+ All Categories
Home > Documents > CE 632 Bearing Capacity Handout

CE 632 Bearing Capacity Handout

Date post: 03-Apr-2018
Category:
Upload: lava-sat
View: 222 times
Download: 0 times
Share this document with a friend
16
1 CE-632 Foundation Analysis and 1  The load per unit ar ea of t he fo un da ti on at which shear failure in soi l occurs is called the ultimate bearing capacity. Ultimate Bearin g Ca pacity Foundation Analysis and Design: Dr. Amit Prashant Principal Modes of Failure: General Shear Failure: Load / Area q   m   e   n    t q u 2    S   e    t    t    l   e Sudden or catastrop hic failure Well defined failure surface Bulging on the ground surface adjacent to foundation Common failure mode in dense sand Foundation Analysis and Design: Dr. Amit Prashant Principal Modes of Failure: Local Shear Failure: Load / Area q    t    l   e   m   e   n    t q u q u1 3    S   e Common in sand or clay with medium compaction Significant settlement upon loading Failure surface first develops right below the foundation and then slowly extends outwards with load increments Foundation movement shows sudden jerks first (at q u1 ) and then after a considerable amount of movement the slip surface may reach the ground. A small amount of bulging may occur next to the foundation.
Transcript

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 1/16

1

CE-632 Foundation Analysis and 

1

 The load per unit area of the foundation at which shear failure in soiloccurs is called the ultimate bearing capacity.

Ultimate Bearing Capacity 

Foundation Analysis and Design: Dr. Amit Prashant 

Principal Modes of Failure:

General Shear Failure: Load / Areaq

  m  e  n   t qu

   S  e   t   t   l  e

Sudden or catastrophic failure

Well defined failure surface

Bulging on the ground surface adjacent to foundation

Common failure mode in dense sand

Foundation Analysis and Design: Dr. Amit Prashant 

Principal Modes of Failure:

Local Shear Failure:Load / Area

q

   t   l  e  m  e  n   t

qu

qu1

3

   S  e

Common in sand or clay with medium compaction Significant settlement upon loading Failure surface first develops right below the foundation and then

slowly extends outwards with load increments Foundation movement shows sudden jerks first (at qu1) and then

after a considerable amount of movement the slip surface mayreach the ground.

A small amount of bulging may occur next to the foundation.

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 2/16

2

Foundation Analysis and Design: Dr. Amit Prashant 

Principal Modes of Failure:

Punching Failure:Load / Area

q

   t   l  e  m  e  n   t qu

qu1

4

   S  e

Common in fairly loose sand or soft clay Failure surface does not extends beyond the zone right beneath the

foundation Extensive settlement with a wedge shaped soil zone in elastic

equilibrium beneath the foundation. Vertical shear occurs around theedges of foundation.

After reaching failure load-settlement curve continues at some slopeand mostly linearly.

Foundation Analysis and Design: Dr. Amit Prashant 

Principal Modes of Failure:

Localshear

Generalshear

  u  n   d  a   t   i  o  n ,

   D   f   /   B   *

Relative density of sand, Dr

00

0.5 1.0

Vesic (1973)

* 2BLB

B L=

+

CircularFoundation

LongRectangularFoundation

Punchingshear

   R  e   l  a   t   i  v  e   d  e  p

   t   h  o   f   f  o

5

10

Foundation Analysis and Design: Dr. Amit Prashant 

Terzaghi’s Bearing Capacity Theory B

Df 

neglected Effective overburdenq =γ’.Df 

Strip Footing

a b

 j  k 

qu

Rough FoundationSurface

 Ass ump tio n

L/B ratio is largeÆ plain strain problem Df ≤ B

Shear resistance of soil for Df depth is neglected

General shear failure Shear strength is governed by Mohr-Coulomb Criterion

φ’  φ’ 45 −φ’/2 45  −φ’/2 

ShearPlanes d e f 

g  i 

c’ - φ’ soil B

I

II II

II I II I

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 3/16

3

Foundation Analysis and Design: Dr. Amit Prashant 

Terzaghi’s Bearing Capacity Theory 

21. 2. 2. .sin tan

4

u p aq B P C Bφ γ φ ′ ′ ′= + −

21. 2. . .sin tanu pq B P B c Bφ γ φ ′ ′ ′ ′= + −

B

qu

I’  φ’ 

ab

d’  φ’ 

Ca=B/2cosφ’

Ca B.tanφ’

P  p P  p

P  pγ =due to only self weight of soilin shear zone

p p pc pqP P P Pγ = + +

P  pc  =due to soil cohesion only(soil is weightless)

P  pq =due to surcharge only

Foundation Analysis and Design: Dr. Amit Prashant 

Terzaghi’s Bearing Capacity Theory 

( )21. 2. tan 2. . .sin 2.

4u p pc pqq B P B P B c Pγ  γ φ φ 

⎛ ⎞′ ′ ′ ′= − + + +⎜ ⎟⎝ ⎠

Weight term Cohesion term

Surcharge term

( ). 0.5 .B B Nγ γ ′ . . cBc N . . qBq N

2

1tan 1

2 cos

PK N

γ 

γ  φ φ 

⎡ ⎤′= −⎢ ⎥′⎣ ⎦

2

22cos 452

a

q

eN

φ =

′⎛ ⎞+⎜ ⎟⎝ ⎠

3 in rad.tan

4 2a

π φ φ 

′⎛ ⎞ ′= −⎜ ⎟⎝ ⎠

( )1 cotc qN N φ ′= −

. . 0.5 .u c qq c N q N B Nγ γ ′= + + Terzaghi’s bearingcapacity equation

 Terzaghi’s bearing capacity factors

Foundation Analysis and Design: Dr. Amit Prashant 

9

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 4/16

4

Foundation Analysis and Design: Dr. Amit Prashant 

Terzaghi’s Bearing Capacity Theory 

Local Shear Failure:

2. . 0.5 .

3u c qq c N qN B Nγ γ ′ ′ ′ ′ ′= + +

Modify the strength parameters such as: 2

3mc c′ ′=

1 2

tan tan3mφ φ 

− ⎛ ⎞

′ ′= ⎜ ⎟⎝ ⎠

10 

Square and circular footing:

1.3 . . 0.4 .u c qq c N qN B Nγ γ ′ ′ ′= + +

1.3 . . 0.3 .u c qq c N qN B Nγ γ ′ ′ ′= + +

For square

For circular

Foundation Analysis and Design: Dr. Amit Prashant 

Terzaghi’s Bearing Capacity Theory 

Effect of water table:

Dw

Df 

Case I: Dw ≤   D f 

Surcharge, ( ). w f wq D D Dγ γ ′= + −

Case II: D f ≤  Dw ≤ (Df + B)

Surcharge, . Fq Dγ =

11

B

B

Limit of influence

In bearing capacity equationreplace γ by-

( )w f 

D D

Bγ γ γ γ  

−⎛ ⎞′ ′= + −⎜ ⎟⎝ ⎠

Case III: Dw > (Df + B)

No influence of water table.

 Another recommendation for Case II:

( ) ( )2

2 22 w

w sat w

dH d H d

H H

γ γ γ 

′= + + −

w w f d D D= −

( )0.5 tan 45 2H B φ ′= +Rupture depth:

Foundation Analysis and Design: Dr. Amit Prashant 

Skempton’s Bearing Capacity Analysis f or cohesive Soils

~For saturated cohesive soil, φ‘ =0 Æ 1, and 0qN Nγ = =

For strip footing: 5 1 0.2 with limit of 7.5f 

c c

DN N

B

⎛ ⎞= + ≤⎜ ⎟

⎝ ⎠

For square/circularfooting:

6 1 0.2 with limit of 9.0f 

c c

DN N

B

⎛ ⎞= + ≤⎜ ⎟

⎝ ⎠

12 

For rectangular footing: 5 1 0.2 1 0.2 for 2.5f 

c f 

D BN D

B L

⎛ ⎞⎛ ⎞= + + ≤⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

7.5 1 0.2 for 2.5c f 

BN D

L

⎛ ⎞= + >⎜ ⎟⎝ ⎠

.u cq c N q= +

Net ultimate bearing capacity, .nu u f  q q Dγ = − .u cq c N=

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 5/16

5

Foundation Analysis and Design: Dr. Amit Prashant 

Effective Area Method for Eccentric Loading 

Df 

yx

V

MeF

=

xM

In case of Moment loading

13

ey e x 

L’=L-2ey 

B’=B-2ey 

 AF =B’L’ y

VF=

In case of Horizontal Force atsome height but the column is

centered on the foundation

.y Hx FHM F d=

.x Hy FHM F d=

Foundation Analysis and Design: Dr. Amit Prashant 

General Bearing Capacity Equation:

(Meyerhof, 1963)

. . . . . . . . 0.5 . . . . .u c c c c q q q qq c N s d i q N s d i B N s d iγ γ γ γ  γ = + +

Shapefactor

Depthfactor

inclinationfactor

Empirical correctionfactors

′ ′ ′

14

2 .tantan 45 .2

qN eπ  ′= +⎜ ⎟⎝ ⎠

cotc q φ = − tan .qγ  φ = −

( ) ( )2 1 tanqN Nγ  φ ′= +

( ) ( )1.5 1 tanqN Nγ  φ ′= −

[By Vesic(1973):

[By Hansen(1970):

. . . . . . . . . . . . 0.5 . . . . . . .u c c c c c c q q q q q qq c N s d i g b q N s d i g b B N s d i g bγ γ γ γ γ  γ = + +

Ground factor Base factor

Foundation Analysis and Design: Dr. Amit Prashant 

15 

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 6/16

6

Foundation Analysis and Design: Dr. Amit Prashant 

Meyerhof’s Correction Factors:

ShapeFactors

21 0.2 tan 452

c

Bs

L

φ ′⎛ ⎞= + +⎜ ⎟⎝ ⎠

21 0.1 tan 452

q

Bs s

Lγ 

φ ′⎛ ⎞= = + +⎜ ⎟⎝ ⎠

for 10oφ ′ ≥

1qs sγ = =for lower valueφ ′

16 

DepthFactors 1 0.2 tan 45

2

c

Dd

L

φ ′⎛ ⎞= + +⎜ ⎟⎝ ⎠ 1 0.1 tan 45

2

q

Dd d

Lγ 

φ ′⎛ ⎞= = + +⎜ ⎟⎝ ⎠

for 10oφ ′ ≥

1qd dγ = =

for lower valueφ ′

InclinationFactors

2

190

o

c qi iβ ⎛ ⎞

= = −⎜ ⎟⎝ ⎠

2

1iγ 

 β 

φ 

⎛ ⎞= −⎜ ⎟′⎝ ⎠

Foundation Analysis and Design: Dr. Amit Prashant 

Hansen’s Correction Factors:

1 for 02 .

Hc

Fi

BLcφ ′= − =

′( )

1/211

1 for 02 .

H

c

u

Fi

BL sφ 

⎡ ⎤−′= + >⎢ ⎥

⎣ ⎦

For 0

0.4 forf 

c f 

Dd D B

B

φ =

⎡= ≤⎢

For 0

1 0.4 forf 

c f 

Dd D B

B

φ >

⎡= + ≤⎢

InclinationFactors

5

0.51

. .cotH

q

V

Fi

F BL c φ 

⎡ ⎤= −⎢ ⎥′ ′+⎣ ⎦

5

0.71

. .cotH

V

Fi

F BL cγ 

φ 

⎡ ⎤= −⎢ ⎥′ ′+⎣ ⎦

DepthFactors

ShapeFactors

1

 

0.4tan forf 

c f 

Dd D B

B

−⎢= >⎢⎣

11 0.4tan forf 

c f 

Dd D B

B

−⎢= + >⎢⎣

For f D B< For f D B> 1dγ  =

0.2 . for 0c c

Bs i

Lφ ′= =

( )1 . sinq qs i B L φ ′= +

( )0.2 1 2 . for 0c c

Bs i

Lφ ′= − >

( )1 0.4 .s i B Lγ γ = −

Hansen’s Recommendation for cohesive saturated soil, φ '=0  Æ ( ). . 1u c c c cq c N s d i q= + + + +

( )2

1 2tan . 1 sinf 

q

Dd

Bφ φ 

⎛ ⎞′ ′= + − ⎜ ⎟

⎝ ⎠( )

2 11 2tan . 1 sin tanf 

q

Dd

Bφ φ 

− ⎛ ⎞′ ′= + − ⎜ ⎟⎝ ⎠

Foundation Analysis and Design: Dr. Amit Prashant 

Notes:

1. Notice use of “effective” base dimensions B‘, L‘ by 

Hansen but not by Vesic.

2. The values are consistent with a vertical load or a

vertical load accompanied by a horizontal load H B.

3. With a verticalload anda

18 

.

load H L (and either H B=0 or H B>0) you may have tocompute two sets of shapeand depth factors si,B, si,L

and d i,B, d i,L. For i ,Lsubscripts use ratio L‘/B‘ or D/L‘.

4. Compute qu independently by using (siB, d iB ) and (siL,d iL ) and use min value for design.

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 7/16

7

Foundation Analysis and Design: Dr. Amit Prashant 

Notes:

1. Use H i as either H B or H L,or both if H L>0.

2. Hansen (1970) did not givean i c  for φ >0. The value given

here is from Hansen (1961)and also used by Vesic.

3. Variable c a = baseadhesion, on the order of 0.6 

19

to 1.0 x base cohesion.

4. Refer to sketch on next slide for identification of 

angles η and β , footing depthD, location of H i (parallel and at top of base slab; usually also produces eccentricity).

Especially notice V = forcenormal to base and is not theresultant R from combining V and H i ..

Foundation Analysis and Design: Dr. Amit Prashant 

20 

Foundation Analysis and Design: Dr. Amit Prashant 

Note:

1. When φ =0 (and  β ≠0) useN γ  = -2sin(± β  ) in N γ  term.

2. Compute m = mB whenH i = H B (H parallel to B) and m = m when H = H H  

21

  L   i    L  

 parallel to L). If you haveboth H B and H L usem = (mB

2 + mL2  )1/2 . Note use

of B and L, not B’, L’.

3. H i term ≤ 1.0 for computing i q, i γ  (always).

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 8/16

8

Foundation Analysis and Design: Dr. Amit Prashant 

Suitability of Methods

22 

Foundation Analysis and Design: Dr. Amit Prashant 

IS:6403-1981 Recommendat ions

ShapeFactors

Net Ultimate Bearing capacity: ( ). . . . . 1 . . . 0.5 . . . . .nu c c c c q q q qq c N s d i q N s d i B N s d iγ γ γ γ  γ = + − +

. . . .nu u c c c cq c N s d i= 5.14cN =For cohesive soilsÆ where,

, ,c qN N Nγ as per Vesic(1973) recommendations

1 0.2c

Bs

L= + 1 0.2q

Bs

L= + 1 0.4

Bs

Lγ 

= −For rectangle,

23

1 0.2 tan 452

cDdL

φ ′⎛ ⎞= + +⎜ ⎟⎝ ⎠

1 0.1 tan 452

q

Dd d

Lγ 

φ ′⎛ ⎞= = + +⎜ ⎟⎝ ⎠

InclinationFactors

DepthFactors

.cs = .qs =0.8 for square, 0.6 for circles s

γ γ = =For square and circle,

for 10oφ ′ ≥

1qd dγ 

= = for 10oφ ′ <

The same as Meyerhof (1963)

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity Correlations with

SPT-value

Peck, Hansen, and 

Thornburn (1974)

&

IS:6403-1981

24

Recommendation

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 9/16

9

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity Correlations with SPT-value

Teng (1962):

( )2 213 . . 5 100 . .

6nu w f wq N B R N D R⎡ ⎤′′ ′ ′′= + +⎣ ⎦

For Strip Footing:

( )2 21. . 3 100 . .

3nu w f wq N B R N D R⎡ ⎤′′ ′ ′′= + +⎣ ⎦

For Square andCircular Footing:

=

25 

,

[0.5 1 1ww w

DR R

D

⎛ ⎞= + ≤⎜ ⎟⎜ ⎟

⎝ ⎠

[0.5 1 1w f 

w w

D DR R

D

⎛ ⎞−′ ′= + ≤⎜ ⎟⎜ ⎟

⎝ ⎠

Water Table Corrections:

B

B

Dw

Df 

Limit of influence

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity Correlations with CPT-value

0.1250

0.1675

0. 2500

nuq

qc0.5

0

IS:6403-1981 Recomm endation :

Cohesionless Soil 

26 

0 100 200 300 4000

0.0625

B (cm)

1f 

B=

1.5B

to2.0B

Bqc value is

taken asaverage forthis zone

Schmertm ann (1975):

2

kgin

0.8 cmc

q

qN N

γ  ≅ ≅ ←

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity Correlations with CPT-value

IS:6403-1981 Recomm endation :

Cohesive Soil 

. . . .nu u c c c cq c N s d i=

27 

Soil TypePoint Resistance Values

( qc ) kgf/cm2

Range of UndrainedCohesion (kgf/cm2)

Normally consolidatedclays

qc <20 qc/18 to qc/15

Over consolidated clays qc >20 qc/26 to qc/22

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 10/16

10

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity o f Footing on Layered Soil 

Depth of rupture zone tan 452 2

B φ ′⎛ ⎞= +⎜ ⎟⎝ ⎠

or approximately taken as “B”

Case I: Layer-1 is weaker than Layer-2 

1

Design using parameters of Layer -1

Case II: Layer-1 is stronger than Layer-2 

Distribute the stresses to Layer-2 by 2:1 method

28 

2

B

Layer-1

Layer-2

 

limit state.

Also check the bearing capacity for originalfoundation level using parameters of Layer-1

Choose minimum value for design

 Ano ther approxi mate metho d fo r c‘ -φ‘ soil: For effective depth tan 452 2

BB

φ ′⎛ ⎞+ ≅⎜ ⎟⎝ ⎠

Find average c‘ andφ ‘ and use them for ultimate bearing capacity calculation

1 1 2 2 3 3

1 2 3

....

....av

c H c H c Hc

H H H

+ + +=

+ + +1 1 2 2 3 3

1 2 3

tan tan tan ....tan

....av

H H H

H H H

φ φ φ φ 

+ + +=

+ + +

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Stratified Cohesive Soil IS:6403-1981 Recommendatio n:

29

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Foot ing on Layered Soil:Stronger Soil Underlying Weaker Soil 

Depth “H” is relatively small

Punching shear failure in top layer

General shear failure in bottomlayer

Depth “H” is relatively large

Full failure surface develops in toplayer itself 

30 

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 11/16

11

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of 

Footing on Layered Soil:

Stronger Soil Underlying 

Weaker Soil 

31

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Footing on Layered Soil:

Stronger Soil Underlying Weaker Soil 

32 

Bearing capacities of continuous footing of with B

under vertical load on the surface of homogeneousthick bed of upper and lower soil

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Foot ing on Layered Soil:Stronger Soil Underlying Weaker Soil 

For Strip Footing:

Where, qt is the bearing capacity for foundation consideringonly the top layer to infinite depth

For Rectangular Footing:

2 11 1

22 tan1

f a su b t

Dc H K q q H H q

B H B

φ γ γ 

′ ′⎛ ⎞= + + + − ≤⎜ ⎟

⎝ ⎠

2D′ ′

33

2 11 11 1 1a s

u b tq q H H qL B L H B

γ γ = + + + + + − ≤⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Special Cases:

1. Top layer is strong sand and bottom layer is saturated soft clay

2 0φ  =

2. Top layer is strong sand and bottom layer is weaker sand

1 0c′ =

1 0c′ = 2 0c′ =

2. Top layer is strong saturated clay and bottom layer is weaker saturated clay

2 0φ  =1 0φ  =

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 12/16

12

Foundation Analysis and Design: Dr. Amit Prashant 

Eccentrically Loaded Foundations

B

M

Q

max 2

6Q M

q BL B L= +

Me

Q=

min 2

6Q Mq

BL B L= −

max

6

1

Q e

q BL B

⎛ ⎞= +⎜ ⎟⎝ ⎠

min

61

Q eq

BL B

⎛ ⎞= −⎜ ⎟⎝ ⎠

34

e1

6

e

B>For There will be separation

of foundation from the soil beneathand stresses will be redistributed.

Use for , and B, L for to obtain qu, ,c qd d dγ 

2B B e′ = −

L L′ =, ,c qs s sγ 

.u uQ q A′= The effective area method for two way eccentricity becomes

a little more complex than what is suggested above.It is discussed in the subsequent slides

Foundation Analysis and Design: Dr. Amit Prashant 

Determination of Effective Dimensions for Eccentrically 

Loaded foundations (Highter and Anders, 1985)

Case I: 1 1and

6 6L Be e

L B≥ ≥

1

33

2Be

B BB

⎛ ⎞= −⎜ ⎟⎝ ⎠

e

B1

35 

12

LeL L

L= −⎜ ⎟

⎝ ⎠

1 112

A L B′ =

AB

L

′′ =

( )1 1max ,L B L′ =

eL L1L

B

Foundation Analysis and Design: Dr. Amit Prashant 

Case II:1

0.5 and 06

L Be e

L B< < <

eL

eB

L1

L2

Determination of Effective Dimensions f or Eccentrically Loaded 

foundations (Highter and Anders, 1985)

36 

( )1 2

1

2A L L B′ = + A

BL

′′ =

′( )1 1max ,L B L′ =

L

B

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 13/16

13

Foundation Analysis and Design: Dr. Amit Prashant 

Determination of Effective Dimensions f or Eccentrically Loaded 

foundations (Highter and Anders, 1985)

Case III: 1and 0 0.5

6L Be e

L B< < <

eB

B1

37 

( )1 2

1

2A L B B′ = +

AB

L

′′ =

′L L′ =

eL

L

B

B2

Foundation Analysis and Design: Dr. Amit Prashant 

Determination of Effective Dimensions f or Eccentrically Loaded 

foundations (Highter and Anders, 1985)

Case IV:

B1

eB

1 1and

6 6L Be e

L B< <

38 

AB

L

′′ =

′L L′ =

L

L

B

B2

( ) ( )2 1 2 2

1

2A L B B B L L′ = + + +

Foundation Analysis and Design: Dr. Amit Prashant 

Determination of Effective Dimensions f or Eccentrically Loaded 

foundations (Highter and Anders, 1985)

Case V: Circular foundation

eR 

39

AL

B

′′ =

R

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 14/16

14

Foundation Analysis and Design: Dr. Amit Prashant 

Meyerhof’s (1953) area correcti on based on emp irical 

correlations: (American Petroleum Institute, 1987)

40 

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of 

Footings on Slopes

Meyerhof’s (1957)

Solution

0.5u cq qq c N BNγ γ ′= +

41

0c′ =Granular Soil

0.5u qq BNγ γ =

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of 

Footings on Slopes

Meyerhof’s (1957)

Solution

0φ ′ =Cohesive Soil

42 

u cqq c N′=

s

H

N c

γ 

=

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 15/16

15

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of 

Footings on Slopes

Graham et al. (1988),

Based on method of 

characteristics

1000

43

For

0f D

B=

100

100 10 20 30 40

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of 

Footings on Slopes

Graham et al. (1988),

Based on method of 

characteristics

1000

44

100

100 10 20 30 40

For

0f D

B=

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Foot ings on Slopes

Graham et al. (1988), Based on method of characteristics

For

0.5f D

B=

45 

7/29/2019 CE 632 Bearing Capacity Handout

http://slidepdf.com/reader/full/ce-632-bearing-capacity-handout 16/16

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Foot ings on Slopes

Graham et al. (1988), Based on method of characteristics

For

1.0f D

B=

46 

Foundation Analysis and Design: Dr. Amit Prashant 

Bearing Capacity of Foot ings on Slopes

Bowles (1997): A simpl ified approach

B

Df 

α α45 −φ’/2 

a c

e

f qu

gα = 45+φ’/2 

B

α α

45 −φ’/2 

a'

'

c'

e'

g'qu

f'

ror

47 

bd

Compute the reduced factor Nc as:

Compute the reduced factor Nq as:

. a bdec c

abde

LN N

L′ ′ ′ ′′ =

.a e fg

q q

aefg

AN N

A

′ ′ ′ ′′ =

B

α α

45 −φ’/2 

a'

b'

c'

e'

g'qu

d'

f'

d'

Foundation Analysis and Design: Dr. Amit Prashant 

Soil Compressibility Effects on Bearing Capacity 

Vesic’s (1973) Approach Use of soil compressibility factors in general bearing capacity equation.  These correction factors are function of the rigidity of soil

tans

r

vo

GI

c σ φ =

′ ′ ′+Rigidity Index of Soil, I r :

BCritical Rigidity Index of Soil, I cr :

3.30 0.45

tan 45

B

L

φ 

⎧ ⎫⎛ ⎞−⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠⎨ ⎬′⎡ ⎤⎪ ⎪−⎢ ⎥

48 

B/2

( ). /2vo f D Bσ γ ′ = +

0.5.rcI e⎢ ⎥

=

Compressibility Correction Factors, c c , c g , and c q

r rcI I≥For  1c qc c cγ 

= = =

r rcI I<( )103.07.sin .log 2.

0.6 4.4 .tan1 sin

1

rIB

L

qc c e

φ φ 

φ 

γ 

′⎡ ⎤⎛ ⎞ ′− +⎢ ⎥⎜ ⎟ ′+⎝ ⎠⎣ ⎦= = ≤For 

For 0 0.32 0.12 0.60.logc r

Bc I

Lφ ′ = → = + +

1For 0 tan

qc q

q

cc c Nφ 

φ 

−′ > → = − ′


Recommended