+ All Categories
Home > Documents > C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Date post: 23-Dec-2015
Category:
Upload: benedict-melton
View: 212 times
Download: 0 times
Share this document with a friend
26
CARBON NANOTUBE BASED ORGANIC SOLAR CELLS Arun Tej M. PhD Student EE Dept. and SCDT
Transcript

CARBON NANOTUBE BASED ORGANIC SOLAR CELLS

Arun Tej M.

PhD Student

EE Dept. and SCDT

• Carbon Nanotubes• Properties Useful for Solar Cells• Efficiency Limiting Factors• Nanotubes in Organic Solar Cells• Results and Future Challenges

2

Aru

n T

ej M

, RE

AC

H - 2

00

8

Outline

• S. Iijima - MWNT (1990), SWNT (1993)• Rolled graphene sheet with end caps• Large aspect ratios• Unique properties• Finds applications in

• Conductive plastics and adhesives• Energy storage• Efficient heat conduits• Structural composites• Biomedical devices

• Numerous electronic applications www.applied-nanotech.com

3

Aru

n T

ej M

, RE

AC

H - 2

00

8

Carbon Nanotubes

Aru

n T

ej M

, RE

AC

H - 2

00

8

4

Nanotube Field Emission Display

W.B. Choi, Samsung, APL, 1999

Thomas Rueckes, Nantero, 2000 5

Aru

n T

ej M

, RE

AC

H - 2

00

8

Nanotube Random Access Memory

Type of Memory

Most Important Feature

Applications

DRAM High Density Computer Operating Memory

SRAMFlash Memory

High SpeedNon-volatility

Cell Phones,Computer CachesPDAs, Cameras

MRAM High DensityHigh SpeedNon-volatility

All Uses

NRAM High DensityHigh SpeedNon-volatility

All Uses

Aru

n T

ej M

, RE

AC

H - 2

00

8

6

Nanotube Liquid Flow Sensor

A.K.Sood, IISc Bangalore, Science, 2003

7

Aru

n T

ej M

, RE

AC

H - 2

00

8

5 Stage Ring Oscillator on one SWNTZ.Chen, IBM, 2006

Nanotube Integrated Circuit

Aru

n T

ej M

, RE

AC

H - 2

00

8

8

Nanotube Based Inorganic Solar Cell

W.J.Ready, Georgia Tech, JOM, 2007

• High carrier mobilities (~1,20,000 cm2 V-1 s-1)

• Large surface areas (~1600 m2 g-1)

• Absorption in the IR range (Eg: 0.48 to 1.37 eV)

• Conductance - Independent of the channel length• Enormous current carrying capability – 109 A cm-2

• Semiconducting CNTs – Ideal solar cells• Mechanical strength & Chemical stability

9

Aru

n T

ej M

, RE

AC

H - 2

00

8

Nanotube Properties Useful for Solar Cells

Split-Gate device, Energy band diagram and I-V characteristics

10

Aru

n T

ej M

, RE

AC

H - 2

00

8

Combine the advantages of Organics and SWNTs 11

Aru

n T

ej M

, RE

AC

H - 2

00

8

Efficiency Improvement with SWNTs

Aru

n T

ej M

, RE

AC

H - 2

00

8

12

• Exciton dissociation sites• As electron acceptors in bulk heterojunction solar cells • Carrier transport• Thin transparent films of m-SWNTs as electrodes

Chhowalla et al, APL, 2005Wu et al, Science, 2004

Nanotubes in Organic Solar Cells

Aru

n T

ej M

, RE

AC

H - 2

00

8

13

Results (1)

Photoluminescence Quenching Higher Efficiency

Arun Tej M, S.S.K.Iyer, and B.Mazhari, IEEE INEC, 2008, Shanghai

Aru

n T

ej M

, RE

AC

H - 2

00

8

14

Results (2)

0 1 2 3 4 5 6 70

5

10

15

20

25

30

35

40

JP3HT

JSWNT (1wt%)

Cur

rent

Den

sity

(m

A/c

m2

)Forward Voltage

Negative resistanceregion showing tunneling behavior

Trap filling behaviour Tunneling behaviour

Arun Tej M, S.S.K.Iyer, and B.Mazhari, IEEE PVSC, 2008, San Diego

Aru

n T

ej M

, RE

AC

H - 2

00

8

15

0 20 40 60 80 1000.2

0.4

0.6

0.8

1.0

1.2

P3HT+SWNT (1wt%)

P3OT+SWNT (1wt%)

Op

en C

ircu

it V

olt

age

(v)

Light Intensity (mW cm-2)

High Voc of 1.15V at 1 Sun

High Open Circuit Voltages with Bulk Heterojunction Devices

Results (3)

Our WorkTo be published

• Synthesis of stable organic compounds• Separate semiconducting and metallic SWCNTs• Aligned CNTs inside the semiconducting polymers

give improved charge transport

e-

e-

e-

h+

h+

16

Aru

n T

ej M

, RE

AC

H - 2

00

8e-

h+

Future REACH (1)

• Add nanoparticles, quantum dots, fullerenes etc to the side walls of SWNTs

17

Aru

n T

ej M

, RE

AC

H - 2

00

8

e-

h+

h+

e-e-

h+

e-

h+

e-

Future REACH (2)

“A Solar Cell with Improved Light Absorption Capacity”

S. Sundar Kumar Iyer and Arun Tej M.Patent Appln. No. 933/DEL/2006

Dt: 31st March, 2006

New device structures

18

Aru

n T

ej M

, RE

AC

H - 2

00

8

Future REACH (3)

Aru

n T

ej M

, RE

AC

H - 2

00

8

19

Acknowledgements

• Faculty, Staff and Students, SCDT• Prof. Ashutosh Sharma, Chemical Engineering

20

Aru

n T

ej M

, RE

AC

H - 2

00

8

Schematic and energy diagram of a typical polymer solar cell and its operation

e-

h+

Anode Cathode Donor Acceptor

Exciton formation

Exciton diffusionExciton dissociationCarrier transport

Charge collection

21

Aru

n T

ej M

, RE

AC

H - 2

00

8

Organic Solar Cell

22

Aru

n T

ej M

, RE

AC

H - 2

00

8

Conjugated polymers Conduction due to

sp2– hybridised carbon atoms

and (pz-pz)bonds electrons are

delocalised in nature giving high electronic polarisability

High absorption in the UV-Visible range of the solar spectrum

H.Hoppe and N.S. Sariciftci, 2004

23

Aru

n T

ej M

, RE

AC

H - 2

00

8

METALLIC SWNTSMETALLIC SWNTS

24

Aru

n T

ej M

, RE

AC

H - 2

00

8

Conductance is independent of the channel length. 25

Aru

n T

ej M

, RE

AC

H - 2

00

8

Conductance through a barrier with transmission probability T.

Landauer Formula:

With N parallel 1D channels (subbands):

m-SWNTs: Only two subbands cross EF (N=2)

Source of R: Mismatch in the number of conduction channels in the SWNT and the macroscopic metal leads.

Th

eG

22

)(2

)(2

Fn

nF ETh

eEG

kR

Sh

e

h

eG

5.6~

1554

2*2 22

26

Aru

n T

ej M

, RE

AC

H - 2

00

8


Recommended