+ All Categories
Home > Documents > CFD model setup & boundary conditions

CFD model setup & boundary conditions

Date post: 16-Feb-2016
Category:
Upload: vadin
View: 29 times
Download: 0 times
Share this document with a friend
Description:
PSB Dump air cooling Results with: 1. F lat dump without fins 2. Fins ‘5 mm – 10 mm – 10 mm’ 3. F ins ‘5 mm – 10 mm – 20 mm ’ 4. Fins ‘5 mm – 25 mm – 20 mm’ 5. Fins ‘5 mm – 25 mm – 50 mm’. - PowerPoint PPT Presentation
Popular Tags:
20
PSB Dump air cooling Results with: 1. Flat dump without fins 2. Fins ‘5 mm – 10 mm – 10 mm’ 3. Fins ‘5 mm – 10 mm – 20 mm’ 4. Fins ‘5 mm – 25 mm – 20 mm’ 5. Fins ‘5 mm – 25 mm – 50 mm’ 2013-02-07 E. Da Riva, M. Gomez Marzoa 1
Transcript
Page 1: CFD model setup & boundary conditions

PSB Dump air coolingResults with:1. Flat dump without fins 2. Fins ‘5 mm – 10 mm – 10 mm’ 3. Fins ‘5 mm – 10 mm – 20 mm’4. Fins ‘5 mm – 25 mm – 20 mm’5. Fins ‘5 mm – 25 mm – 50 mm’

2013-02-07 E. Da Riva, M. Gomez Marzoa 1

Page 2: CFD model setup & boundary conditions

Contents

1. Set-up and geometry

2. Pressure drop with “smooth” and “sharp” connection

3. Temperature results with different fins geometries

4. Some detailed results

2013-02-07 E. Da Riva, M. Gomez Marzoa 2

Page 3: CFD model setup & boundary conditions

CFD model setup & boundary conditions

E. Da Riva, M. Gomez Marzoa2013-02-07

Air flow and heat transfer in the fluid and solid solved all together in a single simulation.

Steady-state simulation.

Turbulence model : Standard k-ε + standard wall functions.

Gravity and buoyancy taken into account (even if not really relevant in this case).

Dependence of air conductivity, viscosity and constant heat on temperature taken into account.

Thermal conductivity of copper C18150: 320 W m-1 K-1 (temperature independent).

Inlet flow rate: 1800 m3 h-1 (→ 15 K air temperature rise, 12.5 m/s air velocity in the ducts).

Air injected from the ducts.

Air temperature at inlet: 20 °C. Energy deposition inside the dump: imported from FLUKA file (~9500 W).

3

Page 4: CFD model setup & boundary conditions

CFD model: geometry

E. Da Riva, M. Gomez Marzoa2013-02-07

8 L min-1, 0.5 W cm-2

Beam pipe separated 1 cm from dump.

Full geometry: symmetry applied in the model

PSB DumpBeam pipe

Air duct

Beam pipe PSB Dump

4

Page 5: CFD model setup & boundary conditions

Duct connection geometry

E. Da Riva, M. Gomez Marzoa2013-02-07

2 geometries considered in the CFD simulations:

150 mm internal diameter 150 mm bending radius

PSB Dump

A. “smooth connection” B. “sharp connection”

159 mm i.d. for both duct & connection

Actual geometry from CATIA model:

~160 mm i.d. for the duct ~150 mm i.d. for the connection Inner surface of the duct end rounded

5

Page 6: CFD model setup & boundary conditions

Pressure drop results

E. Da Riva, M. Gomez Marzoa2013-02-07

A. “Smooth connection” B. “Sharp connection”

Geometry Flow rate Pressure drop“Smooth connection” (no fins) 2000 m3 h-1 152 Pa

“Smooth connection” (no fins)

1800 m3 h-1

125 Pa

“Sharp connection” (5-10-10 fins) 232 Pa

“Sharp connection” (5-10-20 fins) 240 Pa

“Sharp connection” (5-25-20 fins) 220 Pa

“Sharp connection” (5-25-50 fins) 271 Pa

Gauge pressure at 1800 m3 h-1 [Pa].

6

Page 7: CFD model setup & boundary conditions

Energy deposition

E. Da Riva, M. Gomez Marzoa2013-02-07

Heat generation inside the dump imported from FLUKA file: ~9450 W total power.

Energy deposition in the dump [W m-3].

7

Page 8: CFD model setup & boundary conditions

Fins geometry

E. Da Riva, M. Gomez Marzoa2013-02-07

The solution of “thin fins” brazed on the dump is neglected because of manufacturing consideration.

Only “bulky fins” machined on the dump cylinder are taken into considerations Diameter of dump: 400 mm at the foot of the fins. 3 different dump surfaces simulated:

Dump surface

Fin thickness

Gap between 2 fins available for air flow Fin height

1) Flat --

2) ‘5-10-10’ 5 mm 10 mm 10 mm

3) ‘5-10-20’ 5 mm 10 mm 20 mm

4) ‘5-25-20’ 5 mm 25 mm 20 mm

5) ‘5-25-50’ 5 mm 25 mm 50 mm

‘5-10-10’ fins. ‘5-10-20’ fins.

r = 200 mm

r = 220 mm

8

‘5-25-20’ fins. ‘5-25-50’ fins.

Page 9: CFD model setup & boundary conditions

CFD results: temperature

E. Da Riva, M. Gomez Marzoa2013-02-07

Dump surface Maximum T1) Flat 236°C2) ‘5-10-10’ 188°C3) ‘5-10-20’ 150°C4) ‘5-25-20’ 168°C5) ‘5-25-50’ 119°C

A. ‘no fins’ B. ‘5-10-10’ fins C. ‘5-10-20’ fins

Temperature at the symmetry plane [°C].

9

D. ‘5-25-20’ fins E. ‘5-25-50’ fins

Page 10: CFD model setup & boundary conditions

Detailed results for ‘5-10-20’ fins(aka ‘didactic fancy pictures’)

E. Da Riva, M. Gomez Marzoa2013-02-07 10

Page 11: CFD model setup & boundary conditions

Velocity (5-10-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

Velocity at the symmetry plane [m s-1].

11

Page 12: CFD model setup & boundary conditions

Temperature (5-10-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

Note that the air flowing between the fins is locally much warmer than the average out air temperature (35°C) → important to take into account the dependency of air properties on temperature.

Homogeneous temperature of fins → no problem of thermal fins efficiency (on copper side).

Temperature [°C] at 0.5 m from the front (hot) end of the dump.

12

Page 13: CFD model setup & boundary conditions

Temperature (5-25-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

Temperature [°C] at 0.5 m from the front (hot) end of the dump.

13

Page 14: CFD model setup & boundary conditions

Temperature (5-25-50 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

Temperature [°C] at 0.5 m from the front (hot) end of the dump.

14

Page 15: CFD model setup & boundary conditions

Velocity (5-10-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

The area available for the air flow between the dump (D=400 mm at the foot of fins) and the shielding (D=500 mm) is extremely important since it determines the air velocity and therefore the heat transfer coefficient.

Note that the air velocity in the gap between 2 fins is smaller than far away from the fins → the local heat transfer coefficient is reduced.

15

Page 16: CFD model setup & boundary conditions

Velocity (5-25-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

Increasing the gap between the fins, a more favorable velocity is locally achieved, however the total surface available for the heat transfer is reduced.

The geometry ‘5-25-20’ performs better than ‘5-10-10’ (168°C vs 188°C, same total area available). The geometry ‘5-10-20’ performs better than ‘5-25-20’ (150°C vs 168°C) because the higher total area

available is the dominating effect.

16

Page 17: CFD model setup & boundary conditions

Velocity (5-25-50 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

The area available for the air flow between the dump (D=400 mm at the foot of fins) and the shielding (D=500 mm) consists in closed ducts and the air flow is better exploited.

The ducts on the top display a higher velocity.

17

Page 18: CFD model setup & boundary conditions

Heat flux (5-10-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07

Local heat flux [W m-2].

The highest heat flux is achieved at the top of the fins. The surface at the foot of fins is not ideally exploited because of the local reduced air velocity.

18

Page 19: CFD model setup & boundary conditions

Heat flux (5-25-20 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07 19

Local heat flux [W m-2].

Page 20: CFD model setup & boundary conditions

Heat flux (5-25-50 fins, 1800 m3h-1)

E. Da Riva, M. Gomez Marzoa2013-02-07 20

Local heat flux [W m-2].


Recommended