+ All Categories
Home > Documents > Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D....

Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D....

Date post: 05-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
51
1/31 P i ? 22 33 3 M L 2 3 2 Q-Finance 2011 Calculus @ QFinance Lesson 2.1 Tuesday October 11 th 2011 Calculus in several variables professor Daniele Ritelli www.unibo.it/docenti/daniele.ritelli
Transcript
Page 1: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

1/31 P�i?22333ML232

Q-Finance 2011

Calculus @ QFinance

Lesson 2.1

Tuesday October 11th 2011

Calculus in several variables

professor Daniele Ritelli

www.unibo.it/docenti/daniele.ritelli

Page 2: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

2/31 P�i?22333ML232

Download from www.unibo.it/docenti/daniele.ritelli

Page 3: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

2/31 P�i?22333ML232

Download from www.unibo.it/docenti/daniele.ritelli

Instructor scientific profile www.danieleritelli.name

Page 4: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

3/31 P�i?22333ML232

Page 5: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

4/31 P�i?22333ML232

Syllabus

i) Differential calculus in two or more variables: partial derivatives

ii) Double integrals

iii) Ordinary differential equations

iv) Fourier transform

v) Partial differential equations for Finance

vi) Lp spaces

Page 6: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

5/31 P�i?22333ML232

References

i) W.R. Wade An introduction to Analysis 3rd ed. Pearson Prentice Hall 2004. Cap

8 e Cap 11

ii) D. Ritelli download

iii) R. P. Agarwal D. O’Regan Ordinary and Partial Differential Equations Springer

2009 Cap 1 Cap 43.

iv) B. Osgood The Fourier Transform and its Applications. Lectures 6 to 10

v) R. P. Agarwal D. O’Regan Ordinary and Partial Differential Equations Springer

2009 Cap 1 Cap 43.

vi) M. Capinski, E. Kopp Measure, Integral and Probability Springer 2004 Cap. 5

Page 7: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

6/31 P�i?22333ML232

Exams calendar

a) First call November 2 2011 11:00

b) Second call January 12 2012 14:00

c) Last call September 2012

Page 8: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

6/31 P�i?22333ML232

Exams calendar

a) First call November 2 2011 11:00

b) Second call January 12 2012 14:00

c) Last call September 2012

Office hours: arrange a meeting by email

Page 9: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

6/31 P�i?22333ML232

Exams calendar

a) First call November 2 2011 11:00

b) Second call January 12 2012 14:00

c) Last call September 2012

Office hours: arrange a meeting by email dont be shy, I am available

Page 10: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

7/31 P�i?22333ML232

Euclidean Space

For each n ∈ N let Rn denote the n-fold Cartesian product of R with

iteself

Rn := {(x1, x2, . . . , xn) : xj ∈ R for j = 1, 2, . . . , n}

Page 11: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

7/31 P�i?22333ML232

Euclidean Space

For each n ∈ N let Rn denote the n-fold Cartesian product of R with

iteself

Rn := {(x1, x2, . . . , xn) : xj ∈ R for j = 1, 2, . . . , n}

By Euclidean space we shall mean Rn together with the “Euclidean

inner product” we are going to introduce. The integer n is called

the dimension of Rn, elements x = (x1, x2, . . . , xn) of Rn are called

points or vectors or ordered n-tuples, and the numbers xj are called

coordinates, or components, of x

Page 12: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

8/31 P�i?22333ML232

Two vectors x, y are said to be equal if and only if their components

are equal; i.e., xj = yj for j = 1, 2, ..., n. The zero vector is the vector

whose components are all zero; i.e., 0 := (0, 0, ..., 0). When n = 2

(respectively, n = 3), we usually denote the components of x by x, y

(respectively, by x, y, z).

Page 13: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

9/31 P�i?22333ML232

Definition. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn be

vectors and α ∈ R be a scalar.

(i) The sum of x and y is the vector

x + y := (x1 + y1, x2 + y2, . . . , xn + yn)

(ii) The product of a scalar α and a vector x is the vector

αx = (αx1, αx2, . . . , αxn)

(iii) The (Euclidean) dot product (or scalar product or inner product)

of x and y is the scalar

x · y := x1y1 + x2y2 + ...+ xnyn

Page 14: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

10/31 P�i?22333ML232

These algebraic operations are analogues of addition, subtraction, and

multiplication on R. It is natural to ask: Do the usual laws of algebra

hold in Rn? or, better, which laws hold in Rn?

Page 15: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

11/31 P�i?22333ML232

Let x, y, z ∈ Rn and α, β,∈ R. Then

1. α0 = 0,

2. 0x = 0,

3. 1x = x,

4. α(βx) = β(αx) = (αβ)x

5. α(x · y) = (αx) · y = x · (αy)

6. α(x + y) = αx + αy

7. 0 + x = x

8. x− x = 0

9. 0 · x = 0

Page 16: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

12/31 P�i?22333ML232

10. x + (y + z) = (x + y) + z

11. x + y = y + x

12. x · y = y · x

13. x · (y + z) = x · y + x · z

Page 17: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

13/31 P�i?22333ML232

We define the standard basis of Rn to be the collection e1, . . . , en,

where ej is the point in Rn whose j-th coordinate is 1, and all other

coordinates are 0.

By definition each x = (x1, . . . , xn) ∈ Rn can be written as a linear

combination of the ej’s:

x =n∑

j=1

xjej =n∑

j=1

x · ejej

Page 18: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

14/31 P�i?22333ML232

Definition. Let x ∈ Rn The (Euclidean) norm (or magnitude) of x

is the scalar

||x|| :=

(n∑

k=1

x2k

)1/2

Page 19: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

14/31 P�i?22333ML232

Definition. Let x ∈ Rn The (Euclidean) norm (or magnitude) of x

is the scalar

||x|| :=

(n∑

k=1

x2k

)1/2

Remark.

||x||2 = x · x

Page 20: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

15/31 P�i?22333ML232

Norm properties. If x, y ∈ Rn, then

(i) ||x|| ≥ 0 with equality only when x = 0

(ii) ||αx|| = |α| ||x|| for all scalars α

(iii)

||x + y|| ≤ ||x||+ ||y||

||x− y|| ≥ ||x|| − ||y||

Page 21: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

16/31 P�i?22333ML232

Limits of functions

By a vector function (from n variables to m variables) we shall mean

a function f of the form f : A→ Rm, where A ⊆ Rn.

Page 22: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

16/31 P�i?22333ML232

Limits of functions

By a vector function (from n variables to m variables) we shall mean

a function f of the form f : A→ Rm, where A ⊆ Rn.

Since f(x) ∈ Rm for each x ∈ A, there are functions fj : A → R(called the coordinate or component functions of f) such that f(x) =

(f1(x), . . . , fm(x)) for each x ∈ A. When m = 1, f has only one

component and we shall call f real-valued.

Page 23: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

17/31 P�i?22333ML232

Definition Let n, m ∈ N and a ∈ Rn, let V be an open set which

contains a, and suppose that f : V \ {a} → Rm. Then f(x) is said to

converge to L, as x approaches a, if and only if for every ε > 0 there

is a δ > 0 (δ in general depends on ε, f, V, and a) such that

0 < ||x− a|| < δ =⇒ ||f(x)−L|| < ε

Page 24: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

17/31 P�i?22333ML232

Definition Let n, m ∈ N and a ∈ Rn, let V be an open set which

contains a, and suppose that f : V \ {a} → Rm. Then f(x) is said to

converge to L, as x approaches a, if and only if for every ε > 0 there

is a δ > 0 (δ in general depends on ε, f, V, and a) such that

0 < ||x− a|| < δ =⇒ ||f(x)−L|| < ε

In this case we write

limx→a

f(x) = L

and call L the limit of f(x) as x approaches a.

Page 25: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

18/31 P�i?22333ML232

Using the analogy between the norm on Rn and the absolute value on

R, is possible to extend much of the one dimensional theory of limits

of functions to the Euclidean space setting.

Page 26: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

18/31 P�i?22333ML232

Using the analogy between the norm on Rn and the absolute value on

R, is possible to extend much of the one dimensional theory of limits

of functions to the Euclidean space setting.

Example

lim(x,y)→(0,0)

x2y

x2 + y2= 0

Page 27: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

18/31 P�i?22333ML232

Using the analogy between the norm on Rn and the absolute value on

R, is possible to extend much of the one dimensional theory of limits

of functions to the Euclidean space setting.

Example

lim(x,y)→(0,0)

x2y

x2 + y2= 0

Example

lim(x,y)→(0,0)

xy

x2 + y2does not exist

Page 28: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

18/31 P�i?22333ML232

Using the analogy between the norm on Rn and the absolute value on

R, is possible to extend much of the one dimensional theory of limits

of functions to the Euclidean space setting.

Example

lim(x,y)→(0,0)

x2y

x2 + y2= 0

Example

lim(x,y)→(0,0)

xy

x2 + y2does not exist

Example

lim(x,y)→(0,0)

xy2

x4 + y4does not exist

Page 29: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

19/31 P�i?22333ML232

All the examples are easily treated using polar coordinatesx = r cos θ

y = r sin θ⇐⇒

r =√x2 + y2

tan θ =y

x

Page 30: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

19/31 P�i?22333ML232

All the examples are easily treated using polar coordinatesx = r cos θ

y = r sin θ⇐⇒

r =√x2 + y2

tan θ =y

x

Figure 1: Polar coordinates

Page 31: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

20/31 P�i?22333ML232

Definition Let ∅ 6= E ⊆ Rn and let f : E → Rm.

(i) f is said to be continuous at a ∈ E if and only if for every ε > 0

there is a δ > 0 (which in general depends on ε, f and a) such that

||x− a|| < δ and x ∈ E =⇒ ||f(x)− f(a)|| < ε

Page 32: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

20/31 P�i?22333ML232

Definition Let ∅ 6= E ⊆ Rn and let f : E → Rm.

(i) f is said to be continuous at a ∈ E if and only if for every ε > 0

there is a δ > 0 (which in general depends on ε, f and a) such that

||x− a|| < δ and x ∈ E =⇒ ||f(x)− f(a)|| < ε

(ii) f is said to be continuous on E if and only if f is continuous at

every x ∈ E.

Page 33: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

21/31 P�i?22333ML232

For instance

f(x, y) =

x2y

x2 + y2(x, y) 6= 0

0 (x, y) = 0

is continuous at every x ∈ R2

Page 34: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

21/31 P�i?22333ML232

For instance

f(x, y) =

x2y

x2 + y2(x, y) 6= 0

0 (x, y) = 0

is continuous at every x ∈ R2

f(x, y) =

xy

x2 + y2(x, y) 6= 0

0 (x, y) = 0

is not continuous at 0

Page 35: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

22/31 P�i?22333ML232

Theorem Let n, m ∈ N and f : Rn → Rm. Then the following three

conditions are equivalent.

(i) f is continuous on Rn

(ii) f−1(V ) is open in Rn for every open subset V of Rm

(iii) f−1(E) is closed in Rn for every closed subset E of Rm

Page 36: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

23/31 P�i?22333ML232

It is fundamental that if a set is both closed and bounded (we call it

compact), then so is its image under any continuous function.

Page 37: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

23/31 P�i?22333ML232

It is fundamental that if a set is both closed and bounded (we call it

compact), then so is its image under any continuous function.

Theorem. Let n, m ∈ N. If H is compact in Rn and f : H → Rm is

continuous on H, then f(H) is compact in Rm.

Page 38: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

24/31 P�i?22333ML232

Theorem. [K. Weierstrass]. Suppose that H is a nonempty subset

of Rn and f : H → R. If H is compact, and f is continuous on H,

then

M := sup{f(x) : x ∈ H} and m := inf{f(x) : x ∈ H}

are finite real numbers. Moreover, there exist points xM , xm ∈ H

such that M = f(xM) and m = f(xm).

Page 39: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

25/31 P�i?22333ML232

Partial derivatives

The most natural way to define derivatives and integrals of functions

of several variables is to allow one variable to move at a time.

Recall that the Cartesian product of a finite collection of sets E1, E2, . . . , En

is the set of ordered n-tuples defined by

E1 ×E2 × · · · ×En := {(x1, x2, . . . , xn) : xj ∈ Ej for j = 1, 2, . . . , n}.

Page 40: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

25/31 P�i?22333ML232

Partial derivatives

The most natural way to define derivatives and integrals of functions

of several variables is to allow one variable to move at a time.

Recall that the Cartesian product of a finite collection of sets E1, E2, . . . , En

is the set of ordered n-tuples defined by

E1 ×E2 × · · · ×En := {(x1, x2, . . . , xn) : xj ∈ Ej for j = 1, 2, . . . , n}.

Thus the Cartesian product of n subsets of R is a subset of Rn. By a

rectangle in Rn (or an n-dimensional rectangle) we mean a Cartesian

product of n closed, bounded intervals.

Page 41: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

26/31 P�i?22333ML232

Let f : {x1} × · · · × {xj−1} × [a, b] × {xj+1} × · · · × {xn} → R. We

shall denote the function

g(t) := f(x1, . . . , xj−1, t, xj+1, . . . , xn)

by

f(x1, . . . , xj−1, ·, xj+1, . . . , xn)

Page 42: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

27/31 P�i?22333ML232

If g is differentiable at some t0 ∈ (a, b), then the first-order partial

derivative of f at (xl, . . . , xj−1, t0, xj+1, . . . , xn) with respect to xj is

defined by

fxj(x1, . . . , xj−1, t0, xj+1, . . . , xn)

:=∂f

∂xj(x1, . . . , xj−1, t0, xj+1, . . . , xn) := g′(t0)

Page 43: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

27/31 P�i?22333ML232

If g is differentiable at some t0 ∈ (a, b), then the first-order partial

derivative of f at (xl, . . . , xj−1, t0, xj+1, . . . , xn) with respect to xj is

defined by

fxj(x1, . . . , xj−1, t0, xj+1, . . . , xn)

:=∂f

∂xj(x1, . . . , xj−1, t0, xj+1, . . . , xn) := g′(t0)

Thus the partial derivative fxjexists at a point a if and only if the

limit∂f

∂xj(a) := lim

h→0

f(a + hej)− f(a)

h

exists

Page 44: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

28/31 P�i?22333ML232

Higher-order partial derivatives are defined by iteration. For example,

the second-order partial derivative of f with respect to xj and xk is

defined by

fxjxk:=

∂2f

∂xk∂xj:=

∂xk

(∂f

∂xj

)when it exists. Second-order partial derivatives are called mixed when

j 6= k

Page 45: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

29/31 P�i?22333ML232

Definition. Let V be a nonempty, open subset of Rn, let f : V → R,and let p ∈ N.

(i) f is said to be Cp on V if and only if each partial derivative of f of

order k ≤ p exists and is continuous on V.

Page 46: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

29/31 P�i?22333ML232

Definition. Let V be a nonempty, open subset of Rn, let f : V → R,and let p ∈ N.

(i) f is said to be Cp on V if and only if each partial derivative of f of

order k ≤ p exists and is continuous on V.

(ii) f is said to be C∞ on V if and only if f is Cp for all p ∈ N

Page 47: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

29/31 P�i?22333ML232

Definition. Let V be a nonempty, open subset of Rn, let f : V → R,and let p ∈ N.

(i) f is said to be Cp on V if and only if each partial derivative of f of

order k ≤ p exists and is continuous on V.

(ii) f is said to be C∞ on V if and only if f is Cp for all p ∈ N

Cp(V ) denotes the set of functions that are Cp on an open set V

Page 48: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

30/31 P�i?22333ML232

For simplicity, in the following we shall state all results for the case

n = 2 and m = 1, using x for x1 and y for x2.

It is clear that with appropriate changes in notation, these results also

hold for any n, m ∈ N.

Page 49: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

31/31 P�i?22333ML232

Theorem. [Clairaut-Schwarz] Suppose that V is open in R2, that

(a, b) ∈ V, and that f : V → R. If f is C1 on V and if one of the

mixed second partial derivatives of f exists on V and is continuous at

the point (a, b), then the other mixed second partial derivative exists

at (a, b) and

∂2f

∂y∂x(a, b) =

∂2f

∂x∂y(a, b)

Page 50: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

31/31 P�i?22333ML232

Theorem. [Clairaut-Schwarz] Suppose that V is open in R2, that

(a, b) ∈ V, and that f : V → R. If f is C1 on V and if one of the

mixed second partial derivatives of f exists on V and is continuous at

the point (a, b), then the other mixed second partial derivative exists

at (a, b) and

∂2f

∂y∂x(a, b) =

∂2f

∂x∂y(a, b)

Remark. These hypotheses are met if f ∈ C2(V )

Page 51: Calculus @ QFinance · 2013-07-09 · Cap 8 e Cap 11 ii)D. Ritelli download iii)R. P. Agarwal D. O’Regan Ordinary and Partial Di erential Equations Springer 2009 Cap 1 Cap 43. iv)B.

31/31 P�i?22333ML232

Theorem. [Clairaut-Schwarz] Suppose that V is open in R2, that

(a, b) ∈ V, and that f : V → R. If f is C1 on V and if one of the

mixed second partial derivatives of f exists on V and is continuous at

the point (a, b), then the other mixed second partial derivative exists

at (a, b) and

∂2f

∂y∂x(a, b) =

∂2f

∂x∂y(a, b)

Remark. These hypotheses are met if f ∈ C2(V )

Remark. If f is C2 on an open subset V of Rn, if a ∈ V , and if j 6= k,

then∂2f

∂xj∂xk(a) =

∂2f

∂xk∂xj(a)


Recommended