

140. Kolomoec A.A., Kutsemako A.N., Dynamical Stability Loss of Closed Cylindrical ShellSubject to Action of Non-uniform External Pressure. Problems of Optimal Design of Platesand Shells. Saratov State University, Saratov, 1981, 54–56.

141. Kopmaz O., Telli S., On the eigenfrequencies of a two-part beam-mass system. Journal ofSound and Vibration, 2002, Vol. 252, No. 2, 370–384.

142. Korn G., Korn T., Handbook of Mathematics, Nauka, Moscow, 1973, in Russian.143. Kornishin M.S., Nonlinear Problems of the Theory of Plates and Shells and Methods of

Their Solutions. Nauka, Moscow, 1964, in Russian.144. Kornishin M.S., Isanbaeva F.S., Flexible Plates and Panels. Nauka, Moscow, 1968, in

Russian.145. Kornishin M.S., Serazutdinov M.P., Dynamics of inclined shells during a solid body horizon-

tal impacts. Materials of Seminar in Statics and Dynamics of Shells, Kazan, 1979, Vol. 12,190–220, in Russian.

146. Kovtunov V.V., Chaotic vibrations of parametrically stabilized beam. Strength of Materialsand Theory of Constructions, 1991, Vol. 59, 83–87, in Russian.

147. Kowalski T., Litewska K., Piskorek A., Uniqueness and regularity of the solution of the first-initial-boundary value problem in linear thermoelasticity. Bulletin of the Academy of PolishSciences Series of Technical Sciences, 1982, Vol. 30, No. 3–4, 171–175.

148. Kowalski T., Piskorek A., Existenz der Losung einer Anfangsrandwertaufgabe in der lin-earen Thermoelastizitatstheorie. Zeitschrift fur Angewandte Mathematik und Mechanik,1981, Vol. 61, No. 5, 250–252.

149. Kransoselskiy M.A., Vaynikko G.M., Zabreiko P.P., Approximating Solution of OperatorEquations. Nauka, Moscow, 1969, in Russian.

150. Krasnoselskiy M.A., Convergence of the Galerkin method for nonlinear equations. DokladyAN SSSR, 1950, Vol. 26, No. 6, 1121–1124, in Russian.

151. Krotkova L.V., Vibrations of ellipse plates made from almost elastic material. Izviestia VUZ.Series of Civil Engineering and Architecture, 1970, Vol. 4, 62–65, in Russian.

152. Knudsen J., Massih A.R., Vibro-impact dynamics of a periodically forced beam. Journal ofPressure Vessel Technology, 2000, Vol. 122, No. 2, 210–221.

153. Krylov N.M., On Approximated Solutions of the Mathematical Problems of Physics. Collec-tion of Works in Three Volumes. Kiev, 1961, Vol. 2, 150–204, in Russian.

154. Krylov N.M., On Approximating Integration of Partial Differential Equations of Mathemat-ical Physics. Collection of Works in Three Volumes. 1961, Kiev, Vol. 2, 7–8, in Russian.

155. Krylov N.M., On Error Allowed Influence During Application of the Ritz Method for Ap-proximating Integration of Difference Equations. Collection of Works in Three Volumes.Kiev, 1961, Vol. 1, 257–258, in Russian.

156. Krylov N.M., On Various Generalization of the Ritz Method and Some Related Problems.Collection of Works in Three Volumes. Kiev, 1961, Vol. 1, 195–243, in Russian.

157. Krylov N.M., Bogolubov N.N., On the theorems devoted to existence of integrals of partialhyperbolic differential equations. Izviestia AN SSSR. Branch of Mathematical and NaturalSciences, 1931, No. 3, 323–344, in Russian.

158. Krylov N.M., Tamarkin Ya.D., On the Ritz method to approximated solution of mathemati-cal problems in physics. Collected Works in Three Volumes. Kiev, 1961, Vol. 1, 132–145, inRussian.

159. Krysko V.A., Nonlinear Statics and Dynamics of Non-Homogeneous Shells. Saratov StateUniversity, Saratov, 1976, in Russian.

160. Krysko V.A., Awrejcewicz J., Bruk V.M., On the solution of a coupled thermo-mechanicalproblem for non-homogeneous Timoshenko-type shells. Journal of Mathematical Analysisand Applications, 2002, Vol. 273, No. 2, 2002, 409–416.

Page 8: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

382 Bibliography

161. Krysko V.A., Awrejcewicz J., Bruk V.M., The existence and uniqueness of solution of onecoupled plate thermomechanics problems, Journal of Applied Analysis, 2002, Vol. 8, No. 1,2002, 129–139.

162. Krysko V.A., Awrejcewicz J., Komarov S.A., Nonlinear deformations of spherical panelssubjected to transversal load action, Computer Methods in Applied Mechanics and Engi-neering, Vol. 194, No. 27–29, 2005, 3108–3126.

163. Krysko V.A., Awrejcewicz J., Kutsemako A.N., Broughan K., Interaction between flexibleshells (plates) and a moving lumped body, Communications in Nonlinear Science and Nu-merical Simulation, 2006, Vol. 11, No. 1, 13–43.

164. Krysko V.A., Awrejcewicz J., Narkaitis G.G., Nonlinear vibration and characteristics of flex-ible plate-strips with non-symmetric boundary conditions. Communications in NonlinearScience and Numerical Simulation, 2006, Vol. 11, No. 1, 95–124.

165. Krysko V.A., Awrejcewicz J., Shchekaturova T.V., Chaotic vibrations of spherical and con-ical axially-symmetric shells. Archive of Applied Mechanics, 2005, Vol. 74, No. 5–6,338–358.

166. Krysko V.A., Guba G.M., Fomin V.G., Dynamics of a shallow spherical shell subject to aheat impact. Prikladnaya Mekhanika, 1986, Vol. 22, No. 5, 21–27, in Russian.

167. Krysko V.A., Kravtsova I.V., Stochastic vibrations of flexible flat axisymmetric shells ex-posed to inhomogeneous loading. International Conference, Dynamical Systems-Theory andApplications, Łodz, Poland, 2003, 189–197.

168. Krysko V.A., Kutsemako A.N., Stability and Vibrations of Non-Homogeneous Shells. Sara-tov State University, Saratov, 1999, in Russian.

169. Krysko V.A., Savielyeva N.E., Statics and dynamics of closed cylindrical shells under non-homogeneous loading. In: Proceedings of the International Conference on Problems ofStrength in Transport of Materials and Constructions, Sankt-Petrsburg, 2004, 210–221, inRussian.

170. Krysko V.A., Shchekutorova T.W., Chaotic vibrations of cone shells. Izviestia RAN MTT,2004, No. 4, 140–150, in Russian.

171. Kutsemako A.N., Some Problems of Flexible Shells with Transversal Shears. Ph.D. Thesis,Saratov, 1975, in Russian.

172. Kudriavtsev L.D., Lectures on Mathematical Analysis. Moscow, Vysshaia Shkola, 1989,Vol. 4, in Russian.

173. Kuznetsov Yu.A., Elements of Applied Bifurcation Theory. Springer Verlag, NewYork, 1998.

174. Kwuimy C.A., Nbendjo B.R.N., Woafo P., Optimization of electromechanical control ofbeam dynamics: Analytical method and finite differences simulation. Journal of Sound andVibration, 2006, Vol. 298, No. 1–2, 180–193.

175. Ladyzhenskaya O.A., Boundary Value Problems of Mathematical Physics. Nauka, Moscow,1973, in Russian.

176. Ladyzhenskaya O.A., On integral convergence of the approximating methods and solutionsin functionals of linear elliptic operators. Vestnik Leningradskago Universiteta, 1958, Vol.7, 60–69, in Russian.

177. Lai H.-Y., Chen C.-K., Yeh Y.-L., Double-mode modeling of chaotic and bifurcation dy-namics for a simply supported rectangular plate in large deflection. International Journal ofNon-Linear Mechanics, 2002, Vol. 37, No. 2, 331–343.

178. Lancosh K., Practical Methods of Applied Analysis. Moscow, Fizmatgiz, 1961, in Russian.179. Landau D., Lectures of Academy of Science, AS SSSR Press, 1944, Vol. 7, 203–217, in

Russian.180. Landau D., On the problem of turbulence. DAN SSSR, 1944, Vol. 44, No. 8, in Russian.181. Lavrentiev M.A., Ishlinskiy A.Yu., Dynamical forms of stability loss of elastic systems.

DAN SSSR, 1949, Vol. 64, No. 6, 779–789, in Russian.182. Lebedev L.P., On equilibrium state of free nonlinear plate. PMM, 1980, Vol. 44, No. 1,

161–165, in Russian.183. Lebedev L.P., On existence of solutions in nonlinear theory of shallow shells. PMM, 1972,

Vol. 36, No. 4, 691–704, in Russian.

Page 9: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 383

184. Leibenson L.S., Variational methods of solution of theory of elasticity. Works collection. ASSSSR Press, 1951, Vol. 1, 177–463, in Russian.

185. Leibenson L.S., On application of potential displacements to approximate estimation of elas-tic equilibrium state. Collected Works. AN SSSR Press, 1957, Vol. 1, 39–49, in Russian.

186. Lenci S., Tarantino A.M., Chaotic dynamics of an elastic beam resting on a Winkler-typesoil. Chaos, Solitons and Fractals, 1996, Vol. 7, No. 10, 1601–1614.

187. Li Q.S., Free vibration analysis of non-uniform beams with an arbitrary number of cracksand concentrated masses. Journal of Sound and Vibration, 2002, Vol. 252, No. 3, 509–525.

188. Li T.Y., Yorke J.A., Period three implies chaos. American Mathematical Monthly, 1975,82(10), 985–992.

189. Liashko A.D., On convergence of the Galerkin method. Doklady AN SSSR, 1958, Vol. 120,No. 2, 242–244, in Russian.

190. Liashko A.D., On some variants of the Galerkin-Krylov method. Doklady AN SSSR, 1959,Vol. 128, No. 3, 468–470, in Russian.

191. Liashko A.D., On the variational method for nonlinear operator equations. Uchiobnyje Za-piski Kazanskiego Universtiteta, 1966, Vol. 125, 95–101, in Russian.

192. Liew K.M., Lim C.W., Ong L.S., Flexural vibration of doubly-tapered cylindrical shallowshells. International Journal of Mechanical Science, 1994, Vol. 36, No. 6, 547–565.

193. Lin W., Qiao N., Yuying H., Bifurcations and chaos in a forced cantilever system with im-pacts. Journal of Sound and Vibration, 2006, Vol. 296, No. 4–5, 1068–1078.

194. Lions J.L., Magenes E., Non-homogeneous Boundary value Problems and Applications.Springer-Verlag, Berlin, 1972.

195. Mandebrot B., The Fractal Geometry of Nature. New York, Freeman and Company, 1982.196. Manneville P., Romeau Y., Intermittency and the Lorenz model. Physics Letters A, 1979,

75(1–2), 1–2.197. Manneville P., Romeau Y., Different ways to turbulence in dissipative dynamical systems.

Physical, 1980, Vol. 1, No. 1, 219–228.198. Martin S., Leber H., Martienssen W., Oscillatory and diaotic states of the electrical conduc-

tion in Barium sodium miobate crystals. Physical Review Letters, 1984, 53, 303–306.199. Martyniuk A.E., On generalization of a variational method. Doklady AN SSSR, 1957, Vol.

117, No. 2, 374–377, in Russian.200. Martyniuk A.E., On the Galerkin momentous method. Uchiobnyie zapiski Kazanskiego Uni-

versiteta, 1957, Vol. 117, No. 2, 70–74, in Russian.201. Matsunaga H., Vibration and buckling of multilayered composite beams according to higher

order deformation theories. Journal of Sound and Vibration, 2001, Vol. 246, No. 1, 47–62.202. Mead D.J., Comparison of some equations for the flexural vibration of damped sandwich

beams. Journal of Sound and Vibration, 1982, Vol. 83, 363–377.203. Mead D.J., Free vibrations of self-strained assemblies of beams. Journal of Sound and Vi-

bration, 2002, Vol. 249, No. 1, 101–127.204. Mead D.J., Markus S., The forced vibration of three-layer, damped sandwich beam with

arbitrary boundary conditions. Journal of Sound and Vibration, 1969, Vol. 10, No. 2,163–175.

205. Mead D.J., Markus S., Loss factors and resonant frequencies of encastre damped sandwichbeams. Journal of Sound and Vibration, 1970, Vol. 12, No. 1, 99–112.

206. Michlin S.G., Numerical Realization of Variational Methods. Nauka, Moscow, 1966, inRussian.

207. Michlin S.G., Problems of Minimum of Squared Functional. Gostekhizdat, Moscow-Leningrad, 1952, in Russian.

208. Michlin S.G., Some Problems of Theory of Errors. Leningrad University Press, Leningrad,1988, in Russian.

209. Michlin S.G., Variational Methods in Mathematical Physics. Nauka, Moscow, 1970, inRussian.

210. Michlin S.G., On convergence of the Galerkin method. Doklady AN SSSR, 1948, Vol. 61,No. 2, 197–199, in Russian.

Page 10: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

384 Bibliography

211. Michlin S.G., On the Ritz method. AN SSSR Press, 1956, Vol. 106, No. 3, 391–394, inRussian.

212. Mikulas M.M., McElman J.A., On free vibrations of eccentrically stiffened cylindrical shellsand flat plates. NASA, 1965, TN, D-3010.

213. Mioduchovski A., Pielorz A., Nadolski W., Haddow J.B., Finite oscillation of viscoelasticcantilever strip. Acta Mechanica, 1983, Vol. 50, No. 1–2, 39–48.

214. Morozov N.F., Investigation of vibrations of a prismatic rod subject to transversal load.Izviestia VUZ, Series of Mathematics, 1965, No. 3, 121–125, in Russian.

215. Morozov N.F., Nonlinear problems of thin plates. Vestnik Leningradskego Instituta, 1958,Vol. 4, No. 19, 100–124, in Russian.

216. Moorthy R.I.K., Kakodkar A., Srirangarajan H.R., Suryanarayan S., Finite element simula-tion of chaotic vibrations of a beam with non-linear boundary conditions. Computers andStructures, 1993, Vol. 49., No. 4, 589–596.

217. Moorthy R.I.K., Kakodkar A., Srirangarajan H.R., The significance of higher modes forevolution of chaos in structural mechanics, systems. Journal of Sound and Vibration, 1996,Vol. 198, No. 3, 267–277.

218. Mukhopadhyay M., Free vibration of rectangular plates with edges having different degreesof rotational restraint. Journal of Sound and Vibration, 1979, Vol. 67, No. 4, 459–468.

219. Mushtari Ch.M., Galimov K.Z., Nonlinear Theory of Elastic Thin Shells. Kazan, Tatknigiz-dat, 1957, in Russian.

220. Moussaoui F., Benamar R., White R.G., The effect of large vibration amplitudes on themode shapes and natural frequencies of thin elastic shells. Part I: Coupled transverse-circumferential mode shapes of isotropic circular cylindrical shells of infinite length. Journalof Sound and Vibration, 2000, Vol. 232, No. 5, 917–943.

221. Murphy K.D., Virgin L.N., Rizzi S.A., Characterizing the dynamic response of a thermallyloaded, acoustically excited plate. Journal of Sound and Vibration, 1996, Vol. 196, No. 5,635–658.

222. Nagai K., Maruyama S., Oya M., Yamaguchi T., Chaotic oscillations of a shallow cylindricalshell with a concentrated mass under periodic excitation. Computers and Structures, 2004,Vol. 82, No. 31–32, 2607–2619.

223. Nagai K., Yamaguchi T., Chaotic vibrations of post-buckled beam with a variable crosssection under periodic excitation. Transactions of the Japanese Society of Mechanical Engi-neering C, 1995, Vol. 61, No. 586, 2202–2209.

224. Nagai K., Yamaguchi T., Chaotic vibrations of post-buckled beam carrying a concentratedmass – experiment. 1st report. Transactions of the Japanese Society of Mechanical Engi-neering C, 1994, Vol. 61, No. 579, 3733–3740.

225. Nagai K., Yamaguchi T., Chaotic vibrations of post-buckled beam carrying a concentratedmass – theoretical analysis. 2nd report. Transactions of the Japanese Society of MechanicalEngineering C, 1994, Vol. 60, No. 579, 3741–3748.

226. Nagai K., Kasuga K., Kamada M., Yamaguchi T., Tanifuji K., Experiment on chaotic oscil-lations of a post-buckled reinforced beam constrained by an axial spring. Transactions of theJapanese Society of Mechanical Engineering C, 1998, Vol. 41, No. 3, 563–569.

227. Nashed M.Z., The convergence of the method of steepest descents for nonlinear equationswith variational or quasi-variational operators. Journal of Mathematical Mechanics, 1964,Vol. 13, 765–774.

228. Nayfeh A.H., Mook D.T., Non-Linear Oscillations. John Wiley & Sons, New York, 1979.229. Nazarov A.G., Impulse functions and their application in civil engineering. Investigation of

Theory of Constructions. Gostekhizdat, Moscow-Leningrad, Vol. 4, 216–226, in Russian.230. Nbendjo B.R.N., Woafo P., Active control with delay of horseshoes chaos using piezoelectric

absorber on a buckled beam under parametric excitation. Chaos, Solitons and Fractals, 2007,Vol. 32, No. 1, 73–79.

231. Nemeth M.P., Young R.D., Collins T.J., Starnes J.H., Nonlinear analysis of the space shuttlesuper-lightweight LO2 tank. In: Proceedings of the Structures, Structural Dynamics, andMaterial Conference, 1998.

Page 11: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 385

232. Newhouse S., Ruelle D., Takens F., Occurence of strange Axioms A attractor near quasi-periodic flow on Communications in Mathematical Physics, 1978, 64(1), 35–40.

233. Novitskiy V.V., Delta-function and its application in civil engineering. Computation of 3DConstructions. Gosstroizdat, Moscow-Leningrad, 1961, Vol. 8, 207–244, in Russian.

234. Novozhilov V.V., Theory of Elasticity. Sudpromgiz, Moscow, 1958, in Russian.235. Orszag S.A., Vells L.C., Transition to turbulence in plane poiseville and plane couette flow.

Journal of Fluid Mechanics Digital Archive, 1980, 96, 159–205.236. Ott E., Grebogi C., Yorke J.A., Controlling chaos. Physical Review Letters, 1990, Vol. 64,

1196–1199.237. Paidoussis M.P., Li G.X., Cross-flow-induced chaotic vibrations of heat-exchanger tubes im-

pacting on loose supports. Journal of Sound and Vibration, 1992, Vol. 152, No. 2, 305–326.238. Panovko Ya.G., Gubanova I.I., Stability and Vibration of Elastic Systems. Nauka, Moscow,

1987, in Russian.239. Papkovich P.F., Mechanics of a Ship. Sudpromgiz, Leningrad, Vol. 2, 1942, in Russian.240. Papkovich P.F., Works on a Ship Constructions. Sudpromgiz, Leningrad, Vol. 3, 1962, in

Russian.241. Papkovich P.F., Mechanics of Constructions, Part II. Sudpromgiz, Leningrad, 1939, in

Russian.242. Patash A.L., Convergence of the Bubnov-Galerkin method in problems of transversal de-

flection of three layered plates. Izviestia VUZ, Series of Civil Engineering and Architecture,1982, Vol. 3, 42–45, in Russian.

243. Pellicano F., Amabili M., Dynamic instability and chaos of empty and fluid-filled circularcylindrical shells under periodic axial loads. Journal of Sound and Vibration, 2006, Vol. 293,No. 1–2, 227–252.

244. Petrov V., Gaspar V., Masere J., Showalter K., Controlling chaos in the Belousov-Zhabotinsky reaction. Nature, 1993. Vol. 361, 240–243.

245. Pezeshki C., Dowell E.H., An examination of initial condition maps for the sinusoidallyexcited buckled beam modeled by the Duffing’s equation. Journal of Sound and Vibration,1987, Vol. 117, No. 2, 219–232.

246. Ritzs W., Uber eine neue Methode zur Losung gewisser Variations probleme der mathe-matichen Physik. Zeitschrift fur Angewandte Mathematik und Mechanik, 1908, Vol. 135,No. 1, 1–61.

247. Poincare H., Science et methode. Flam Marion, Paris, 1908.248. Pomeau Y., Manneville P., Intermittent transition to turbulence in dissipative dynamical sys-

tems. Communications in Mathematical Physics, 1980, Vol. 74, No. 2, 189–197.249. Poston T., Stewart I., Catastrophe Theory and Its Application. Dover Publications, New

York, 1996.250. Popov A.A., Thompson J.M.T., McRobie F.A., Chaotic energy exchange through auto-

parametric resonance in cylindrical shells. Journal of Sound and Vibration, 2001, Vol. 248,No. 3, 395–411.

251. Preobrazhenskiy I.N., Stability and Vibrations of Plates and Shells with Holes. Mashinos-troyeniye, Moscow, 1981, in Russian.

252. Pyryev Yu., Dynamics of Contacting Systems with an Account of Heat Transfer, Frictionand Wear. Scientific Bulletin of Łodz Technical University, Łodz, 2004, Vol. 936, in Polish.

253. Radstig Yu.A., Mirror functions and their applications in problems of civil engineering.Scientific Works of Kazan’s Air Institut, Kazan, Tatgoizdat, 1948, 47–68, in Russian.

254. Reviews of Professors Bielelubski, Bielecki, Bubnov and Kolosov of the Timoshenko’s workapplying for D.I. Zhuravskiy’s award. Collection of Works of the Engineers Institute of PuteySoobshcheniya Imperatora Alexandra I. Typography by Yu. Erlich. Sankt-Petersburg, 1913,Vol. 81, 1–40, in Russian.

255. Rabotnov Yu. N., Creeps of Construction Elements. Nauka, Moscow, 1966, in Russian.256. Rand B., Ostlund S., Sethna J., Siggia E.D., Universal transition from quasi-periodicity to

chaos in dissipative systems. Physical Review Letters, 1982, 49, 132–135.257. Ribeiro P., Thermally induced transitions to chaos in plate vibrations. Journal of Sound and

Vibration, 2007, Vol. 299, No. 1–2, 314–330.

Page 12: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

386 Bibliography

258. Ribeiro P., Duarte R.P., From periodic to chaotic oscillations in composite laminated plates.Computers and Structures, 2006, Vol. 84, No. 24–25, 1629–1639.

259. Raouf R.A., Nayfeh A.H., Non-linear axisymmetric response of closed spherical shells to aradial harmonic excitation. International Journal of Non-Linear Mechanics, 1990, Vol. 25,No. 5, 475–492.

260. Ross C.T.F., Finite elements for the vibration of cones and cylinders. International Journalof Numerical Methods Engineering, 1975, Vol. 9, No. 4, 833–845.

261. Rossler O., Continuous Ehaos-From Prototype equations, Ann. New York Acad. Sci., 1879.262. Ruelle D., Takens F., On the nature of turbulence. Communications in Mathematical Physics,

1971, Vol. 20, No. 3, 167–192.263. Ramu A.S., Sankar T.S., Ganesan R., Bifurcations, catastrophes and chaos in a pre-buckled

beam. International Journal of Non-Linear Mechanics, 1994, Vol. 29, No. 3, 449–462.264. Shaw S.W., Pierre C., Normal modes for non-linear continuous systems. Journal of Sound

and Vibration, 1994, Vol. 169, No. 3, 319–347.265. Shaw S.W., Chaotic dynamics of a slender beam rotating about its longitudinal axis. Journal

of Sound and Vibration, 1988, Vol. 124, No. 2, 329–343.266. Schiff S.J., Jerger K., Duong D. H., Chang T., Spano M.L., Ditto W. L., Controlling chaos

in the brain. Nature, 1994, Vol. 370, 615–620.267. Schwartz L., Mathematical Methods for Physical Sciences. Mir, Moscow, in Russian.268. Sharkovsky A.N., Existence of continuous mapping cycles into itself. Ukrainian Journal of

Mathematics, 1964, Vol. 16, No. 1, 61–71.269. Sheng D.-F., Chang C.-J., Dynamical behaviors of nonlinear viscoelastic thick plates with

damage. International Journal of Solids and Structures, 2004, Vol. 41, No. 26, 7287–7308.270. Shiau A.C., Soong T.T., Roth R.S., Dynamic buckling of conical shells with imperfection.

AIAA Journal, 1974, Vol. 12, No. 6, 755–760.271. Shinbrot T., Grebogi C., Ott E., Yorke J.A., Using small perturbations to control chaos.

Nature, 1993, Vol. 363, 411–417.272. Singer J., Wang Y.-Z., Bau H.-H., Controlling a chaotic systems. Physical Review Letters,

1991, Vol. 66, No.9 1123–1125.273. Sisemore C.L, Smaili A.A., Darvennes C.M., Experimental measurement of compressional

damping in an elastic-viscoelastic-elastic sandwich beam. In: Proceedings of the AmericanSociety of Mechanical Engineers Noise Control and Acoustics Division, 1995, 223–227.

274. Sisemore C.L, Smaili A.A., Houghton J.R., Passive damping of flexible mechanism systems:Experimental and finite element investigations. In: Proceedings of the Tenth World Congressof the Theory of Machines and Mechanisms, 1999, 2140–2155.

275. Sisemore C.L, Darvennes C.M., Transverse vibration of elastic-viscoelastic-elastic sand-wich beams: Compression-experimental and analytical study. Journal of Sound and Vibra-tion, 2002, Vol. 252, 155–167.

276. Skrypnik I.V., Nonlinear Elliptic Equations of Higher Order. Naukova Dumka, Kiev, 1973,in Russian.

277. Smelova-Reynolds T., Dowell E.H., The role of higher modes in the chaotic motion of thebuckled beam – I. International Journal of Non-Linear Mechanics, 1996, Vol, 31, No. 6,931–939.

278. Smelova-Reynolds T., Dowell E.H., The role of higher modes in the chaotic motion of thebuckled beam – II. International Journal of Non-Linear Mechanics, 1996, Vol, 31, No. 6,941–950.

279. Sobolev S.L., On Application of Functional Analysis in Mathematical Physics. LeningradUniversity Press, Leningrad, 1950, in Russian.

280. Sobolevskiy P.E., On equations with operators having sharp angle. AN SSSR Press, 1957,Vol. 116, No. 5, 752–757, in Russian.

281. Sobolevskiy P.E., On the Bubnov-Galerkin method for parabolic equations in Hilber Space.AN SSSR Press, 1968, Vol. 178, No. 3, 548–551, in Russian.

282. Soliman M.S., Goncalves P.B., Chaotic behavior resulting in transient and steady state insta-bilities of pressure-loaded shallow spherical shells. Journal of Sound and Vibration, 2003,Vol. 259, No. 3, 497–512.

Page 13: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 387

283. Sorokin S.V., Tcherniak D.M., Nonlinear dynamics and chaos of a finite-degree-of-freedommodel of a buckled rod. Meccanica, 1996, Vol. 31, No. 3, 273–291.

284. Stanley A.J., Ganesan N., Free vibration characteristics of stiffened cylindrical shells. Com-puters and Structures, 1997, Vol. 65, No. 1, 33–45.

285. Sun Y.X., Zhang S.Y., Chaotic dynamic analysis of viscoelastic plates. International Journalof Mechanical Sciences, 2001, Vol. 43, No. 5, 1195–1208.

286. Svirsky I.V., Methods of the Bubnov-Galerkin Type and a Sequence of Approximation.Nauka, Moscow, 1968, in Russian.

287. Tcherniak D.M., Computation of Flexible Plates Using the Bubnov-Galerkin Method ona Basis of Co-ordinate Functions. Theoretical and Experimental Investigation of Bridges.Omsk, 1982, 105–109, in Russian.

288. Thom R., Structural Stability and Morphogenesis, Benjamin-Addison-Wesley, NewYork, 1975.

289. Thom R., Structural Stability and Morphogenesis: An outline of a General Theory of Mod-els, Addison-Wesley, London, 1989.

290. Thompson J.M.T., Instabilities and Catastrophes in Science and Engineering. John Wiley,Chichester, 1982.

291. Thomson J.M.T., Bishop S.R., Non-linearity and Chaos in Engineering Dynamics. Centerfor Non-linear Dynamics, University College London, John Wiley & Sons, 1994.

292. Timoshenko S.P., Sur la stalilite des systemes elastiques. Application d’une nourelleme’thode dla recherch de stabilite de certaines parties constitutives des ponts. Annales desPonts et Chanssees. L Partie, 9 serie, 1913, Vol. 15 No. 24, 496–566.

293. Timoshenko S.P., Stability of Rods, Plates and Shells. Nauka, Moscow, 1967, in Russian.294. Timoshenko S.P., Stability of elastic systems. Application of a new method in analy-

sis of stability of bridge constructions. Kiev Polytechnik Institute Press. Otdel MechanikiInzhyniernoy, 1910, Vol. 4, 375–560, in Russian.

295. Timoshenko S.P., On the longitudinal deflection of rods analysed in an elastic medium.Sankt-Petersburg Polytechnik Institute Press, Otdel Mekhaniki Inzhyniernoy, 1907, Vol. 7,No. 1, 145–157, in Russian.

296. Trindade M.A., Benjeddou A., Ohayon R., Piezoelectric active vibration control of dampedsandwich beams. Journal of Sound and Vibration, 2001, Vol. 246, No. 4, 653–677.

297. Urabe M., Galerkin’s Procedure for Nonlinear Periodic Systems. Archive for Rational Me-chanics and Analysis, 1965, Vol. 20, No. 2, 120–152.

298. Urabe M., Reiter A., Numerical computation of nonlinear forced oscillators by Galerkin’sprocedure. Journal of Mathematical Analysis and Applications, 1966, Vol. 14, 107–140.

299. Urabe M., Nonlinear Autonomous Oscillations Analytical Theory Academic Press, 1967,New York.

300. Vainberg D.V., Roitfarb I.Z., Computation of plates and shells with discontinuous pa-rameters. Computation of 3D Constructions. Moscow, Stroizdat, 1965, Vol. 10, 39–80, inRussian.

301. Vainikko G.M., On convergent operators. AN SSSR Press, 1968, Vol. 179, No. 5, 1029–1031,in Russian.

302. Vainikko G.M., On estimation of the Bubnov-Galerkin errors. Scientific Bulletin of TartyckUniversity, 1969, Vol. 150, 188–215, in Russian.

303. Volmir A.S., Flexible Plates and Shells. Gostekhizdat, Moscow, 1956, in Russian.304. Volmir A.S., Nonlinear Dynamics of Plates and Shells. Nauka, Moscow, 1972, in Russian.305. Volmir A.S., Shells in Fluid Streams. Problems of Aeroelasticity. Nauka, Moscow, 1976, in

Russian.306. Van de Vorst E.L.B., Van Campen D.H., de Kraker A., Foy R.H.B. Periodic solutions of

a multi-DOF beam system with impact. Journal of Sound and Vibration, 1996, Vol. 192,No. 5, 913–925.

307. Van de Vorst E.L.B., Heertjes M.F. Van Campen D.H., de Kraker A., Fey R.H.B., Experi-mental analysis of the steady state behaviour of beam system with impact. Journal of Soundand Vibration, 1998, Vol. 212, No. 2, 321–336.

Page 14: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

388 Bibliography

308. Vorovich I.I., Mathematical Problems of Nonlinear Theory of Shallow Shells. Moscow,Nauka, 1979, in Russian.

309. Vorovich I.I., Minakova N.I., Problem of stability and numerical methods in theory of spheri-cal shells. Achievements in Science and Technics VINITI. Series of Mechanics of DeformableBody, Moscow, 1973, Vol. 7, 5–86, in Russian.

310. Vorovich I.I., On solutions existence in nonlinear theory of shells. AN SSSR Press, 1957,Vol. 117, No. 2, 203–206, in Russian.

311. Wenk H.U., On coupled thermoelastic vibration of geometrically nonlinear thin plates sat-isfying generalized mechanical and thermal conditions on the boundary and the surface.Applied Mathematics, 1982, Vol. 27, No. 6, 398–416.

312. White R.G., Effects of non-linearity due to large deflections in the resonance testing ofstructures. Journal of Sound and Vibration, 1971, Vol. 16, No. 2, 255–267.

313. White R.G., Developments in the acoustic fatigue design process for composite aircraftstructures. Computers and Structures, 1990, Vol. 16, 171–192.

314. Wilkinson J.H., Reinsch C., Linear Algebra, Springer-Verlag, Berlin, 1971.315. Volmir A.S., Stability of Elastic Systems. Fizmatgiz, Moscow, 1963, in Russian.316. Vorovich I.I., Mathematical Problems of Nonlinear Theory of Inclined Shells. Nauka,

Moscow, 1989, in Russian.317. Wozniak Cz. (Ed.), Mechanics of Elastic Plates and Shells. Technical Mechanics. Vol. 8,

PWN, Warszawa, 2001, in Polish.318. Xiao Y.-G., Fu Y.-M., Zha X.-D., Bifurcation and chaos of rectangular moderately thick

cracked plates on an elastic foundation subjected to periodic load. Chaos, Solitons and Frac-tals, 2008, Vol. 35, No. 3, 460–465.

319. Xie W.C., Lee H.P., Lim S.P., Normal modes of a non-linear clamped-clamped beam. Jour-nal of Sound and Vibration, 2002, Vol. 250, No. 2, 339–349.

320. Yagasaki K., Bifurcations and chaos in quasi-periodically forced beam: Theory, simulationand experiment. Journal of Sound and Vibration, 1995, Vol. 183, No. 1, 1–31.

321. Yagasaki K., Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamil-tonian system: Chaotic free vibrations of an undamped, buckled beam. Physical Letters A,2001, Vol. 285, No. 1–2, 55–62.

322. Yakushev N.Z., Nonlinear Vibrations of Plates and Shells. Investigation of Plates and Shells,Kazan, 1978, No. 13, 203–216, in Russian.

323. Yamaguchi T., Nagai K., Chaotic vibrations of post-buckled beam carrying a concentratedmass. II-nd report. Theoretical analysis. Transactions of the Japanese Society of MechanicalEngineering C, 1994, Vol. 61, No. 579, 3741–3748.

324. Yang X.L., Sethna P.R., Non-linear phenomena in forced vibrations of a nearly square plate:Antisymmetric case. Journal of Sound and Vibration, 1992, Vol. 155, No. 3, 413–441.

325. Youngs D.L., Numerical simulation of turbulent mixing by Rayleigh-Taylor instability.Physica D, 1984, 12(1–3), 32–44.

326. Zarubin A.G., On velocity of convergence of Faedo-Galerkin method for linear non-stationary equations. Differential Equations, 1982, Vol. 8, No. 4, 639–645, in Russian.

327. Zarubin A.G., On velocity of convergence of projection methods for linear equations.Journal of Computational Mathematics and Mathematical Physics, 1979, Vol. 15, No. 4,1048–1053, in Russian.

328. Zarubin A.G., On velocity of convergence of the Faedo-Galerkin method. Methods of alge-braic and functional analysis during investigation of a family of operators. In: Proceedingsof the Mathematical Conference, Tartu, 1978, 52–54, in Russian.

329. Zarubin A.G., Tiunchik M.F., On approximated solutions on one class of non-linear non-stationary equations. Differential Equations, 1973, Vol. 9, No. 11, 1966–1974, in Russian.

330. Zeeman E.C., Applications of Catastrophe Theory, Manifolds, Tokyo, 1973.331. Zeeman E.C., Catastrophe theory in brain modeling. International Journal of Neuroscience

1973, Vol. 6, No. 1, 39–41.332. Zeeman E.C., Catastrophe Theory: Selected Papers 1972–1977, Addison Wesley,

London, 1977.

Page 15: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Bibliography 389

333. Zhelezovskiy S.E., Zhelozovskaya L.A., Kirichenko V.F., Krysko V.A., On velocity of con-vergence of the Bubnov-Galerkin method for hyperbolic equations. Differential Equations,1990, Vol. 26, No. 2, 323–333, in Russian.

334. Zhelozovskiy S.E., Kirichenko V.F., Krysko V.A., On velocity convergence of the Bubnov-Galerkin method for one non-classical system of differential equations. Differential Equa-tions, 1981, Vol. 23, No. 8, 1407–1416, in Russian.

335. Ziegler H., Principles of Structural Stability. Blaisidell Publishing Company,Waltham, 1968.

336. Zommerfeld, Mechanics. Foreign Literature Press, Moscow, 1947, in Russian.

Page 16: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal
Page 17: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index

σ method, 116n degrees-of-freedom system, 108

aberration, 152absolutely

integrable function, 36, 115invariable in time, 131

acceleration, 9, 111, 172Earth gravity, 175, 301, 359transitional, 172

accuracy, 49, 65, 119, 133, 303, 323, 355accurate

eigenvalues, 62estimation, 72series, 55solution, 13, 63

acousticexcitation, 8vibrations, 112

actionimpulse, 3in Hamilton sense, 20load, 9, 123, 151, 361

acute angle conditions, 5adhesive-plastic deformation, 15adjacent

maximums, 116peaks, 112

adjoined material, 19aeroelastic modes, 9aerospace, 235Airy functions, 241algebraic

equation, 1, 11, 55, 59, 63, 73, 78, 79, 97,107, 173, 184, 214, 243, 271, 273

linear, 56, 285nonlinear, 83

function, 136system, 12, 158, 187

algorithmcomputational, 294equilibrium interaction, 7finite differences, 355numerical, 41Runge-Kutta, 361

alloy, 167aluminum, 319, 322, 355amplification, 100, 102amplitude, 9

-frequency characteristics, 107, 121-modulated wave, 8buckling, 124characteristics, 325, 351, 355estimation, 304excitation, 214, 217, 240, 258, 260, 283,

307, 361Fourier series, 112harmonic

frequency, 120isolated, 118

initial irregularity, 154load, 276maximal, 116pre-buckled beam, 6series, 110vibrations, 236, 326

free, 121small, 286

analysisbifurcation, 7, 137chaotic vibrations, 294conservative system, 75deformation, 123dynamics, 27

391

Page 18: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

392 Index

equilibrium, 11post-buckled, 46

error, 65frequency period, 107harmonical, 112perturbation, 126perturbed motion, 54rectangular shell, 2spectral, 95stability, 42, 138, 235

balance point, 130statics, 15structural, 88Theodore von Karman equation, 2

analyticalcomposite object, 54function, 12, 57, 58, 63, 131

differentiable, 113investigation, 8method, 305representation, 61solution, 100

Andronov“self-excited vibration”, 130

Andronov-Hopf bifurcation, 216, 219, 231,255, 261, 264, 270, 276, 277, 279, 294,310

angleacute conditions, 5deflection, 18flow, 9loading, 255pitch, 7rotation, 28sector, 209

angularfrequency, 109plate, 8

anisotropicsolid body, 4

anisotropic material, 15anisotropy, 237anti-symmetric modes, 8antiphase, 271, 274, 279aperiodic

attractor, 230load, 125

applicationFourier transformation, 249method

Bubnov-Galerkin, 185, 294discrete, 59Galerkin, 57, 64, 73MBG, 1–3, 5, 6, 13

non-ideal load, 47stability criterion, 45Taylor series, 65

approachboundary problem, 2Bubnov, 62

-Galerkin, 183Euler, 226Galerkin, 9isoparametric, 74linear, 154Melnikov-type, 6numerical-perturbation, 9static, 324statical, 42stroboscope mechanism, 116variational, 45

approximatefunction, 56, 75, 79, 240method, 4, 54, 77model, 139shell, 95solution, 1, 5, 13, 55, 57–59, 63, 65, 67

convergence, 13approximation, 1, 61

N-termed, 67O(h2), 323, 357, 360, 370accuracy, 119Bubnov-Galerkin method, 287finite differences, 207first mode, 6function, 55harmonic series, 113high order, 41, 76higher order, 95, 96, 120, 249, 281initial, 83numerical, 108parabolic, 116

arbitrarycurve, 28displacement, 52dynamical system, 130function, 37functional, 1loading parameter, 43parameter, 55position, 7superposition, 113supersonic flow, 9

arc, 210slice, 206, 212

areaattraction, 129chaos, 286

Page 19: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 393

chaotic, 230, 279harmonic vibrations, 290

artificial excitation, 246asymmetric, 372

imperfection, 153problem, 155vibrations, 127

asymmetry, 369asymptote, 47asymptotic trajectory, 231asymptotically stable, 128, 130asynchronic chaotic vibration, 279attraction, 129, 229

basin, 6boundary, 130

attractor, 135, 211, 220, 226, 309“axiom A”, 229aperiodic, 230chaotic, 6merging crises, 7strange, 8, 228

auto-parametric, 9autonomous

system, 129autonomous system, 8, 130auxiliary convergent operator, 5average

curvature, 151sense, 59, 287

averagedshell, 264solution, 241

averagingprocedure, 8technique, 6

axialcompression, 153curve, 197deflection, 152displacement, 52force, 51load, 10, 136, 151strain, 236stress, 297, 320

axiallyaccelerating beam, 7compressed

rod, 10shell, 154

symmetricshallow shell, 3vibrations, 127

axiom A attractor, 229axis

deflection, 166longitudinal, 6, 51perpendicular, 16real, 38rod, 47rotation, 206symmetry, 84, 91

axisymmetricmode, 236vibrations, 9

baffle plate, 8balance, 48, 124, 128, 130–132, 227

point, 124, 125, 127trajectory, 138

ball, 48-type

clamping, 206resistance contour, 216support, 28, 239, 243

support, 323, 325, 349band

loading, 3base

arbitrary, 5elastic, 48rectangular, 9vertical excitation, 7

basicsystem, 5, 125theorem of MBG, 2

beam, 6, 48-impacting mass, 370-mass structure, 7Bernoulli, 193Bernoulli-type, 357buckled, 6

undamped, 7constrainded, 297deflection, 302, 303driven, 300Euler-Bernoulli, 358length, 366light, 232material, 305, 313motion, 353pinned, 358pre-buckled, 6quadrant, 362separation, 322slip, 321structural member, 9thickness, 321Timoshenko, 320

Page 20: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

394 Index

vibrations, 173bearing, 7Belousov-Zhabotinskiy reaction, 232bending, 143, 251

moment, 268stiffness, 300, 316strain, 236

Bernardconvection, 232instability, 229

Bernoullibeam, 193, 357hypothesis, 320

bifurcation, 43, 50, 84analysis, 137, 235Andronov-Hopf, 219, 255, 261, 264, 276,

279, 294, 310branch, 125chaos interlacing, 216collapse, 332five period doubling, 219fold-type, 136Hopf, 8, 9, 227, 228, 266, 269, 330, 371lack, 264period doubling, 307period tripling, 306period-doubling, 251pitchfork, 9point, 47, 50, 139, 154, 236series, 355set, 7static, 123, 135symmetric, 138trace, 355triple, 325tripling period, 313zone, 212, 215, 217, 249

bifurcationalbehaviour, 6determination, 45stability, 41, 49

loss, 53bisectrix, 210, 212“black box”, 129blue sky catastrophe, 7body

contacting, 175deformable, 42, 47impacting, 191lumped, 171, 189, 191, 369solid, 4, 49

border, 52, 110boundary, 9, 28, 89, 301

attraction, 130

conditions, 4, 11, 13, 28, 46, 52, 56, 63, 65,71, 73, 79, 96, 106, 126, 141, 152, 165,168, 179, 183, 184, 190, 206, 216, 238,243, 254, 272, 282, 284, 286, 291, 311,322, 357, 370

coordinates, 114fractal basin, 6geometrical, 52integral, 22, 75loading, 254merging crises, 7point, 153problem, 2, 76, 120, 144, 160region, 57space, 225stability, 125transition, 37

boundedattractor, 211by

closed curve, 16contour, 205

frequency, 109region, 20, 33

bridge, 10Bryan energetical criterion, 54Bubnov-Galerkin method, 1, 3, 10, 11, 13, 41,

55, 56, 74, 75, 79, 95, 96, 106, 141, 144,160, 165, 168, 183, 185, 190, 235, 240,241, 248, 253, 270, 273, 281, 286, 291,294

buckledbeam, 6equilibrium state, 50non-perfect shell, 124rod, 51

buckled beam, 7buckling, 123, 125, 128, 140, 143, 154, 156,

168dependence, 152dynamic, 124dynamics, 8load, 124, 144, 146, 155, 158, 160

depreciation, 153static, 166

shell, 188snap-through, 9stresses, 297, 320

buckling load, 124by-product, 4

canal, 231cantilever beam, 7, 297, 319, 320cascade, 7, 219, 226, 354

Page 21: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 395

period-doubling, 9catastrophe, 135, 136

blue sky, 7elliptic, 137higher order, 139

“catch up”, 123Cauchy

-Dirichlet problem, 2problem, 187, 208, 243

centerof

beam deflection, 303curvature, 16shell, 144

centraladdition, 101, 103deflection, 191element, 87, 100

square, 41hole, 208layer, 17, 168maximum, 116point, 124, 287shell, 210, 256surface, 16, 18, 23, 98, 272, 285

chain mapping, 271chaos, 9, 123, 132, 133, 135, 139, 205, 212,

219, 221, 223, 232, 235, 251, 259, 262,268, 271, 276, 278, 279, 297, 307, 313,320, 330, 354, 357

“real”, 283area, 286bifurcation interlacing, 216control, 274development, 135horseshoe, 8onset, 6route, 8

intermittency, 7slight degree, 326subduction, 230surface, 270time-spatial, 226, 279transformation, 230

chaoticarea, 230attractor, 309behaviour, 9dynamics, 6, 7, 9, 274, 355, 367extras, 231flow, 226impacting, 358mapping, 233motion, 132, 135, 228, 258, 275, 329

state, 353subset isolation, 279threshold, 7vibrations, 214, 217, 223, 231, 236, 251,

278, 287, 291, 294, 297, 305, 307zone, 212, 249, 255

Chebyshev polynomials, 65Chetayev theorem, 128circle

section, 235circle section, 28, 151circuit, 11circular

coordinates, 161, 274, 279cylindrical shell, 10, 237intersection, 240, 272

clamped-free boundary, 357beam, 6, 307edge, 305, 366end, 311plate, 8shell, 3, 212, 216, 218

clamping, 180, 210, 239, 301-clamping, 360-for, 349conditions, 322edge, 282hinged, 302moveable, 216pressure, 299sliding, 208symmetric, 362

“clamping-free edge”, 360classical

Galerkin method, 62shells theory, 16Vorovich’s monograph, 13

close-up, 51body contact, 175

closedcurve, 16form, 54shell, 9, 235, 237, 245, 254, 272trajectory, 130

coefficientamplification, 101, 102damping, 25, 206, 282, 301, 321, 325, 357,

359, 361, 370deformation, 299density, 36, 99, 148determination, 57dissipation, 359dynamical, 188

Page 22: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

396 Index

Fourier, 114, 115periodic, 241Poisson, 17, 163, 240, 272proportionality, 299, 301rise variation, 181stiffness, 15, 83, 84, 90, 92, 99, 105, 145

flexural, 34variable, 54

coexistence of equilibria, 43coherent methods, 65coincidence, 366collapse

of bifurcation, 327period tripling, 313

collapse of bifurcation, 355collapse of synchronized motion, 307collateral tails, 110collocation method, 11, 55, 65combination

linear, 2, 79, 362combined thermal effect, 9compaction of thickness, 19compatibility of

conditions, 208deformations, 26, 28, 55, 241

completely stable, 43complex

dynamical approach, 42dynamics, 355half-plane, 227modal model, 298structure, 89value, 36vibrations, 216, 294

complexity, 42temporal, 8

componentharmonic, 108, 118

composite, 41, 156beam, 320function, 78

composite beam, 297composite laminated plate, 9composite object, 54composite shell, 163, 165composition catastrophe, 136compressed rod, 10compressibility condition, 226compressible liquid, 60compression, 17, 153, 230compressional damping, 297compressional vibrations, 319computation

elastic strain energy, 10

harmonics, 120manifold, 7

computationalalgorithm, 2, 6, 28, 85, 294, 300, 301, 320,

355, 372method, 3, 58, 283results, 349time, 15, 63

computations, 3, 73, 117economics, 15stability, 42

concentrated mass, 9condition

accurate series, 55boundary, 28, 52, 58, 63, 73, 79, 106, 152,

165, 168, 183, 184, 190, 216, 238, 239,243, 272, 282, 284, 286, 291, 311, 322,357, 360

geometrical, 52uniform, 64

compressibility, 226convergence, 62Dirichlet, 113Dirichlet kernel, 115existence, 47fixing, 49initial, 65, 144, 178, 179, 233, 324intersection, 174irregularity, 233minimization, 68multiplicity, 119necessary, 13, 48orthogonality, 56solution

exact, 65stability, 286

stationarity, 46sufficient, 7, 139symmetry, 208

conditional branch, 43conditioning, 71conditioning equation, 27conditions, 20, 69, 263

boundary, 4, 11, 13, 28, 46Dirichlet, 113equilibrium, 42load, 9MBG, 5sufficient, 7

conicalshell, 358surface, 203

console beam, 326constant

Page 23: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 397

acceleration, 176Feigenbaum, 268Nyquist, 118rigidity, 272stiffness, 281velocity, 193, 197, 200, 357

constraints, 52, 83beam, 297ideal, 42one-sided, 171, 190, 203two-sided, 176

contactarea, 188between beams, 301continuous, 173load, 187loss, 191one-sided, 299pressure, 299, 308, 310, 314, 316shell-mass, 194stress, 322surface, 48, 185, 191vibrations, 298zone, 193, 194, 301, 320, 355

continual system, 207continuity conditions, 46continuous

contact, 173, 194function, 72, 178

differentiable, 38functional, 37inner product, 59model, 34parameter, 110partially, 113potential operator, 5signal, 117solution, 4spectrum, 354system, 41, 271, 288, 298, 324, 357total energy, 46

continuum, 46contour

bounded, 205curve, 180

contractual rarefaction, 19contradistinction, 101control, 153, 220

beam, 297chaos, 271, 274, 279electromechanical, 8parameter, 6, 91, 95, 100, 106, 136, 166,

205, 211, 219, 230, 255, 264, 305, 357point, 65, 258

controllable synchronization, 279controlled horseshoe chaos, 8controller, 298, 320convection, 227convective flow, 63convergence, 37, 59, 69, 72, 83, 95, 114, 118,

215, 246, 250approximate solution, 13Bubnov-Galerkin method, 248, 273condition, 62energetical, 71finite differences, 291Fourier series, 113, 248geometrical, 230method

finite differences, 293MBG, 2, 4, 5Newton, 191Runge-Kutta, 286

rate, 63convergent

curve, 246energy, 70Feyer summation, 113Fourier series, 69, 115linear space, 37operator, 5, 6

convex surface, 48convexity, 161convolution theorem, 117coordinates, 17, 30, 40, 42, 45, 74, 80, 103,

109, 120, 155, 160, 164, 172, 181, 185,226, 227, 260, 272, 281, 321, 358

boundary, 114circled, 264circular, 161, 279generalized, 137loading, 254polar, 205spatial, 1, 28, 107, 210, 240, 283, 294, 324,

357Coriolis acceleration, 172correction of solution, 83cosine, 109Couette flow, 227coupled

beams, 298moduli, 302non-linear equations, 9oscillators, 172thermoelasticity problems, 6

crack, 9, 297, 319crisis, 7, 230criterion

Page 24: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

398 Index

energetical, 41, 49, 51, 53, 55exact, 61stability, 45, 124, 125variational, 47Volmir, 144, 168, 255

criticalbifurcation point, 50load, 3, 42, 43, 47, 56, 76, 85, 89, 91, 92,

125, 136, 188, 245, 246, 254, 263, 274,293

longitudinal, 279parameter, 42, 189pressure, 237state, 45, 55, 168surface size, 104time, 372

critical loading, 188cross

-typeheterogeneity, 147non-homogeneity, 91

addition, 41, 90section, 189, 235, 237, 251, 266

cryogenic fuel tank, 236cubical cell, 232curvature, 16, 152, 240, 246, 268, 272, 282,

299average, 151non-dimensional, 140radius, 28, 181, 206

curve, 11, 42, 43, 85, 87, 92, 100, 119, 124,143, 144, 153, 154, 156, 166, 168, 179,189, 192, 194, 196, 200, 209, 222, 246,254, 313, 321, 366

“deflection-loading”, 89axial, 197characteristic, 47closed, 16control, 278equilibrium, 44, 45family, 137load-relief, 325logistic, 266monotonic, 154parameterized, 137response, 236separating, 130space-located, 28

curved shallow, 9curvilinear circle, 243cutout, 30, 35cycle, 229, 231

limit, 9unirotational, 287

cyclic-fold bifurcation, 9load problem, 3

cylindricalpanel, 178shell, 3, 9, 28, 128, 151, 152, 154, 172, 235,

237, 240, 243, 245, 254, 255, 264, 273intersection, 278

d’Alembert principle, 174, 300damage, 9damped, 127

beam, 7, 300, 319, 320sandwich, 298vibrations, 305, 312, 317

damping, 100, 127, 133, 135, 139, 143, 168,194, 246, 272, 320, 357, 362, 366, 370

amplitude, 120coefficient, 25, 206, 240, 282, 325, 361compresional, 297linear, 126

decomposition, 114, 251function, 69, 113geometrical, 84

defect, 298definition, 36, 37, 49, 59

axial force, 52extra displacement, 53global stability, 260inner product, 12limit, 112non-homogeneity, 1stability loss, 54static deformation, 18weighting function, 74

deflectedrod, 51shell, 278surface, 48

deflection, 18, 47, 53, 78, 84, 85, 88, 96, 123,124, 151, 153, 156, 158, 161, 166, 168,175, 181, 188, 189, 193, 200, 258, 266,271, 278, 282, 321, 324, 357, 358, 361,372

-loading dependence, 78-time relation, 255amplitude, 153asymmetry, 369averaged, 261beam, 301, 303

hinged, 305central, 191critical, 169description, 299

Page 25: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 399

distribution, 322dynamical, 172, 197equilibrium, 95finite, 6function, 240initial, 152isoclines, 209, 214maximum, 274minimum, 223over-critical, 274, 279pre-critical, 254shell, 2, 161, 194, 211small, 313state, 83surface, 197, 308, 325time history, 107, 306, 309, 312, 315transversal, 173

“deflection-loading”, 78“deflection-loading” curve, 89deformable

body, 47, 171surface, 174, 175system, 42

deformation, 16, 17, 20, 85, 123, 126, 299,301, 358

adhesive-plastic, 15axial, 298compatibility, 26, 55, 241diagram, 313elastic, 48equation, 23, 28field, 3flexural, 153function, 22intensity, 303, 304, 321, 325, 349linear, 47local, 175, 203modulus, 321non-

axial, 237linear, 237

passive, 136piezoelectric actuator, 320shell, 28surface, 17, 18, 174

degree of heterogeneity, 144delay in

control, 8Duffing eqaution, 7

delta type functions, 117density, 19, 28, 272, 321, 354, 359

coefficient, 99, 145constant, 281fluid, 225

parameter, 161periodic points, 233shell, 36weight, 301

dependencycontinuous solution, 4dynamic coefficient, 103functional, 28harmonic frequency, 119load-time, 188nonlinear, 101Young modulus, 1

derivative, 72generalized, 3, 38high order, 39, 113normal, 38partial, 240

describing function, 115destabilization, 139diagonal

direction, 61matrix elements, 74

diagrambifurcation, 7, 8chaotic zone, 6

diameter, 176, 208diffusion, 61dimension

contact, 189fractal, 8Lyapunov, 10reduction, 74spatial, 8

dimensionalparameter, 179

dimensionlessboundary conditions, 370parameters, 359

Dirac delta, 60Dirichlet

conditions, 113kernel, 114, 115theorem, 56

Dirichlet theorem, 46discontinuity, 216

first order, 217, 223point, 113, 114

discontinuous load, 237discrete, 59

phase space, 129signal, 117solution, 6spectrum, 354system, 136, 139, 288

Page 26: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

400 Index

value, 65, 254discretization method, 358dispersion, 134displacement component method, 320dissipation

coefficient, 359force, 139of energy, 134, 136, 225

dissipativebeam, 319, 355force, 306system, 272, 361vibrations, 135, 372

distortion, 236distributed

load, 168, 191mass, 319

distribution ofamplitudes, 135energy, 146error, 66load, 254, 274pressure, 156temperature, 4

disturbance, 43, 225dispersion, 134

Donnell theorem, 10double

asymptotic trajectory, 231integral, 30, 33precision, 108

doublingbifurcation, 332five period, 219inifinite series, 230period, 214, 230point, 269torus, 7

“dovetail”, 137driven

beam, 300, 357, 361shell, 254

Duffing equation, 7dynamic

amplification, 102, 103buckling, 8, 123, 124, 144, 160

area, 125critical loading, 3stability, 135, 191, 237

dynamicalanalysis, 27approach, 42behavior, 9, 15, 172, 308criterion, 45, 140, 168

Volmir, 255deflection, 197four-dimensional, 8hypothesis, 28load, 357method, 54problem, 1, 3, 5, 6, 159reaction, 173system, 128

autonomic, 130infinite DOF, 120

dynamically stable, 125dynamics

beam, 301chaotic, 6, 7, 9, 274complex, 355equation, 106flying objects, 11nonlinear, 297of mapping, 230shell, 15, 288

rectangular, 190stability, 123

dynamism coefficient, 101, 104

edge, 9, 19, 30clamping, 282free, 180, 283load, 357loaded, 33simply supported, 28

effectivenumerical method, 6velocity estimation, 5

eigen-elements system, 5functions, 66, 127values, 45, 62vectors, 45, 99

elastic-plastic

beam, 355deformations, 299material, 302

-plastic material, 322-plastic problem, 313base, 48beam, 317, 320, 349bearing, 7foundation, 9limit, 157material, 15problem, 325shell, 190

Page 27: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 401

stability, 41, 51, 136stop, 358strain energy, 10surface, 173system, 54, 152

deformations, 49stability loss, 125

wave, 27elasticity, 20

modulus, 16, 19, 321theory, 15, 38, 49volume, 299

electromagnetic field, 171element

additional, 19, 84, 102central, 41, 88, 100cross-type, 91finite

linear, 63method, 6, 11, 183

non-homogeneous, 92rigid, 85rotational, 25shell, 15, 27, 30, 56, 83

separated, 32strengthening, 100surface, 90

elementarycatastrophe, 139potential energy, 164works, 20

elementary bifurcations, 136elliptic

-type partial equation, 2catastrophe, 137

energeticbarrier, 154space, 5

energeticalcriterion, 46, 49, 51, 53, 55finite norm, 73method, 11, 74norm, 5, 70

energeticallynormalized, 273orthonormalized, 69, 283

energy, 69“pumping”, 125cascade, 354convergence, 70criterion, 41dissipation, 126, 134, 136, 225, 319distribution, 146kinetic, 20, 25

linearization, 55operator, 73potential, 10, 50, 136, 139, 164

total, 48, 51source, 127system, 46, 54transfer, 9

Englis-Bolotin method, 173enhances, 135equation, 10, 194

algebraic, 73, 79, 214, 243beam, 297, 301deformations, 28differential, 47

partial, 1, 60dimensionless, 359dynamics, 106equilibrium, 300forces, 164fourth order, 241fundamental, 29, 181heat transfer, 4Holmes-Duffing, 6hyperbolic-type, 2initial, 96integral, 57

-differential, 8linear, 49, 285

differential, 67linearized, 45, 155matrix, 13motion, 20, 151Navier-Stokes, 2, 225Newton, 129non-

coupled, 75dimensional, 165, 179, 238

numerical integration, 120operational, 70partial differential, 9, 210PDE, 240, 271phase-modulation, 7quasi-linear, 5shell, 163solution, 71stability, 54, 152variational, 25, 26

equilibrium, 45, 46, 48, 51, 241closely located, 55conditions, 42deflection, 95equation, 56, 300interaction, 7

Page 28: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

402 Index

point, 49, 54, 75, 134, 139, 153, 155, 156,246

rectilinear form, 53state, 11, 43, 44, 50, 125, 130, 137, 191,

317, 320equivalent

deformation, 18Galerkin method, 64

equivocal function, 78error, 2, 12, 57, 61, 63, 141, 305

distribution, 66estimation, 6, 67, 119, 237extremes, 65, 71finite differences method, 303function, 56inner product, 59MR, 5weighting method, 64, 66

estimatedcritical loading, 47, 76equilibrium, 46solution, 63total energy, 49

estimation, 175coefficients, 13eigenvalues, 45, 99error, 2, 67, 72, 119, 237frequency

spectrum, 108, 120vibrations, 98

impulse influence, 3Lyapunov exponents, 8MBG, 6numerical, 123solution, 65stability, 76strength, 41

Euler-Bernoulli

beam, 320, 357hypothesis, 298, 299, 319

-type coefficient, 188equations, 1load, 140method, 47, 54, 226numbers, 112rod, 138

evolutional problem, 2, 3, 5exact

criterion, 61model, 15solution, 5, 56, 63–65, 69–71, 76, 108, 119,

183, 210excitation, 211, 236, 255

amplitude, 214, 217, 258, 307artificial, 246force, 260frequency, 219, 251, 264, 269, 325, 357,

361, 369harmonic, 208, 305initial, 107large, 44mechanical, 9mode, 9parametric, 8sign-changeable moment, 223stiff, 132transverse, 320vertical base, 7

excitedbeam, 297, 358

cantilever, 320cantilever system, 7shell, 205

existence ofsolution, 271chaos, 9chaotic attractor, 6, 7solution, 3, 4, 56

experimentaldata, 128load estimation, 188stand, 124

explosion of density point, 36external

edge, 30excitation, 293, 297, 320

harmonic, 9force, 6, 20, 25, 47, 48, 51, 56, 75, 126, 212,

225frequency, 308load, 50, 127, 206, 237, 240, 245, 261, 266,

271, 282, 313, 370harmonic, 254

pressure, 235reaction, 173tank, 236

extortion, 134extrapolation, 84, 158extremal

frequency, 119point, 60, 89resistance, 41

factorization, 74Faedo-Galerkin method, 2feedback, 298feedback controller, 320

Page 29: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 403

Feigenbaumconstant, 268scenario, 218, 225, 262, 268transition, 332zone, 212

Feyer summation, 113fibre, 16field

deformation, 3gravitational, 176potential, 228thermal, 9

fifth order approximation, 3filtrate action, 116filtrate property, 31, 39finite

-time stability, 123, 125bending stiffness, 316deflection, 6destabilization, 139differences algorithm, 355differences method, 3, 63, 76, 141, 143, 183,

207, 210, 281, 283, 288, 294, 323, 360error, 303

dimensional problem, 370elements method, 73, 357energetical norm, 73series approximation, 120

first-order

characteristics, 107discontinuity, 217Lagrange equation, 175ODE, 243

mode, 6, 8type elasticity, 17

fixing conditions, 49flatter, 130, 135, 139flexible

beam, 372construction, 171Euler-Bernoulli beam, 357plate, 18rib, 28, 180, 239, 282shell, 89, 220, 237, 281, 286, 294

flexuraldeformation, 153mode, 9stiffness, 15, 19, 34, 35, 83vibrations, 8, 237

flow, 60, 124, 226coefficient, 299convective, 63Couette, 227

deformation, 303, 321, 350rate, 60supersonic, 9

fluctuations, 48, 84, 133, 135fluid, 171, 271, 358

mechanics, 57, 60flutter panel, 9focusing action, 115, 116fold-type

bifurcation, 136catastrophe, 138stability, 138

forcecompressing, 47conservative, 46dissipation, 139dissipative, 306excitation, 45, 160, 215, 240, 260, 272, 287,

352external, 20, 25, 48, 126, 225frequency, 283inertial, 42, 123, 187initial, 52internal, 56iterational, 171longitudinal, 360moment, 29moving, 173, 176, 202normal, 8periodic, 357periodic with impacts, 7potential, 75self-interaction, 195statically determinable, 52supercritical, 358vector, 126weighting, 172

forcedHolmes-Duffing equation, 6orthogonality, 56response, 236shell, 281

formdiscrete, 59matrix, 74non-

dimensional, 15, 177linear, 2

normal, 191operational, 288Timoshenko, 53variational inequality, 4

Fouriercoefficients, 114, 115

Page 30: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

404 Index

series, 10, 73, 112, 113, 156, 248transform, 36, 69, 109, 117, 120, 249, 273

fractal, 229basin, 6orbit, 7structure, 268

Frechet differential, 5free

boundary, 302contour, 216edge, 180, 283, 366, 372end, 305from stresses, 125rotation, 6support, 239, 273, 322, 349vibrations, 9, 106, 107, 120, 127, 222, 319

flexural, 237frequency, 212

frequencyangular, 109beam mode, 6bifurcation, 355characteristics, 362definition, 110excitation, 208, 215, 240, 272, 274, 283,

313, 325, 357, 361external, 308fundamental, 304harmonics, 107hidden, 112input function, 277natural, 9, 96, 249, 297, 320Nyquist, 120peak, 118period, 107perturbation, 140radiation, 112region, 118spectrum, 120, 264, 281, 287, 291, 305, 370synchronization, 221, 232vibrations, 55, 98, 100, 206

free, 305linear, 276

friction, 298full

convergence, 287synchronization, 221, 279, 307

functionAiry, 241amplitude, 110analytical, 12, 58, 113, 131approximate, 75autocorrelation, 8boundary conditions, 106

composite, 78contact, 299continuous, 178deflection, 173, 240deformation, 22delta type, 117equivocal, 78filtering property, 31focusing action, 115generalized, 15, 36–38Heaviside, 31impulse, 40in antiphase, 274inverse, 35minimization, 71nonlinear, 130orthonormal, 65periodic, 117, 133positively defined, 47potential, 136stepping, 34strain, 282stresses, 27, 206test, 61, 62, 64, 65, 67, 68, 72unity, 33variation, 23, 24, 152velocity, 322weighting, 59, 60, 62, 63

functional, 37, 38, 50, 70, 129dependency, 28minimum, 68operator, 55singularity, 1

fundamentalamplitude, 305energetical criterion, 49equation, 29, 181, 297, 320excitation period, 310frequency, 304, 325

gain, 50Galerkin

-Pietrov method, 5method, 6, 9, 41, 55, 57, 62, 63, 65–67, 69,

73, 74, 84coherent, 65equivalent, 64modification, 63traditional, 64, 73

projection, 7, 57solution, 63, 71

gas-fluid interaction, 3Gauss method, 107, 141, 187general

Page 31: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 405

function, 113solution, 136stability loss, 125

generalization, 4, 36, 37, 75generalized

coordinates, 137derivative, 3functions, 15, 36–38method

Galerkin, 63Melnikov, 7

geometricconditions, 29nonlinearity, 3, 9, 47, 235, 237, 298parameters, 148, 160

geometricalboundary, 52, 55convergence, 230decomposition, 84imperfection, 152

globalcritical load, 261equilibrium, 135function, 62shell behavior, 93stability

loss, 270stability loss, 41, 260

Green formula, 60

Henon model, 230half-

positive function, 47trajectory, 131wave, 254, 260, 264

Hamilton principle, 20, 25, 297, 320Hamiltonian system, 7hard stability loss, 85hardening, 300, 303, 324harmonic

analysis, 113convergence, 95distortion, 236excitation, 9, 208force, 274form, 304frequency, 107, 119, 120input function, 276load, 205, 254, 256, 283oscillator, 133resonance, 229vibrations, 8, 107, 127, 212, 214, 217, 219,

226, 259, 270, 277, 279, 286, 290, 293,298, 317

harmonical analysis, 112harmonically

excited, 205, 216, 281shell, 211

harmonics, 99, 100, 112, 121heat

conductions, 60exchanger tubes, 8field, 171transfer, 4, 11

Heaviside function, 31, 34Hessenberg form, 99heteroclinic orbit, 7heterogeneity, 144, 147, 163heterogeneous shell, 144, 146, 148hidden frequencies, 109high

-amplitude vibrations, 139accuracy, 112frequency, 358

higher-approximation method, 168approximation, 2, 106, 120, 160, 183, 190,

249, 281modes, 101

Hilbert space, 73hinged

beam, 313hinged beam, 304hinged clamping, 302hinged support, 180hole, 208Holmes-Duffing equation, 6holonomic constraints, 174homoclinic orbit, 7homogeneous

conditions, 243equation, 246initial state, 54plate, 8, 95, 105, 107, 121shell, 28, 35, 84, 87, 89, 90, 92, 100, 141,

143, 145, 149, 163, 165, 166, 168solution, 240, 242

Hook law, 15, 17, 305Hopf bifurcation, 8, 9, 139, 219, 226, 228, 266,

269, 307, 312, 327, 328, 330, 355, 371horseshoe, 7, 229Housholder transform, 99hybrid

control, 298, 320form, 165, 178, 240

hydrodynamics, 226, 229, 271, 355hyperbolic

-type equation, 2

Page 32: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

406 Index

catastrophe, 137, 139equation, 4, 6

hyperbolic equation, 2hypersonic vehicle, 236hypothesis, 16

Bernoulli, 320dynamical, 28Euler-Bernoulli, 298Kirchhoff-Love, 179linearity, 95straight normals, 299

hysteresis, 325

ideal interpolating function, 118identification, 249, 275, 297, 320, 357, 372identity function, 55impact, 171, 174, 176, 190, 311, 317, 325, 358,

369chaotic, 358Faedo’s, 2force, 7, 123, 319two-sided model, 7wave, 171, 357

impacting tubes, 8impactor, 357imperfection, 47, 63, 124, 138, 140, 151–153,

155, 246method, 54

implicit Newmark method, 9impulse

action, 3function, 38–40load, 127singular, 117

in large stability loss, 188in-span attached mass, 319inclination, 110inclusion, 43

sub-differential, 4inertia, 25, 123, 164, 193

beam, 306inertial force, 42, 139, 171, 187infinite

dimensional problem, 360dimensional system, 7, 57, 120, 210, 281,

357Fourier series, 115series, 112, 117

infinitely small damping, 139infinity, 38, 54, 114inflection point, 124, 137initial

approximation, 84, 158, 246axial force, 53

boundaryconditions, 58, 206, 291problem, 2, 281

buckling amplitude, 124conditions, 13, 28, 62, 65, 96, 130, 144, 159,

168, 178, 179, 191, 233, 240, 243, 254,286, 302, 304, 322, 324, 360

configuration, 42deflection, 152displacement, 107equation, 77equilibrium, 46, 49, 50general solution, 136imperfection, 140, 154irregularities, 152parameters, 7state, 44, 52, 54, 76system, 45time, 109, 317velocity, 176

inner product, 57, 59, 61, 67input

data, 110, 116, 118function, 279

longitudinal, 274periodic, 271

signal, 117, 129instability, 8, 45, 133, 135, 136, 138

aerodynamic, 139Bernard, Taylor, 229internal, 9region, 42snap-through, 10solution, 63static, 41

integrable mapping, 230, 233integral, 26, 28, 32, 53, 55, 67, 97, 183, 323

-differential equation, 8boundary, 22, 24, 75Bubnov-Galerkin method, 77, 80, 185, 242,

284computation, 178double, 30equation, 173

partial, 57estimation, 304Fourier, 113manifold, 130matrix, 133multiple frequencies, 325representation, 244

integration, 20, 33, 61, 108, 286by parts, 22, 25, 28, 38, 75numerical, 67, 237

Page 33: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 407

procedure, 120Runge-Kutta method, 9series, 113space, 301step, 141, 178, 191with weights, 115

intensity of deformation, 299interference, 111, 112interior, 31interlacing trajectories, 268intermittency, 7, 231, 233internal

crisis, 230force, 52, 56, 75instability, 9resonance, 7, 8, 236self-balancing load, 320

interpolating function, 118interpolation, 111, 208

parabolic, 116intersection, 174

circural, 272Poincare, 287

inversefunction, 35matrix, 99, 291rule, 67

irregularity, 111, 154, 328isolated

chaotic subset, 279harmonic, 118matrix, 133maximum, 110peak, 112, 120point, 113, 294

isoparametric approach, 74isotropic, 16

material, 15, 163, 166, 299plate, 9solid body, 4

iteration, 83, 107iterative method, 246

“jump”, 210jump down phenomenon, 7, 322

Kantor criterion, 140kernel, 114, 115kinematic

loading, 43nonlinearity, 298viscosity, 225

kinematical model, 29, 178, 266, 271, 300kinetic energy, 20, 25, 164

Kirchhoff-Love model, 3, 16, 17, 29, 163, 178,180, 266, 271

Lagrange-Dirichlet theorem, 46Lagrange

equation, 175multipliers, 112, 174theorem, 54, 75

Lamerey diagram, 231laminar

flow, 226layer, 61phase, 231

Landau-Hopf scenario, 218, 225, 227, 262large sense, 44lateral surface, 30law

Hook, 15, 17, 305linear temperature, 4mass conservation, 60non-linear control, 8nonlinearity, 124Runge, 141, 143, 291

least squares method, 55, 61, 64Lebesque-class, 3light

beam, 232limit

cycle, 9, 130, 131, 139, 231definition, 112point, 137, 154stability, 128

limiting mechanism, 134linear, 95

approach, 154beam, 7, 358combination, 174, 184, 217, 219, 362, 367,

371damping, 126deformation, 47differential equation, 11, 194equation, 49, 83, 152, 273, 285

algebraic, 214, 243differential, 67

finite element, 63model, 171operator, 129

differential, 73PDE, 241quadratic regulator, 298, 320self-coupled problem, 1solution, 58strain, 300, 303, 324strengthness, 322, 355

Page 34: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

408 Index

system, 42, 68vibrations, 121, 191, 206, 212, 276viscoelastic material, 8

linear mode, 8linearity, 124linearity hypothesis, 95linearization, 47, 55, 237linearized

equation, 45, 47, 56, 153, 155, 227Poincare transformation, 231

linearlyelastic, 316, 325, 349, 355independent, 13, 68, 71, 74, 240, 284, 362

liquid, 60, 61, 225little sense, 43load

-deflection relation, 154-relief, 325-time dependence, 140, 188acceleration, 198asymmetric, 151axial, 136buckling, 124, 140, 152, 155, 158, 161conservative, 136constraints, 42contact, 187critical, 3, 42, 43, 47, 76, 89, 136, 210, 245,

261, 263, 279, 293cyclic, 3external, 240, 272, 282, 370finite-time, 127harmonic, 254, 281impact, 319impulse, 127in antiphase, 275monotonic increasing, 85non-

homogeneous, 246symmetric, 266

normal, 177, 188one-parameter, 138outer, 126parameter, 206post-critical, 209pre-critical, 143pressure, 321self-balancing, 320sign changeable, 361sign changing, 218sinusoidal, 317spatial, 8static, 125, 237

buckling, 166time-dependent, 237

transversal, 78, 84, 123, 184, 243, 278, 285,300, 304, 322, 358

uniform, 245“load-buckling”, 166“load-deflection” diagram, 254loading, 54, 80, 96

angle, 246, 254, 270critical, 45, 90, 91, 93, 188degree, 278external, 6, 50harmonic, 205monotonic, 42sinusoidal, 270static, 88, 245symmetric, 155zone, 254

“loading-deflection characteristics”, 84

loading-deflection characteristics, 91local

deformation, 203extremes, 104, 160, 219, 261potential energy, 136stability, 85, 91, 260

loss, 41, 149stability loss, 270thickness change, 19weighting function, 62

locallyintegrable, 37, 38stable, 44

locking phase phenomenon, 309locus

equilibrium, 42, 45, 46, 48single, 43

longitudinalcoordinate, 238force, 360impact, 369input function, 274, 276, 279load, 277movement, 52rod axis, 6, 51vibrations, 320wave, 260

loop, 78, 268, 325Lorenz model, 230, 231, 253, 287loss, 3loss of

contact, 191, 305stability, 44, 51, 55, 85, 124, 125, 137, 140,

149, 152, 153, 156, 163, 168, 188, 189,218, 254, 257, 270, 274

loss of

Page 35: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 409

synchronization, 232low scale motion, 353lumped

body, 7, 171, 173, 176, 177, 179, 182,189–191, 194, 196, 200, 369

Lyapunovexponents, 8, 10, 212, 221, 233, 249, 274,

287sense, 125, 127stability, 130, 140, 188

magneto-elastic beam, 7Mandelbrodt fractal, 229manifold, 7, 130, 229, 230, 248, 274, 320map, 249, 307

Poincare, 8, 274, 287, 291mapping, 120, 226, 229, 231, 233

chain, 271Markov chains, 129mass conservation law, 60material

adjoined, 19beam, 298, 320cutouts, 28deformation, 47density, 359elastic

non-linear, 355isotropic, 163layer, 167non-linearity, 302shell, 15, 16, 36viscoelastic, 8

mathematical modeling, 123Mathieu-Hill equation, 127matrix

equation, 13form, 58, 74integral, 133inverse, 291operator, 126quadratic, 243reversing, 285stable, 134toroidal, 134tridiagonal, 99

maximalenergy, 46, 48

maximumamplitude, 110, 116deflection, 210, 255, 274, 278error, 71isolated, 110load, 87, 158

local, 219Lyapunov exponent, 8

MBG, 1–6, 10, 11, 13measurable function, 3medium, 25, 100, 143, 171, 240

composite, 41dissipative, 298, 320

Melnikov method, 6membrane, 205mesh, 74, 141, 360, 370

rectangular, 303, 323method, 160

σ , 116“set-up”, 209approximate, 4, 55, 171Bubnov-Galerkin, 1, 10, 13, 56, 77, 96, 157,

168, 190, 253, 273, 283collocation, 11, 65computational, 58, 283controlling, 279convergence, 118discovering hidden frequencies, 112discrete, 59discretization, 358displacement component, 297, 320effectiveness, 63energetical, 51, 74Englis-Bolotin, 173Euler, 47finite differences, 3, 63, 207, 210, 294, 323,

360finite elements, 6, 73finte elements, 357Galerkin, 5, 7, 9, 62, 64, 66, 67, 73Gauss, 107harmonic analysis, 113high order approximations, 41identification, 320least squares, 61Lyapunov exponent, 8MBG, 4, 10, 12momentum-impulse, 61Newton, 76numerical, 5, 78, 208partially reversible, 55Rayleigh-Ritz, 56, 67, 69, 71reduction, 31relaxation, 324Ritz, 1, 140

-Timoshenko, 183Runge-Kutta, 9, 141, 187, 208, 235, 243smoothing, 116spectral, 63, 74spectroscope, 112

Page 36: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

410 Index

variated elasticity parameters, 302variated parameters, 304variation, 321variational, 2, 67weighting errors, 58

mid-plane, 8minimal

error, 65loading, 56potential energy, 48square representation, 61

minimization, 65function, 71principle, 10

minimumenergy, 48, 139functional, 68infinite, 113variation, 47

modalmodel, 298, 320non-linear equation, 9portrait, 266, 268, 362technique, 236

“modal portrait”, 268model

approximate, 139continuous, 34Euler-Bernoulli, 300geometrically linear, 171Kirchhoff-Love, 3, 17, 29, 163, 178, 180,

266Lorenz, 231, 253mathematical, 128, 129, 180, 271modal, 298momentous-less, 237non-linear, 297, 320non-perfect shell, 124parameters, 100shell, 15, 152spatially discrete, 6Timoshenko, 3, 319two-sided impact, 7

modesantisymmetric, 8approximation, 6axisymmetric, 236flexural, 9orthogonal, 357vibrations, 100–102, 105

modificationMBG method, 11Rayleigh-Ritz method, 56

modulated signal, 117

modulation, 232modulus, 35

elasticity, 16, 19, 321, 323inverse, 36shear, 302Young, 1, 166, 359

molecule motion, 228moment

bending, 268load, 153time, 108

momentous-less model, 237momentum-impulse method, 61motion

m-periodic, 133“basic”, 125beam, 300, 321chaotic, 6, 135, 258, 275equation, 9, 15, 20, 26, 28, 30, 319initial, 230laminar, 226low scale, 353non-disturbed, 128perturbed, 54regular, 274, 278shell, 124, 177stability, 42, 126stationary, 130synchronized, 221, 307time history, 107trajectory, 125transition, 287transverse, 7

moving load, 195“moving load”, 171MR convergence, 5multi-

DOF system, 358frequency vibrations, 274layered, 319periodic, 134

multibody system, 324multifrequent vibrations, 134multiple

shooting, 358multiple-layered, 15, 166, 297multiplicity condition, 119multipliers, 26, 63, 117, 301

naturalfrequency, 9, 235, 249, 255, 297, 319vibrations, 95, 99

Navier-Stokes equations, 2, 225neighborhood

Page 37: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 411

equilibrium, 50, 54point, 47spectral, 10

Newhouse scenario, 225, 228Newton

-Raphson method, 83, 237equation, 129method, 76, 83, 158, 191

node, 67, 74, 360equation, 142, 323interpolation, 208

noise, 225, 328component, 353

non-autonomous

system, 7-autonomous system, 129-axiall deformation, 237-axially symmetric shell, 205-clamped beam end, 317-closed trajectory, 131-compressed rib, 180-dimensional

amplitude, 153curvature, 140equation, 179, 238form, 15, 121, 151, 177, 182, 281parameter, 29, 188, 206, 282, 302, 321system, 272time, 109velocity, 226

-disturbed motion, 128-harmonical vibrations, 121-homogeneity, 15, 20, 29, 41, 76, 87–90, 99,

101, 237perforation-type, 92

-homogeneouselement, 98load, 246material, 299plate, 104shell, 6, 15, 19, 84, 87, 90–92, 96state, 54surface, 102

-impacting motion, 358-linear

-elastic, 313beam, 297, 319deformation, 237dynamics, 262elastic bearing, 7equation, 76, 184operator, 301physically, 313

response, 236strongly, 84vibrations, 9, 95, 124

-linear diffusion, 61-linearity, 236, 298

structural, 301-linearly elastic beam, 349-loading state, 49-perfect shell, 124-potential operator, 2-rectangular window, 118-resistant element, 132-self-coupled operator, 2-static branch, 125-stationary

constraints, 174problem, 210, 241, 248

-stretched rib, 180-symmetric

difference, 304load, 151, 237, 266matrix, 99

-synchronized vibrations, 221-trivial solution, 127-uniform

beam, 319-uniform pressure, 237-uniformity, 237

load, 158parameter, 160

non-stationary

heat problem, 11perturbations, 128problem, 2, 57, 61

uniformbeam, 297loading, 271outer pressure, 151shell, 161

non-coupledequations

differential, 75non-homogeneity

definition, 1surface

total size, 104system, 3

non-homogeneousshell

square, 100non-linear

beamsandwich, 355

Page 38: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

412 Index

conditionsboundary, 6

elasticproblem, 325

equationalgebraic, 83

vibrationslongitudinal, 320

nonlinear, 5beam, 307behavior, 236dependency, 101dynamical problem, 3dynamics, 205, 281equation, 45, 78, 152, 156, 158

operational, 2function, 130ODE, 243operator, 129, 238, 240, 272, 282, 360oscillator, 373PDE, 246problem

MBG, 4structure, 42system, 135vibrations, 95, 106, 107, 248

nonlinearity, 130, 139, 313“soft”, 90geometrical, 47material, 321strong, 83

nonstatic state, 279nonunique solution, 246norm, 65

energetic, 5energetical, 70finite energetical, 73uniform, 2

normalforce, 8form, 7, 107, 160, 187, 191harmonic excitation, 10line, 28load, 177, 188perpendicular deformation, 20stresses, 297, 320to shell, 238

normalization, 74, 85normalized

energetically, 273function, 113surface, 87

numerical-perturbation approach, 9

agreement, 188algorithm, 2, 3, 5, 8, 41, 76, 78, 83, 119,

120, 123, 208, 271analysis, 84data, 118integration, 67, 237solution, 108, 210

Nyquistconstant, 118frequency, 120

odd-order cycle, 230ODE, 243

Cauchy problem, 246one

-dimensionaldynamics, 54mapping, 231

-dimensional torus, 229-frequency vibrations, 219, 286-sided

constraints, 171, 190, 203contact, 299spring, 358

-to-one internal resonance, 8-to-two internal resonance, 7DOF, 130

onset of chaos, 6operational equation, 2, 70operator, 179, 321

convergent, 5, 6differential, 141eigenfunctions, 127energy, 73functional, 55linear differential, 73matrix, 126non-self-coupled, 2nonlinear, 238, 240, 272, 282, 301, 360positively defined, 68symmetrical, 70

optical vibrations, 112optimization, 8orbit

chaotic, 8periodic, 84, 227quasi-periodic, 7singular, 130two-dimensional, 269

orbital stability, 130ordinary

differential equation, 1, 7, 9, 11ordinary differential equation, 107orthogonal

Page 39: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 413

beam mode, 357collocation, 60, 67equation, 59, 75functions, 55, 69, 74

orthogonality, 55, 67, 127orthogonalization, 56, 62, 74orthonormal functions, 65, 283oscillator, 135, 172

harmonic, 133impact, 8

outer pressure, 151, 159, 240over-critical

deflection, 274, 279equilibrium, 76state, 231

panel, 9, 178, 193, 195parabola, 158parabolic

approximation, 116equation, 2, 4, 5extrapolation, 84

parallelepiped cutout, 30parametric

analysis, 298, 320resonance, 7, 125, 127

partialderivative, 226, 240equation, 2, 7, 9, 11, 57, 59

partiallycontinuous, 113reversible method, 55

partition element, 281passive deformation, 136PDE, 271, 324PDE to ODE transition, 210peak, 110, 112, 116, 120

degree, 118separated, 119

pending onset of chaos, 7perfect

construction, 125filter, 118shell compression, 155

perfect construction, 123perforated plate, 8perforation, 92perforation-type non-homogeneity, 92period

2π , 133-doubling

bifurcation, 9, 231doubling, 7, 214, 219, 230, 251, 307, 309,

313, 325, 332, 369

excitation, 256, 287frequency, 107sampling, 118trebling, 251tripling, 313tripling bifurcation, 306, 307trippling phenomenon, 317

periodiccoefficient, 241cycle, 230dynamics, 9, 355excitation

transverse, 321Fourier transform, 117function, 117, 127, 133, 271, 274, 279motion, 96, 130, 132orbit, 84, 219, 227

homoclinic, 7variation, 306vibrations, 139, 287window, 219

periodicallydriven beam, 300excited plate, 8supported beam, 297

periodicity, 113perpendicular

cutouts, 28deformation, 20ribs, 147shell, 16, 30

perturbation, 47, 128, 140, 229perturbed

manifold, 7motion, 54

phase-modulation, 7-space system, 129dislocation, 133, 134laminar, 231locking, 309plane, 131, 132, 188, 220portrait, 130, 139, 219, 256, 266, 269, 274,

287, 291, 325, 328, 350, 355trajectory, 129, 130

phenomenablue sky catastrophe, 7

physicalcontinuum, 46explanation, 326interpretation, 6nonlinearity, 3, 47, 313surface, 74

physically non-linear, 299

Page 40: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

414 Index

piecewisefunction, 178linear polynomials, 73

piezoelectric-active control, 298, 320actuator, 298, 320sensor, 298, 320

pitch angle, 7pitchfork bifurcation, 9plane, 175

-space manifold, 229bifurcational, 6control parameter, 248modal, 268perpendicular, 28

plasticflow coefficient, 299strain, 155

plasticity, 302plate, 95, 200, 271, 307, 319

analysis, 4baffle, 8chaotic

behavior, 9deflection, 123deformation, 56dynamics, 8, 120homogeneous, 105

square, 107perforation, 92rectangular, 41, 178soft, 100thin flexible, 18three-layered, 297vibrations, 102

Poincare map, 8, 219, 231, 256, 274, 287, 291,310, 313, 325, 335, 352, 355, 362

pointbalance, 125, 127, 128, 131bifurcation, 152, 155, 236, 254center, 107characteristic, 20contact, 172contour, 179critical, 227equilibrium, 75, 139explosion, 36extremal, 89isolated, 294mass, 176material, 299saddle-node, 231shell, 16, 83, 84spectrum, 5

stability, 264stationary, 1

Poisson coefficient, 17, 163, 206, 240, 272,282, 321

polar coordinates, 205polynomial, 65, 73

-type solution, 73second order, 84

Pomeau-Manneville scenario, 218, 225, 262population growth, 230positive Frechet differential, 5positively defined operator, 68, 70post-

buckledrod, 75state, 45system, 46, 50

buckling, 47, 76critical

load, 144state, 217, 248, 256, 257, 261

post-critical load, 209potential, 54

energy, 10, 20, 48, 49, 51, 139, 164field, 228force, 42, 75function, 136operator, 5

powerfrequency, 274plant, 172series, 297series expansion, 320spectrum, 8, 212, 214, 220, 249, 251, 256,

268, 291, 295, 305, 308, 310, 325, 326,332, 350, 355, 364

pre-buckled beam, 6compressed shell, 10critical

deflection, 254load, 143state, 217, 237, 260stresses, 125

precision, 108pressure

clamping, 299contact, 187, 301, 305, 308, 310, 314, 316,

328distribution, 156external, 235in contact, 298load, 321non-uniform, 151

Page 41: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 415

outer, 127, 155, 159sensor, 205zone, 251, 255

primary parametric excitation, 8principle

conservation, 48d’Alembert, 174, 300energetical, 51Hamilton, 20, 25, 297Lagrange, 75minimization, 10possible displacements, 52Runge, 120, 248variational, 67

prismatic rod, 4problem

asymmetric, 155boundary, 76, 178buckling, 123Cauchy, 187, 208, 243dynamic, 6dynamical, 159Euler, 47linear MR, 5non-stationary heat, 11simplification, 30stability

limit, 128motion, 127shell, 141

staticinstability, 41

statics, 59, 124, 274symmetry, 65three-dimensional, 16variational, 56, 74

procedureapproximation, 3averaging, 8Bubnov-Galerkin, 1, 77, 97, 183, 242, 284error estimation, 67Feyer, 113orthogonalization, 56Runge-Kutta, 107, 120

processcomputational, 85convergence, 95, 119deformation, 325deformation analysis, 123dynamical analysis, 27iterative, 83linearization, 47perforation, 92

projection method, 1, 7, 11, 57

proof, 46, 71, 226solution existence, 3

pure orthogonalization method, 75

quadraticfunctional construction, 2linear regulator, 298matrix, 243regulator, 320

quadrature, 36, 59, 67quasi-

harmonic vibrations, 350linear equation, 5periodic

dynamics, 355motion, 132, 229, 258orbit, 7turbulence, 227vibrations, 261, 264, 325, 350

periodicity, 123, 132, 232quasi-periodicity, 133

radial slice, 206, 208, 212radiation, 112random

direction, 161factor, 156frequency response, 236parameter, 283trajectory, 139vibrations, 132

randomness, 134rate of

convergence, 5, 63flow, 60MBG, 6

Rayleigh-Bernard convection, 227method, 69

-Galerkin, 11-Ritz, 55, 56, 67, 68, 71, 76-Ritz-Timoshenko, 11

solution, 71reaction

Belousov-Zhabotinskiy, 232dynamical, 175force, 173, 192

reactor, 172real chaos, 283realization of

ideal system, 47MBG, 6

rectangularbase, 9

Page 42: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

416 Index

contact area, 189mesh, 303, 323plate, 8, 41, 178shell, 2, 16, 95, 100, 140, 281, 286, 291, 294

spherical, 84stability, 123

surface, 185rectilinear equilibrium form, 51, 53recurrent summation, 111reduction

dimension, 74method, 11, 31three-dimensional problem, 15

regularflow, 226motion, 274, 278vibrations, 231, 297wave, 325

regularity condition, 4, 233regularization, 330regulator, 298, 320relaxation method, 324reliability, 209, 210, 247, 270, 297relief, 313resistance, 41, 131

contour, 210, 216, 219time, 221

resonance, 90, 92, 93, 127, 134, 139, 147auto-parametric, 9high harmonic, 229internal, 236parametric, 7, 125subharmonic, 8

resonantfrequency, 236mode, 8

Reynolds number, 226rib, 15, 239

flexible, 180incompressible, 282not compressed, 28shell modelisation, 91width, 91, 101, 105

rigidbody, 171, 191

impact, 190element, 85shell, 89stability, 274

rigidity, 272Ritz

-Timoshenko method, 77, 183method, 2, 140solution, 71

rocket, 172, 235boosters, 236

rod, 11, 136, 140axially compressed, 10axis, 47

longitudinal, 51border, 52calculation, 56Euler, 138extra extension, 52post-buckled, 75prismatic, 4stability, 51supercritical force, 358thin, 51

rotaryinertia, 297, 320shell, 127, 155

rotation, 17, 181axis, 206free, 6point, 28

roughapproximation, 84solution, 54, 58

roughness, 203route to chaos, 7, 8, 10, 355RTN, 228Ruelle

-Takens-Feigenbaum scenario, 269-Newhouse scenario, 212, 218scenario, 269

-Takens-Newhouse scenario, 262

scenario, 228Ruelle-Takens scenario, 269Runge

-Kutta method, 9, 107, 120, 141, 143, 160,187, 191, 208, 235, 243, 273, 281, 291,357, 361

law, 141, 143, 291principle, 120, 248rule, 208, 361

saddle-node point, 231sampling, 117, 118Sanders-Koiter theorem, 10sandwich

beam, 319, 320sandwich beam, 297, 298scenario

Feigenbaum, 218, 262harmonic-chaotic motion, 225

Page 43: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 417

Landau-Hopf, 218, 225, 227, 228, 262Pomeau-Manneville, 231, 262Ruelle-Takens, 269

-Newhouse, 212, 218, 262to chaos, 317, 330, 355

scheme, 32Cauchy-Dirichlet, 2mode superposition, 7non-homogeneity, 92numerical integration, 3, 67, 83

second-order

approximation, 116derivative, 73determinant, 297, 320equation, 2, 7, 141, 184system, 131

typeelasticity, 17intermittency, 232system, 44

sector-type shell, 205, 212, 214, 218, 220vibrations, 216

self-balancing load, 320coupled

linear problem, 1operator, 5

dynamics, 225excited vibrations, 130, 132, 135interaction force, 195transformation, 92

separation of variations, 23series

approximated solutions, 5Fourier, 10, 69, 73, 113, 115, 156minimizing, 70power, 8, 320Taylor, 65trigonometric, 83, 157

“set-up” method, 209set-up method, 246, 248, 305shallow elastic shell, 9Sharkovskiy

diagram, 307theorem, 307, 317

shearmodulus, 299, 302, 321transverse, 297, 320

shell, 20, 41-mass

contact, 194interaction, 191, 197system, 188, 190

-typeconstruction, 180structure, 235, 236

“stiff”, 93, 101averaged, 264behavior, 91bending, 251buckling, 126curvature, 282cylindrical, 28, 235, 272, 273deflection, 161, 259

isocline, 211deformation, 28dynamics, 120, 292

irregular, 9edge, 153element, 30, 83flexible, 240, 294free vibrations, 127function, 57geometry, 140harmonically excited, 211height, 140heterogeneous, 144, 146homogeneous, 35, 85, 90, 100, 165imperfection, 153isotropic material, 17jump, 209kinetic energy, 25layer, 163load, 158loading, 88model, 15motion, 27, 124, 177non-homogeneous, 29, 89, 93, 96, 104parameter, 90perfect, 155pipe, 153point, 16, 79, 84radius, 212resistance, 206response, 261rise, 182section, 18sector-type, 205, 210, 216shallow, 3snap, 140spherical, 179, 287stability, 54, 75, 77, 123, 128, 152, 191, 237state

critical, 55initial, 76

strengthened, 156surface, 30, 78, 84, 86, 98, 243, 285

Page 44: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

418 Index

thickness, 124, 158thin, 15, 140to cutout transition, 34uniformly loaded, 221vertex, 208vibrations, 248

shuttle Challenger, 236simple-support, 8, 9, 323, 360simple-support beam, 319Simpson rule, 304sine, 72, 109, 117singular

impulse, 117phase trajectory, 130point, 157trajectory, 131, 132

singularities, 120singularity, 1, 131, 156

stable, 137sinusoidal load, 254, 270, 361skippings, 44slender beam, 6, 7, 319sliding clamping, 208sloping parameter, 206, 209, 210, 216, 217Smale

-Birkhoff homoclinic theorem, 7horseshoe, 7, 229

small sense, 90smart layer, 320smooth

function, 115reduction, 160surface, 48, 173thin shell, 156

smoothness, 4snap-through, 129snap-through buckling, 9Sobolev space, 4soft

characteristics, 121excitation, 133Hopf bifurcation, 269loading, 43regime, 129RTN scenario, 229shell, 84, 88, 101, 145

“soft”, 89“soft” shell, 91, 93solid body, 4, 47, 49solution, 4, 12

accuracy, 56, 63approximate, 5, 57, 58, 67behaviour, 61convergence, 241

correction, 83differential equation, 1, 10estimation, 65exact, 56, 62, 70, 119, 183, 210existence, 3Galerkin method, 69homogeneous, 240initially general, 136mass dynamics, 198MR application, 2periodic, 130, 358problem, 109region, 74rough, 54scheme, 7stable, 286statics, 209uniqueness, 271

solvability, 3, 4, 55space, 1, 37, 42, 303, 323

-located curve, 28-plane manifold, 229boundary, 225contact, 188five-dimensional, 139Hilbert, 73of integration, 301point mass, 36shuttle Challenger, 236Sobolev, 4three-dimensional, 238

spatialbehaviour, 61coordinate, 324coordinates, 1, 28, 107, 160, 210, 240, 283,

294, 357dimension, 8discrete model, 6problem, 4system, 271thermal load, 8variable, 207vibrations, 256

spectralanalysis, 95, 120frequency, 274method, 63, 74neighborhood, 10

spectroscope method, 112spectrum

frequency, 370spectrum power series, 8spherical shell, 100, 188, 216, 220, 281, 286SPM scenario, 231

Page 45: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 419

“spots”, 277spring, 42, 357springing support, 203square

addition, 84element, 41, 88, 102matrix, 99mesh, 141plate, 8

homogeneous, 107, 121representation, 61shell, 91

SRTN, 228stability, 43, 75, 84, 90, 124, 125, 130, 138,

139, 155analysis, 235bifurcational, 49, 270conditions, 361criterion, 45dynamic, 320dynamical, 8, 123, 191elastic, 41, 51equation, 54limit, 128loss, 42, 53, 85, 133, 149, 153, 156, 163,

168, 188, 189, 226, 254, 257, 260bifurcational, 51

Lyapunov, 140motion, 127rigid, 274shell, 3, 152, 237solution, 143, 273, 286statical, 30, 47, 77, 165stiff, 218, 264structural, 136transient, 9trivial, 7

stabilization, 103, 220solution, 7

stable limit cycle, 227state

-space approximation, 1chaos, 287critical, 45, 55, 168deflection, 83equilibrium, 11, 43, 44, 50, 54, 125, 137,

154, 191, 300, 320initial, 52, 76non-loaded, 49nonstatic, 279post-critical, 248, 256pre-critical, 217, 237stability, 47stress, 46, 127, 157

unstable, 231static, 18

approach, 324balance, 132behaviour, 15bifurcation, 123, 139buckling load, 166equilibrium, 154instability, 41load, 10, 125, 245

critical, 248motion, 279point of balance, 124problem, 6, 235

nonlinear, 4stability, 30, 135stresses, 193

staticalapproach, 42boundary condition, 55criterion, 45loading, 87method, 48, 54stability, 47, 76, 77, 85

statics, 107, 124analysis, 15problem, 4

stationarity, 46stationary

energy, 46motion, 130points, 1problem, 2, 5, 59, 61, 274

steady-statechaos, 7response, 358stability, 9time history, 372vibrations, 107

steering vibrations, 274stepping function, 34stiff

characteristics, 121shell, 98, 145stability loss, 257, 261, 264, 270

stiff shell, 91, 93stiffness, 15, 100

bending, 300, 316characteristics, 89coefficient, 104, 145constant, 281cutout, 35element, 84, 92, 102flexural, 19, 34, 35, 83

Page 46: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

420 Index

parameters, 30shell, 91

stochasticdisturbance, 132system, 129

stochasticity, 132straight normals hypothesis, 299strain, 123, 155

bending, axial, 236continuity conditions, 46elastic, 10flexural, 153function, 271, 282hardening, 303, 324linear, 300

strange attactor, 228strange attractor, 8, 135, 309strength

limit, 157strengthness, 322stress, 42, 152

-deflection, 108-deformation, 49-strain, 95, 157axial, 297, 320concentration, 124contact, 322function, 27, 206, 271initial, 53intensity, 303, 321measure, 193state, 127, 128to deformation transition, 22virtual, 46

stretched rib, 28stroboscope, 116stroke, 231strong

bending state, 237convergence theorem, 5deflection, 156filtrate action, 116focusing action, 115nonlinearity, 83

stronglycondensed series, 116nonlinear, 84

subcritical Hopf bifurcation, 9, 231subduction of chaos, 230subharmonic

motion, 8resonance, 10vibrations, 294

sudden

buckling, 124configuration transition, 191contact lack, 298jump, 188, 189prolongation, 294snap-through, 129, 155tripple bifurcation, 325

sufficient conditions, 7, 49, 139super-harmonic response, 236superposition, 7, 113, 129supersonic flow, 9support

ball-type, 28, 243contour, 216

free, 239, 273, 322edge, 283

springing, 203supported

periodically, 297rectangular plate, 8simply, 9

suppressing vibrations, 8surface, 32

balance, 139central, 16, 18, 23, 98contact, 48, 185, 189deflection, 197, 305, 310deformable, 175deformation, 358expansion, 101flow, 60interaction, 195irregularities, 175mean, 28middle, 124neutral, 172non-homogeneity, 102of chaos, 270parameter, 90physical, 74rotation, 17shell, 78, 84, 86, 243, 285smooth, 173transverse, 9unity, 178

suspension bridge, 135symmetric

bifurcation, 138clamping, 362deflections, 152, 210deformation, 237loading, 155matrix, 99operator, 69

Page 47: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 421

shell, 3, 19, 127, 205symmetrical

convergence, 120matrix, 99operator, 70

symmetryaxis, 84, 91condition, 208problem, 65

synchronic motion, 279synchronization, 123, 133–135, 220, 229, 279,

297, 306, 307, 313, 328-chaos, 233of frequencies, 223, 232

synchronization-intermittency-chaos, 233synchronized vibrations, 134, 307synchronous action, 205system, 193

n degrees-of-freedom, 95, 108“beam-impacting mass”, 370algebraic, 12, 158autonomic, 8basic, 5bifurcation, 129boundary, 128chaotic dynamics, 9characteristic point, 20conservative, 42, 45, 49, 75continuous, 41, 271, 288, 298coupled oscillators, 172deformable, 30, 42deformations, 49deterministic, 305, 358discrete, 136, 139dissipative, 272, 361disturbance, 43eigenelements, 5elastic, 152energy, 54

entire, 46potential, 51

equations, 56, 57, 59, 64, 285equilibrium, 44functions, 62Hamiltonian, 7hidden frequencies, 109lumped, 203mechanical, 95, 205multi-DOF, 358multibody, 324nonlinear, 129, 135, 243PDE, 240, 266perfect, 138post-buckled, 46, 50

resistance, 131shell-mass, 190stability, 10, 140, 145stable, 126structural mechanics, 7vibrating, 121with non-homogeneity, 3

system, complete, 72systems, 139

T index, 178“tail”, 110Takens scenario, 225, 228tangential plane, 180target-oriented excitation, 220Taylor

instability, 229series, 65

techniquecomputational, 6, 42numerical, 2perturbation, 7

technological defect, 298temperature

filed, 3gradient, 232linear law, 4

temporal solution trajectory, 7test

functions, 13, 58, 61, 62, 65, 67, 68, 71, 72,273, 283

solution, 64, 74theorem

Chetayev, 128convolution, 117decomposition, 113Dirichlet, 46, 56fundamental, 3Lagrange, 54

-Dirichlet, 46MBG, 2RTN, 228Sanders-Koiter, 10Sharkovskiy, 317Smale-Birkhoff, 7solution uniqueness, 4strong convergence, 5

theorycatastrophe, 136elasticity, 15, 20, 38, 49fractal, 8generalized functions, 36heat conduction, 60nonlinear, 8, 17

Page 48: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

422 Index

numerical methods, 5stability, 54thermal-elasticity, 4

thermal-elasticity, 4field, 9load, 8

thermoelasticity-type equation, 6thick plate, 9thickness

beam, 301modification, 30plate, 4rarefaction, 19shell, 16, 19, 91, 124

thin-walled

construction, 4layer, 61shell, 156, 188structure, 41, 172

plate, 4, 8, 18rod, 51shell, 9, 15, 140, 151, 153, 235

third order approximation, 2Thom’s list, 139three

-dimensionalequation, 226problem, 16shell, 272solution, 66space, 238, 281, 321

-impacts per motion, 358-layer wafer, 156-layered

beam, 297package, 305, 307

-mode interactions, 7time, 168, 301, 321

-dependentmoment, 222process, 42

-dependent loading, 358-independent

load, 237-spatial chaos, 226, 279finite, 128function, 26history, 214, 220, 249, 293

time history, 192Timoshenko

beam, 297equation, 176

method, 55model, 3, 319shell, 271, 358

titanium alloy, 167topological

similarity, 138structure, 131, 132

topology, 135, 229tori, 7toroidal matrix, 133, 134torque, 205, 221, 223, 360torsion moment, 268torus, 134, 229

doubling, 7total

energy, 49, 53potential, 50, 51

potential energy, 48trajectory, 174, 220, 229

balance, 138double asymptotic, 231mass, 193motion, 20phase, 130random, 139temporal solution, 7tripling, 268

transferenergy, 9heat, 4, 11

transformFourier, 36, 69, 109, 117, 120Housholder, 99

transientmapping, 120sampling period, 118stability, 9

transitionboundary, 37chaotic-harmonic, 276configuration, 191cutout-shell, 34force, 123harmonic-chaotic, 287into chaos, 262, 297, 315, 332process, 128rod, 51stresses-deformations, 22system, 1to equilibrium, 43

transitory process, 129, 154transversal

deflection, 255deformation coefficient, 299

Page 49: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

Index 423

displacement, 51homoclinic orbits, 7impact, 190load, 84, 123, 184, 235, 240, 243, 300, 304,

322, 357pressure, 237

transversallydriven beam, 300excited, 205vibrating mass, 173

transversedisplacement, 236load, 136, 144, 148, 168, 272, 276, 278, 283,

285loading, 358motion, 7surface, 9vibrations, 6, 297, 320

travelling, 8trebling, 251triangle, 181tridiagonal matrix, 99trigonometric series, 83trilayered shell, 166, 168triple bifurcation, 313, 325, 330, 355trivial stability, 7tube heat exchanger, 8turbulence, 132, 134, 225, 226, 231turbulent

flow, 226layer, 61solution, 226

twisting, 51two

-dimensionalorbit, 269problem, 16, 57system, 130, 139, 205

-form flatter, 139-frequency vibrations, 258, 261, 294-layered

package, 313-modes interaction, 9-period motion, 133-point boundary problem, 358-sided

constaints, 182constraints, 176impact model, 7

-to-one resonance, 9DOF system, 174post-buckled states, 45

two-dimensionalproblem

abstractive problem, 11two-layered

packagesynchronization, 317

umbilici catastrophe, 139unbounded motion, 8uncoupled

beams, 297oscillator, 373

undamped buckled beam, 7uniform

approximation, 55boundary condition, 64, 286boundary conditions, 127compression, 155convergence, 59, 251load, 221, 245norm, 2pressure, 156, 237shell, 161stretching, 8

unique function, 299uniqueness of solution, 4, 271, 358unirotational cycle, 287unity

function, 31, 33, 39surface, 178

unloading, 44, 155unstable equilibrium, 43

variablecoefficient, 54load, 272parameter, 30pitch angle, 7shell parameters, 15step, 120

variation, 3, 21, 50, 55, 75, 152, 212, 301coefficient, 181contact pressure, 312contact surface, 48damping, 362deflection, 189, 197energy, 51finite, 113function, 23, 24liquid molecules, 61method, 194, 321resonant frequency, 236

variational, 2approach, 45, 62criterion, 47differentiation, 28

Page 50: Bibliography - CERNBalamurugan V., Narayanan S., Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment. Journal

424 Index

equation, 15, 25, 26, 55estimation, 51function, 22inequality, 4method, 11, 67, 77, 183problem, 56, 74

variations separation, 23vector of displacement, 126velocity

constant, 200estimation, 5flow, 8function, 322liquid molecules, 61motion, 194non-dimensional, 226projection, 198surface point, 29

vertex, 208vertical

base excitation, 7displacement, 175load, 9movement, 48velocity component, 190, 192

virtual work, 174viscoelastic

-passive control, 298plate, 8

viscoelastic-passive control, 320Volmir criterion, 144, 168, 255volume, 60

elasticity, 299, 303elasticity modulus, 321

wafer, 156

waffled rib, 15wall, 291“wash-out” phase portrait, 329wave, 152, 154, 167, 255, 260, 278

amplitude-travelling, 8damped, 305elastic, 27impact, 171propagation, 297, 320

weakconvergence, 5depreciation of amplitude, 111turbulence, 134

weaklydamped, 7non-linear vibrations, 95

weight, 110, 115body, 176density, 301mass, 187

weightingerrors, 64–66

method, 58force, 172functions, 13, 59, 60, 62, 63, 73

weights, 61, 67weld conditions, 299WEM, 58wind-type load, 156, 160“wrinkle”, 138“wrinkle-type”, 137“wrinkle-type” catastrophe, 138, 139

Young modulus, 1, 163, 168, 299, 301, 302,359


Recommended