+ All Categories
Home > Documents > Calculations Reference Manual PPS-CRM-001

Calculations Reference Manual PPS-CRM-001

Date post: 22-Dec-2015
Category:
Upload: trebor-zurc
View: 57 times
Download: 10 times
Share this document with a friend
Description:
calculations ref. manual
Popular Tags:
123
H H A A L L L L I I B B U U R R T T O O N N P P I I P P E E L L I I N N E E A A N N D D P P R R O O C C E E S S S S S S E E R R V V I I C C E E S S Calculations Reference Manual
Transcript
Page 1: Calculations Reference Manual PPS-CRM-001

HHAALLLLIIBBUURRTTOONN PPIIPPEELLIINNEE AANNDD PPRROOCCEESSSS SSEERRVVIICCEESS

Calculations Reference Manual

Page 2: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 2 -

TABLE OF CONTENTS

1. PURPOSE AND SCOPE ........................................................................................................................................ 5 1.1 PURPOSE................................................................................................................................................................................................ 5 1.2 SCOPE..................................................................................................................................................................................................... 5

2. MATHEMATICAL FORMULAE........................................................................................................................ 6 2.1 ALGEBRA............................................................................................................................................................................................... 6 2.2 TRIGONOMETRY ................................................................................................................................................................................. 6

3. AREAS & VOLUMES............................................................................................................................................ 8 3.1 AREAS .................................................................................................................................................................................................... 8 3.2 VOLUMES .............................................................................................................................................................................................. 9

4. MECHANICS........................................................................................................................................................ 10 4.1 QUANTITY........................................................................................................................................................................................... 10 4.2 VELOCITY ........................................................................................................................................................................................... 10 4.3 ACCELERATION................................................................................................................................................................................. 10 4.4 LINEAR MOTION................................................................................................................................................................................ 10 4.5 FORCE (NEWTONS FIRST & SECOND LAW)................................................................................................................................ 11 4.6 SPRING FORCE (HOOKE’S LAW).................................................................................................................................................... 11 4.7 FRICTION FORCE............................................................................................................................................................................... 11 4.8 WEIGHT................................................................................................................................................................................................ 11 4.9 MOMENTUM ....................................................................................................................................................................................... 11 4.10 WORK (SIMPLE MECHANICAL) ..................................................................................................................................................... 12 4.11 MECHANICAL ENERGY ................................................................................................................................................................... 12 4.12 POWER ................................................................................................................................................................................................. 13

5. FLUIDS.................................................................................................................................................................. 14 5.1 DENSITY .............................................................................................................................................................................................. 14 5.2 PRESSURE (ENERGY DENSITY) ..................................................................................................................................................... 14 5.3 PRESSURE (POTENTIAL ENERGY DENSITY) .............................................................................................................................. 14 5.4 PRESSURE (KINETIC ENERGY DENSITY) .................................................................................................................................... 14 5.5 BERNOULLI EQUATION (ENERGY BALANCE)........................................................................................................................... 15 5.6 BERNOULLI EQUATION (IN LIQUID HEAD TERMS).................................................................................................................. 15 5.7 HYDRAULIC POWER (WATER)....................................................................................................................................................... 15

6. GAS LAWS............................................................................................................................................................ 16 6.1 JOULE THOMSON EXPANSION (TEMPERATURE ESTIMATION) ............................................................................................ 16 6.2 IDEAL GAS LAW (MOL).................................................................................................................................................................... 16 6.3 CALCULATION OF MOLECULAR MASS....................................................................................................................................... 17 6.4 AVOGADRO'S NUMBER ................................................................................................................................................................... 17 6.5 MOL - KG - LITRE (STP) - M3 (STP) ................................................................................................................................................. 18 6.6 STANDARD TEMPERATURE AND PRESSURE, REFERENCE CONDITIONS.......................................................................... 18 6.7 CONVERSION OF UNIVERSAL TO CHARACTERISTIC GAS CONSTANT .............................................................................. 19 6.8 IDEAL GAS LAW (MASS).................................................................................................................................................................. 19 6.9 VAN DE WAALS EQUATION ........................................................................................................................................................... 20 6.10 REAL GAS LAW (MASS) ................................................................................................................................................................... 21 6.11 CALCULATION OF COMPRESSIBILTY FACTOR......................................................................................................................... 21 6.12 COMPRESSIBILTY FACTOR LOOK UP TABLE ............................................................................................................................ 22

7. SERVICE CALCULATIONS.............................................................................................................................. 23 7.1 CALCULATION OF PIPE FILL VOLUME........................................................................................................................................ 23 7.2 AIR INCLUSION.................................................................................................................................................................................. 23 7.3 ASSESSMENT FOR PRESSURE CHANGE WITH TEMPERATURE VARIATION METHOD 1 (FRESH WATER) ................ 24 7.4 ASSESSMENT FOR PRESSURE CHANGE WITH TEMPERATURE VARIATION METHOD 2 (SEA WATER) ..................... 26 7.5 PRESSURE CORRECTION FOR ELEVATION FROM TEST DATUM OR CALCULATION OF STATIC HEAD.................... 30 7.6 PRESSURE CORRECTION FOR TIDAL CHANGE ......................................................................................................................... 30 7.7 ESTIMATION OF PRESSURE CORRECTION FOR ALTITUDE CHANGE.................................................................................. 31 7.8 DIFFERENTIAL PRESSURE TO DRIVE A PIG – RULE OF THUMB........................................................................................... 32 7.9 DIFFERENTIAL PRESSURE TO DRIVE A PIG ............................................................................................................................... 32 7.10 CALCULATION OF FLUID VELOCITY IN PIPES .......................................................................................................................... 33 7.11 CALCULATION OF FLUID PRESSURE DROP IN PIPES .............................................................................................................. 33 7.12 CALCULATION OF REYNOLDS NUMBER .................................................................................................................................... 34 7.13 CALCULATION OF FRICTION FACTOR LAMINAR FLOW Re <2000 .................................................................................... 35 7.14 CALCULATION OF FRICTION FACTOR TURBULENT FLOW 2000< Re <108 ....................................................................... 35 7.15 CALCULATION OF PRESSURE LOSS THROUGH FITTINGS AND VALVES........................................................................... 36

Page 3: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 3 -

7.16 MOODY DIAGRAM ............................................................................................................................................................................ 37 7.17 PRESSURE LOSS THROUGH FITTINGS AND VALVES............................................................................................................... 38 7.18 NOMOGRAPHS FOR PRESSURE LOSS THROUGH FITTINGS AND VALVES......................................................................... 39 7.19 TYPICAL VACUUM DRYING OPERATION ................................................................................................................................... 40 7.20 ESTIMATION OF TIME TAKEN TO EVACUATE A SYSTEM...................................................................................................... 40 7.21 CONDUCTANCE ................................................................................................................................................................................. 41 7.22 ESTIMATION OF EVAPORATION TIME ........................................................................................................................................ 41 7.23 ESTIMATION OF MASS REMOVAL RATE AT EVAPORATION STAGE .................................................................................. 42 7.24 ESTIMATION OF PIPELINE SYSTEM WATER CONTENT .......................................................................................................... 42 7.25 TYPICAL CHARACTERISATION OF AIR DRYING PROCESS.................................................................................................... 43 7.26 ESTIMATION OF AIR DRYING TIME ............................................................................................................................................. 44 7.27 SATURATION VAPOUR PRESSURE AND VAPOUR DENSITY TABLES OF WATER ............................................................ 45 7.28 METHANOL OR MEG SLUG SIZING FOR PIPELINE DEHYDRATION ..................................................................................... 47 7.29 RELATIVE DENSITY OF AQUEOUS METHANOL........................................................................................................................ 48 7.30 DEWPOINTS OVER MEG WATER MIXTURES.............................................................................................................................. 49 7.31 CALCULATION FOR NITROGEN/COMPRESSED AIR REQUIREMENTS FOR PIPELINE DEWATERING.......................... 50 7.32 CALCULATION FOR NITROGEN/COMPRESSED AIR FLOWRATE FOR PIPELINE DEWATERING................................... 51 7.33 CALCULATION ACCUMULATED HEAD....................................................................................................................................... 52 7.34 HYDRAULIC POWER REQUIREMENTS......................................................................................................................................... 53 7.35 HOOP STRESS ..................................................................................................................................................................................... 54 7.36 RELATIONSHIP BETWEEN ABSOLUTE AND GAUGE PRESSURES ........................................................................................ 55 7.37 PRESSURE CONVERSION CHART.................................................................................................................................................. 55 7.38 TEMPERATURE CONVERSION ....................................................................................................................................................... 55 7.39 NAMES IN METRIC SYSTEM ........................................................................................................................................................... 56

8. ELECTRICAL CALCULATIONS ..................................................................................................................... 57 8.1 CORRECTING RESISTANCE VALUES TO 20OC............................................................................................................................ 57 8.2 OHMS LAW.......................................................................................................................................................................................... 57 8.3 CONDUCTOR RESISTANCE ............................................................................................................................................................. 58 8.4 RESISTANCES IN SERIES ................................................................................................................................................................. 58 8.5 RESISTANCES IN PARALLEL .......................................................................................................................................................... 59 8.6 CALCULATING INDIVIDUAL RESISTANCES OF SHORTED TRIAD CABLES....................................................................... 59 8.7 CONDUCTOR RESISTANCE - 2-CORE / 3-LEG ............................................................................................................................. 60 8.8 PRINCIPLE OF ELECTRICAL INSULATION .................................................................................................................................. 61 8.9 INSULATOR RESISTANCE - 2-CORE / 3-LEG CORE TO CORE.................................................................................................. 61 8.10 INSULATOR RESISTANCE - 2-CORE / 3-LEG TO EARTH........................................................................................................... 62

9. PRESSURE DROPS ............................................................................................................................................. 63 9.1 TYPICAL WATER FRICTION LOSS................................................................................................................................................. 63 9.2 TYPICAL AIR FRICTION LOSS (COMPRESSED AIR HEADER SIZING)................................................................................... 64

10. GEL SYSTEMS..................................................................................................................................................... 67 10.1 INTRODUCTION ................................................................................................................................................................................. 67 10.2 GEL CHEMISTRY ............................................................................................................................................................................... 67 10.3 LINEAR AND CROSS LINKED GELS .............................................................................................................................................. 69 10.4 HYDRATION........................................................................................................................................................................................ 70 10.5 CURING ................................................................................................................................................................................................ 71 10.6 PH CONTROL ...................................................................................................................................................................................... 71 10.7 CONVENTIONAL LINEAR GELS..................................................................................................................................................... 71 10.8 BORATE-CROSSLINKED FLUIDS ................................................................................................................................................... 72 10.9 ORGANOMETALLIC-CROSSLINKED FLUIDS.............................................................................................................................. 72 10.10 ALUMINUM PHOSPATE-ESTER OIL GELS ................................................................................................................................... 72 10.11 BREAKERS........................................................................................................................................................................................... 73 10.12 FOAMED AND OTHER FLUIDS ....................................................................................................................................................... 75

11. PIPE AND FITTINGS ANSI ............................................................................................................................... 77 11.1 PIPE DIMENSIONS ............................................................................................................................................................................. 77 11.2 ANSI FLANGE TABLES ..................................................................................................................................................................... 78 11.3 ANSI RING TYPES.............................................................................................................................................................................. 82 11.4 ANSI BOLTING DETAIL.................................................................................................................................................................... 83 11.5 MAXIMUM ALLOWABLE NON-SHOCK PRESSURE (PSIG) AND TEMPERATURE RATINGS FOR STEEL PIPE FLANGES AND FLANGED FITTINGS ..................................................................................................................................................................... 89

12. PLANT SPECIFICATIONS ................................................................................................................................ 90 12.1 RECOMMENDED FLOW/VISCOSITY LIMITS FOR TURBINE FLOWMETERS........................................................................ 90 12.2 FILTER MESH SIZES .......................................................................................................................................................................... 91 12.3 PUMP OUTPUTS ................................................................................................................................................................................. 92 12.4 LIQUID NITROGEN TANKS (LIQUID LEVEL GAUGE READINGS) .......................................................................................... 99

13. SEDIMENT TRANSPORT WITH WATER ................................................................................................. 100

Page 4: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 4 -

14. CONVERSION FACTORS ............................................................................................................................... 101

15. RELATIVE ATOMIC MASS............................................................................................................................ 120

16. PERIODIC TABLE ............................................................................................................................................ 123

Page 5: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 5 -

1. PURPOSE AND SCOPE

1.1 PURPOSE The purpose of this manual is to ensure that HPPS personnel work to a common set of pre-commissioning engineering calculations, formulae and reference tables. By doing so it will ensure that there is consistency in results from any engineering analysis carried out across the department relevant to pre-commissioning activities. Although many of the calculations carried out by HPPS and our sub-contractors are done using spreadsheets or bespoke software, it is important that we promote a culture of non-reliance on software and develop an understanding of the basic concepts behind the work we perform. Manual calculations also acts as a check on the review and approval process to ensure that the analysis carried out, by other means, by our own personnel and the sub-contractors are correct and satisfactory. The calculations are broadly presented in SI units, conversions factors are also contained within.

1.2 SCOPE The reference calculations, formulae and tables contained within this document are to allow individuals to estimate key project variables such as volumes, pressures, environmental and physical constraints and power requirements. Accurate estimation is key to operational success. Using a standard reference will allow us to be consistent in approach. The content adopts industry standards and practices which are accepted by most of the legislative bodies. Many of the calculations are referred to in the Standards, Regulations and Codes of Practice we work to on behalf of our Clients.

Page 6: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 6 -

2. MATHEMATICAL FORMULAE

2.1 ALGEBRA 2.1.1 Expansion Formulae

(x+y)2 = x2 + 2xy + y2 (x-y)2 = x2 - 2xy + y2 x2-y2 = (x-y) (x+y) (x+y)3 = x3 + 3x3y + 3xy2 + y3 (x-y)3 = x3 - 3x3y + 3xy2 - y3 x3-y3 = (x-y) (x2 + xy + y2) x3+y3 = (x+y) (x2 + xy + y2)

2.1.2 Quadratic Equation If ax2

+ bx + c = 0 Then

aacbbx

242 −±−

=

2.2 TRIGONOMETRY 2.2.1 Basic Ratios

HO

=θsin HA

=θcos AO

=θtan

θ

O Opposite

A Adjacent

H Hypotenuse

Page 7: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 7 -

c

a

B

b

A

C

h

θ

O Opposite

A Adjacent

H Hypotenuse

c

a

B

b

A

C

2.2.2 Pythagoras’ Law O2 + A2 =H2

2.2.3 Solutions of triangles 2.2.3.1 Sine Law

Cc

Bb

Aa

sinsinsin==

2.2.3.2 Cosine Law

Cabbac cos2222 ⋅−+=

Abccba cos2222 ⋅−+=

Baccab cos2222 ⋅−+=

2.2.3.3 Area All Triangles

2bhArea =

2sin

2sin

2sin BacCabAbcArea ===

⎟⎠⎞

⎜⎝⎛ −

++⋅⎟⎠⎞

⎜⎝⎛ −

++⋅⎟⎠⎞

⎜⎝⎛ −

++⋅

++= ccbabcbaacbacbaArea

2222

Page 8: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 8 -

3. AREAS & VOLUMES

3.1 AREAS Rectangle Triangle A = a b A= ½ b h Parallelogram Trapezoid A = a b A = ½ (ab) h Hexagon Cone

A = 3/2 a b A = π/2 ds

Frustum of a Cone Cylinder

A = π/2 (D+d) s A = π d l

Circle Elipse A = π d2/4 A = π2 dD/4 Sphere A = π d2

a

b

a

b

b

h

a

b

h

a

b

d

s h

d

D

s d l

d d D

d

Page 9: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 9 -

3.2 VOLUMES Cube Cylinder V = a b c (Pipeline) V = πd2/4 L Vol/meter V = πd2/4 Cone Truncated Cone V = πd2/12 h V = πh/12(D2+Dd+d2)

Sphere V = πd3/6

a

b c

L

d

h

d

d

d

D h

Volume of a partially filled horizontal cylindrical tank can be calculated as below:

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦⎤

⎢⎣⎡ −⋅+⎟

⎠⎞

⎜⎝⎛ −

×−−= −

rhr

rhrhhrrLLrv 1sin)2(

21

2

Where; L = length of tank r = radius of tank h = height of liquid Volume of a partially filled horizontal cylindrical tank with ellipsoidal ends can be calculated as below:

( ) ⎥⎦⎤

⎢⎣⎡ −+⎟

⎟⎠

⎞⎜⎜⎝

⎛⎥⎦⎤

⎢⎣⎡ −⋅+⎟

⎠⎞

⎜⎝⎛ −

×−−= −

rhah

rhr

rhrhhrrLLrv

311sin)2(

221

2

2

ππ

Where; L = length of tank r = radius of tank h = height of liquid a = episoid height

h liquid height

L

r radius

a episoid height

Page 10: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 10 -

4. MECHANICS

4.1 QUANTITY Scalar - a property described by a magnitude only e.g. Speed Vector - a property described by magnitude and direction e.g. Velocity

4.2 VELOCITY

tsv =

Where: Variable Description UNITS (Metric)

s Distance / displacement m t Time s

v Velocity ms-1

4.3 ACCELERATION

tva∆∆

= 0tt

uvaf −−

=

Where: Variable Description UNITS (Metric)

a acceleration ms-2

∆t Time interval 0tt f − s

∆v Change in velocity ms-1

v Final Velocity ms-1

u Initial Velocity ms-1

ft Finish Time s

0t Start Time s

4.4 LINEAR MOTION

atuv += tuvs ⋅⎟⎠⎞

⎜⎝⎛ +

=2

2

21 atuts += asuv 222 +=

Where: Variable Description UNITS (Metric)

a acceleration ms-2 t Time interval 0tt f − s

v Final Velocity ms-1

u Initial Velocity ms-1

s distance m

Page 11: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 11 -

4.5 FORCE (NEWTONS FIRST & SECOND LAW) amF ⋅=

Where: Variable Description UNITS (Metric)

F Force (Newton) N (kgms-2)

m Mass kg

a Acceleration ms-2

4.6 SPRING FORCE (HOOKE’S LAW)

kxFs −= Where:

Variable Description UNITS (Metric) Fs

Spring force (Newton) N (kgms-2)

k Spring constant Nm-1

x Displacement of spring m

4.7 FRICTION FORCE

NF nn µ= NF kk µ= NF ss µ= Where:

Variable Description UNITS (Metric) Fn k s

Normal / kinetic / static Friction N (kgms-2)

N Normal Force (force keeping sliding components together)

N (kgms-2)

µn Coefficient of normal friction - µk Coefficient of kinetic (moving) friction - µs Coefficient of static friction -

4.8 WEIGHT

gmFWeight ⋅== Where:

Variable Description UNITS (Metric) F Force (Newton) N (kgms-2)

m Mass kg

g Acceleration due to Gravity (9.812ms-2 ) ms-2

4.9 MOMENTUM

vmp ⋅= Where:

Variable Description UNITS (Metric) p momentum kgms-1

m mass kg

v velocity ms-2

Page 12: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 12 -

4.10 WORK (SIMPLE MECHANICAL)

FsW = Where:

Variable Description UNITS (Metric) W Work (joule) J (Nm)

F Force N

s distance m

4.11 MECHANICAL ENERGY

QW = TME=QT=Qk+Qp+Qs

Where: Variable Description UNITS (Metric)

W Work (joule) J (Nm)

Q Energy (the ability to do work) J (Nm)

QT Total Mechanical Energy J (Nm)

Qk Kinetic Energy J (Nm)

Qp Potential Energy (gravity/magnetic) J (Nm)

Qs Potential Energy (spring/elastic material) J (Nm)

4.11.1 Kinetic Energy

2

21 mvQk =

Where: Variable Description UNITS (Metric)

Qk Energy (due to motion) J (Nm)

m mass kg

v Velocity ms-1

4.11.2 Potential Energy (gravity)

mghQp = Where:

Variable Description UNITS (Metric) Qp

Energy (due to position in a force field, i.e. gravity) J (Nm)

m mass kg

h Height above reference datum m

g Acceleration due to gravity (9.812 ms-2) ms-2

v Velocity ms-1

Page 13: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 13 -

4.11.3 Potential Energy (spring)

2

21 kxQs =

Where: Variable Description UNITS (Metric)

Qp Energy (due to deformation of an elastic material) J (Nm)

k Spring constant Nm-1

x Spring displacement m

4.12 POWER

tWP /= tQP /= vFP ⋅= Where:

Variable Description UNITS (Metric) P Power (watt) rate of doing work W (js-1)

Q Energy (the ability to do work) J (Nm)

W Work (joule) J (Nm)

t Time interval 0tt f − s

v velocity ms-1

Page 14: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 14 -

5. FLUIDS

5.1 DENSITY

Vm

Where: Variable Description UNITS (Metric) ρ density kgm-3

m mass kg

V volume m-3

5.2 PRESSURE (ENERGY DENSITY)

VolumeEnergy

VW

sAsF

AFP ==

⋅⋅

⇒=

Where: Variable Description UNITS (Metric)

P Pressure (Pascal) Pa (Nm-2 )=J/m3

F Force (Newton) N (kgms-2)

A Area m2

s Distance/displacement m

W Work Done J

V Volume m3

5.3 PRESSURE (POTENTIAL ENERGY DENSITY)

ghP ρ= Where:

Variable Description UNITS (Metric) P Pressure (Pascal) Pa (Nm-2 ) =J/m3

ρ density kgm-3

h Height above datum m

g Acceleration due to gravity (9.812ms-2) ms-2

5.4 PRESSURE (KINETIC ENERGY DENSITY)

2

21 vP ρ=

Where: Variable Description UNITS (Metric)

P Pressure (Pascal) Pa (Nm-2 ) =J/m3

ρ density kgm-3

v velocity ms-1

Page 15: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 15 -

5.5 BERNOULLI EQUATION (ENERGY BALANCE)

•−∆+++=++V

QPvghPvghP f2222

2111 2

121 ρρρρ

Where: Variable Description UNITS (Metric)

P Pressure (Pascal) Pa= (Nm-2 ) =J/m3

ρ density kgm-3

v velocity ms-1

∆Pf Friction Pressure Loss Pa= (Nm-2)

Q Work added to system W

V Flow rate m3s-1

g Acceleration due to gravity (9.812ms-2) ms-2

1 Initial Condition

2 Final Condition

5.6 BERNOULLI EQUATION (IN LIQUID HEAD TERMS)

Qf hhg

vhg

Pg

vhg

P−+++=++

22

22

22

21

11

ρρ

Where:

Variable Description UNITS (Metric) P Pressure (Pascal) Pa =(Nm-2 ) =J/m3

ρ density kgm-3

v velocity ms-1

hf Friction head Loss m

Qh head added to system i.e. pump m

g Acceleration due to gravity (9.812ms-2) ms-2

1 Initial Condition

2 Final Condition

5.7 HYDRAULIC POWER (WATER)

= VPQ Where:

Variable Description UNITS (Metric) P Pressure (Pascal) Pa= (Nm-2 ) =J/m3

Q Power/Work added to system W (js-1)

V Flow rate m3s-1

Page 16: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 16 -

6. GAS LAWS

6.1 JOULE THOMSON EXPANSION (TEMPERATURE ESTIMATION)

⎥⎥⎦

⎢⎢⎣

⎡⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−∆=∆

po Cb

TRaPT 12

Where: Variable Description UNITS (Metric) ∆T Change in Temperature K (°C)

∆P Change in Pressure Pa

a Van de Waals attraction coefficient Pa m6mol-2

b Van de Waal's size coefficient m3mol-1

T Temperature prior to throttling K

Cp Isobaric heat capacity J mol-1 K-1

M Molar Mass (atomic mass unit) of gas g

Ro Universal Gas Constant R = 8.314570[70] J K-1 mol-1 Universal Gas Constant

Bracketed value is 1st standard deviation

J K-1 mol-1

Name Van der Waal’s Coefficients

a b Cp (@300K)* Formula Gas Pa m6 mol-2 m3 mol-1 J mol-1 K-1

Air Air 0.1358 0.0000385 29.002 Ar Argon 0.1355 0.0000322 20.781

CH4 Methane 0.2303 0.0000431 36.154 CO2 Carbon dioxide 0.3658 0.0000427 37.048 H2 Hydrogen 0.02452 0.0000265 28.647

H2O Steam 0.5537 0.0000305 33.733 He Helium 0.00346 0.0000237 20.788 N2 Nitrogen 0.1370 0.0000391 29.196 O2 Oxygen 0.1382 0.0000318 29.491

* Note: Cp is pressure and temperature dependent (hence estimation)

6.2 IDEAL GAS LAW (MOL) First order equation of state

.2

22

1

11 constT

VPT

VP=

⋅=

TnRPV o=

Where: Variable Description UNITS (Metric)

Ro Universal Gas Constant R = 8.314570[70] J K-1 mol-1 Universal Gas Constant

Bracketed value is 1st standard deviation

J K-1 mol-1

n Number of moles mol

P Absolute Pressure Pa

V Volume m3

T Temperature K

Note: 1 mol “Ideal Gas” at STP occupies 0.0224197m3 = 22.4197 L

Page 17: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 17 -

6.3 CALCULATION OF MOLECULAR MASS Example Water (H2O)

(2 x Hydrogen) + Oxygen = Water H2 + 0 = H2O (2 x 1.00794) + 15.9994 = 18.0153 Example Sodium Chloride (NaCL)

Sodium + Chlorine = Sodium Chloride Na + CL = NaCL 22.9898 + 35.4527 = 48.4425 Ref. section x for full listing of Relative Atomic Masses

6.4 AVOGADRO'S NUMBER Avogadro's number (NA) is the number of particles (atoms, molecules, or ions) in a mole. Avogadro's number is. NA = 6.02214199(47) x 1023 mol-1 particles per mole of any substance.

.1000

mN

M

A

=⋅

Where: Variable Description UNITS (Metric)

NA Avogadro's number 6.02214199(47) x 1023 mol-1 mol-1

M Relative Atomic or Molecular Mass g

m Mass of individual molecule kg

Page 18: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 18 -

6.5 MOL - KG - LITRE (STP) - M3 (STP)

.1000

mMn=

LVn =⋅ 4197.22

mVn =⋅ 0224197.0

Mmn 1000. ⋅

=

Where: Variable Description UNITS (Metric)

n Number of moles mol;

M Relative Molar Mass (Atomic Mass) g

m Mass kg

VL Volume Litres (STP) Litre

Vm Volume m3 (STP) m3

6.6 STANDARD TEMPERATURE AND PRESSURE, REFERENCE CONDITIONS

Acronym Standard Temperature K

Pressure Pa

Humidity %RH

Lapse Rate

K Km-1

STP Standard Temperature & Pressure 273.15 101325 - - ISA International Standard Atmosphere 288.15 101325 0 -6.5 NTP Normal Temperature & Pressure 293.15 101600 - - ASM Army Standard Metro 288.15 99991.6 78 - SATP Standard Ambient Temperature & Pressure 298.15 100000 - -

Page 19: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 19 -

6.7 CONVERSION OF UNIVERSAL TO CHARACTERISTIC GAS CONSTANT

MRR o×

=1000'

Where: Variable Description UNITS (Metric)

R’ Ideal or Characteristic Gas Constant J kg-1K-1

M Relative Molar Mass (atomic mass) of gas g mol-1

Ro Universal Gas Constant R = 8.314570[70] J K-1 mol-1 Universal Gas Constant

Bracketed value is 1st standard deviation

J K-1 mol-1

Atomic And Molecular Masses of Some Common Substances

Atomic Number Symbol Name Atomic/ Molecular mass g/mol

1 H Hydrogen 1.00794(7) H2 Hydrogen Gas 2.01588 H2O Water 18.0153 2 He Helium 4.002602(2) 6 C Carbon 12.0107(8) CO Carbon Monoxide 28.0101 CO2 Carbon Dioxide 44.0095 CH4 Methane 16.04246 7 N Nitrogen 14.0067(2) N2 Nitrogen Gas 28.0134 8 O Oxygen 15.9994(3) O2 Oxygen Gas 31.9988 11 Na Sodium 22.989770(2) 17 Cl Chlorine 35.453(2)

Green for Gases Ref. section x for full listing

6.8 IDEAL GAS LAW (MASS)

First order equation of state

.2

22

1

11 constT

VPT

VP=

⋅=

TmRPV '=

Where: Variable Description UNITS (Metric)

R’ Ideal or Characteristic Gas Constant J kg-1K-1

m Mass kg

P Absolute Pressure Pa

V Volume m3

T Temperature K

Page 20: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 20 -

6.9 VAN DE WAALS EQUATION Second Order equation of state approximation

( ) TnRnbVVnaP o=−⎟⎟

⎞⎜⎜⎝

⎛+ .2

2

Where: Variable Description UNITS (Metric)

Ro Universal Gas Constant

R = 8.314570[70] J K-1 mol-1 Universal Gas Constant Bracketed value is 1st standard deviation

J K-1 mol-1

n Number of moles mol

P Absolute Pressure Pa

V Volume m3

T Temperature K

a Van de Waals attraction coefficient Pa m6 mol-2

b Van de Waal’s size coefficient m3 mol-1

Tc Critical Temperature K

Pc Critical Pressure Pa

PV Diagram “Water”

Name Van der Waals Coefficients

Formula Gas a b Cp (@300K)*

Pc Tc

Pa m6 mol-2 m3 mol-1 J mol-1 K-1 Pa K Air Air 0.1358 0.0000385 29.002 3770000 133 Ar Argon 0.1355 0.0000322 20.781 4860000 150.7

CH4 Methane 0.2303 0.0000431 36.154 4600000 190.6 CO2 Carbon dioxide 0.3658 0.0000427 37.048 7390000 304.2 H2 Hydrogen 0.02452 0.0000265 28.647 1300000 33.2

H2O Steam 0.5537 0.0000305 33.733 22090000 647.3 He Helium 0.00346 0.0000237 20.788 230000 5.2 N2 Nitrogen 0.1370 0.0000391 29.196 3390000 126.2 O2 Oxygen 0.1382 0.0000318 29.491 5080000 154.7

Note: Cp is pressure and temperature dependent (hence estimation)

Critical Temperature - The highest temperature at which a distinct liquid phase exists. When the temperature of a substance is below its critical temperature, its vapor can be liquefied by raising the pressure. Above the critical temperature, however, it can't be liquefied thus it behaves as a gas no matter what the pressure is because only one phase can exist.

Page 21: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 21 -

Critical Pressure - The vapor of a liquid at the critical temperature. Equation listed for interest only and as used in Joule Thompson Expansion equation. This would be the limit for manual calculation more accurate equations of state such as the Peng-Robinson EOS are used in computational thermo and fluid dynamics. 6.10 REAL GAS LAW (MASS)

Second order equation of state approximation

TzmRPV '= Where:

Variable Description UNITS (Metric) R’ Ideal or Characteristic Gas Constant J kg-1K-1

z Compressibility Factor -

m Mass kg

P Absolute Pressure Pa

V Volume m3

T Temperature K

6.11 CALCULATION OF COMPRESSIBILTY FACTOR

Law of Corresponding States

cr P

PP =

cr T

TT =

Where: Variable Description UNITS (Metric)

Pc Critical Pressure of Gas Pa

Tc Critical Temperature of Gas K

P Gas Pressure Pa

T Gas Temperature K

z Compressibility Factor from table overleaf -

Note: Compressibility factors for methane CH4 range from 1 to 0.79 depending pressure and temperature, so can have

a significant effect on calculation.

Page 22: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 22 -

6.12 COMPRESSIBILTY FACTOR LOOK UP TABLE

Pr

Tr 0.01 0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 1.5 2 3 5 7 10 0.3 0.003 0.015 0.029 0.058 0.116 0.174 0.232 0.289 0.347 0.434 0.578 0.865 1.437 2.005 2.851

0.35 0.003 0.013 0.026 0.052 0.104 0.156 0.208 0.26 0.312 0.39 0.52 0.778 1.29 1.799 2.554 0.4 0.002 0.012 0.024 0.048 0.095 0.143 0.19 0.238 0.285 0.356 0.474 0.71 1.116 1.637 2.321

0.45 0.002 0.011 0.022 0.044 0.088 0.132 0.176 0.22 0.264 0.329 0.438 0.655 1.084 1.502 2.134 0.5 0.002 0.01 0.021 0.041 0.083 0.124 0.165 0.206 0.247 0.307 0.409 0.611 1.009 1.402 1.98

0.55 0.98 0.01 0.02 0.039 0.078 0.117 0.155 0.194 0.232 0.29 0.385 0.575 0.948 1.313 1.852 0.6 0.985 0.009 0.019 0.037 0.074 0.111 0.148 0.184 0.22 0.275 0.366 0.545 0.896 1.24 1.744

0.65 0.988 0.938 0.018 0.036 0.071 0.106 0.142 0.117 0.211 0.263 0.35 0.52 0.853 1.171 1.652 0.7 0.99 0.95 0.896 0.034 0.069 0.103 0.137 0.17 0.204 0.254 0.336 0.499 0.816 1.124 1.573

0.75 0.992 0.96 0.917 0.034 0.067 0.1 0.133 0.166 0.198 0.246 0.326 0.482 0.785 1.019 1.505 0.8 0.994 0.967 0.932 0.854 0.967 0.932 0.131 0.163 0.194 0.241 0.318 0.469 0.76 1.04 1.446

0.85 0.995 0.973 0.944 0.881 0.066 0.098 0.13 0.161 0.192 0.238 0.313 0.459 0.739 1.007 1.394 0.9 0.995 0.977 0.953 0.902 0.78 0.101 0.132 0.163 0.194 0.238 0.311 0.453 0.722 0.979 1.35

0.93 0.996 0.979 0.957 0.912 0.806 0.664 0.136 0.166 0.196 0.241 0.312 0.451 0.714 0.965 1.326 0.95 0.996 0.98 0.96 0.917 0.821 0.697 0.141 0.171 0.2 0.243 0.314 0.45 0.709 0.956 1.311 0.97 0.996 0.982 0.963 0.923 0.834 0.724 0.558 0.178 0.206 0.247 0.316 0.45 0.705 0.948 1.297 0.98 0.997 0.982 0.964 0.925 0.84 0.736 0.589 0.184 0.21 0.25 0.318 0.451 0.704 0.944 1.29 0.99 0.997 0.983 0.965 0.928 0.846 0.747 0.614 0.196 0.215 0.254 0.32 0.451 0.702 0.941 1.284

1 0.997 0.983 0.966 0.93 0.851 0.757 0.635 0.29 0.223 0.258 0.322 0.452 0.1 0.937 1.277 1.01 0.997 0.984 0.967 0.932 0.856 0.767 0.654 0.465 0.237 0.264 0.326 0.453 0.699 0.934 1.271 1.02 0.997 0.984 0.968 0.934 0.861 0.776 0.671 0.515 0.263 0.272 0.33 0.455 0.698 0.93 1.265 1.05 0.997 0.986 0.971 0.94 0.874 0.8 0.713 0.603 0.444 0.313 0.345 0.46 0.696 0.922 1.248

1.1 0.998 0.987 0.975 0.949 0.893 0.832 0.765 0.688 0.598 0.458 0.395 0.477 0.695 0.911 1.223 1.15 0.998 0.989 0.978 0.955 0.908 0.858 0.803 0.744 0.68 0.52 0.476 0.504 0.698 0.903 1.202

1.2 0.998 0.99 0.981 0.961 0.921 0.878 0.833 0.186 0.136 0.661 0.561 0.543 0.707 0.899 1.184 1.3 0.999 0.993 0.985 0.97 0.94 0.908 0.876 0.844 0.811 0.762 0.691 0.634 0.736 0.9 1.158 1.4 0.999 0.994 0.988 0.977 0.953 0.93 0.906 0.883 0.86 0.826 0.175 0.72 0.716 0.911 1.142 1.5 0.999 0.995 0.991 0.982 0.964 0.946 0.928 0.91 0.893 0.869 0.833 0.789 0.82 0.93 1.134 1.6 0.999 0.996 0.993 0.986 0.971 0.958 0.944 0.931 0.918 0.9 0.874 0.841 0.862 0.952 1.132 1.7 0.999 0.997 0.994 0.989 0.978 0.967 0.956 0.946 0.937 0.923 0.904 0.881 0.898 0.915 1.134 1.8 1 0.998 0.996 0.991 0.982 0.974 0.966 0.958 0.951 0.941 0.928 0.912 0.93 0.996 1.139 1.9 1 0.998 0.996 0.993 0.986 0.98 0.974 0.968 0.962 0.955 0.946 0.936 0.956 1.015 1.145

2 1 0.999 0.997 0.994 0.989 0.984 0.98 0.975 0.912 0.966 0.96 0.955 0.977 1.033 1.152 2.2 1 0.999 0.998 0.997 0.994 0.991 0.989 0.987 0.985 0.983 0.981 0.982 1.009 1.06 1.164 2.4 1 1 0.999 0.998 0.997 0.996 0.995 0.994 0.994 0.994 0.995 1.001 1.031 1.019 1.173 2.6 1 1 1 0.999 0.999 0.999 0.999 0.999 1 1.001 1.004 1.014 1.046 1.093 1.179 2.8 1 1 1 1 1.001 1.001 1.002 1.003 1.004 1.006 1.011 1.022 1.057 1.102 1.183

3 1 1 1 1.001 1.002 1.003 1.004 1.005 1.007 1.01 1.015 1.028 1.064 1.108 1.185 3.5 1 1 1.001 1.002 1.004 1.006 1.008 1.009 1.012 1.016 1.022 1.037 1.072 1.114 1.183

4 1 1.001 1.001 1.002 1.004 1.007 1.009 1.012 1.014 1.018 1.025 1.04 1.074 1.114 1.177

Page 23: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 23 -

7. SERVICE CALCULATIONS

7.1 CALCULATION OF PIPE FILL VOLUME

Vt D L=π 2

4

Where:

Variable Description UNITS (Metric) D Diameter of pipe m L Length of pipe m

Vt Fill Volume of system m3

Estimation of pipe volume based on simple cylinder, more complex shapes will require more complex modelling, if they comprise a large percentage of the system. For instance manifolds, wellheads. 7.2 AIR INCLUSION

VaSa St Vp

Vt=

− ××

1001

Where: Variable Description UNITS (Metric)

Va Air Content (expressed as % of total fill Volume) %

Sa Actual number of pump strokes to 35 Bar

St Theoretical number of pump strokes to 35 Bar

Vp Volume per pump stroke m3

Vt Fill Volume of system m3 To calculate St : Find the average pump strokes taken to raise the pressure by one bar between the

pressures of 25 to 35 bar. Multiply this average by 35 to obtain the theoretical stroke figures, this figure approximates the volume to pressurise to 35 bar with no air present in the system.

Estimation of the volume of included air, primarily this is a safety concern the secondary effect of large volumes of included air is to increase fluid compressibility and amplify temperature response.

GRAPHICAL REPRESENTATION OF AIR CONTENT

Volume of Water Added

Pressure

Elastic Line

Extrapolated Line Volume of Air (Va)

D

L

Page 24: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 24 -

7.3 ASSESSMENT FOR PRESSURE CHANGE WITH TEMPERATURE VARIATION

METHOD 1 (FRESH WATER)

∆P TD t

f=

+264 7

100.

/

Where: Variable Description UNITS (Metric)

∆P is the pressure change in Bar /oC Bar /oC

Tf is the temperature factor (from attached graph)

D is the nominal pipe diameter m

t is the nominal wall thickness m The temperature factor Tf should be read from the attached graph at the mean test temperature. ∆P should be multiplied by the temperature change during the test to find the pressure correction. Account should be taken of both ambient submerged and pipework temperature, when calculating the pressure temperature relationship.

Note 1: It has been observed that a significant time lag may occur between a change in ambient temperature and a corresponding change in pipe temperature.

Note 2: Chill or heat factors on exposed pipe may have an effect on pressure readings.

(Source: PD8010 Part 1)

Estimation of temperature variation during a pressure test with fresh water as the test medium, this is not the only method but is simpler than using fresh water coefficients in the J.C. Gray formulae later in this document. The calculation is used to demonstrate that pressure variation can be accounted for by temperature (in most cases we are trying to explain pressure losses, but the calculation applies equally to pressure increases, however it is unusual for a client to request these to be calculated).

Page 25: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 25 -

Tf Graph (Temperature factor)

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

Temperature ºC

Tem

pera

ture

Fac

tor

Page 26: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 26 -

7.4 ASSESSMENT FOR PRESSURE CHANGE WITH TEMPERATURE VARIATION METHOD 2 (SEA WATER)

(Source: J.C.Gray)

7.4.1 Pressure Volume Formula The following formulae are used to determine the theoretical volume to pressurise a restrained or unrestrained pipeline. RESTRAINED

[ ]V P Vtk

Vt y IDW E

= × +−

×

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

1 2

UNRESTRAINED

[ ]V P Vtk

Vt y IDW E

= × +−×

⎧⎨⎩

⎫⎬⎭

5 4

Where:

Variable Description UNITS (Metric)

V Volume to pressurise m3

P Test Pressure Bar

Vt Line Fill Volume m3

k 1/C Reciprocal of compressibility Bar

C Compressibility Factor of Water Bar -1

ID Internal Diameter of Pipeline m

W Pipe wall Thickness m

E Young’s Modulus of Elasticity for Pipe material Bar

y Poisson’s Ratio for Pipe Material

Approximate values for Young’s Modulus and Poisson’s Ratio

E = 20.7 x 105 Bar y = 0.3

Estimation of the required volume to pressurise a pressure test with sea water as the test medium (fresh if C for fresh water is used), this is the J.C. Gray formulae. Other formulae have been derived (Shell EM 065) but the results have negligible difference. Be aware of local differences in salinity (most waters are 3.5%). Data can be produced via software for any salinity.

Page 27: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 27 -

7.4.2 Pressure/Temperature Formulae This formula is used to calculate any pressure changes attributed to the temperature effect on the pipeline system under hydrostatic test.

[ ][ ] ∆P

WE B A

OD y WEC=

× − +

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

2

1 2

Where: Variable Description UNITS (Metric)

∆P Pressure change due to temperature Bar / oC

A Coefficient of expansion of pipe material oC-1

OD Pipe Outside Diameter m

C Compressibility Factor of Water Bar -1

B Expansion Coefficient of Water oC-1

W Pipe wall Thickness m

E Young’s Modulus of Elasticity for Pipe material Bar

y Poisson’s Ratio for Pipe Material

Note: For restrained pipelines substitute 3 A for 2 A The properties, A , E and y are constant for any one type of pipe material, the most commonly used material being steel. The values of A , E and y for steel are listed:

A = 1.116 x 10 -5 oC-1 E = 20.7 x 105 bar y = 0.3

The allowable pressure change attributable to environmental effects must be calculated for each °C of the temperature change experienced over the test period and then averaged. i.e. x bar at a°C y bar at b°C z bar at c°C Estimation of temperature variation during a pressure test with sea water as the test medium, this is the J.C. Gray formulae. Other formulae have been derived (Shell EM 065) but the results have negligible difference. Be aware of local differences in salinity (most waters are 3.5%). Data can be produced via software for any salinity.

Page 28: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 28 -

C Graph Compressibility Factor of Sea Water 3.5% Salinity

30.0E-06

31.0E-06

32.0E-06

33.0E-06

34.0E-06

35.0E-06

36.0E-06

37.0E-06

38.0E-06

39.0E-06

40.0E-06

41.0E-06

42.0E-06

43.0E-06

44.0E-06

45.0E-06

46.0E-06

47.0E-06

48.0E-06

0 5 10 15 20 25 30 35 40

Temperature

Com

pres

sibi

lity

1 Bar

50 Bar

100 Bar

150 Bar

200 Bar

250 Bar

300 Bar

350 Bar

400 Bar

450 Bar

500 Bar

550 Bar

600 Bar

650 Bar

700 Bar

800 Bar

900 Bar

1000 Bar

1100 Bar

3.5 % Salinity

Compressibility calculated from the formulae within . The Specific Volume of Seawater, Chen Tung “Arthur “ Chen & Frank J Miller.

Page 29: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 29 -

B Graph Expansion Coefficient of Sea Water 3.5% Salinity

000.0E+00

050.0E-06

100.0E-06

150.0E-06

200.0E-06

250.0E-06

300.0E-06

350.0E-06

400.0E-06

450.0E-06

0 5 10 15 20 25 30 35 40

Temperature

Expa

nsio

n C

oeffi

cien

t

1 Bar

50 Bar

100 Bar

150 Bar

200 Bar

250 Bar

300 Bar

350 Bar

400 Bar

450 Bar

500 Bar

550 Bar

600 Bar

650 Bar

700 Bar

800 Bar

900 Bar

1000 Bar

1100 Bar

3.5 % Salinity

Expansion coefficient calculated from the formulae within. The Specific Volume of Seawater, Chen Tung “Arthur “ Chen & Frank J Miller..

Page 30: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 30 -

Static Head Seawater

h (+ve)

Tidal Height at commencement of test

Item under Test

Time

Tidal Height at end of test

LAT Datum (lowest Astronomical Tide)

7.5 PRESSURE CORRECTION FOR ELEVATION FROM TEST DATUM OR

CALCULATION OF STATIC HEAD

PCorrectiong h

100000=

× ×ρ

Where:

Variable Description UNITS (Metric)

ρ Density of Test medium kg/m3

g Acceleration due to gravity (9.81 ms-2) ms-2

h Height from test datum (+ve or -ve) m

PCorrection Pressure Correction Bar

ρ Sea water = 1024 Kg/m3 ρ Fresh water = 1000 Kg/m3

Calculation pressure due to the static head of a column of water, take care of regional differences in density and gravity. 7.6 PRESSURE CORRECTION FOR TIDAL CHANGE

PCorrectiong h

100000=

× × ×0 3. ρ

Where:

Variable Description UNITS (Metric)

ρ Density of Seawater kg/m3

g Acceleration due to gravity (9.81 ms-2) ms-2

h Change in height of tide (+ve or -ve) m

PCorrection Pressure Correction Bar

ρ Sea water = 1024 Kg/m3

Estimation of pressure change due to changes in tidal height, note only 30% is shown to be transferred to the pipeline contents. Other factors may shield pipe from tidal effect i.e. bundle, pipe in pipe, heavy insulation and deep burial.

Test Datum (e.g. LAT)

Instrument Point

h (-ve correction)

Page 31: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 31 -

7.7 ESTIMATION OF PRESSURE CORRECTION FOR ALTITUDE CHANGE

0/0

hhh ePP −=

Where: Variable Description UNITS (Metric)

0P Pressure at Sea Level (1.013 Bar A) Bar A

hP Pressure at Altitude Bar A

e 2.718281828

h Change in height altitude (+ve or -ve) m

0h Scale Height of Atmosphere (8500m) m

Estimation of pressure change due to changes in altitude, this is for operational planning lower air pressures effectively derate the horsepower developed by engines and the efficiency of compressors.

Page 32: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 32 -

7.8 DIFFERENTIAL PRESSURE TO DRIVE A PIG – RULE OF THUMB

∆P =D

210

Where: Variable Description UNITS (Metric)

∆P Differential Pressure to drive pig Bar

D Internal Diameter in mm mm Source: British Gas Spec BGC/PS/PC1

7.9 DIFFERENTIAL PRESSURE TO DRIVE A PIG

050

100150200250300350400450500

Sph

ere

Bar

e Fo

am

Dua

l Con

e P

ig

Bi-D

i Pig

Con

e P

ig

Pol

y C

oate

dFo

am

Bru

sh P

ig

k

∆P =

DK

Where: Variable Description UNITS (Metric)

∆P Differential Pressure to drive pig Bar

K Factor from Diagram

D Internal Diameter in mm mm Ref: Cordell, J.L “Design of Pigs for subsea systems”, Subsea Pigging Conference, September 1986, Haugesund.

Page 33: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 33 -

7.10 CALCULATION OF FLUID VELOCITY IN PIPES

v Q

D=

&

π 2

4

Where:

Variable Description UNITS (Metric)

&Q Fluid Flowrate m3/s

D Diameter of pipe m

v Flow Velocity m/s

7.11 CALCULATION OF FLUID PRESSURE DROP IN PIPES

D020000=P

2

×××

∆ρvLf

Where:

Variable Description UNITS (Metric)

∆P Pressure Drop (P1-P2) Bar

D Diameter of pipe m

L Length of pipe m

v Flow Velocity m/s

f Friction Factor (function of surface & fluid friction)

ρ Fluid Density kg/m3 Darcy Weisbach Equation

D &Q

v

L

D

vP1 P2

ρ Fluid Density

Page 34: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 34 -

7.12 CALCULATION OF REYNOLDS NUMBER

R ve = Dυ

υ µρ

=

Low Reynolds Flow Turbulent Sharp Velocity Profile High Reynolds Flow Turbulent sharper profile Where:

Variable Description UNITS (Metric)

Re Reynolds Number

D Diameter of pipe m

υ Kinematic Viscosity m2/s

µ Dynamic Viscosity Pa s

v Flow Velocity m/s

ρ Fluid Density kg/m3

D &Q

v

D &Q

v

Page 35: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 35 -

7.13 CALCULATION OF FRICTION FACTOR LAMINAR FLOW Re <2000

fR

=64

e

Laminar Flow Shallow Velocity Profile (High core flow) Where:

Variable Description UNITS (Metric)

Re Reynolds Number

f Friction Factor

7.14 CALCULATION OF FRICTION FACTOR TURBULENT FLOW 2000< Re <108

fLn e

D R

=

+⎧⎨⎩

⎫⎬⎭

⎣⎢

⎦⎥

1325

3 75 74

2.

..e0.9

Where:

Variable Description UNITS (Metric)

Re Reynolds Number

f Friction Factor

D Pipe Diameter m

Ln Natural Logarithm

e Absolute Roughness m Swanee and Jain (1976), Explicit formulation for the moody diagram

D &Q

v

Page 36: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 36 -

7.15 CALCULATION OF PRESSURE LOSS THROUGH FITTINGS AND VALVES

∆PK

= f Vρ 2

200000

Where: Variable Description UNITS (Metric)

K f Factor from Nomographs

∆P Pressure drop over fitting Bar

V Flow velocity ms-1

ρ Fluid Density Kg/m3 Refer to attached Nomographs section 6.17

Page 37: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 37 -

7.16 MOODY DIAGRAM

Page 38: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 38 -

7.17 PRESSURE LOSS THROUGH FITTINGS AND VALVES

Page 39: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 39 -

7.18 NOMOGRAPHS FOR PRESSURE LOSS THROUGH FITTINGS AND VALVES

Page 40: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 40 -

7.19 TYPICAL VACUUM DRYING OPERATION

7.20 ESTIMATION OF TIME TAKEN TO EVACUATE A SYSTEM The design of high Vacuum Systems C.M. Van Atta 1960

t VC

LnP PP P

vap

vap

= ⋅−

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪1

2

Where:

Variable Description UNITS (Metric)

V System Volume m3

C Average Pump Speed m3/Hour

P1 Initial Pressure mBar A

P2 Final Pressure mBar A

Ln Natural Logarithm

Pvap Saturated Vapour Pressure at system temperature mBar A

t Time taken Hours

Estimation of time required to reduce the pressure within a system below atmospheric using a vacuum pump or similar device.

Page 41: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 41 -

7.21 CONDUCTANCE The design of high Vacuum Systems C.M. Van Atta 1960

LDC essureHigh

4

Pr 190×=

LDC essureLow

3

Pr 6.13 ×=

Where: Variable Description UNITS (Metric)

C Conductance Litres/sec

D Diameter of Pipe cm

L Pipe Length cm Note: Conductance is an estimation of throughput “High pressure” being viscous flow “Low Pressure” being

diffusive flow. It should be noted that final draw downs to the low millibar levels starts to enter into the diffusive flow regime also at this stage we are on the very low throughput areas of any vacuum pump curve making approximations of the final drawdown very difficult as any vapour evaporation event will take the system from one regime to the other in a very short time. In general all activities are within the viscous flow regime. Calculations within diffusive flow regimes are usually fruitless as more often than not the system is cycling from one to the other and even different areas can be in different regimes simultaneously.

7.22 ESTIMATION OF EVAPORATION TIME

( )( )t

wR TC P Mvap

=+

⋅ × ⋅

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

27315100

.

Where:

Variable Description UNITS (Metric)

w Estimated Mass of water in system ref 7.24 Kg

R Universal Gas Constant (8314.4 J/Kmol K) J/Kmol K

T Temperature of System oC

C Average Pump Speed m3/Hour

M Relative Molecular Mass Water (18 Kg/Kmol K) Kg/Kmol K

Pvap Saturated Vapour Pressure at system temperature mBar A

t Time taken Hours

Estimation of time required to evaporate free water from a system using vacuum pump or similar device.

Page 42: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 42 -

7.23 ESTIMATION OF MASS REMOVAL RATE AT EVAPORATION STAGE

( )⎭⎬⎫

⎩⎨⎧

+⋅⋅⋅×

=)15.273(

100TR

MCPm&

Where:

Variable Description UNITS

&m Estimated Mass removal rate Kg/hr

R Universal Gas Constant (8314.4 J/Kmol K) J/Kmol K

T Temperature of System oC

C Average Pump Speed m3/Hour

M Relative Molecular Mass Water (18 Kg/Kmol K) Kg/Kmol K

P Pressure at Evaporation Stage mBar A

Estimation of water quantity removed from a system using vacuum pump or similar device. 7.24 ESTIMATION OF PIPELINE SYSTEM WATER CONTENT

ρπ××

−−= LFDDw

4))2(( 22

Where: Variable Description UNITS (Metric)

w Estimated Mass of water Kg

D Diameter of Pipe m

F Film Thickness (0.1mm, SA55 0.05mm) m

L Pipe Length m

ρ Density of Fluid (water 1000 Kg/m3) Kg/m3

In addition to the volume calculated above estimations of volumes trapped in tees and branches should also be added. Estimation of water quantity within a system is based upon Industry research and experience of films left after conventional dewatering.

D

L

F

Page 43: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 43 -

Pipeline Condition or Coating, Film Thickness 1 Standard Carbon Steel Pipe 0.1 mm 2 Smooth Blasted Carbon Steel Pipe (SA55) 0.05 mm 3 Standard Flow coated pipe 0.03 mm 4 Smooth Flow coated pipe 0.02 mm 5 “Effective” dewatering on Standard Carbon Steel 0.05 mm 6 “Effective” dewatering on Smooth Carbon Steel (SA55) 0.03 mm 7 “Effective” dewatering on Flow Coated pipe 0.01 mm Refer to: Best Practice “Estimating residual film thickness PPS-BP-002” for further details. 7.25 TYPICAL CHARACTERISATION OF AIR DRYING PROCESS

Page 44: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 44 -

7.26 ESTIMATION OF AIR DRYING TIME

( )[ ]( )

⎪⎪⎭

⎪⎪⎬

⎪⎪⎩

⎪⎪⎨

⋅××−⋅

+=

MPPPP

CTwRt

injectgasvapinject

100

15.273

Where:

Variable Description UNITS (Metric)

w Estimated Mass of water in system ref 7.24 Kg

R Universal Gas Constant (8314.4 J/Kmol K) J/Kmol K

T Temperature of System oC

C Compressor Speed m3/Hour

M Relative Molecular Mass Water (18 Kg/Kmol K) Kg/Kmol K

Pvap Saturated Vapour Pressure at system temperature mBar A

gasP Vapour Pressure of water in injected gas mBar A

injectP Injection Pressure / Mean flowing Pressure Bar A

t Time taken Hours

This is the basis for calculation of an air drying duration, the variable Pinject changes along the length of the pipeline as the drying gas expands so it is usual to calculate the pressure drop along the pipeline, remembering this is compressible flow so the pressure drop is not linear over the pipeline length as it would be with a liquid. The calculation can then be applied for each interval of pipe. The total of the times being the drying duration. It should be noted that when:

. injectgasvap PPP ×=

DRYING WILL NOT OCCUR

Page 45: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 45 -

7.27 SATURATION VAPOUR PRESSURE AND VAPOUR DENSITY TABLES OF WATER

(Source: Smithsonian Meteorological Tables 6th Edition, 1971)

t ps D t ps D t ps D oC mbar g/m3 oC mbar g/m3 oC mbar g/m3

-100 1.403x10-5 1.756x10-5 -50 39.35 38.21 0 6.108 4.847 -99 1.719 2.139 -49 44.49 43.01 1 6.566 5.192 -98 2.101 2.599 -48 50.26 48.37 2 7.055 5.559 -97 2.561 3.150 -47 56.71 54.33 3 7.575 5.947 -96 3.117 3.812 -46 63.93 60.98 4 8.129 6.360 -95 3.784 4.602 -45 71.98 68.36 5 8.719 6.797 -94 4.584 5.544 -44 80.97 76.56 6 9.347 7.260 -93 5.542 6.665 -43 90.98 85.65 7 10.01 7.750 -92 6.685 7.996 -42 102.1 95.7 8 10.72 8.270 -91 8.049 9.574 -41 114.5x10-3 106.9x10-3 9 11.47 8.819 -90 9.672 11.44 -40 0.1283 0.1192 10 12.27 9.399 -89 11.60 13.65 -39 0.1436 0.1329 11 13.12 10.01 -88 13.88 16.24 -38 0.1606 0.1480 12 14.02 10.66 -87 16.58 19.30 -37 0.1794 0.1646 13 14.97 11.35 -86 19.77 22.89 -36 0.2002 0.1829 14 15.98 12.07 -85 23.53 27.10 -35 0.2233 0.2032 15 17.04 12.83 -84 27.96 32.03 -34 0.2488 0.2254 16 18.17 13.63 -83 33.16 37.78 -33 0.2769 0.2498 17 19.37 14.48 -82 39.25 44.49 -32 0.3079 0.2767 18 20.63 15.37 -81 46.38 52.30 -31 0.3421 0.3061 19 21.96 16.31 -80 0.5473x10-3 0.6138x10-3 -30 0.3798 0.3385 20 23.37 17.30 -79 0.6444 0.7191 -29 0.4213 0.3739 21 24.86 18.34 -78 0.7577 0.8413 -28 0.4669 0.4127 22 26.43 19.43 -77 0.8894 0.9824 -27 0.5170 0.4551 23 28.09 20.58 -76 1.042 1.145 -26 0.5720 0.5015 24 29.83 21.78 -75 1.220 1.334 -25 0.6323 0.5521 25 31.67 23.05 -74 1.425 1.550 -24 0.6985 0.6075 26 33.61 24.38 -73 1.662 1.799 -23 0.7709 0.6678 27 35.65 25.78 -72 1.936 2.085 -22 0.8502 0.7336 28 37.80 27.24 -71 2.252 2.414 -21 0.9370 0.8053 29 40.06 28.78 -70 2.615 2.789 -20 1.032 0.8835 30 42.43 30.38 -69 3.032 3.218 -19 1.135 0.9678 31 44.93 32.07 -68 3.511 3.708 -18 1.248 1.060 32 47.55 33.83 -67 4.060 4.267 -17 1.371 1.160 33 50.31 35.68 -66 4.688 4.903 -16 1.506 1.269 34 53.20 37.61 -65 5.406 5.627 -15 1.652 1.387 35 56.24 39.63 -64 6.225 6.449 -14 1.811 1.515 36 56.24 41.75 -63 7.159 7.381 -13 1.984 1.653 37 62.76 43.96 -62 8.223 8.438 -12 2.172 1.803 38 66.26 46.26 -61 9.432 9.633 -11 2.376 1.964 39 69.93 48.67 -60 10.80 10.98 -10 2.597 2.139 40 73.78 51.19 -59 12.36 12.51 -9 2.837 2.328 41 77.80 53.82 -58 14.13 14.23 -8 3.097 2.532 42 82.02 56.56 -57 16.12 16.16 -7 3.379 2.752 43 86.42 59.41 -56 18.38 18.34 -6 3.685 2.990 44 91.03 62.39 -55 20.92 20.78 -5 4.015 3.246 45 95.86 65.50 -54 23.80 23.53 -4 4.372 3.521 46 100.9 68.73 -53 27.03 26.60 -3 4.757 3.817 47 106.2 72.10 -52 30.67 30.05 -2 5.173 4.136 48 111.7 75.61 -51 34.76 33.90 -1 5.623 4.479 49 117.4 79.26

Page 46: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 46 -

Continued…..

t ps ρD t ps ρD

oC mbar g/m3 oC mbar g/m3 50 123.4 83.06 100 1013.2 597.8 51 129.7 87.01 101 1050 618.0 52 136.2 91.12 102 1088 638.8 53 143.0 95.39 103 1127 660.2 54 150.1 99.83 104 1167 682.2 55 157.5 104.4 105 1208 704.7 56 165.2 109.2 106 1250 727.8 57 173.2 114.2 107 1294 751.6 58 181.5 119.4 108 1339 776.0 59 190.2 124.7 109 1385 801.0 60 199.2 130.2 110 1433 826.7 61 208.6 135.9 111 1481 853.0 62 218.4 141.9 112 1532 880.0 63 228.5 148.1 113 1583 907.7 64 293.1 154.5 114 1636 936.1 65 250.1 161.2 115 1691 965.2 66 261.5 168.1 116 1746 995.0 67 273.3 175.2 117 1804 1026 68 285.6 182.6 118 1863 1057 69 298.4 190.2 119 1923 1089 70 311.6 198.1 120 1985 1122 71 325.3 206.3 121 2049 1156 72 339.6 214.7 122 2114 1190 73 354.3 223.5 123 2182 1225 74 369.6 232.5 124 2250 1262 75 385.5 241.8 125 2321 1299 76 401.9 251.5 126 2393 1337 77 418.9 261.4 127 2467 1375 78 436.5 271.2 128 2543 1415 79 454.7 282.3 129 2621 1456 80 473.6 293.3 130 2701 1497 81 493.1 304.6 131 2783 1540 82 513.3 316.3 132 2867 1583 83 534.2 328.3 133 2953 1627 84 555.7 340.7 134 3041 1673 85 578.0 353.5 135 3131 1719 86 601.0 366.6 136 3223 1767 87 624.9 380.2 137 3317 1815 88 649.5 394.2 138 3414 1865 89 674.9 408.6 139 3512 1915 90 701.1 423.5 140 3614 1967

91 728.2 438.8 92 756.1 454.5 93 784.9 470.7 94 814.6 487.4 95 845.3 504.5 96 876.9 522.1 97 909.4 540.3 98 943.0 558.9 99 977.6 578.1

Page 47: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 47 -

7.28 METHANOL OR MEG SLUG SIZING FOR PIPELINE DEHYDRATION (Source: BGC/PS/PC1)

v D Lslug = × ×0 7. Where:

Variable Description UNITS (Metric)

vslug Volume of methanol or MEG slug Litres

D Diameter of Pipe m

L Pipe Length m Note: A minimum of two slugs separated by a batching pig are required for effective dehydration.

Typical Dewatering Pig Train

In general this will result in approximate discharged concentrations in the first Slug of 55% MeOH or MEG and 75% MeOH or MEG in the second slug, assuming a film thickness of 0.1mm.

Theoretical Volumes and Concentrations of Recovered Slugs

Film thickness mm Pipeline Condition 1st Slug 2nd Slug

Volume of Slugs recovered

0.1 Standard Carbon Steel Pipe 55.12% 75.26% 55.12% 0.05 Smooth Blasted Carbon Steel Pipe (SA55) 77.56% 82.60% 77.56% 0.03 Standard Flow coated pipe 86.54% 88.35% 86.54% 0.02 Smooth Flow coated pipe 91.02% 91.83% 91.02% 0.05 “Effective” dewatering on Standard Carbon Steel 77.56% 82.60% 77.56% 0.03 “Effective” dewatering on Smooth Carbon Steel (SA55) 86.54% 88.35% 86.54% 0.01 “Effective” dewatering on Flow Coated pipe 95.51% 95.71% 95.51%

Nitrogen or Nitrogen Slug & Compressed Air

Methanol Methanol Fresh Water

0.7 D x L 0.7 D x L 0.7 D x L

Page 48: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 48 -

7.29 RELATIVE DENSITY OF AQUEOUS METHANOL

(Source: BGC/PS/PC1)

Temperature corrections necessary to obtain Specific Gravity

Relative Density of Aqueous Methanol at 15.5oC

Relative Density

Weight Fraction Methanol

Relative Density

Weight Fraction Methanol

Relative Density

Weight Fraction Methanol

Relative Density

Weight Fraction Methanol

0.998 0.01 0.961 0.26 0.918 0.51 0.861 0.76 0.977 0.02 0.959 0.27 0.916 0.52 0.859 0.77 0.995 0.03 0.958 0.28 0.914 0.53 0.856 0.78 0.993 0.04 0.956 0.29 0.912 0.54 0.854 0.79 0.991 0.05 0.955 0.30 0.910 0.55 0.851 0.80 0.990 0.06 0.953 0.31 0.907 0.56 0.849 0.81 0.988 0.07 0.951 0.32 0.905 0.57 0.846 0.82 0.987 0.08 0.950 0.33 0.903 0.58 0.843 0.83 0.985 0.09 0.948 0.34 0.901 0.59 0.841 0.84 0.984 0.10 0.947 0.35 0.899 0.60 0.838 0.85 0.982 0.11 0.945 0.36 0.897 0.61 0.836 0.86 0.981 0.12 0.943 0.37 0.895 0.62 0.833 0.87 0.979 0.13 0.941 0.38 0.892 0.63 0.830 0.88 0.978 0.14 0.940 0.39 0.890 0.64 0.827 0.89 0.977 0.15 0.938 0.40 0.888 0.65 0.825 0.90 0.975 0.16 0.936 0.41 0.885 0.66 0.822 0.91 0.973 0.17 0.934 0.42 0.883 0.67 0.819 0.92 0.972 0.18 0.932 0.43 0.881 0.68 0.817 0.93 0.971 0.19 0.931 0.44 0.878 0.69 0.814 0.94 0.969 0.20 0.929 0.45 0.876 0.70 0.811 0.95 0.968 0.21 0.927 0.46 0.874 0.71 0.808 0.96 0.966 0.22 0.925 0.47 0.871 0.72 0.805 0.97 0.965 0.23 0.923 0.48 0.869 0.73 0.802 0.98 0.963 0.24 0.921 0.49 0.866 0.74 0.800 0.99 0.962 0.25 0.919 0.50 0.864 0.75 0.797 1.00

Aqueous Methanol Temperature Corrections to Obtain Relative Density at 15.5oc

Observed Relative Density

Correction per oC deviation from 15.5oC

(per oC) 0.79 to 0.86 0.0009 0.86 to 0.92 0.0007 0.92 to 0.95 0.0005 0.95 to 0.98 0.0004

0.98 to 1 0.0002 Note: The correction is added to the observed relative density for determinations made above 15.5oC and subtracted when sample temperature is below 15.5oC.

Page 49: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 49 -

7.30 DEWPOINTS OVER MEG WATER MIXTURES

MEG / Water Dewpoints over mixtures

Dewpoint Percentage MEG in Water °C 70% 80% 85% 90% 95% 96% 97% 98% 99% 99.5% 99.8% 99.95% 100%

-5.00 -

11.00 -

14.00 -

16.75 -19.50 -25.50 -27.75 -30.00 -33.50 -40.00 -56.50 -66.81 -70.94 -73.00

-4.00 -

10.00 -

13.00 -

15.75 -18.50 -24.50 -26.75 -29.00 -33.00 -39.00 -55.50 -65.81 -69.94 -72.00

-3.00 -9.00 -

12.00 -

15.00 -18.00 -24.00 -26.25 -28.50 -32.00 -38.50 -54.75 -64.91 -68.97 -71.00

-2.00 -8.50 -

11.50 -

14.25 -17.00 -23.00 -25.25 -27.50 -31.50 -38.00 -54.00 -64.00 -68.00 -70.00

-1.00 -7.50 -

10.50 -

13.50 -16.50 -22.00 -24.50 -27.00 -30.50 -37.00 -53.25 -63.41 -67.47 -69.50

0.00 -6.50 -9.50 -

12.50 -15.50 -21.50 -23.75 -26.00 -30.00 -36.50 -52.50 -62.50 -66.50 -68.50

1.00 -6.00 -9.00 -

11.75 -14.50 -20.50 -23.00 -25.50 -29.50 -35.50 -51.50 -61.50 -65.50 -67.50

2.00 -5.00 -8.00 -

11.00 -14.00 -20.00 -22.25 -24.50 -28.50 -35.00 -50.75 -60.59 -64.53 -66.50

3.00 -4.00 -7.00 -

10.00 -13.00 -19.00 -21.50 -24.00 -28.00 -34.50 -50.00 -59.69 -63.56 -65.50

4.00 -3.50 -6.50 -9.50 -12.50 -18.50 -20.75 -23.00 -27.00 -33.50 -49.00 -58.69 -62.56 -64.50

5.00 -2.50 -5.50 -8.50 -11.50 -17.50 -20.00 -22.50 -26.50 -33.00 -48.25 -57.78 -61.59 -63.50

6.00 -1.50 -4.50 -7.50 -10.50 -17.00 -19.50 -22.00 -26.00 -32.50 -47.50 -56.88 -60.63 -62.50

Mix

ture

Tem

pera

ture

°C

7.00 -0.50 -4.00 -7.00 -10.00 -16.00 -18.50 -21.00 -25.00 -31.50 -46.50 -55.88 -59.63 -61.50

8.00 0.00 -3.00 -6.00 -9.00 -15.50 -18.00 -20.50 -24.50 -31.00 -45.75 -54.97 -58.66 -60.50

9.00 1.00 -2.00 -5.25 -8.50 -14.50 -17.00 -19.50 -23.50 -30.50 -45.25 -54.47 -58.16 -60.00

10.00 2.00 -1.50 -4.50 -7.50 -14.00 -16.50 -19.00 -23.00 -29.50 -44.25 -53.47 -57.16 -59.00

11.00 3.00 -0.50 -3.50 -6.50 -13.00 -15.50 -18.00 -22.50 -29.00 -43.50 -52.56 -56.19 -58.00

12.00 4.00 0.50 -2.75 -6.00 -12.50 -15.00 -17.50 -21.50 -28.50 -42.75 -51.66 -55.22 -57.00

13.00 5.00 1.50 -1.75 -5.00 -12.00 -14.50 -17.00 -21.00 -27.50 -41.75 -50.66 -54.22 -56.00

14.00 6.00 2.00 -1.25 -4.50 -11.00 -13.50 -16.00 -20.00 -27.00 -41.00 -49.75 -53.25 -55.00

15.00 7.00 3.00 -0.25 -3.50 -10.50 -13.00 -15.50 -19.50 -26.50 -40.25 -48.84 -52.28 -54.00

16.00 8.00 4.00 0.50 -3.00 -9.50 -12.00 -14.50 -19.00 -25.50 -39.25 -47.84 -51.28 -53.00

17.00 8.50 5.00 1.50 -2.00 -9.00 -11.50 -14.00 -18.00 -25.00 -38.75 -47.34 -50.78 -52.50

18.00 9.50 6.00 2.25 -1.50 -8.00 -10.50 -13.00 -17.50 -24.00 -37.75 -46.34 -49.78 -51.50

19.00 10.50 7.00 3.25 -0.50 -7.50 -10.00 -12.50 -17.00 -23.50 -37.00 -45.44 -48.81 -50.50

20.00 11.50 7.50 4.00 0.50 -6.50 -9.25 -12.00 -16.00 -23.00 -36.25 -44.53 -47.84 -49.50

21.00 12.50 8.50 4.75 1.00 -6.00 -8.50 -11.00 -15.50 -22.00 -35.25 -43.53 -46.84 -48.50

22.00 13.50 9.50 5.75 2.00 -5.00 -7.75 -10.50 -14.50 -21.50 -34.75 -43.03 -46.34 -48.00

23.00 14.50 10.50 6.75 3.00 -4.50 -7.00 -9.50 -14.00 -21.00 -34.00 -42.13 -45.38 -47.00

24.00 15.50 11.50 7.75 4.00 -3.50 -6.25 -9.00 -13.50 -20.00 -33.00 -41.13 -44.38 -46.00

25.00 16.50 12.50 8.50 4.50 -3.00 -5.75 -8.50 -12.50 -19.50 -32.25 -40.22 -43.41 -45.00

26.00 17.00 13.00 9.25 5.50 -2.50 -5.00 -7.50 -12.00 -19.00 -31.50 -39.31 -42.44 -44.00

30.00 21.00 17.00 13.00 9.00 0.50 -2.25 -5.00 -9.00 -16.00 -28.25 -35.91 -38.97 -40.50

31.00 22.00 18.00 14.00 10.00 1.50 -1.25 -4.00 -8.50 -15.50 -27.50 -35.00 -38.00 -39.50

32.00 23.00 18.50 14.50 10.50 2.50 -0.50 -3.50 -8.00 -15.00 -27.00 -34.50 -37.50 -39.00

33.00 24.00 19.50 15.50 11.50 3.00 0.00 -3.00 -7.00 -14.00 -26.00 -33.50 -36.50 -38.00

Page 50: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 50 -

7.31 CALCULATION FOR NITROGEN/COMPRESSED AIR REQUIREMENTS FOR

PIPELINE DEWATERING

V P Vtgas x= × Where:

Variable Description UNITS (Metric)

Vgas Total Volume of gas required m3

Vt Fill Volume of Pipe (from 5.1) m3

Px Expected Pig Train Driving Pressure Bar A

Calculation of Px Px is the total pressure required to drive the pig train this should take into account the following: 1) Pig Driving Pressure as calculated in 5.7 or 5.8 2) Differences in Static Head, Elevation, Profile, Risers etc. as calculated in 5.5 3) Fluid pressure drop for displaced liquid contents as calculated in 5.10, 5.11,5.14, and 5.12

or 5.13 4) Depth of receiving structure if submerged. Static Head as calculated in 5.5 Note: xP is in Bar Absolute, conversion Bar g to Bar A add 1.013 to Bar g.

WARNING: If sizing for liquid nitrogen always ensure adequate liquid nitrogen reserves.

D

Px

Vt Fill Volume

Page 51: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 51 -

7.32 CALCULATION FOR NITROGEN/COMPRESSED AIR FLOWRATE FOR PIPELINE DEWATERING

& &V P Vt ngas x m pig= × ×

Where:

Variable Description UNITS (Metric)

&Vgas Rate of gas required m3/s

Vtm Fill Volume of Pipe (from 5.1) per unit metre m3/m

&npig Required Pig speed (0.5 to 1.0 ms-1) ms-1

Px Expected Pig Train Driving Pressure Bar A

Vtm

D

&npig Px

1m &Vgas

Page 52: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 52 -

7.33 CALCULATION ACCUMULATED HEAD

Where:

Variable Description UNITS (Metric)

Ph Rate of gas required Pa

ρ Density liquid media Kg/m3

g Gravity (9.81ms-2) ms-1

hx Cumulative height of liquid columns m

Accumulated Head Pressure Ph= ρg(h1+h2+h3)

Liquid Content

Gas/ Air

Page 53: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 53 -

7.34 HYDRAULIC POWER REQUIREMENTS

2358.2××= iOutput PQHHP

p

iPumpend

PQHHP

η2358.2××

=

ep

idriver

PQBHPηη ×

××=

2358.2

Where:

Variable Description UNITS (Metric)

Q Flowrate m3/min

iP Injection Pressure Bar

OutputHHP Hydraulic Output Required Horse Power

PumpHHP Nominal Pump Rating Horse Power

driverBHP Brake horsepower of Prime Mover Horse Power

pη Pump Efficiency (typically 0.8) -

eη Driver Efficiency (typically 0.7) -

ep ηη × Combined efficiency (typically 0.56) -

Note: 1 HHP= 0.746043 kW

Page 54: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 54 -

7.35 HOOP STRESS Thin Wall Cylinder

20min

>tDo

min2)(

tD

PP ooih −=σ

Thin Wall Cylinder

20min

≤tDo

)()()( 22

22

io

iooih DD

DDPP−+

−=σ

Where: Variable Description UNITS (Metric)

Do Outside diameter m

Di Inside Diameter m

Po External Pressure Pa

Pi Internal Pressure Pa

tmin Minimum Wall Thickness m

hσ Hoop Stress Pa

Material SMYS Pa API-5L-A 2.07E+08 API-5L-B 2.41E+08 API-5L-X42 2.89E+08 API-5L-X46 3.17E+08 API-5L-X52 3.58E+08 API-5L-X56 3.86E+08 API-5L-X60 4.13E+08 API-5L-X65 4.48E+08 API-5L-X70 4.82E+08 API-5L-X80 5.51E+08 API-5 CT H 40 2.76E+08 API-5 CT J 55 3.79E+08 API-5 CT K 55 3.79E+08 API-5 CT N 80 5.52E+08 API-5 CT L80 1 5.52E+08 API-5 CT L80 9 Cr 5.52E+08 API-5 CT L 80 13Cr 5.52E+08 API-5 CT C90 1,2 6.20E+08 API-5 CT C 95 6.55E+08 API-5 CT T 95 1,2 6.55E+08 API-5 CT P110 7.58E+08 API-5 CT Q 125 8.60E+08 S 30403-S 31603 1.70E+08 S 31254 3.00E+08 S other grades 2.05E+08 N 08028 2.14E+08 N 08904 2.20E+08 S 31803 4.50E+08

Page 55: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 55 -

7.36 RELATIONSHIP BETWEEN ABSOLUTE AND GAUGE PRESSURES

P P AAbsolute Gauge essure= + Pr Where:

Variable Description UNITS (Metric)

A essurePr Environment Pressure Bar

PGauge Gauge Pressure Bar g

PAbsolute Absolute Pressure Bar A

Measured Pressure

Gauge Pressure Bar G

Environmental Pressure Absolute Pressure Atmospheric or Bar A Surrounding Pressure

Zero Pressure Bar A Note: Standard Atmospheric Pressure 1 atm = 1.01325 Bar

7.37 PRESSURE CONVERSION CHART

Unit bar mbar kPa psi inH2O inHg Torr Kgf/cm2 bar 1 1000 100 14.5038 401.463 29.530 750.062 1.01972

mbar 0.001 1 0.1 0.0145038 0.401463 0.02953 0.750062 980.665 kPa 0.01 10 1 0.145038 4.01463 0.2953 7.50062 98.0665 psi 0.068947 68.9476 6.89476 1 27.68 2.03602 51.7149 0.070307

inH2O 0.00249 2.4908 0.24908 0.03613 1 0.07356 1.86832 0.002 inHg 0.03386 33.8639 3.3864 0.49115 13.595 1 25.4 28.9590 Torr 750.062 0.750062 7.50062 51.7149 0.535240 25.4 1 735.559

Kgf/cm2 0.980665 980.665 98.0665 14.2233 393.701 28.95 735.559 1 7.38 TEMPERATURE CONVERSION

From To 0C (Celsius) 0F (Fahrenheit) Multiply by 1.8 and add 32 0F (Fahrenheit) 0C (Celsius) Subtract 32multiply by .5556 0C (Celsius) K (Kelvin) Add 273.15 0F (Fahrenheit) 0R (Rankine) Add 459.67 0R (Rankine) K (Kelvin Multiply by 0.5556

Page 56: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 56 -

7.39 NAMES IN METRIC SYSTEM

VALUE EXPONENT SYMBOL PREFIX

1 000 000 000 000 1012 T tera 1 000 000 000 109 G giga

1 000 000 106 M mega 1 000 103 k kilo

100 102 h hecto 10 101 da deca

1 100 - - 0.1 10-1 d deci

0.01 10-2 c centi 0.001 10-3 m milli

0.000 001 10-4 µ micro 0.000 000 001 10-9 n nano

0.000 000 000 001 10-12 p pico 0.000 000 000 000 001 10-15 f femto

Page 57: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 57 -

8. ELECTRICAL CALCULATIONS

8.1 CORRECTING RESISTANCE VALUES TO 20OC The formula for correcting the measured conductor resistance to 20°C is as follows:-

L1000

20)-t(11RR tins20 ×

+×=

α

Where:

Variable Description UNITS (Metric)

Rins20 Resistance at 20°, in Ω per km Ω/km

Rt Measured resistance of L of cable at t° in ohms Ohms Ω

L Length of Cable m

α Temperature Coefficient Ω/ Ω°C

t Temperature of Cable °C

α Ω/ Ω°C

copper 0.00393 platinum 0.00385 tungsten 0.0045

aluminum 0.0040

8.2 OHMS LAW RIV ⋅=

Where:

Variable Description UNITS (Metric)

V Electromotive Force Volt V

I Current Amperes A

R Resistance Ohms Ω

Page 58: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 58 -

8.3 CONDUCTOR RESISTANCE

aLR ρ=

Where: Variable Description UNITS (Metric)

R Resistance Ohms Ω

ρ Resistivity Ω m

L Length m

a Cross sectional area of conductor m2

ρ Ω m

copper 1.68 x 10-8

platinum 10.6 x 10-8

tungsten 5.6 x 10-8

aluminum 2.65 x 10-8

8.4 RESISTANCES IN SERIES

nT RRRRR ++++= .....321 Where:

Variable Description UNITS (Metric)

R Resistance Ohms Ω

R1 R2 R3 Rn

Page 59: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 59 -

1

2 3

8.5 RESISTANCES IN PARALLEL

nT RRRRR1.....1111

321

++++=

Where: Variable Description UNITS (Metric)

R Resistance Ohms Ω

8.6 CALCULATING INDIVIDUAL RESISTANCES OF SHORTED TRIAD CABLES

21 132312 mmm RRR

R+−

=

22 132312 mmm RRR

R−+

=

23 121323 mmm RRR

R−+

=

Where: Variable Description UNITS (Metric)

R Resistance Ohms Ω

Rm12 Resistance measured between 1 & 2 Ohms Ω

Rm23 Resistance measured between 2 & 3 Ohms Ω

Rm13 Resistance measured between 1 & 3 Ohms Ω

R1

R2

R3

Conductor 1

Conductor 2

Conductor 3

Rm12

Rm23

Rm13

Shorting Links

R1 R2 R3 Rn

Page 60: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 60 -

8.7 CONDUCTOR RESISTANCE - 2-CORE / 3-LEG

Equivalent Circuit

⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅

+=

cb

cba

m

LLLL

L

RR

2222

2

Where: Variable Description UNITS (Metric)

R Resistance per metre Ohms Ω/m

Rm Resistance measured Ohms Ω

La Length La m

Lb Length Lb m

Lc Length Lc m

Shorting Link

Shorting Link

Rm

Rm

La

Lb

Lc

R(La)

2 x R(Lb) 2 x R(Lc)

R(La)

Page 61: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 61 -

8.8 PRINCIPLE OF ELECTRICAL INSULATION

The insulator prevents the conductor from allowing current to flow to earth, everything will conduct current to some degree “Insulators” are simply materials with very high resistances.

8.9 INSULATOR RESISTANCE - 2-CORE / 3-LEG CORE TO CORE

Equivalent Circuit

( ) ( ) ( )⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅+⋅

⋅⋅=

cacbba

cba

m

LLLLLLLLL

RR

Where: Variable Description UNITS (Metric)

R Resistance per metre Ohms Ω/m

Rm Resistance measured Ohms Ω

La Length La m

Lb Length Lb m

Lc Length Lc m

WARNING: Do not energise exposed subsea connectors.

Conductor Insulator (dielectric)

Shorting Link Removed

Shorting Link Removed

Rm

Rm

La

Lb

Lc

R(La) R(Lb) R(Lc)

Page 62: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 62 -

8.10 INSULATOR RESISTANCE - 2-CORE / 3-LEG TO EARTH

Equivalent Circuit

( ) ( ) ( )⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅+⋅

⋅⋅=

cacbba

cba

m

LLLLLLLLL

RR

222222222

Where: Variable Description UNITS (Metric)

R Resistance per metre Ohms Ω/m

Rm Resistance measured Ohms Ω

La Length La m

Lb Length Lb m

Lc Length Lc m

Shorting Link Installed

Shorting Link Installed

Rm

Rm

La

Lb

Lc

2R(La) 2R(Lb) 2R(Lc)

Page 63: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 63 -

9. PRESSURE DROPS

9.1 TYPICAL WATER FRICTION LOSS The table below shows theoretical back pressures from friction loss for ID's up to 4" and velocities up to 4m/s. The friction loss is linear with distance and approximately squared with diameter.

Flushing Speed ID Flow Rate Frictional Pressure Drop in Barg

m/sec Inches m3/mi 100m 1000m 10000m

0 1 0.000 0 0 0 1 1 0.030 0.7 7.0 70.0

1.5 1 0.046 1.5 14.8 148.3 2 1 0.061 2.5 25.3 252.5

2.5 1 0.076 3.8 38.2 381.6 3 1 0.091 5.3 53.5 534.6

3.5 1 0.106 7.1 71.1 711.1 4 1 0.122 9.1 91.0 910.3

0 2 0.000 0.0 0.0 0.0 1 2 0.122 0.3 3.1 31.2

1.5 2 0.182 0.7 6.6 66.1 2 2 0.243 1.1 11.3 112.6

2.5 2 0.304 1.7 17.0 170.1 3 2 0.365 2.4 23.8 238.3

3.5 2 0.425 3.2 31.7 317.0 4 2 0.486 4.1 40.6 405.8

0 3 0.000 0.0 0.0 0.0 1 3 0.273 0.2 1.9 19.5

1.5 3 0.410 0.4 4.1 41.2 2 3 0.547 0.7 7.0 70.2

2.5 3 0.684 1.1 10.6 106.0 3 3 0.820 1.5 14.9 148.6

3.5 3 0.957 2.0 19.8 197.6 4 3 1.094 2.5 25.3 253.0

0 4 0.000 0.0 0.0 0.0 1 4 0.486 0.1 1.4 13.9

1.5 4 0.729 0.3 2.9 29.5 2 4 0.972 0.5 5.0 50.2

2.5 4 1.215 0.8 7.6 75.8 3 4 1.459 1.1 10.6 106.3

3.5 4 1.702 1.4 14.1 141.3 4 4 1.945 1.8 18.1 180.9

Page 64: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 64 -

9.2 TYPICAL AIR FRICTION LOSS (COMPRESSED AIR HEADER SIZING)

Hose Length and inside

Diameter SCFM Line Pressure - psi

60 80 100 120 150 200 300 60 3.1 2.4 2.0 80 5.3 4.2 3.5 2.9 2.4 1.8 1.2 100 8.1 6.4 5.2 4.5 3.6 2.8 1.9 120 9.0 7.4 6.3 5.1 3.9 2.7 140 12.0 9.9 8.4 6.9 5.3 3.6 160 12.7 10.8 8.9 6.8 4.6 180 13.6 11.1 8.5 5.8 200 16.6 13.5 10.4 7.1

50 feet

¾”

220 16.2 12.4 8.4 120 2.7 2.1 150 4.1 3.2 2.7 2.3 180 5.8 4.6 3.8 3.2 2.8 2.0 1.3 210 7.7 6.1 5.0 4.3 3.5 2.7 1.8 240 7.9 6.5 5.5 4.5 3.4 2.3 270 9.8 8.1 6.9 5.6 4.3 2.9 300 12.0 9.9 8.4 6.9 5.3 3.6 330 11.8 10.0 8.2 6.3 4.3 360 13.9 11.9 9.7 7.4 5.0 390 13.8 11.3 8.7 5.9 420 15.9 13.0 10.0 6.8

50 feet

1”

450 14.8 11.4 7.7 200 2.4 250 3.7 2.9 2.4 2.0 300 5.2 4.1 3.4 2.9 2.3 1.8 1.2 350 7.0 5.5 4.5 3.8 3.1 2.4 1.6 400 8.9 7.0 5.8 4.9 4.0 3.1 2.1 450 8.8 7.3 6.2 5.0 3.9 2.6 500 10.8 8.9 7.6 6.2 4.7 3.2 550 10.7 9.1 7.4 5.7 3.9 600 12.6 10.7 8.7 6.7 4.6 650 14.6 12.4 10.2 7.8 5.3 700 14.3 11.7 9.0 6.1 750 13.3 10.2 6.9

50 feet

1 ¼”

800 15.0 11.5 7.8

Page 65: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 65 -

Continued…

Hose Length and inside Diameter

SCFM Line Pressure - psi

60 80 100 120 150 200 300 300 2.1 400 3.7 2.9 2.4 2.0 500 5.6 4.4 3.7 3.1 2.5 1.9 1.3 600 8.0 6.3 5.2 4.4 3.6 2.8 1.9 700 8.5 7.9 5.9 4.9 3.7 2.5 800 10.9 9.0 7.7 6.3 4.8 3.2 900 11.2 9.5 7.8 6.0 4.1

1000 13.8 11.8 9.5 7.3 4.9 1100 14.0 11.4 8.8 6.0 1200 13.8 10.4 7.1

50 feet

1 ½”

1300 15.8 12.1 8.3 600 1.9 800 3.2 2.5 2.1

1000 5.0 3.9 3.2 2.7 2.2 1.7 1.1 1200 7.0 5.5 4.5 3.8 3.1 2.4 1.6 1400 9.3 7.4 6.1 5.2 4.2 3.2 2.2 1600 9.6 7.9 6.7 5.5 4.2 2.8 1800 12.1 9.9 8.4 6.9 5.3 3.6 2000 12.2 10.4 8.5 6.5 4.4 2200 14.6 12.5 10.2 7.8 5.3 2400 14.7 12.0 9.2 6.3 2600 14.1 10.8 7.3

50 feet

2”

2800 16.2 12.4 8.5 1000 1.7 1500 3.7 2.9 2.4 2.0 2000 6.5 5.1 4.2 3.6 2.9 2.2 1.5 2500 10.0 7.9 6.5 5.5 4.5 3.4 2.3 3000 11.2 9.3 7.9 6.4 4.9 3.3 3500 12.4 10.6 8.7 6.6 4.5 4000 13.7 11.2 8.6 5.8

50 feet

2 ½”

4500 14.0 10.7 7.3

Page 66: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 66 -

Continued…

Hose Length and inside Diameter

SCFM Line Pressure - psi

60 80 100 120 150 200 300 2000 2.5 2.0 2500 3.9 3.0 2.5 2.1 3000 5.5 4.4 3.6 3.1 2.5 1.9 1.3 3500 7.5 5.9 4.9 4.1 3.4 2.6 1.7 4000 9.8 7.6 6.3 5.3 4.4 3.3 2.3 4500 9.6 7.9 6.7 5.5 4.2 2.8 5000 11.7 9.6 8.2 6.7 5.1 3.5 5500 11.5 9.8 8.0 6.1 4.2 6000 13.6 11.5 9.4 7.2 4.9 6500 13.5 11.0 8.4 5.7 7000 15.6 12.7 9.8 6.6

50 feet

3”

7500 14.5 11.1 7.6 5000 1.9 6000 2.7 2.1 1.7 7000 3.6 2.8 2.3 2.0 1.2 8000 4.7 3.7 3.0 2.6 2.1 1.6 9000 5.9 4.6 3.8 3.2 2.6 2.0 10000 7.2 5.7 4.7 4.0 3.2 2.5 11000 8.7 6.8 5.6 4.8 3.9 3.0 12000 8.1 6.7 5.7 4.6 3.5 13000 9.4 7.8 6.6 5.4 4.1 14000 9.0 7.6 6.2 4.8 15000 8.7 7.1 5.4 16000 9.8 8.0 6.2

25 feet

4”

17000 9.1 6.9 Reference: Compressed Air and Gas Data Boosters (Second Edition), copyright 1969, 1975, Ingersoll Rand Company, Section 34-77

through 34-165. For a more complete discussion of pressure loses in hose (34-161) pipe, fittings and valves, Section 34-77 through 34-165.

Page 67: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 67 -

10. GEL SYSTEMS

10.1 INTRODUCTION As many as 50 different fluids have been developed to solve various needs within the oil and gas market. The major types of fluids that remain at the backbone of the industry are as follows:

• Conventional linear gels • Borate-crosslinked fluids • Organometallic-crosslinked fluids • Aluminium phosphate-ester oil gels

10.2 GEL CHEMISTRY It is not possible to discuss gel chemistry without first discussing polymers. The word polymer is used to describe molecules which are several hundred times larger than a low molecular weight average molecule. An example is shown below.

Example 1: Monomer and Polymer of Polyacrylamide Polymer (Macromolecule, Polymer Chain, polymeric molecule): A natural or synthetic compound with large molecules made up of simple molecules of the same kind. Monomer: A compound whose molecules can join together to form a polymer. A monomer is sometimes referred to as a repeater unit, and whilst this is not strictly true in all cases, the terms will be used interchangeably within this manual. In between monomers and polymers there are many other …..mers which we refer to.

• Dimer = two repeater units • Trimer = three repeater units • Tetramer = four repeater units

CH=CH2 Acrylamide - A vinyl monomer

C=O

NH2

C=O

NH2

(CH2 CH2)n Repeat unit of Polyacrylamide

n=2, dimer n=3, trimer

Page 68: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 68 -

• Oligimer = quite a few repeater units (up to 8) • Polymer = more than eight repeater units

Polymers can be formed from a single type of monomer or from different types of monomer.

• Homopolymer = one type of monomer • Copolymer = two types of monomer • Terpolymer = three types of monomer

Types of Polymer (a) Natural polymers

• Polymers found in nature • Chemical derivatives of those polymers

− Polysaccharides e.g. cellulose and derivatives chitin and derivatives guar and derivatives starches

− Proteins e.g. gelatin Natural polymers have some advantages. They are generally cheaper to prepare as nature has done a lot of the work, and they tend to be much more marketable due to their more environmentally friendly nature. (b) Man made polymers

• Synthesised from low molecular weight precursors Man made polymers are produced in the most part by two different processes and they are categorised in that way. (c) Addition polymers

• Relatively cheap • Widely used in solution application

(d) Condensation polymers

• More expensive • More complicated chemistry • Few applications in gel or solution

Water soluble polymers are often made by addition polymerisation. Common water soluble addition polymers are polyacrylamide and polyvinylalcohol derivatives.

Page 69: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 69 -

Secondary Structure To better understand gels, it is important to understand the way the long chain molecules interact with each other.

• Linear: Straight polymer chains lying parallel to each other with no interaction gives a non

viscous fluid with no real gel like properties. However long chain molecules tend to interact with each other (or themselves), much like a bowl of spaghetti. Trying to lift only a couple of strands can result in a big knot of pasta as friction and interaction binds the strands together. The addition of more base fluid (pasta sauce) can reduce viscosity by essentially diluting the polymer chains (or spaghetti) making the gel less viscose. Conversely the addition of more binding agent (polymer chains or spaghetti) will increase the overall viscosity.

• Cross-Linked: Structures based on strong covalent bonds between polymer chains which

cannot be broken by the application of heat or the addition of more base fluid. Although more base fluid cannot break the covalent bonds, the cross linked gel may be "swollen" by the addition of more base fluid to affect the rheological properties. To break the strong bonds, the changing of pH or the addition of other chemicals would be required.

Simple Sugars

All simple sugars have the chemical formula C6H12O6. Their differences are due to structural differences rather than different chemical compositions. In forming the cyclic sugar structure it is always the carbon 1 which attacks the carbon 5 to give a 6 member ring. This cyclic form is generally the basis for all the natural polymers we use.

Simple sugar and the cyclic sugar form

10.3 LINEAR AND CROSS LINKED GELS The basic properties of any gelled fluid depend a great deal upon the interaction of the polymer molecules carried in the base fluid. A linear gel is generally a viscous fluid, with the viscosity being derived from the presence of individual polymer chains. A cross linked gel has actual bonds purposely formed between the individual polymer chains. Cross linking gives rise to a 3-dimensional structure. If the base polymer units retain the affinity for the solvent then the product will be a true gel with the typical elastic character and solvent retention.

C

C

C

CHO

CH2OH

C

OH

OH

OH

OH H

H

H

H

CH2OH

C

C C

C

C

OH

OH

OH

OHO

HH

H

H

H

Page 70: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 70 -

Higher cross-link density however will make the product stiffer, less elastic and more prone to the loss of solvent as a separate fluid. Polymer chains can be linked through physical association or interaction without being truly chemically cross linked, giving rise to another type of gel. (e.g. XCD)

Linear Gel Cross-Linked Gel Linear gels are generally just high viscosity liquids. In order for them to attain any ridgity, high polymer loadings are required. The nature of cross linked gels results in a structure that has more rigid properties at relatively low polymer loadings. Sometimes terms such as “ringing” or “lipping” are used to describe a gel, generally “ringing” would apply to something that resembles jelly, “lipping” would refer to a gel that when poured will pull itself from the container from which it is poured. The important thing to realise about Gels is that they are actually long chain polymers in solution. 10.4 HYDRATION Hydration is the process where the long chain polymers which make up the gel become evenly distributed though the gel solution The presence of long chains distributed throughout the solution gives rise to a higher viscosity. Physical interactions between polymer chains, for example hydrogen bonding or intermolecular helix formation (xanthan), increase the viscosity even more. Rigid gels can be obtained by chemically crosslinking the chains. This generates in fact one big molecule. Hydration is generally pH, time and temperature dependent although it can be mechanically accelerated in certain gels. e.g. Xanthan will build viscosity very fast if it is sheared, however if sheared too much physical crosslinks break down and takes some time to re-build itself.

Page 71: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 71 -

10.5 CURING This term is better used with gels where the bonding is a chemical reaction that slowly builds up the gel strength.

e.g. a fracturing gel

10.6 PH CONTROL pH is a measure of how acid or alkaline (base) a solution is. This measure is taken from the number of hydrogen ions available in the solution. The scale goes from 0 for the most acidic to 14 for the most base with 7 being neutral (pure water). The pH of a solution can control how fast or slow reactions take place and as such pH control can become very important when mixing some gels. The hydration rate and especially the ability to cross link can all be controlled by the pH level.

For some gel recipes high pH increases the hydration rate, whilst for other recipes, low pH will increase hydration rate.

10.7 CONVENTIONAL LINEAR GELS Conventional linear gels are very simple to use and can be formulated with a wide array of different polymers and fluids. Common polymer sources used with the linear gels are guar, HPG, HEC, carboxymethylhydroxypropyl guar (CMHPG), and carboxymethylhydroxyethyl cellulose (CMHEC). Previous studies performed with these fluids have indicated that gel residue from guar fluids can be as high as 8% to 10% by weight. The high residue content of guar gels can leave residues, if further cleanup measures are not applied.22,23 Similar problems have been observed with linear HPG and CMHPG, though residue is not as extreme with this type of fluid system. In both HPG and CMHPG fluids, the residue content can be from 1% to 3% by weight. HEC fluid systems are virtually residue free and provide the cleanest of the saccharine type materials. The general characteristics of linear gels are poor debris transport and low fluid viscosity. Linear gels tend to form thick filter cakes, in pipeline applications the material is so concentrated that the work is actually being done with a filter cake.

The pH Scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14

Acidic Basic

1 M

HC

l

Stom

ach

Aci

dLe

mon

Juic

eVi

nega

r

Milk

Pure

Wat

erB

lood

Milk

of

Mag

nesi

a

Am

mon

ia

1 M

NaO

H

[H+]

Page 72: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 72 -

New biopolymer gel systems have been recently added developed. These fluids feature clean, controllable breaks and low residue gel. Some new biopolymer systems have high cost and unfavourable shear-thinning properties. 10.8 BORATE-CROSSLINKED FLUIDS Borate-crosslinked fluids were once restricted from high-temperature applications, but advances have improved them for use in temperatures to 300°F. The polymers most often used in these fluids are guar and HPG. The crosslink obtained by using borate is reversible and is triggered by altering the pH of the fluid system. The reversible characteristic of the crosslink in borate fluids helps them clean up more effectively, resulting in good regained permeability and conductivity. In addition to good cleanup properties, with the proper composition, borate fluids provide good proppant transport, stable fluid rheology, and low fluid loss. The use of borate-crosslinked fluids has increased significantly over the last decade, and HPG-borates have been used extensively. 10.9 ORGANOMETALLIC-CROSSLINKED FLUIDS Organometallic-crosslinked fluids have long been the most popular class of fracturing fluids. Primary fluids that are widely used are titanate and zirconate complexes of guar, HPG, CMHPG, or CMHEC. These fluids are extremely stable at high temperatures and are currently the only type of fluids that can be used at bottomhole temperatures that exceed 300°F. The sediment transport capabilities of organometallic-crosslinked fluids are excellent, and can possible be applied to leak mitigation or repair. The metallic bonds which form the crosslink mechanism in these fluids are not reversible and do not break when exposed to conventional gel-breaking systems. Cleanup difficulty is the major disadvantage to these types of fluids. 10.10 ALUMINUM PHOSPATE-ESTER OIL GELS Gelled oil systems were the first high-viscosity fluids used in hydraulic fracturing operations. A major advantage to this type of fluid is its compatibility with almost any formation type. There are some disadvantages in using gelled oils. Gelling problems can occur when using crude oils and the cost of using refined oils is very high. Also there are greater concerns regarding personnel safety and environmental impact, as compared to most water-fluids. In wells with high-permeability formations, the advantages of using gelled oils can outweigh their disadvantages, if safety and environmental issues can be resolved.

Page 73: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 73 -

10.11 BREAKERS Breakers can be used to reduce gel viscosity back to something close to the base fluids rheology. In some applications, the use of delayed, encapsulated breakers may be desirable. However, this may pose the additional concerns which follow:

• The encapsulated breaker may drop out of the gel if the rheology is unsuitable for transportation.

• Delay in operations may result in untimely break of the gel. Break testing should be performed before the job is pumped. These tests help ensure that break times are sufficient to place the treatment, but short enough to allow the gel to break in a reasonable amount of time. The breaker schedule should provide good fluid properties for twice the anticipated pump time and a complete break in the required timescale Chemical descriptions of breakers and the breaking process are presented here. Note that this article focuses on water-based fluids and does not cover oil-gelled fluids and breakers. To help readers optimize the fluid system for hydraulic fracturing treatments, this article covers several aspects of fracturing fluid breakers:

• Definition and use of breakers • Performance criteria for selecting breakers • Types of breakers • Testing methods

10.11.1 Definition and Use of Breakers Gels are used to help create spacers, “no pressure seal” (to prevent sea water ingress), for transportation of debris or sediment. Gel usually consists of water thickened with guar or derivatised guar polymers. Chemicals used to reduce the viscosity of gel systems are called breakers. Water-based fracturing fluids are usually made viscous by the addition of 20 to 70 lb of guar or derivatised guar polymer per 1000 gallons of water. Guar polymer, which is derived from the beans of a guar plant, is referred to chemically as a galactomannan gum. A mixture of guar dissolved in water forms a base gel, and suitable crosslinking agents are added to form a much more viscous fluid, called a crosslinked fluid. The water-based fluids discussed here may be crosslinked with metals, such as zirconium, titanium, or boron compounds. The viscosity of base gels are typically 20 to 50 cp; when it is crosslinked, the viscosity of the base gel is increased by 2 to 100 times depending on the temperature, test method, and type of crosslinker used 10.11.2 How Breakers Work Guar polymer is considered to have a molecular weight of approximately 2.2 million. Breakers reduce the molecular weight of guar polymer by cutting the long polymer chain. As the polymer chain is cut, the fluid's viscosity is reduced, as shown in Figure 1. Reducing the guar polymer molecular weight to chains of about 10,000 molecular weight converts the fluid to near water-thin

Page 74: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 74 -

viscosity. A single guar polymer must be cut into approximately 200 small pieces to eliminate viscous effects.

Figure 1: Relationship of Average Polymer Molecular Weight and Fluid Viscosity On the other hand, crosslinking the guar increases its molecular weight to extremely high values. The actual number of crosslinks that are possible and that actually form depends on the shear level of the system: the total molecular weight is inversely proportional to the shear the fluid receives. The exact number of crosslink sites is not well known, but it could be as few as one to ten. The number of crosslinks, and thus the molecular weight of the resulting polymer, significantly alters fluid viscosity. Crosslinks produced by borate ion are known to be reversible and can be completely eliminated at neutral or acidic pH. Crosslinks formed by zirconium, titanium, antimony, and aluminium compounds, however, are not reversible and may be broken only by unconventional methods. Gel breakers are designed to reduce guar polymer viscosity by breaking down its molecular weight. This process can occur independent of crosslinking bonds existing between polymer chains.

Page 75: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 75 -

10.11.3 Mixing Gel Fluids The effectiveness and efficiency of gels relies on the quality of the base and gel materials used to perform the procedure. Special care should be taken when handling and mixing fluids. The following concerns should be applied to protect fluid quality.

• The cleanest base fluid possible should be used. • All base fluids should be filtered through a 10-micron filter or smaller. • Holding tanks should be inspected for cleanliness before adding base fluids. Substances

such as rust, dirt, chemicals, and old gel residue compromise fluid performance. • Each tank should be treated with biocide before the base fluid is added. • Pilot tests of the designed gelled fluid should be conducted on location before preparing

bulk quantities of fluid. Fluid properties such as viscosity, pH, break time, and crosslink time should be identified. Confirming tests should be performed after the fluid is prepared.

• Whenever possible, liquid gel concentrate (LGC) should be used to avoid lumping problems associated with unhydrated, powdered gel.

• Shearing and filtering fluids should be considered in applications where ultraclean fluid is required.

10.12 FOAMED AND OTHER FLUIDS Other fluids such as polymer-emulsion systems and gas-energized systems exist, but they have limited application. 10.12.1 Internally Activated Silicates (IAS) These systems are generally placed as water-thin freshwater based solutions: a silicate source and an activator designed to trigger gelation of the silicate at a predesignated time. The gel times of silicates depend on the system pH and temperature. Gel times of most currently applied IAS systems are controlled by pH, taking the temperatures into account. The target pH is either achieved on the surface by strong or weak acids or in situ by materials that slowly degrade (either thermally or with time) to form acids. Resulting gels are stiff, brittle solids. IAS systems have been very effective in field applications (Vinot et al., 1989; Herring et al. 1984). 10.12.2 Monomer Systems These systems are placed as water-thin solutions containing a low molecular weight material (monomers or oligomers) and an activator. After placement, the activator initiates the polymerization of the monomeric or oligomeric material and results in a solution with a much higher viscosity. Polymerizations are usually activated by adjusting the system to a pH that will allow polymerization at the required time at downhole temperatures (similar to the IAS systems), or by the slow decomposition (either thermal or with time) of the activator to form free radicals capable of initiating polymerization. Monomer systems that have been used commercially include

• phenol and formaldehyde controlled with pH, solid gels; • resorcinol and formaldehyde controlled by pH, stiff fragile gels; • acrylamide and an optional bisacrylamide-crosslinker activated by the decomposition of a

time-delayed oxidizer, molasses-like to rigid ringing gels; and • bifunctional aminoacrylate initiated by thermal decomposition of an oxidizer, lipping to

rigid ringing gels.

Page 76: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 76 -

10.12.3 Crosslinked Polymer Systems These are polymer- and crosslinker-containing systems that are placed at viscosities low enough to allow injectability (generally, 10 to 200 cp). After placement, the systems crosslink to form thick viscoelastic gels (from lipping gels to rigid gels, while the concentration and crosslinking is increased). The polymers used are normally water soluble: partially hydrolyzed polyacrylamides (PHPA), thermally stabilized copolymers of PHPA, non-hydrolyzed polyacrylamide (NHPA), cationic polyacrylamide, polyvinyl alcohol, guar, guar derivatives, xanthan, and scleroglucan. PHPA and its copolymers are most commonly used; biopolymers have rarely positive results. Most of the polymers start out crosslinkable, so they need to rely on the crosslinker chemistry for delay. NHPA has no place for the crosslinkers to attach, so its crosslinking is delayed by the slow hydrolysis of the polymer to form crosslink sites (Sydansk, 1993). Metallic and organic crosslinkers have been used, both of which are generally pumped as "masked" materials that are unable to interact with the polymer until their masks are removed. Metallic "masks" are called ligands which are strongly attracted to the metal ion by ionic forces. The stronger this attraction and larger the ligand, the longer it takes for the metal to release to crosslink the polymer. The rate at which the metal is released can be controlled by pH or by the ligand concentration in the system. Excess ligand can be added to the crosslinker or the polymer/crosslinker solution to delay metal release (Lockhart and Albonico, 1992), but this often results in weaker crosslinking interactions of the metal with the polymer. Metallic crosslinkers used commercially include chromium acetate (Sydansk, 1992), chromium propionate (Mumallah, 1988), zirconium lactate (Moffit et al., 1996), and aluminium citrate (Stavland and Jonsbraten, 1996). Organic crosslinkers work in one of two ways: (1) A weakly-attached organic group that is connected to the part of the crosslinker molecule

that would crosslink slowly hydrolyzes off, leaving the crosslinker molecule free to react with the polymer (glyoxal: Zaiton et al., 1991; glutaraldehyde: Matre, 1994);

(2) Components that can slowly form the crosslinker are added to the polymer solution, rather

than a crosslinker (phenol/formaldehyde: Moradi-Araghi, 1994). 10.12.4 Foams Generally, these materials are placed as solutions with either dissolved gas that expands after placement, or with no gas so that it subsequently foams in product flow. Foams are not commonly used but could be considered for water removal applications.

Page 77: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 77 -

11. PIPE AND FITTINGS ANSI

11.1 PIPE DIMENSIONS ANSI/ASME B36.10 M-1996

Nominal pipe size

Outside Diamete

r

Sched 5s

Sched 10

Sched 20

Sched 30

Standard

Sched 40

Sched 50

Extra Stron

g

Sched 80

Sched 100

Sched 120

Sched 140

Sched 160

XX Stron

g in mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm

1/8 10.3 1.24 1.45 1.73 1.73 2.41 2.41 ¼ 13.7 1.65 1.85 2.24 2.24 3.02 3.02 3/8 17.1 1.65 1.85 2.31 2.31 3.20 3.20 ½ 21.3 1.65 2.11 2.41 2.77 2.77 3.73 3.73 4.78 7.47 ¾ 26.7 1.65 2.11 2.41 2.87 2.87 3.91 3.91 5.56 7.82 1 33.4 1.65 2.77 2.90 3.38 3.38 4.55 4.55 6.35 9.09

11/4 42.2 1.65 2.77 2.97 3.56 3.56 4.85 4.85 6.35 9.70 11/2 48.3 1.65 2.77 3.18 3.68 3.68 5.08 5.08 7.14 10.15 2 60.3 1.65 2.77 3.18 3.91 3.91 5.54 5.54 8.74 11.07

21/2 73.0 2.11 3.05 4.78 5.16 5.16 7.01 7.01 9.53 14.02 3 88.9 2.11 3.05 4.78 5.49 5.49 7.62 7.62 11.13 15.24

31/2 101.6 2.11 3.05 4.78 5.74 5.74 8.08 8.08 4 114.3 2.11 3.05 4.78 6.02 6.02 8.56 8.56 11.13 13.49 17.12 5 141.3 2.77 3.40 6.55 6.55 9.53 9.53 12.70 15.88 19.05 6 168.3 2.77 3.40 7.11 7.11 10.97 10.97 14.27 18.26 21.95 8 219.1 2.77 3.76 6.35 7.04 8.18 8.18 10.31 12.70 12.70 15.09 18.26 20.62 23.01 22.23 10 273.0 3.40 4.19 6.35 7.80 9.27 9.27 12.70 12.70 15.09 18.26 21.44 25.40 28.58 25.40 12 323.8 3.96 4.57 6.35 8.38 9.53 10.31 14.27 12.70 17.48 21.44 25.40 28.58 33.32 25.40 14 355.6 3.96 6.35 7.92 9.53 9.53 11.13 15.09 12.70 19.05 23.83 27.79 31.75 35.71 16 406.4 4.19 6.35 7.92 9.53 9.53 12.70 16.66 12.70 21.44 26.19 30.96 36.53 40.49 18 457.0 4.19 6.35 7.92 11.13 9.53 14.27 19.05 12.70 23.83 29.36 34.93 39.67 45.24 20 508.0 4.78 6.35 9.53 12.70 9.53 15.09 20.62 12.70 26.19 32.54 38.10 44.45 50.01 22 559.0 4.78 6.35 9.53 12.70 9.53 22.23 12.70 28.58 34.93 41.28 47.63 53.98 24 610.0 5.54 6.35 9.53 14.27 9.53 17.48 24.61 12.70 30.96 38.89 46.02 52.37 59.54 26 660.0 7.92 12.70 9.53 12.70 28 711.0 7.92 12.70 15.88 9.53 12.70 30 762.0 7.92 12.70 15.88 9.53 12.70 32 813.0 7.92 12.70 15.88 9.53 17.48 12.70 34 864.0 7.92 12.70 15.88 9.53 17.48 12.70 36 914.0 7.92 12.70 15.88 9.53 19.05 12.70 42 1067 9.53 12.70

Page 78: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 78 -

11.2 ANSI FLANGE TABLES

ANSI Class 150 Drilling Slip On Welding Neck Blind Size

O E C min

R K G d B min

X Y Weight A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg mm mm kg kg 1/2 89 6.35 11.2 34.9 - 4 60.3 15.8 22.4 30 16 0.8 21.3 48 0.6 1.2 ¾ 99 6.35 12.7 42.9 - 4 69.8 15.8 27.7 38 16 0.9 26.7 52 0.8 1.3 1 108 6.35 14.3 50.8 63.5 4 79.4 15.8 34.5 49 17 1.0 33.4 56 1.1 1.4

11/4 117 6.35 15.7 63.5 73.2 4 88.9 15.8 43.2 59 21 1.3 42.2 57 1.4 1.8 11/2 127 6.35 17.5 73.0 82.5 4 98.4 15.8 49.5 65 22 1.5 48.3 62 1.8 2.2 2 152 6.35 19.1 92.1 101.6 4 120.6 19.0 62.0 78 25 2.3 60.3 63 2.7 2.8

21/2 178 6.35 22.3 104.8 120.7 4 139.7 19.0 74.7 90 29 3.7 73.0 70 4.0 4.7 3 190 6.35 23.9 127.0 133.4 4 152.4 19.0 90.7 108 30 4.2 88.9 70 4.5 5.5

31/2 216 6.35 23.9 139.7 154.0 8 177.8 19.0 103.4 122 32 5.3 101.6 71 6.2 6.8 4 229 6.35 23.9 157.2 171.5 8 190.5 19.0 116.1 135 33 5.9 114.3 76 7.0 8.0 5 254 6.35 23.9 185.7 193.5 8 215.9 22.2 143.8 164 37 7.0 141.3 89 8.6 9.0 6 279 6.35 25.4 215.9 219.0 8 241.3 22.2 170.7 192 40 8.5 168.3 89 10.8 12.0 8 343 6.35 28.5 269.9 273.0 8 298.4 22.2 221.5 246 44 13.5 219.1 102 18.0 20.0

10 406 6.35 30.2 323.8 330.2 12 362.0 25.4 276.4 305 49 19.5 273.0 102 24.0 32.0 12 483 6.35 31.8 381.0 406.4 12 431.8 25.4 327.2 365 56 29.0 323.9 114 37.0 40.0 14 533 6.35 35.0 412.8 425.5 12 476.2 28.5 359.2 400 57 39.0 355.6 127 47.0 59.0 16 597 6.35 36.6 469.9 482.6 16 539.8 28.5 410.5 457 63 47.0 406.4 127 58.0 77.0 18 635 6.35 39.7 533.4 546.1 16 577.8 31.8 461.8 505 68 54.0 457.0 140 64.0 95.0 20 698 6.35 42.9 584.2 596.9 20 635.0 31.8 513.1 559 73 70.0 508.0 144 77.0 123.0 24 813 6.35 47.7 692.2 711.2 20 749.3 35.0 616.0 664 83 95.0 610.0 152 118.0 186.0

Weights are approximate.

O G

d

R

C

Blind

K R

1.6mm for class 150 and 300 6.4mm for class 400and above

E RFRTJ

Y

B

C

R

Slip On

X

Page 79: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 79 -

ANSI Class 300

Drilling Slip On Welding Neck Blind Size O E C

min R K G d B

min X Y Weight A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg mm mm kg kg 1/2 95 5.56 14.2 34.9 50.8 4 66.7 15.8 22.4 38 22 1.2 21.3 52 10.5 1.5 ¾ 117 6.35 15.7 42.9 63.5 4 82.6 19.0 27.7 48 25 1.3 26.7 57 1.8 1.6 1 124 6.35 17.5 50.8 69.9 4 88.9 19.0 34.5 54 27 1.4 33.5 62 2.0 2.0

11/4 133 6.35 19.0 63.5 79.2 4 98.4 19.0 43.2 63 27 1.8 42.2 65 2.5 2.5 11/2 156 6.35 20.6 73.0 90.4 4 114.3 22.2 49.5 70 30 2.5 48.3 68 3.5 3.0 2 165 7.92 22.4 92.1 108.0 8 127.0 19.0 62.0 84 33 3.0 60.3 70 4.0 3.5

21/2 190 7.92 25.4 104.8 127.0 8 149.2 22.2 74.7 100 38 4.5 73.0 76 5.0 5.5 3 210 7.92 28.4 127.0 146.1 8 168.3 22.2 90.7 117 43 6.0 88.9 79 7.0 7.0

31/2 229 7.92 30.2 139.7 158.8 8 184.1 22.2 103.4 133 44 7.5 101.6 81 9.2 9.0 4 254 7.92 31.8 157.2 174.8 8 200.0 22.2 116.1 146 48 10.1 114.3 86 11.0 12.0 5 279 7.92 35.0 185.7 209.6 8 235.0 22.2 143.8 178 51 12.5 141.3 98 14.0 15.8 6 318 7.92 36.6 215.9 241.3 12 269.9 22.2 170.7 206 52 17.5 168.3 98 19.0 23.0 8 381 7.92 41.1 269.9 301.8 12 330.2 25.4 221.5 260 62 26.0 219.1 111 30.0 37.0

10 444 7.92 47.8 323.8 355.6 16 387.4 28.5 276.4 320 66 38.0 273.0 117 41.0 58.0 12 521 7.92 50.8 381.0 412.8 16 450.8 31.8 327.2 375 73 52.0 323.9 130 62.0 83.0 14 584 7.92 53.8 412.8 457.2 20 514.4 31.8 359.2 425 76 74.0 355.6 143 84.0 107.0 16 648 7.92 57.2 469.9 508.0 20 571.5 35.0 410.5 483 83 100.0 406.4 146 111.0 139.0 18 711 7.92 60.5 533.4 574.5 24 628.6 35.0 461.8 533 89 127.0 457.0 159 138.0 177.0 20 775 9.52 63.5 584.2 635.0 24 685.8 35.0 513.1 587 95 147.0 508.0 162 171.0 223.0 24 914 11.13 69.9 692.2 749.3 24 812.8 41.1 616.0 701 106 208.0 610.0 168 247.0 342.0

Weights are approximate.

ANSI Class 400

Drilling Slip On Welding Neck Blind Size O E C

min R K G d B

min X Y Weight A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg mm mm kg kg 1/2 ¾ 1

11/4 11/2 2

21/2

Use Class 600 Dimensions in these sizes

3 31/2 4 254 7.92 35.0 157.2 174.8 8 200.1 25.4 116.1 146 51 13.0 114.3 89 16 15 5 279 7.92 38.1 185.7 209.6 8 235.0 25.4 143.8 178 54 18.5 141.3 102 19 21 6 318 7.92 41.1 215.9 241.3 12 269.9 25.4 170.7 206 57 25.0 168.3 103 26 28 8 381 7.92 47.8 269.9 301.8 12 330.2 28.5 221.5 260 68 34.0 219.1 117 40 43

10 444 7.92 53.8 323.8 355.6 16 387.4 31.8 276.4 320 73 54.0 273.0 124 57 65 12 521 7.92 57.2 381.0 412.8 16 450.8 35.0 327.2 375 79 70.0 323.9 137 80 95 14 584 7.92 60.5 412.8 457.2 20 514.4 35.0 359.2 425 84 85.0 355.6 149 105 126 16 648 7.92 63.5 469.9 508.0 20 571.5 38.1 410.5 483 94 120.0 406.4 152 131 163 18 711 7.92 66.5 533.4 574.5 24 628.6 38.1 461.8 533 98 150.0 457.0 165 159 206 20 775 9.52 69.9 584.2 635.0 24 685.8 41.1 513.1 587 102 185.0 508.0 168 190 256 24 914 11.13 76.2 692.2 749.3 24 812.8 47.8 616.0 701 114 260.0 610.0 175 275 387

Weights are approximate.

Page 80: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 80 -

ANSI Class 600 Drilling Slip On Welding Neck Blind Size

O E C min

R K G d B min

X Y Weight A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg mm mm kg kg 1/2 95 5.56 14.2 34.9 50.8 4 66.7 15.8 22.4 38 22 1.3 21.3 52 1.5 1.4 ¾ 117 6.35 15.7 42.9 63.5 4 82.6 19.0 27.7 48 25 1.4 26.7 57 2.0 1.6 1 124 6.35 17.5 50.8 69.9 4 88.9 19.0 34.5 54 27 1.8 33.4 62 2.5 2.1

11/4 133 6.35 20.6 63.5 79.2 4 98.4 19.0 43.2 64 29 2.1 42.2 67 3.2 2.6 11/2 156 6.35 22.4 73.0 90.4 4 114.3 22.2 49.5 70 32 3.1 48.3 70 4.5 3.3 2 165 7.92 25.4 92.1 108.0 8 127.0 19.0 62.0 84 37 4.0 60.3 73 5.5 4.4

21/2 190 7.92 28.4 104.8 127.0 8 149.2 22.2 74.7 100 41 5.4 73.0 79 8.0 6.0 3 210 7.92 31.8 127.0 146.1 8 168.3 22.2 90.7 118 46 7.0 88.9 83 10.5 7.4

31/2 229 7.92 35.0 139.7 158.8 8 184.1 25.4 103.4 133 49 8.9 101.6 86 15.6 9.5 4 273 7.92 38.1 157.2 174.8 8 215.9 25.4 116.1 152 54 16.0 114.3 102 19.0 17.0 5 330 7.92 44.5 185.7 209.6 8 266.7 28.5 143.8 189 60 25.0 141.3 114 31.0 27.0 6 356 7.92 47.8 215.9 241.3 12 292.1 28.5 170.7 222 67 30.0 168.3 117 37.0 32.0 8 419 7.92 55.6 269.9 301.8 12 349.2 31.8 221.5 273 76 43.0 219.1 133 53.0 46.0

10 508 7.92 63.5 323.8 355.6 16 431.8 35.0 276.4 343 86 70.0 273.0 152 86.0 74.0 12 559 7.92 66.5 381.0 412.8 20 489.0 35.0 327.2 400 92 86.0 323.9 156 102.0 90.0 14 603 7.92 69.9 412.8 457.2 20 527.0 38.1 359.2 432 94 100.0 355.6 165 150.0 108.0 16 686 7.92 76.2 469.9 508.0 20 603.2 41.1 410.5 495 106 142.0 406.4 178 190.0 150.0 18 743 7.92 82.6 533.4 574.5 20 654.0 44.5 461.8 546 117 175.0 457.0 184 240.0 188.0 20 813 9.52 88.9 584.2 635.0 24 723.9 44.5 513.1 610 127 221.0 508.0 190 295.0 230.0 24 940 11.13 101.6 692.2 749.3 24 838.2 50.8 616.0 718 140 315.0 610.0 203 365.0 325.0

Weights are approximate.

ANSI Class 900

Drilling Slip On Welding Neck Blind Size O E C

min R K G d B

min X Y Weight A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg mm mm kg kg 1/2 ¾ 1

11/4 11/2 2

21/2

Use Class 1500 dimensions in these sizes

3 241 7.92 38.1 127.0 155.4 8 190.5 25.4 90.7 127 54 11.6 88.9 102 14.5 14.5 4 292 7.92 44.5 157.2 180.8 8 235.0 31.8 116.1 159 70 19.8 114.3 114 23.0 24.0 5 349 7.92 50.8 185.7 215.9 8 279.4 35.0 143.8 190 79 32.0 141.3 127 37.0 39.0 6 381 7.92 55.6 215.9 241.3 12 317.5 31.8 170.7 235 86 41.0 168.3 140 50.0 51.0 8 470 7.92 63.5 269.9 307.8 12 393.7 38.1 221.5 298 102 71.0 219.1 162 85.0 89.0

10 546 7.92 69.9 323.8 362.0 16 469.9 38.1 276.4 368 108 100 273.0 184 118.0 130.0 12 610 7.92 79.2 381.0 419.1 20 533.4 38.1 327.2 419 117 133.0 323.9 200 163.0 175.0 14 641 11.13 85.9 412.8 466.9 20 558.8 41.1 359.2 451 130 152.0 355.6 213 186.0 206.0 16 705 11.13 88.9 469.9 523.7 20 616.0 44.5 410.5 508 133 184.0 406.4 216 224.0 259.0 18 787 12.70 101.6 533.4 593.9 20 685.8 50.8 461.8 565 152 258.0 457.0 229 300.0 367.0 20 857 12.70 108.0 584.2 647.7 20 749.3 53.8 513.1 622 159 317.0 508.0 248 373.0 463.0 24 1041 15.88 139.7 692.2 771.7 20 901.7 66.5 616.0 749 203 608.0 610.0 292 680.0 875.0

Weights are approximate.

Page 81: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 81 -

ANSI Class 1500 Drilling Slip On Welding Neck Blind Size

O E C min

R K G d B min

X Y Weight A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg mm mm kg kg 1/2 121 6.35 22.4 34.9 60.5 4 82.6 22.2 22.4 38 32 1.8 21.3 60 2.0 1.8 ¾ 130 6.35 25.4 42.9 66.5 4 88.9 22.2 27.7 44 35 2.4 26.7 70 3.0 2.7 1 149 6.35 28.4 50.8 71.4 4 101.6 25.4 34.5 52 41 3.5 33.4 73 4.0 4.0

11/4 159 6.35 28.4 63.5 81.0 4 111.1 25.4 43.2 63 41 4.0 42.2 73 4.6 5.8 11/2 178 6.35 31.8 73.0 91.9 4 123.8 28.5 49.5 70 44 5.5 48.3 83 6.5 6.5 2 216 7.92 38.1 92.1 123.9 8 165.1 25.4 62.0 105 57 10.0 60.3 102 11.5 11.5

21/2 244 7.92 41.1 104.8 136.7 8 190.5 28.5 74.7 124 63 13.9 73.0 105 15.8 15.5 3 267 7.92 47.8 127.0 168.1 8 203.2 31.8 - 133 - - 88.9 118 22.0 22.0 4 311 7.92 53.8 157.2 193.5 8 241.3 35.0 - 162 - - 114.3 124 30.0 33.0 5 375 7.92 73.2 185.7 228.6 8 292.1 41.1 - 197 - - 141.3 155 58.0 60.0 6 394 9.52 82.6 215.9 248.0 12 317.5 38.1 - 229 - - 168.3 171 70.0 72.0 8 483 11.13 91.9 269.7 318.0 12 393.7 44.5 - 292 - - 219.1 213 119.0 122.0

10 584 11.13 108.0 323.8 371.0 12 482.6 50.8 - 368 - - 273.0 254 204.0 210.0 12 673 14.27 124.0 381.0 438.0 16 571.5 53.8 - 451 - - 323.9 283 303.0 315.0 14 749 15.88 133.4 412.8 489.0 16 635.0 60.5 - 495 - - 355.6 298 426.0 460.0 16 826 17.48 146.0 469.9 546.0 16 704.8 66.5 - 552 - - 406.4 311 567.0 610.0 18 914 17.48 162.0 533.4 613.0 16 774.7 73.2 - 597 - - 457.0 327 737.0 835.0 20 984 17.48 177.8 584.2 673.0 16 831.8 19.2 - 641 - - 508.0 356 930.0 1062.0

24 1168 20.62 203.2 692.2 794.0 16 990.6 91.9 - 762 - - 610.0 406 1510.0 1712.0

Weights are approximate.

ANSI Class 2500

Drilling Welding Neck Blind Size O E C min R K G d X A Y1 Weight Weight

NPS mm mm mm mm mm No mm mm mm mm mm kg kg 1/2 133 6.35 30.2 34.9 65.0 4 88.9 22.2 43 21.3 73 3.6 3.3 ¾ 140 6.35 31.8 42.9 73.2 4 95.3 22.2 51 26.7 79 4.0 3.9 1 159 6.35 35.0 50.8 82.6 4 108.0 25.4 57 33.4 89 6.0 5.0

11/4 184 7.92 38.1 63.5 101.6 4 130.0 28.5 73 42.2 95 9.0 8.1 11/2 203 7.92 44.5 73.0 114.3 4 146.0 31.8 79 48.3 111 13.0 11.5 2 235 7.92 50.8 92.1 133.4 8 171.5 28.5 95 60.3 127 19.0 17.6

21/2 267 9.52 57.2 104.8 149.4 8 196.9 31.8 114 73.0 143 24.0 26.0 3 305 9.52 66.5 127.0 168.1 8 228.6 35.0 133 88.9 168 43.0 39.0 4 356 11.13 76.2 157.2 203.2 8 273.0 41.1 165 114.3 190 66.0 60.0 5 419 12.70 91.9 185.7 241.3 8 323.9 47.8 203 141.3 229 111.0 100.0 6 483 12.70 108.0 215.9 279.4 8 368.3 53.8 235 168.3 273 172.0 140.0 8 552 14.27 127.0 269.9 339.9 12 438.2 53.8 305 219.1 317 261.0 236.0

10 673 17.48 165.1 323.8 425.5 12 539.8 66.5 375 273.0 419 485.0 450.0 12 762 17.48 184.2 381.0 495.3 12 619.3 73.2 441 323.9 464 730.0 650.0

Weights are approximate.

Page 82: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 82 -

11.3 ANSI RING TYPES

ANSI RTJ Ring Numbers ANSI Class Size

150 300 400 600 900 1500 2500 NPS Ring Number Ring Number Ring Number Ring Number Ring Number Ring Number Ring Number

1/2 - R11 R11 R11 R12 R12 R13

¾ - R13 R13 R13 R14 R14 R16 1 R15 R16 R16 R16 R16 R16 R18

11/4 R17 R18 R18 R18 R18 R18 R21 11/2 R19 R20 R20 R20 R20 R20 R23 2 R22 R23 R23 R23 R24 R24 R26

21/2 R25 R26 R26 R26 R27 R27 R28 3 R29 R31* R31* R31* R31 R35 R32

31/2 R33 R34 R34 R34 - - - 4 R36 R37 R37 R37 R37 R39 R38 5 R40 R41 R41 R41 R41 R44 R42 6 R43 R45 R45 R45 R45 R46 R47 8 R48 R49 R49 R49 R49 R50 R51

10 R52 R53 R53 R53 R53 R54 R55 12 R56 R57 R57 R57 R57 R58 R60 14 R59 R61 R61 R61 R62 R63 - 16 R64 R65 R65 R65 R66 R67 - 18 R68 R69 R69 R69 R70 R71 - 20 R72 R73 R73 R73 R74 R75 - 24 R76 R77 R77 R77 R78 R79 -

* For ring joints with lapped flanges in classes 300 and 600, ring number R30 is used instead of R31.

Page 83: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 83 -

11.4 ANSI BOLTING DETAIL

150 psi Nominal Pipe Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter ofBolts

(inches)

Bolt Circle

(inches) 1/4 3-3/8 4 1/2 2-1/4 1/2 3-1/2 4 1/2 2-3/8 3/4 3-7/8 4 1/2 2-3/4 1 4-1/4 4 1/2 3-1/8

1-1/4 4-5/8 4 1/2 3-1/2 1-1/2 5 4 1/2 3-7/8

2 6 4 5/8 4-3/4 2-1/2 7 4 5/8 5-1/2

3 7-1/2 4 5/8 6 3-1/2 8-1/2 8 5/8 7

4 9 8 5/8 7-1/2 5 10 8 3/4 8-1/2 6 11 8 3/4 9-1/2 8 13-1/2 8 3/4 11-3/4 10 16 12 7/8 14-1/4 12 19 12 7/8 17 14 21 12 1 18-3/4 16 23-1/2 16 1 21-1/4 18 25 16 1-1/8 22-3/4 20 27-1/2 20 1-1/8 25 24 32 20 1-1/4 29-1/2

Page 84: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 84 -

300 psi Nominal Pipe

Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter ofBolts

(inches)

Bolt Circle

(inches) 1/4 3-3/8 4 1/2 2-1/4 1/2 3-3/4 4 1/2 2-5/8 3/4 4-5/8 4 5/8 3-1/4 1 4-7/8 4 5/8 3-1/2

1-1/4 5-1/4 4 5/8 3-7/8 1-1/2 6-1/8 4 3/4 4-1/2

2 6-1/2 8 5/8 5 2-1/2 7-1/2 8 3/4 5-7/8

3 8-1/4 8 3/4 6-5/8 3-1/2 9 8 3/4 7-1/4

4 10 8 3/4 7-7/8 5 11 8 3/4 9-1/4 6 12-1/2 12 3/4 10-5/8 8 15 12 7/8 13 10 17-1/2 16 1 15-1/4 12 20-1/2 16 1-1/8 17-3/4 14 23 20 1-1/8 20-1/4 16 25-1/2 20 1-1/4 22-1/2 18 28 24 1-1/4 24-3/4 20 30-1/2 24 1-1/4 27 24 36 24 1-1/2 32

Page 85: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 85 -

400 psi Nominal Pipe Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter ofBolts

(inches)

Bolt Circle

(inches) 1/4 3-3/8 4 1/2 2-1/4 1/2 3-3/4 4 1/2 2-5/8 3/4 4-5/8 4 5/8 3-1/4 1 4-7/8 4 5/8 3-1/2

1-1/4 5-1/4 4 5/8 3-7/8 1-1/2 6-1/8 4 3/4 4-1/2

2 6-1/2 8 5/8 5 2-1/2 7-1/2 8 3/4 5-7/8

3 8-1/4 8 3/4 6-5/8 3-1/2 9 8 7/8 7-1/4

4 10 8 7/8 7-7/8 5 11 8 7/8 9-1/4 6 12-1/2 12 7/8 10-5/8 8 15 12 1 13 10 17-1/2 16 1-1/8 15-1/4 12 20-1/2 16 1-1/4 17-3/4 14 23 20 1-1/4 20-1/4 16 25-1/2 20 1-3/8 22-1/2 18 28 24 1-3/8 24-3/4 20 30-1/2 24 1-1/2 27 24 36 24 1-3/4 32

Page 86: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 86 -

600 psi Nominal Pipe Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter ofBolts

(inches)

Bolt Circle

(inches) 1/4 3-3/8 4 1/2 2-1/4 1/2 3-3/4 4 1/2 2-5/8 3/4 4-5/8 4 5/8 3-1/4 1 4-7/8 4 5/8 3-1/2

1-1/4 5-1/4 4 5/8 3-7/8 1-1/2 6-1/8 4 3/4 4-1/2

2 6-1/2 8 5/8 5 2-1/2 7-1/2 8 3/4 5-7/8

3 8-1/4 8 3/4 6-5/8 3-1/2 9 8 7/8 7-1/4

4 10-3/4 8 7/8 8-1/2 5 13 8 1 10-1/2 6 14 12 1 11-1/2 8 16-1/2 12 1-1/8 13-3/4 10 20 16 1-1/4 17 12 22 20 1-1/4 19-1/4 14 23-3/4 20 1-3/8 20-3/4 16 27 20 1-1/2 23-3/4 18 29-1/4 20 1-5/8 25-3/4 20 32 24 1-5/8 28-1/2 24 37 24 1-7/8 33

Page 87: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 87 -

900 psi Nominal Pipe Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter of Bolts

(inches)

Bolt Circle

(inches) 1/2 4-3/4 4 3/4 3-1/4 3/4 5-1/8 4 3/4 3-1/2 1 5-7/8 4 7/8 4

1-1/4 6-1/4 4 7/8 4-3/8 1-1/2 7 4 1 4-7/8

2 8-1/2 8 7/8 6-1/2 2-1/2 9-5/8 8 1 7-1/2

3 9-1/2 8 7/8 7-1/2 4 11-1/2 8 1-1/8 9-1/4 5 13-3/4 8 1-1/4 11 6 15 12 1-1/8 12-1/2 8 18-1/2 12 1-3/8 15-1/2

10 21-1/2 16 1-3/8 18-1/2 12 24 20 1-3/8 21 14 25-1/4 20 1-1/2 22 16 27-3/4 20 1-5/8 24-1/2 18 31 20 1-7/8 27 20 33-3/4 20 2 29-1/2 24 41 20 2-1/2 35-1/2

Page 88: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 88 -

1500 psi Nominal Pipe Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter ofBolts

(inches)

Bolt Circle

(inches) 1/2 4-3/4 4 3/4 3-1/4 3/4 5-1/8 4 3/4 3-1/2 1 5-7/8 4 7/8 4

1-1/4 6-1/4 4 7/8 4-3/8 1-1/2 7 4 1 4-7/8

2 8-1/2 8 7/8 6-1/2 2-1/2 9-5/8 8 1 7-1/2

3 10-1/2 8 1-1/8 8 4 12-1/4 8 1-1/4 9-1/2 5 14-3/4 8 1-1/2 11-1/2 6 15-1/2 12 1-3/8 12-1/2 8 19 12 1-5/8 15-1/2 10 23 12 1-7/8 19 12 26-1/2 16 2 22-1/2 14 29-1/2 16 2-1/4 25 16 32-1/2 16 2-1/2 27-3/4 18 36 16 2-3/4 30-1/2 20 38-3/4 16 3 32-3/4 24 46 16 3-1/2 39

2500 psi Nominal Pipe Size NPS

(inches)

Diameter ofFlange (inches)

No. of

Bolts

Diameter ofBolts

(inches)

Bolt Circle

(inches) 1/2 5-1/4 4 3/4 3-1/2 3/4 5-1/2 4 3/4 3-3/4 1 6-1/4 4 7/8 4-1/4

1-1/4 7-1/4 4 1 5-1/8 1-1/2 8 4 1-1/8 5-3/4

2 9-1/4 8 1 6-3/4 2-1/2 10-1/2 8 1-1/8 7-3/4

3 12 8 1-1/4 9 4 14 8 1-1/2 10-3/4 5 16-1/2 8 1-3/4 12-3/4 6 19 8 2 14-1/2 8 21-3/4 12 2 17-1/4 10 26-1/2 12 2-1/2 21-1/4 12 30 12 2-3/4 24-3/8

Page 89: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 89 -

11.5 MAXIMUM ALLOWABLE NON-SHOCK PRESSURE (PSIG) AND TEMPERATURE RATINGS FOR STEEL PIPE FLANGES AND FLANGED FITTINGS

(According to American National Standard ANSI B16.5 – 1988)

Maximum Allowable non-shock Pressure (psig)

Pressure Class (lb.) 150 300 400 600 900 1500 2500

Hydrostatic Test Pressure (psig)

Temperature

(oF) 450 1125 1500 2225 3350 5575 9275

-20 to 100 285 740 990 1480 2220 3705 6170 200 260 675 900 1350 2025 3375 5625 300 230 655 875 1315 1970 3280 5470 400 200 635 845 1270 1900 3170 5280 500 170 600 800 1200 1795 2995 4990 600 140 550 730 1095 1640 2735 4560 650 125 535 715 1075 1610 2685 4475 700 110 535 710 1065 1600 2665 4440 750 95 505 670 1010 1510 2520 4200 800 80 410 550 825 1235 2060 3430 850 65 270 355 535 805 1340 2230 900 50 170 230 345 515 860 1430 950 35 105 140 205 310 515 860 1000 20 50 70 105 155 260 430

Page 90: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 90 -

12. PLANT SPECIFICATIONS

12.1 RECOMMENDED FLOW/VISCOSITY LIMITS FOR TURBINE FLOWMETERS Flowrates

Range (litres/min) Flowmeter size

min max ½ " 2.8 27.8 ¾ " 7.6 55.6 1" 18.75 187.5

1 ½ " 55.6 694.4 2" 145.8 1458.3 3" 232.6 2292 4" 375 4514

Viscosity Limits

1” Turbine Meter 100 Centistokes 1 x 104 m2/sec 1 ½” Turbine Meter 150 Centistokes 1.5 x 104 m2/sec 2” Turbine Meter 250 Centistokes 2.5 x 104 m2/sec 3” Turbine Meter 350 Centistokes 3.5 x 104 m2/sec 4” Turbine Meter 400 Centistokes 4 x 104 m2/sec 6” Turbine Meter 400 Centistokes 4 x 104 m2/sec 8” Turbine Meter 400 Centistokes 4 x 104 m2/sec

Above these viscosities you should plan on making calibration factor adjustments. The limits are stated as Kinematic Viscosities. Fluid viscosity impacts turbine meter calibration factor. The amount of impact varies with flow rate and meter size. In general, a turbine meter will have repeatable performance at a given viscosity at a constant flow rate. Since, with our viscous fluids, we don't enjoy such a luxury during our jobs, inventory management (tank strapping) is done to provide turbine meter calibration factor adjustments.

Page 91: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 91 -

12.2 FILTER MESH SIZES

Mesh Per in

Wire gauge SWG

Holes per in2

Aperture ins

Aperture mm

% Free Area

No. of meshes

per cm

No. of holes per

cm2

Micron rating µm

10 23 100 0.076 1.929 58 3.93 15 1929

12 24 144 0.061 1.557 54 4.73 22 1557

16 28 256 0.047 1.211 58 6.30 40 1211

20 28 400 0.035 0.894 50 7.87 62 894

30 32 900 0.022 0.572 46 11.80 139 572

40 34 1600 0.0158 0.4013 40 15.75 248 401

60 37 3600 0.0099 0.2506 35 23.60 560 251

80 39 6400 0.0073 0.1854 34 31.50 995 185

100 41 10000 0.0056 0.1422 31 39.37 1550 142

120 43 14400 0.0047 0.1203 32 47.24 2240 120

150 45 22500 0.0039 0.0997 34 59.00 3481 100

180 47 32400 0.0036 0.0903 42 70.80 5020 90

200 47 40000 0.0030 0.0762 36 78.70 6200 76

250 48 62500 0.0024 0.0610 36 98.40 9680 61

300 48.5 90000 0.0019 0.0483 32 118.00 13924 48

Weave Micron rating µm Weave Micron rating µm

325 x 3200 10.5 28 x 450 50

200 x 2000 13.0 75 x 550 35

185 x 1500 16.0 24 x 250 75

180 x 1440 17.5 24 x 110 100

180 x 1400 17.5 20 x 300 65

180 x 1300 19.0 20 x 200 115

160 x 1100 21.0

165 x 1440 22.0

165 x 1100 25.0

Page 92: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 92 -

12.3 PUMP OUTPUTS 12.3.1 HQ-2000 Quintuplex Pump

Page 93: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 93 -

12.3.2 HT-400

Page 94: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 94 -

Neolith NP 160(Quintruplex)

Zone II High Pressure Jetting Unit (150 HP) Outlet Pressure Output Flow

Bar PSI IGPM Litres/min

827.6 12,000 15 68.2

575.9 8,350 22 100

420.7 6,100 30 136.4

334.5 4,850 38 172.7

265.5 3,850 48 218.2

210.3 3,050 60 272.8

151.7 2,200 77 350

Page 95: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 95 -

12.3.3 AZ Series Pumps (Minipaks)

Model Number AZ Hydraulic Pump -10 -12 -19 -26 -30 -36 -58 -70 -86 -107 -140 -187 -275 -425

Piston Dia (mm) 41.28

38.10

30.15

25.40

23.80

22.23

17.45

15.88

14.27

12.70

11.10

9.53 7.92 6.35

Vo./Stroke (ml) 42.29

36.22

22.70

16.09

14.13

12.55

7.60 6.29 5.08 4.02 3.08 2.26 1.57 1.00

Approximate Rate of Discharge (l/min)

Air @ 100psi AZ-1

-10 -12 -19 -26 -30 -36 -58 -70 -86 -107 -140 -187 -275 -425

0 23.09 18.29 11.60 8.80 7.29 6.00 3.56 2.97 3.03 1.97 1.51 1.15 0.72 0.43 250 14.80 11.39 9.00 500 12.00 10.19 7.80 5.85 5.10 4.39 750 8.8 7.38 6.61

1000 0 5.03 5.80 4.72 4.39 3.80 2.51 2.10 1.64 1.28 1250 0 5.00 1500 4.20 3.90 3.65 3.34 1750 2.51 3.44 3.34 2000 0 3.00 3.10 3.00 2.25 1.85 1.52 1.21 1.00 2500 1.21 2.34 2.56 0.75 3000 0 0.51 1.95 1.85 1.61 1.36 1.16 0.48 3500 0 1.20 1.70 4000 0 1.56 1.46 1.20 1.02 0.92 4500 1.29 1.29 1.15 5000 1.02 1.25 1.06 0.67 0.26 6000 0 0.93 0.97 0.89 0.82 0.41 7000 0 0.80 8000 0.48 0.72 0.70 0.59 9000 0 0.62 0.39 10000 0.44 0.61 0.52 0.25 12500 0 0.48 0.46 0.34 15000 0 0.39 0.33 0.21 20000 0 0.30 0.20 25000 0.21 0.16 30000 0 0.13 40000 0.05 50000 0

Page 96: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 96 -

12.3.4 DA Model Pumps

Model Ref. Ram Dia. (mm) Output/Cycle (l)

DA33 44.45 0.26

DA66 31.75 0.23

DA118 23.80 0.07

DA186 19.05 0.05

DA267 15.88 0.03

Approximate Rate of Discharge (l/min)

Air Drive 100 psi.

Pressure (psi) DA33 DA66 DA118 DA186 DA267

0 27.09 13.90 7.82 5.21 3.47

500 23.01

1000 19.18 11.80 7.00

1500 17.13

2000 14.31 9.83 6.41 3.11

2500 11.51 9.18 4.43

3000 8.42 8.79 5.90

4000 - 7.34 5.31 3.93 2.95

5000 - 5.90 5.02

6000 - 4.33 4.28 3.69 2.62

8000 - - 3.54 2.46

10000 - - 2.57 3.15 2.29

12000 - - -

14000 - - - 2.21 2.10

16000 - - - 1.84

18000 - - - 1.28

20000 - - - - 1.48

22000 - - - - 1.28

24000 - - - - 1.08

26000 - - - - 0.85

Page 97: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 97 -

12.3.5 DHDA (TDA) Model

Model Ram Dia. (mm) Output/Cycle (l)

DHDA33 44.45 0.256

DHDA66 31.75 0.131

DHDA118 23.81 0.074

Approximate Rate of Discharge (l/min) – Air Drive 100 psi

Pressure psi DHDA33 DHDA66 DHDA118

0 31.70 16.26 9.15

1000 24.54 13.37 -

1500 - - 7.52

2000 19.93 12.59 -

3000 15.85 11.01 -

3500 - - 7.08

4000 12.26 10.23 -

5000 9.70 9.18 6.20

6000 6.64 8.13 -

7000 - 6.29 5.75

8000 - 4.98 -

9000 - 3.41 5.16

10000 - - -

10500 - - 4.57

12000 - - -

14000 - - 3.54

17500 - - 2.80

21000 - - 1.92

Page 98: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 98 -

12.3.6 1 & 2” Diaphgram Pumps

70

60

50

40

30

20

10

0 5 10 15 20 25

2” 100psi-70cfm

2” 75psi-60cfm

1” 100psi-40cfm

Head (m)

Flowrate m3/hr

Page 99: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 99 -

12.4 LIQUID NITROGEN TANKS (LIQUID LEVEL GAUGE READINGS)

MODEL RMP 7000 HLR

7,400 LITRES GROSS

7,000 LITRES NETT

MODEL RBP 8000 HLR

8,100 LITRES GROSS.

7,690 LITRES NETT

INS. W.G.

LITRES L.N. SCF INS. W.G.

LITRES L.N. SCF

5 340 8364 5 370 9102 10 860 21156 10 940 23124 15 1490 36654 15 1620 39852

¼ 18 1750 43050 ¼ 18 1920 47232 20 2250 55350 20 2450 60270 25 3020 74292 25 3300 81180

½ 28 3500 86100 ½ 28 3845 94587 Full Full

30 3850 94710 30 4210 103566 35 4650 114390 35 5080 124968

¾ 38 5250 129150 ¾ 38 5770 141942 40 5410 133086 40 5910 145386 45 6140 151044 45 6710 165066 * 48 6590 162114 48 7200 177120 50 6750 166050 50 7380 181548

Full ** 52.5 7000 172200 Full 52.5 7690 189174 55 7240 178104 55 7910 194586

Cryodiffusion Tanks * By Netherlands Stoomwezen Regulation requirement, tank filling must be limited to 89%

full (11% ullage) whenever operating within Netherlands territories. ** Full Trycock – 5% ullage

Page 100: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 100 -

13. SEDIMENT TRANSPORT WITH WATER

0.1

1.5

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.25

.30

.40

0.5

1.0

PIP

E D

IAM

ETE

R D

(m)

30

.15

.20

.301.0 2

3 4

5

10

20

.40.50

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.92.0

2.5

3.0

3.5

4.0

5.0

6.07.08.010

PARTICLE DIAMETER d (mm) FOR GRAINS WITH Ss = 2.65 sg

1.0

1.1

1.2

1.3

1.4

1.51.6

1.71.8

2.02.2

2.22.65

2.93.0

4.0

5.0

6.07.0

8.0

10

20

8.0 7.0 6.0 5.0

4.0 3.5

2.5

2.0 1.9 1.8 1.7 1.6 1.5

1.4

1.3

1.2

1.1

1.0

3.0

Fig. 4.3. Nomographic chart for maximum velocity at limit of stationary deposition, from Wilson (1979).

RELATIVE

DENSITY

Ss

V sm

(m

/s) F

OR

GR

AIN

S W

ITH

Ss

VE

LOC

ITY

AT

LIM

IT O

F S

TATI

ON

AR

Y D

EP

OS

IT V

sm

(m

/s) F

OR

GR

AIN

S W

ITH

Ss

= 2.

65

.1

Page 101: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 101 -

14. CONVERSION FACTORS

Conversion Factors (Factors in boldface are exact)

ACCELERATION To convert from to Multiply by

acceleration of free fall, standard (gn) meter per second squared (m/s2) 9.806 65 E+00 foot per second squared (ft/s2) meter per second squared (m/s2) 3.048 E-01 gal (Gal) meter per second squared (m/s2) 1.0 E-02 inch per second squared (in/s2) meter per second squared (m/s2) 2.54 E-02

ANGLE To convert from to Multiply by

degree (°) radian (rad) 1.745 329 E-02 gon (also called grade) (gon) radian (rad) 1.570 796 E-02 gon (also called grade) (gon) degree (°) 9.0 E-01 mil radian (rad) 9.817 477 E-04 mil degree (°) 5.625 E-02 minute ( ) radian (rad) 2.908 882 E-04 revolution (r) radian (rad) 6.283 185 E+00 second ( ) radian (rad) 4.848 137 E-06

AREA AND SECOND MOMENT OF AREA To convert from to Multiply by

acre (based on U.S. survey foot) square meter (m2) 4.046 873 E+03 are (a) square meter (m2) 1.0 E+02 barn (b) square meter (m2) 1.0 E-28 circular mil square meter (m2) 5.067 075 E-10 circular mil square millimeter (mm2) 5.067 075 E-04 foot to the fourth power (ft4) meter to the fourth power (m4) 8.630 975 E-03 hectare (ha) square meter (m2) 1.0 E+04 inch to the fourth power (in4) meter to the fourth power (m4) 4.162 314 E-07 square foot (ft2) square meter (m2) 9.290 304 E-02 square inch (in2) square meter (m2) 6.4516 E-04 square inch (in2) square centimeter (cm2) 6.4516 E+00 square mile (mi2) square meter (m2) 2.589 988 E+06 square mile (mi2) square kilometre (km2) 2.589 988 E+00 square mile (based on U.S. survey foot) (mi2) square meter (m2) 2.589 998 E+06 square mile (based on U.S. survey foot) (mi2) square kilometre (km2) 2.589 998 E+00 square yard (yd2) square meter (m2) 8.361 274 E-01

Page 102: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 102 -

ELECTRICITY AND MAGNETISM To convert from to Multiply by

abampere ampere (A) 1.0 E+01 abcoulomb coulomb(C) 1.0 E+01 abfarad farad (F) 1.0 E+09 abhenry henry (H) 1.0 E-09 abmho siemens (S) 1.0 E+09 abohm ohm ( ) 1.0 E-09 abvolt volt (V) 1.0 E-08 ampere hour (A · h) coulomb(C) 3.6 E+03 biot (Bi) ampere (A) 1.0 E+01 EMU of capacitance (abfarad) farad (F) 1.0 E+09 EMU of current (abampere) ampere (A) 1.0 E+01 EMU of electric potential (abvolt) volt (V) 1.0 E-08 EMU of inductance (abhenry) henry (H) 1.0 E-09 EMU of resistance (abohm) ohm ( ) 1.0 E-09 ESU of capacitance (statfarad) farad (F) 1.112 650 E-12 ESU of current (statampere) ampere (A) 3.335 641 E-10 ESU of electric potential (statvolt) volt (V) 2.997 925 E+02 ESU of inductance (stathenry) henry (H) 8.987 552 E+11 ESU of resistance (statohm) ohm ( ) 8.987 552 E+11 faraday (based on carbon 12) coulomb(C) 9.648 531 E+04 franklin (Fr) coulomb(C) 3.335 641 E-10 gamma ( ) tesla (T) 1.0 E-09 gauss (Gs, G) tesla (T) 1.0 E-04 gilbert (Gi) ampere (A) 7.957 747 E-01 maxwell (Mx) weber (Wb) 1.0 E-08 mho siemens (S) 1.0 E+00 oersted (Oe) ampere per meter (A/m) 7.957 747 E+01 ohm centimeter ( · cm) ohm meter ( · m) 1.0 E-02 ohm circular-mil per foot ohm meter ( · m) 1.662 426 E-09 ohm circular-mil per foot ohm square millimeter per meter ( · mm2/m) 1.662 426 E-03 statampere ampere (A) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 statfarad farad (F) 1.112 650 E-12 stathenry henry (H) 8.987 552 E+11 statmho siemens (S) 1.112 650 E-12 statohm ohm( ) 8.987 552 E+11 statvolt volt (V) 2.997 925 E+02 unit pole weber (Wb) 1.256 637 E-07

Page 103: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 103 -

ENERGY (INCLUDES WORK) To convert from to Multiply by

British thermal unitIT (BtuIT) joule (J) 1.055 056 E+03 British thermal unitth (Btuth ) joule (J) 1.054 350 E+03 British thermal unit (mean) (Btu) joule (J) 1.055 87 E+03 British thermal unit (39 °F) (Btu) joule (J) 1.059 67 E+03 British thermal unit (59 °F) (Btu) joule (J) 1.054 80 E+03 British thermal unit (60 °F) (Btu) joule (J) 1.054 68 E+03 calorieIT (calIT) joule (J) 4.1868 E+00 calorieth (calth) joule (J) 4.184 E+00 calorie (mean) (cal) joule (J) 4.190 02 E+00 calorie (15 °C) (cal15) joule (J) 4.185 80 E+00 calorie (20 °C) (cal20) joule (J) 4.181 90 E+00 calorieIT, kilogram (nutrition) joule (J) 4.1868 E+03 calorieth, kilogram (nutrition) joule (J) 4.184 E+03 calorie (mean), kilogram (nutrition) joule (J) 4.190 02 E+03 electronvolt (eV) joule (J) 1.602 177 E-19 erg (erg) joule (J) 1.0 E-07 foot poundal joule (J) 4.214 011 E-02 foot pound-force (ft · lbf) joule (J) 1.355 818 E+00 kilocalorieIT (kcalIT) joule (J) 4.1868 E+03 kilocalorieth (kcalth) joule (J) 4.184 E+03 kilocalorie (mean) (kcal) joule (J) 4.190 02 E+03 kilowatt hour (kW · h) joule (J) 3.6 E+06 kilowatt hour (kW · h) megajoule (MJ) 3.6 E+00 quad (1015 BtuIT) joule (J) 1.055 056 E+18 therm (EC) joule (J) 1.055 06 E+08 therm (U.S.) joule (J) 1.054 804 E+08 ton of TNT (energy equivalent) joule (J) 4.184 E+09 watt hour (W · h) joule (J) 3.6 E+03 watt second (W · s) joule (J) 1.0 E+00

Page 104: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 104 -

ENERGY DIVIDED BY AREA TIME To convert from to Multiply by

erg per square centimeter second [erg/(cm2 · s)] watt per square meter (W/m2) 1.0 E-03 watt per square centimeter (W/cm2) watt per square meter (W/m2) 1.0 E+04 watt per square inch (W/in2) watt per square meter (W/m2) 1.550 003 E+03

FORCE To convert from to Multiply by

dyne (dyn) newton (N) 1.0 E-05 kilogram-force (kgf) newton (N) 9.806 65 E+00 kilopond (kilogram-force) (kp) newton (N) 9.806 65 E+00 kip (1 kip= 1000 lbf) newton (N) 4.448 222 E+03 kip (1 kip= 1000 lbf) kilonewton (kN) 4.448 222 E+00 ounce (avoirdupois)-force (ozf) newton (N) 2.780 139 E-01 poundal newton (N) 1.382 550 E-01 pound-force (lbf) newton (N) 4.448 222 E+00 pound-force per pound (lbf/lb) (thrust to mass ratio) newton per kilogram (N/kg) 9.806 65 E+00 ton-force (2000 lbf) newton (N) 8.896 443 E+03 ton-force (2000 lbf) kilonewton (kN) 8.896 443 E+00

FORCE DIVIDED BY LENGTH To convert from to Multiply by

pound-force per foot (lbf/ft) newton per meter (N/m) 1.459 390 E+01 pound-force per inch (lbf/in) newton per meter (N/m) 1.751 268 E+02

HEAT AVAILABLE ENERGY To convert from to Multiply by

British thermal unitIT per cubic foot (BtuIT/ft3) joule per cubic meter (J/m3) 3.725 895 E+04 British thermal unitth per cubic foot (Btuth/ft3) joule per cubic meter (J/m3) 3.723 403 E+04 British thermal unitIT per pound (BtuIT/lb) joule per kilogram (J/kg) 2.326 E+03 British thermal unitth per pound (Btuth/lb) joule per kilogram (J/kg) 2.324 444 E+03 calorieIT per gram (calIT/g) joule per kilogram (J/kg) 4.1868 E+03 calorieth per gram (calth/g) joule per kilogram (J/kg) 4.184 E+03

Page 105: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 105 -

COEFFICIENT OF HEAT TRANSFER To convert from to Multiply by

British thermal unitIT per hour square foot degree Fahrenheit [BtuIT/(h ft2 · °F)] watt per square meter kelvin [W/(m2 K)] 5.678 263 E+00 British thermal unitth per hour square foot degree Fahrenheit [Btuth/(h · ft2 · °F)] watt per square meter kelvin [W/(m2 K)] 5.674 466 E+00 British thermal unitIT per second square foot degree Fahrenheit [BtuIT/(s ft2 °F)] watt per square meter kelvin [W/(m2 K)] 2.044 175 E+04 British thermal unitth per second square foot degree Fahrenheit [Btuth/(s ft2 °F)] watt per square meter kelvin [W/(m2 K)] 2.042 808 E+04

DENSITY OF HEAT To convert from to Multiply by

British thermal unitIT per square foot (BtuIT/ft2) joule per square meter (J/m2) 1.135 653 E+04 British thermal unitth per square foot (Btuth/ft2) joule per square meter (J/m2) 1.134 893 E+04 calorieth per square centimeter (calth/cm2) joule per square meter (J/m2) 4.184 E+04 langley (calth/cm2) joule per square meter (J/m2) 4.184 E+04

DENSITY OF HEAT FLOW RATE To convert from to Multiply by

British thermal unitIT per square foot hour [BtuIT/(ft2 · h)] watt per square meter (W/m2) 3.154 591 E+00 British thermal unitth per square foot hour [Btuth/(ft2 · h)] watt per square meter (W/m2) 3.152 481 E+00 British thermal unitth per square foot minute [Btuth/(ft2 · min)] watt per square meter (W/m2) 1.891 489 E+02 British thermal unitIT per square foot second [BtuIT/(ft2 · s)] watt per square meter (W/m2) 1.135 653 E+04 British thermal unitth per square foot second [Btuth/(ft2 · s)] watt per square meter (W/m2) 1.134 893 E+04 British thermal unitth per square inch second [Btuth/(in 2 · s)] watt per square meter (W/m2) 1.634 246 E+06 calorieth per square centimeter minute [calth/(cm2 · min)] watt per square meter (W/m2) 6.973 333 E+02 calorieth per square centimeter second [calth/(cm2 · s)] watt per square meter (W/m2) 4.184 E+04

Page 106: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 106 -

FUEL CONSUMPTION To convert from to Multiply by gallon (U.S.) per horsepower hour [gal/(hp · h)] cubic meter per joule (m3/J) 1.410 089 E-09 gallon (U.S.) per horsepower hour [gal/(hp · h)] liter per joule (L/J) 1.410 089 E-06 mile per gallon (U.S.) (mpg) (mi/gal) meter per cubic meter (m/m3) 4.251 437 E+05 mile per gallon (U.S.) (mpg) (mi/gal) kilometer per liter (km/L) 4.251 437 E-01 mile per gallon (U.S.) (mpg) (mi/gal) liter per 100 kilometer (L/100 km) divide 235.215 by number of miles per gallon pound per horsepower hour [lb/(hp · h)] kilogram per joule (kg/J) 1.689 659 E-07

HEAT CAPACITY AND ENTROPY To convert from to Multiply by British thermal unitIT per degree Fahrenheit (BtuIT/°F) joule per kelvin (J/k) 1.899 101 E+03 British thermal unitth per degree Fahrenheit (Btuth/°F) joule per kelvin (J/k) 1.897 830 E+03 British thermal unitIT per degree Rankine (BtuIT/°R) joule per kelvin (J/k) 1.899 101 E+03 British thermal unitth per degree Rankine (Btuth/°R) joule per kelvin (J/k) 1.897 830 E+03

HEAT FLOW RATE To convert from to Multiply by

British thermal unitIT per hour (BtuIT/h) watt (W) 2.930 711 E-01 British thermal unitth per hour (Btuth/h) watt (W) 2.928 751 E-01 British thermal unitth per minute (Btuth/min) watt (W) 1.757 250 E+01 British thermal unitIT per second (BtuIT/s) watt (W) 1.055 056 E+03 British thermal unitth per second (Btuth/s) watt (W) 1.054 350 E+03 calorieth per minute (calth/min) watt (W) 6.973 333 E-02 calorieth per second (calth/s) watt (W) 4.184 E+00 kilocalorieth per minute (kcalth/min) watt (W) 6.973 333 E+01 kilocalorieth per second (kcalth/s) watt (W) 4.184 E+03 ton of refrigeration (12 000 BtuIT/h) watt (W) 3.516 853 E+03

Page 107: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 107 -

SPECIFIC HEAT CAPACITY AND SPECIFIC ENTROPY To convert from to Multiply by British thermal unitIT per pound degree Fahrenheit [BtuIT/(lb · °F)] joule per kilogram kelvin [J/(kg · K)] 4.1868 E+03 British thermal unitth per pound degree Fahrenheit [Btuth/(lb · °F)] joule per kilogram kelvin [J/(kg · K)] 4.184 E+03 British thermal unitIT per pound degree Rankine [BtuIT/(lb · °R)] joule per kilogram kelvin [J/(kg · K)] 4.1868 E+03 British thermal unitth per pound degree Rankine [Btuth/(lb · °R)] joule per kilogram kelvin [J/(kg · K)] 4.184 E+03 calorieIT per gram degree Celsius [calIT/(g · °C)] joule per kilogram kelvin [J/(kg · K)] 4.1868 E+03 calorieth per gram degree Celsius [calth/(g · °C)] joule per kilogram kelvin [J/(kg · K)] 4.184 E+03 calorieIT per gram kelvin [calIT/(g · K)] joule per kilogram kelvin [J/(kg · K)] 4.1868 E+03 calorieth per gram kelvin [calth/(g · K)] joule per kilogram kelvin [J/(kg · K)] 4.184 E+03

THERMAL CONDUCTIVITY To convert from to Multiply by Britsh thermal unitIT foot per hour square foot degree Fahrenheit [BtuIT · ft/(h · ft2 · °F)] watt per meter kelvin [W/(m · K)] 1.730 735 E+00 Britsh thermal unitth foot per hour square foot degree Fahrenheit [Btuth · ft/(h · ft2 · °F)] watt per meter kelvin [W/(m · K)] 1.729 577 E+00 Britsh thermal unitIT inch per hour square foot degree Fahrenheit [BtuIT · in/(h · ft2 · °F)] watt per meter kelvin [W/(m · K)] 1.442 279 E-01 Britsh thermal unitth inch per hour square foot degree Fahrenheit [Btuth · in/(h · ft2 · °F)] watt per meter kelvin [W/(m · K)] 1.441 314 E-01 Britsh thermal unitIT inch per second square foot degree Fahrenheit [BtuIT · in/(s · ft2 · °F)] watt per meter kelvin [W/(m · K)] 5.192 204 E+02 Britsh thermal unitth inch per second square foot degree Fahrenheit [Btuth · in/(s · ft2 · °F)] watt per meter kelvin [W/(m · K)] 5.188 732 E+02 calorieth per centimeter second degree Celsius [calth/(cm · s · °C)] watt per meter kelvin [W/(m · K)] 4.184 E+02

THERMAL DIFFUSIVITY To convert from to Multiply by

square foot per hour (ft2/h) square meter per second (m2/s) 2.580 64 E-05

Page 108: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 108 -

THERMAL INSULANCE To convert from to Multiply by clo square meter kelvin per watt (m2 · K/W) 1.55 E-01 degree Fahrenheit hour square foot per British thermal unitIT (°F · h · ft2/BtuIT) square meter kelvin per watt (m2 · K/W) 1.761 102 E-01 degree Fahrenheit hour square foot per British thermal unitth (°F · h · ft2/Btuth) square meter kelvin per watt (m2 · K/W) 1.762 280 E-01

THERMAL RESISTANCE To convert from To Multiply by degree Fahrenheit hour per British thermal unitIT (°F · h/BtuIT) Kelvin per watt (K/W) 1.895 634 E+00 degree Fahrenheit hour per British thermal unitth (°F · h/Btuth) Kelvin per watt (K/W) 1.896 903 E+00 degree Fahrenheit second per British thermal unitIT (°F · s/BtuIT) Kelvin per watt (K/W) 5.265 651 E-04 degree Fahrenheit second per British thermal unitth (°F · s/Btuth) Kelvin per watt (K/W) 5.269 175 E-04

THERMAL RESISTIVITY To convert from to Multiply by degree Fahrenheit hour square foot per British thermal unitIT inch [°F · h · ft2/(BtuIT · in)] meter Kelvin per watt (m · K/W)

6.933 472 E+00

degree Fahrenheit hour square foot per British thermal unitth inch [°F · h · ft2/(Btuth · in)] meter Kelvin per watt (m · K/W)

6.938 112 E+04

Page 109: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 109 -

LENGTH To convert from to Multiply by ångström(Å) meter (m) 1.0 E-10 ångström(Å) nanometer (nm) 1.0 E-01 astronomical unit (AU) meter (m) 1.495 979 E+11 chain (based on U.S. survey foot) (ch) meter (m) 2.011 684 E+01 fathom (based on U.S. survey foot) meter (m) 1.828 804 E+00 fermi meter (m) 1.0 E-15 fermi femtometer (fm) 1.0 E+00 foot (ft) meter (m) 3.048 E-01 foot (U.S. survey) (ft) meter (m) 3.048 006 E-01 inch (in) meter (m) 2.54 E-02 inch (in) centimeter (cm) 2.54 E+00 kayser(K) reciprocal meter (m-1) 1 E+02 light year (l. y.) meter (m) 9.460 73 E+15 microinch meter (m) 2.54 E-08 microinch micrometer (µm) 2.54 E-02 micron (µ) meter (m) 1.0 E-06 micron (µ) micrometer (µm) 1.0 E+00 mil (0.001 in) meter (m) 2.54 E-05 mil (0.001 in) millimeter (mm) 2.54 E-02 mile (mi) meter (m) 1.609 344 E+03 mile (mi) kilometer (km) 1.609 344 E+00 mile (based on U.S. survey foot) (mi) meter (m) 1.609 347 E+03 mile (based on U.S. survey foot) (mi) kilometer (km) 1.609 347 E+00 mile, nautical meter (m) 1.852 E+03 parsec (pc) meter (m) 3.085 678 E+16 pica (computer) (1/6 in) meter (m) 4.233 333 E-03 pica (computer) (1/6 in) millimeter (mm) 4.233 333 E+00 pica (printer's) meter (m) 4.217 518 E-03 pica (printer's) millimeter (mm) 4.217 518 E+00 point (computer) (1/72 in) meter (m) 3.527 778 E-04 point (computer) (1/72 in) millimeter (mm) 3.527 778 E-01 point (printer's) meter (m) 3.514 598 E-04 point (printer's) millimeter (mm) 3.514 598 E-01 rod (based on U.S. survey foot) (rd) meter (m) 5.029 210 E+00 yard (yd) meter (m) 9.144 E-01

Page 110: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 110 -

LIGHT To convert from to Multiply by candela per square inch (cd/in2) candela per square meter (cd/m2) 1.550 003 E+03 footcandle lux (lx) 1.076 391 E+01 footlambert candela per square meter (cd/m2) 3.426 259 E+00 lambert candela per square meter (cd/m2) 3.183 099 E+03 lumen per square foot (lm/ft2) lux (lx) 1.076 391 E+01 phot (ph) lux (lx) 1.0 E+04 stilb (sb) candela per square meter (cd/m2) 1.0 E+04

MASS AND MOMENT OF INERTIA To convert from to Multiply by carat, metric kilogram (kg) 2.0 E-04 carat, metric gram (g) 2.0 E-01 grain (gr) kilogram (kg) 6.479 891 E-05 grain (gr) milligram (mg) 6.479 891 E+01 hundredweight (long, 112 lb) kilogram (kg) 5.080 235 E+01 hundredweight (short, 100 lb) kilogram (kg) 4.535 924 E+01 kilogram-force second squared per meter (kgf · s2/m) kilogram (kg) 9.806 65 E+00 ounce (avoirdupois) (oz) kilogram (kg) 2.834 952 E-02 ounce (avoirdupois) (oz) gram (g) 2.834 952 E+01 ounce (troy or apothecary) (oz) kilogram (kg) 3.110 348 E-02 ounce (troy or apothecary) (oz) gram (g) 3.110 348 E+01 pennyweight (dwt) kilogram (kg) 1.555 174 E-03 pennyweight (dwt) gram (g) 1.555 174 E+00 pound (avoirdupois) (lb) kilogram (kg) 4.535 924 E-01 pound (troy or apothecary) (lb) kilogram (kg) 3.732 417 E-01 pound foot squared (lb · ft2) kilogram meter squared (kg · m2) 4.214 011 E-02 pound inch squared (lb · in2) kilogram meter squared (kg · m2) 2.926 397 E-04 slug (slug) kilogram (kg) 1.459 390 E+01 ton, assay (AT) kilogram (kg) 2.916 667 E-02 ton, assay (AT) gram (g) 2.916 667 E+01 ton, long (2240 lb) kilogram (kg) 1.016 047 E+03 ton, metric (t) kilogram (kg) 1.0 E+03 tonne (called "metric ton" in U.S.) (t) kilogram (kg) 1.0 E+03 ton, short (2000 lb) kilogram (kg) 9.071 847 E+02

Page 111: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 111 -

MASS DIVIDED BY AREA To convert from to Multiply by ounce (avoirdupois) per square foot (oz/ft2) kilogram per square meter (kg/m2) 3.051 517 E-01 ounce (avoirdupois) per square inch (oz/in2) kilogram per square meter (kg/m2) 4.394 185 E+01 ounce (avoirdupois) per square yard (oz/yd2) kilogram per square meter (kg/m2) 3.390 575 E-02 pound per square foot (lb/ft2) kilogram per square meter (kg/m2) 4.882 428 E+00 pound per square inch (not pound force) (lb/in2) kilogram per square meter (kg/m2) 7.030 696 E+02

MASS DIVIDED BY LENGTH To convert from to Multiply by denier kilogram per meter (kg/m) 1.111 111 E-07 denier gram per meter (g/m) 1.111 111 E-04 pound per foot (lb/ft) kilogram per meter (kg/m) 1.488 164 E+00 pound per inch (lb/in) kilogram per meter (kg/m) 1.785 797 E+01 pound per yard(lb/yd) kilogram per meter (kg/m) 4.960 546 E-01 tex kilogram per meter (kg/m) 1.0 E-06

MASS DIVIDED BY TIME (includes FLOW) To convert from to Multiply by pound per hour (lb/h) kilogram per second (kg/s) 1.259 979 E-04 pound per minute (lb/min) kilogram per second (kg/s) 7.559 873 E-03 pound per second (lb/s) kilogram per second (kg/s) 4.535 924 E-01 ton, short, per hour kilogram per second (kg/s) 2.519 958 E-01

Page 112: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 112 -

MASS DIVIDED BY VOLUME (includes MASS DENSITY and MASS CONCENTRATION) To convert from to Multiply by grain per gallon (U.S.) (gr/gal) kilogram per cubic meter (kg/m3) 1.711 806 E-02 grain per gallon (U.S.) (gr/gal) milligram per liter (mg/L) 1.711 806 E+01 gram per cubic centimeter (g/cm3) kilogram per cubic meter (kg/m3) 1.0 E+03 ounce (avoirdupois) per cubic inch (oz/in3) kilogram per cubic meter (kg/m3) 1.729 994 E+03 ounce (avoirdupois) per gallon [Canadian and U.K. (Imperial)] (oz/gal) kilogram per cubic meter (kg/m3) 6.236 023 E+00 ounce (avoirdupois) per gallon [Canadian and U.K. (Imperial)] (oz/gal) gram per liter (g/L) 6.236 023 E+00 ounce (avoirdupois) per gallon (U.S.) (oz/gal) kilogram per cubic meter (kg/m3) 7.489 152 E+00 ounce (avoirdupois) per gallon (U.S.) (oz/gal) gram per liter (g/L) 7.489 152 E+00 pound per cubic foot (lb/ft3) kilogram per cubic meter (kg/m3) 1.601 846 E+01 pound per cubic inch (lb/in3) kilogram per cubic meter (kg/m3) 2.767 990 E+04 pound per cubic yard (lb/yd3) kilogram per cubic meter (kg/m3) 5.932 764 E-01 pound per gallon [Canadian and U.K. (Imperial)] (lb/gal) kilogram per cubic meter (kg/m3) 9.977 637 E+01 pound per gallon [Canadian and U.K. (Imperial)] (lb/gal) kilogram per liter (kg/L) 9.977 637 E-02 pound per gallon (U.S.) (lb/gal) kilogram per cubic meter (kg/m3) 1.198 264 E+02 pound per gallon (U.S.) (lb/gal) kilogram per liter (kg/L) 1.198 264 E-01 slug per cubic foot (slug/ft3) kilogram per cubic meter (kg/m3) 5.153 788 E+02 ton, long, per cubic yard kilogram per cubic meter (kg/m3) 1.328 939 E+03 ton, short, per cubic yard kilogram per cubic meter (kg/m3) 1.186 553 E+03

MOMENT OF FORCE OR TORQUE To convert from to Multiply by dyne centimeter (dyn · cm) newton meter (N · m) 1.0 E-07 kilogram-force meter (kgf · m) newton meter (N · m) 9.806 65 E+00 ounce (avoirdupois)-force inch (ozf · in) newton meter (N · m) 7.061 552 E-03 ounce (avoirdupois)-force inch (ozf · in) millinewton meter (mN · m) 7.061 552 E+00 pound-force foot (lbf · ft) newton meter (N · m) 1.355 818 E+00 pound-force inch (lbf · in) newton meter (N · m) 1.129 848 E-01

MOMENT OF FORCE OR TORQUE, DIVIDED BY LENGTH To convert from to Multiply by pound-force foot per inch (lbf · ft/in) newton meter per meter (N · m/m) 5.337 866 E+01 pound-force inch per inch (lbf · in/in) newton meter per meter (N · m/m) 4.448 222 E+00

Page 113: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 113 -

PERMEABILITY To convert from to Multiply by darcy meter squared (m2) 9.869 233 E-13 perm (0 °C) kilogram per pascal second square meter [kg/(Pa · s · m2)] 5.721 35 E-11 perm (23 °C) kilogram per pascal second square meter [kg/(Pa · s · m2)] 5.745 25 E-11 perm inch (0 °C) kilogram per pascal second meter [kg/(Pa · s · m)] 1.453 22 E-12 perm inch (23 °C) kilogram per pascal second meter [kg/(Pa · s · m)] 1.459 29 E-12

POWER To convert from to Multiply by erg per second (erg/s) watt (W) 1.0 E-07 foot pound-force per hour (ft · lbf/h) watt (W) 3.766 161 E-04 foot pound-force per minute (ft · lbf/min) watt (W) 2.259 697 E-02 foot pound-force per second (ft · lbf/s) watt (W) 1.355 818 E+00 horsepower (550 ft · lbf/s) watt (W) 7.456 999 E+02 horsepower (boiler) watt (W) 9.809 50 E+03 horsepower (electric) watt (W) 7.46 E+02 horsepower (metric) watt (W) 7.354 988 E+02 horsepower (U.K.) watt (W) 7.4570 E+02 horsepower (water) watt (W) 7.460 43 E+02

Page 114: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 114 -

PRESSURE OR STRESS (FORCE DIVIDED BY AREA) To convert from to Multiply by atmosphere, standard (atm) pascal (Pa) 1.013 25 E+05 atmosphere, standard (atm) kilopascal (kPa) 1.013 25 E+02 atmosphere, technical (at) pascal (Pa) 9.806 65 E+04 atmosphere, technical (at) kilopascal (kPa) 9.806 65 E+01 bar (bar) pascal (Pa) 1.0 E+05 bar (bar) kilopascal (kPa) 1.0 E+02 centimeter of mercury (0 °C) pascal (Pa) 1.333 22 E+03 centimeter of mercury (0 °C) kilopascal (kPa) 1.333 22 E+00 centimeter of mercury, conventional (cmHg) pascal (Pa) 1.333 224 E+03 centimeter of mercury, conventional (cmHg) kilopascal (kPa) 1.333 224 E+00 centimeter of water (4 °C) pascal (Pa) 9.806 38 E+01 centimeter of water, conventional (cmH2O) pascal (Pa) 9.806 65 E+01 dyne per square centimeter (dyn/cm2) pascal (Pa) 1.0 E-01 foot of mercury, conventional (ftHg) pascal (Pa) 4.063 666 E+04 foot of mercury, conventional (ftHg) kilopascal (kPa) 4.063 666 E+01 foot of water (39.2 °F) pascal (Pa) 2.988 98 E+03 foot of water (39.2 °F) kilopascal (kPa) 2.988 98 E+00 foot of water, conventional (ftH2O) pascal (Pa) 2.989 067 E+03 foot of water, conventional (ftH2O) kilopascal (kPa) 2.989 067 E+00 gram-force per square centimeter (gf/cm2) pascal (Pa) 9.806 65 E+01 inch of mercury (32 °F) pascal (Pa) 3.386 38 E+03 inch of mercury (32 °F) kilopascal (kPa) 3.386 38 E+00 inch of mercury (60 °F) pascal (Pa) 3.376 85 E+03 inch of mercury (60 °F) kilopascal (kPa) 3.376 85 E+00 inch of mercury, conventional (inHg) pascal (Pa) 3.386 389 E+03 inch of mercury, conventional (inHg) kilopascal (kPa) 3.386 389 E+00 inch of water (39.2 °F) pascal (Pa) 2.490 82 E+02 inch of water (60 °F) pascal (Pa) 2.4884 E+02 inch of water, conventional (inH2O) pascal (Pa) 2.490 889 E+02 kilogram-force per square centimeter (kgf/cm2) pascal (Pa) 9.806 65 E+04 kilogram-force per square centimeter (kgf/cm2) kilopascal (kPa) 9.806 65 E+01 kilogram-force per square meter (kgf/m2) pascal (Pa) 9.806 65 E+00 kilogram-force per square millimeter (kgf/mm2) pascal (Pa) 9.806 65 E+06 kilogram-force per square millimeter (kgf/mm2) megapascal (MPa) 9.806 65 E+00 kip per square inch (ksi) (kip/in2) pascal (Pa) 6.894 757 E+06 kip per square inch (ksi) (kip/in2) kilopascal (kPa) 6.894 757 E+03 millibar (mbar) pascal (Pa) 1.0 E+02 millibar (mbar) kilopascal (kPa) 1.0 E-01 millimeter of mercury, conventional (mmHg) pascal (Pa) 1.333 224 E+02 millimeter of water, conventional (mmH2O) pascal (Pa) 9.806 65 E+00

Page 115: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 115 -

Continued…

PRESSURE OR STRESS (FORCE DIVIDED BY AREA) To convert from to Multiply by poundal per square foot pascal (Pa) 1.488 164 E+00 pound-force per square foot (lbf/ft2) pascal (Pa) 4.788 026 E+01 pound-force per square inch (psi) (lbf/in2) pascal (Pa) 6.894 757 E+03 pound-force per square inch (psi) (lbf/in2) kilopascal (kPa) 6.894 757 E+00 psi (pound-force per square inch) (lbf/in2) pascal (Pa) 6.894 757 E+03 psi (pound-force per square inch) (lbf/in2) kilopascal (kPa) 6.894 757 E+00 torr (Torr) pascal (Pa) 1.333 224 E+02

RADIOLOGY To convert from to Multiply by curie (Ci) becquerel (Bq) 3.7 E+10 rad (absorbed dose) (rad) gray (Gy) 1.0 E-02 rem (rem) sievert (Sv) 1.0 E-02 roentgen (R) coulomb per kilogram (C/kg) 2.58 E-04

TEMPERATURE To convert from to Multiply by degree Celsius (°C) kelvin (K) T/K = t/°C + 273.15

degree centigrade degree Celsius (°C) t/°C t/deg. cent.

degree Fahrenheit (°F) degree Celsius (°C) t/°C = (t/°F - 32)/1.8

degree Fahrenheit (°F) kelvin (K) T/K = (t/°F + 459.67)/1.8 degree Rankine (°R) kelvin (K) T/K = (T/°R)/1.8

kelvin (K) degree Celsius (°C) t/°C = T/K - 273.15

TEMPERATURE INTERVAL To convert from to Multiply by degree Celsius (°C) kelvin (K) 1.0 E+00 degree centigrade degree Celsius (°C) 1.0 E+00 degree Fahrenheit (°F) degree Celsius (°C) 5.555 556 E-01 degree Fahrenheit (°F) kelvin (K) 5.555 556 E-01 degree Rankine (°R) kelvin (K) 5.555 556 E-01

Page 116: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 116 -

TIME To convert from to Multiply by day (d) second (s) 8.64 E+04 day (sidereal) second (s) 8.616 409 E+04 hour (h) second (s) 3.6 E+03 hour (sidereal) second (s) 3.590 170 E+03 minute (min) second (s) 6.0 E+01 minute (sidereal) second (s) 5.983 617 E+01 second (sidereal) second (s) 9.972 696 E-01 shake second (s) 1.0 E-08 shake nanosecond (ns) 1.0 E+01 year (365 days) second (s) 3.1536 E+07 year (sidereal) second (s) 3.155 815 E+07 year (tropical) second (s) 3.155 693 E+07

VELOCITY (INCLUDES SPEED) To convert from to Multiply by foot per hour (ft/h) meter per second (m/s) 8.466 667 E-05 foot per minute (ft/min) meter per second (m/s) 5.08 E-03 foot per second (ft/s) meter per second (m/s) 3.048 E-01 inch per second (in/s) meter per second (m/s) 2.54 E-02 kilometer per hour (km/h) meter per second (m/s) 2.777 778 E-01 knot (nautical mile per hour) meter per second (m/s) 5.144 444 E-01 mile per hour (mi/h) meter per second (m/s) 4.4704 E-01 mile per hour (mi/h) kilometer per hour (km/h) 1.609 344 E+00 mile per minute (mi/min) meter per second (m/s) 2.682 24 E+01 mile per second (mi/s) meter per second (m/s) 1.609 344 E+03 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 rpm (revolution per minute) (r/min) radian per second (rad/s) 1.047 198 E-01

Page 117: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 117 -

VISCOSITY, DYNAMIC To convert from to Multiply by centipoise (cP) pascal second (Pa · s) 1.0 E-03 poise (P) pascal second (Pa · s) 1.0 E-01 poundal second per square foot pascal second (Pa · s) 1.488 164 E+00 pound-force second per square foot (lbf · s/ft2) pascal second (Pa · s) 4.788 026 E+01 pound-force second per square inch (lbf · s/in2) pascal second (Pa · s) 6.894 757 E+03 pound per foot hour [lb/(ft · h)] pascal second (Pa · s) 4.133 789 E-04 pound per foot second [lb/(ft · s)] pascal second (Pa · s) 1.488 164 E+00 rhe reciprocal pascal second [(Pa · s)-1] 1.0 E+01 slug per foot second [slug/(ft · s)] pascal second (Pa · s) 4.788 026 E+01

VISCOSITY, KINEMATIC To convert from to Multiply by centistokes (cSt) meter squared per second (m2/s) 1.0 E-06 square foot per second (ft2/s) meter squared per second (m2/s) 9.290 304 E-02 stokes (St) meter squared per second (m2/s) 1.0 E-04 SUS Saybolt Universal Seconds1 meter squared per second (m2/s) 4.55 E-06 Degree Engler1 meter squared per second (m2/s) 0.13228188 E-06 Seconds Redwood1 - 4.05 (subtract) meter squared per second (m2/s) 1.0 E-06 1 Where kinematic viscosity is above 50 E-06 m2/s

Page 118: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 118 -

VOLUME (includes CAPACITY) To convert from to Multiply by acre-foot (based on U.S. survey foot) cubic meter (m3)

1.233 489 E+03

barrel [for petroleum, 42 gallons (U.S.)](bbl) cubic meter (m3) 1.589 873 E-01 barrel [for petroleum, 42 gallons (U.S.)](bbl) liter (L) 1.589 873 E+02 bushel (U.S.) (bu) cubic meter (m3) 3.523 907 E-02 bushel (U.S.) (bu) liter (L) 3.523 907 E+01 cord (128 ft3) cubic meter (m3) 3.624 556 E+00 cubic foot (ft3) cubic meter (m3) 2.831 685 E-02 cubic inch (in3) cubic meter (m3) 1.638 706 E-05 cubic mile (mi3) cubic meter (m3) 4.168 182 E+09 cubic yard (yd3) cubic meter (m3) 7.645 549 E-01 cup (U.S.) cubic meter (m3) 2.365 882 E-04 cup (U.S.) liter (L) 2.365 882 E-01 cup (U.S.) milliliter (mL) 2.365 882 E+02 fluid ounce (U.S.) (fl oz) cubic meter (m3) 2.957 353 E-05 fluid ounce (U.S.) (fl oz) milliliter (mL) 2.957 353 E+01 gallon [Canadian and U.K. (Imperial)] (gal) cubic meter (m3) 4.546 09 E-03 gallon [Canadian and U.K. (Imperial)] (gal) liter (L) 4.546 09 E+00 gallon (U.S.) (gal) cubic meter (m3) 3.785 412 E-03 gallon (U.S.) (gal) liter (L) 3.785 412 E+00 gill [Canadian and U.K. (Imperial)] (gi) cubic meter (m3) 1.420 653 E-04 gill [Canadian and U.K. (Imperial)] (gi) liter (L) 1.420 653 E-01 gill (U.S.) (gi) cubic meter (m3) 1.182 941 E-04 gill (U.S.) (gi) liter (L) 1.182 941 E-01 liter (L) cubic meter (m3) 1.0 E-03 ounce [Canadian and U.K. fluid (Imperial)] (fl oz) cubic meter (m3) 2.841 306 E-05 ounce [Canadian and U.K. fluid (Imperial)] (fl oz) milliliter (mL) 2.841 306 E+01 ounce (U.S. fluid) (fl oz) cubic meter (m3) 2.957 353 E-05 ounce (U.S. fluid) (fl oz) milliliter (mL) 2.957 353 E+01 peck (U.S.) (pk) cubic meter (m3) 8.809 768 E-03 peck (U.S.) (pk) liter (L) 8.809 768 E+00 pint (U.S. dry) (dry pt) cubic meter (m3) 5.506 105 E-04 pint (U.S. dry) (dry pt) liter (L) 5.506 105 E-01 pint (U.S. liquid) (liq pt) cubic meter (m3) 4.731 765 E-04 pint (U.S. liquid) (liq pt) liter (L) 4.731 765 E-01 quart (U.S. dry) (dry qt) cubic meter (m3) 1.101 221 E-03 quart (U.S. dry) (dry qt) liter (L) 1.101 221 E+00 quart (U.S. liquid) (liq qt) cubic meter (m3) 9.463 529 E-04 quart (U.S. liquid) (liq qt) liter (L) 9.463 529 E-01 stere (st) cubic meter (m3) 1.0 E+00

Page 119: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 119 -

Continued…

VOLUME (INCLUDES CAPACITY) To convert from to Multiply by tablespoon cubic meter (m3) 1.478 676 E-05 tablespoon milliliter (mL) 1.478 676 E+01 teaspoon cubic meter (m3) 4.928 922 E-06 teaspoon milliliter (mL) 4.928 922 E+00 ton, register cubic meter (m3) 2.831 685 E+00

VOLUME DIVIDED BY TIME (INCLUDES FLOW) To convert from to Multiply by cubic foot per minute (ft3/min) cubic meter per second (m3/s) 4.719 474 E-04 cubic foot per minute (ft3/min) liter per second (L/s) 4.719 474 E-01 cubic foot per second (ft3/s) cubic meter per second (m3/s) 2.831 685 E-02 cubic inch per minute (in3/min) cubic meter per second (m3/s) 2.731 177 E-07 cubic yard per minute (yd3/min) cubic meter per second (m3/s) 1.274 258 E-02 gallon (U.S.) per day (gal/d) cubic meter per second (m3/s) 4.381 264 E-08 gallon (U.S.) per day (gal/d) liter per second (L/s) 4.381 264 E-05 gallon (U.S.) per minute (gpm) (gal/min) cubic meter per second (m3/s) 6.309 020 E-05 gallon (U.S.) per minute (gpm) (gal/min) liter per second (L/s) 6.309 020 E-02

Page 120: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 120 -

15. RELATIVE ATOMIC MASS

At No Symbol Name Atomic Mass 1 H Hydrogen 1.00794(7) 2 He Helium 4.002602(2) 3 Li Lithium [6.941(2)] 4 Be Beryllium 9.012182(3) 5 B Boron 10.811(7) 6 C Carbon 12.0107(8) 7 N Nitrogen 14.0067(2) 8 O Oxygen 15.9994(3) 9 F Fluorine 18.9984032(5) 10 Ne Neon 20.1797(6) 11 Na Sodium 22.989770(2) 12 Mg Magnesium 24.3050(6) 13 Al Aluminium 26.981538(2) 14 Si Silicon 28.0855(3) 15 P Phosphorus 30.973761(2) 16 S Sulfur 32.065(5) 17 Cl Chlorine 35.453(2) 18 Ar Argon 39.948(1) 19 K Potassium 39.0983(1) 20 Ca Calcium 40.078(4) 21 Sc Scandium 44.955910(8) 22 Ti Titanium 47.867(1) 23 V Vanadium 50.9415(1) 24 Cr Chromium 51.9961(6) 25 Mn Manganese 54.938049(9) 26 Fe Iron 55.845(2) 27 Co Cobalt 58.933200(9) 28 Ni Nickel 58.6934(2) 29 Cu Copper 63.546(3) 30 Zn Zinc 65.409(4) 31 Ga Gallium 69.723(1) 32 Ge Germanium 72.64(1) 33 As Arsenic 74.92160(2) 34 Se Selenium 78.96(3) 35 Br Bromine 79.904(1) 36 Kr Krypton 83.798(2) 37 Rb Rubidium 85.4678(3) 38 Sr Strontium 87.62(1) 39 Y Yttrium 88.90585(2) 40 Zr Zirconium 91.224(2) 41 Nb Niobium 92.90638(2) 42 Mo Molybdenum 95.94(2) 43 Tc Technetium [98] 44 Ru Ruthenium 101.07(2) 45 Rh Rhodium 102.90550(2) 46 Pd Palladium 106.42(1) 47 Ag Silver 107.8682(2) 48 Cd Cadmium 112.411(8) 49 In Indium 114.818(3) 50 Sn Tin 118.710(7) 51 Sb Antimony 121.760(1) 52 Te Tellurium 127.60(3) 53 I Iodine 126.90447(3)

Page 121: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 121 -

Continued…

At No Symbol Name Atomic Mass 54 Xe Xenon 131.293(6) 55 Cs Caesium 132.90545(2) 56 Ba Barium 137.327(7) 57 La Lanthanum 138.9055(2) 58 Ce Cerium 140.116(1) 59 Pr Praseodymium 140.90765(2) 60 Nd Neodymium 144.24(3) 61 Pm Promethium [145] 62 Sm Samarium 150.36(3) 63 Eu Europium 151.964(1) 64 Gd Gadolinium 157.25(3) 65 Tb Terbium 158.92534(2) 66 Dy Dysprosium 162.500(1) 67 Ho Holmium 164.93032(2) 68 Er Erbium 167.259(3) 69 Tm Thulium 168.93421(2) 70 Yb Ytterbium 173.04(3) 71 Lu Lutetium 174.967(1) 72 Hf Hafnium 178.49(2) 73 Ta Tantalum 180.9479(1) 74 W Tungsten 183.84(1) 75 Re Rhenium 186.207(1) 76 Os Osmium 190.23(3) 77 Ir Iridium 192.217(3) 78 Pt Platinum 195.078(2) 79 Au Gold 196.96655(2) 80 Hg Mercury 200.59(2) 81 Tl Thallium 204.3833(2) 82 Pb Lead 207.2(1) 83 Bi Bismuth 208.98038(2) 84 Po Polonium [209] 85 At Astatine [210] 86 Rn Radon [222] 87 Fr Francium [223] 88 Ra Radium [226] 89 Ac Actinium [227] 90 Th Thorium 232.0381(1) 91 Pa Protactinium 231.03588(2) 92 U Uranium 238.02891(3) 93 Np Neptunium [237] 94 Pu Plutonium [244] 95 Am Americium [243] 96 Cm Curium [247] 97 Bk Berkelium [247] 98 Cf Californium [251] 99 Es Einsteinium [252] 100 Fm Fermium [257] 101 Md Mendelevium [258] 102 No Nobelium [259] 103 Lr Lawrencium [262] 104 Rf Rutherfordium [261] 105 Db Dubnium [262] 106 Sg Seaborgium [266]

Page 122: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Reviewed by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 122 -

Continued…

At No Symbol Name Atomic Mass 107 Bh Bohrium [264] 108 Hs Hassium [277] 109 Mt Meitnerium [268] 110 Ds Darmstadtium [281] 111 Rg Roentgenium 112 Uub Ununbium [285] 114 Uuq Ununquadium [289] 116 Uuh Ununhexium 118 Uuo Ununoctium

Page 123: Calculations Reference Manual PPS-CRM-001

Date prepared: November 2004

Prepared by: James MacLennan

Approved by: Brian McGillivray

Ref No: PPS-CRM-001

Calculations Reference Manual - 123 -

16. PERIODIC TABLE


Recommended