+ All Categories
Home > Documents > CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Date post: 22-Dec-2015
Category:
Upload: philip-porter
View: 228 times
Download: 1 times
Share this document with a friend
Popular Tags:
52
CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor
Transcript
Page 1: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

CH 908: Mass SpectrometryLecture 6

Mass Analyzers

Prof. Peter B. O’Connor

Page 2: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Objectives

• Types of mass spectrometers and how they operate– Time-of-flight– Quadrupoles– Ion traps

• Mathieu stability diagram analyss

– FTICR – Orbitrap

Page 3: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Electron Multiplier

Page 4: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Notes: channeltron microchannel plates chevron

Page 5: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Mass Spectrometers• Time of Flight

• Magnetic Sector

• Quadrupole

• Triple Quadrupole

• Quadrupole Ion Trap

• FTICRMS

•Orbitrap

Mass Spectrometers DO NOT measuremass. They measure mass/charge ratio.

Understanding how mass spectrometers work is understanding how ions move in electric and magnetic fields.

Page 6: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Ions in a DC Electric Field

F = qE = m d2x/dt2

+

10 KV

Page 7: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Time of Flight Mass Spectrometry

• MALDI-TOF

• EI-TOF

• ESI-TOF

The most simple of all mass spectrometers, at least conceptually.

Linear versus reflectron

Delayed extraction (time lag focusing)

Detection electronics

PSD scan

Orthogonal injection

Page 8: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Basic TOF mass spectrometer

Page 9: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Laser

V D (field free drift region)

Source

SOscilloscope

++

++

Figure 3. The principle of MALDI time-of-flight mass spectrometry.

1. TOF requires a pulsed ion source

2. TOF requires a small kinetic energy distribution in the ions

3. Radial dispersion causes signal loss

4. TOF requires a detector/oscilloscope/digitizer that’s MUCH faster than the ion flight time.

Page 10: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

TOF fundamental limitationsResolution limited by:

length of TOF flight tube

kinetic energy distribution

- delayed extraction

- reflectron

- orthogonal injection

propagation delay in detector

Page 11: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Laser

Vs

D1 (first field free drift region)

Source

S

Oscilloscope

++

Figure 4. Combined Linear/Reflectron MALDI time-of-flight mass spectrometer.

D2 (second field free drift region)

First Detector

Second Detector

Vr ≈ Vs

deflector

++

+

+

Page 12: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Figure 14. Quadrupole Time-of-Flight Hybrid Vr ≈ Vp

Laser

V

D (field

free drift region)

Source

S

Oscilloscope

++

+

Pusher (Vp)

+

+

Delay Generator

Q0 Q1 Q2

(RF-only) (mass filter) (RF-only)

+ +

Focusing

++++

++

+

+

Collision Cell

++

+

Page 13: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

second field free drift region

first field free drift region

Figure 6. MALDI tandem time-of-flight mass spectrometer.

Laser

Vs

Source

Oscilloscope

++

Detector

Vr ≈ Vs

deflector

+ +

+

+

+

++

++++

Collision Cell (Vc)

Delay Generator

Page 14: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

TOF Parameters

Simple, cheap (in theory), robust, sensitive.

A good modern TOF should give:

>10k Resolving power

~1-10 fmol sensitivity (single scan)

~10 ppm mass accuracy internally calibrated (5 ppm if the peak is particularly large or clean).

>1000 scans/second

Unlimited mass range

TOFMS CalibrationEquationm = At2+B

Page 15: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

TOF fundamental limitationsResolution limited by:

length of TOF flight tube

kinetic energy distribution

propagation delay in detector

Sensitivity limited by:

ion stability

ion transfer efficiency

MS/MS is difficult

Page 16: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Ions in a Magnetic Field

F=qv x B +B

V

F

Page 17: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Magnetic Sector Mass Spectrometry

• MALDI

• EI

• ESI

Large, expensive, obsolete.

Swept beam instrument

The first “High Resolution” mass spectrometer (> 10k RP)

Lousy sensitivity (~1 nmol)

High energy collisional fragmentation

Extremely linear detector response (isotope ratio mass spectrometry)

Sector CalibrationEquationm = AB0

2r2/V

Jeol and Thermo-Finnigan MAT

Page 18: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Ions in a magnetic field

Page 19: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Sector Fundamental Limitations

Resolution/sensitivity tradeoff by using a mass filtering slit

Resolution limited by:

magnetic/electric field homogeneities

slit width

Sensitivity limited by:

ion transfer efficiency

slit width

metastable decay

Scan speed / scan stability tradeoff

Page 20: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Quadrupoles

• MALDI

• EI

• ESI

Small, cheap, ubiquitous.

Swept beam instrument

Resolution typically 1000, mass accuracy typically 0.1%

Sensitivity depends on the source. Typically in the 100 fmol range.

Page 21: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

1989 Nobel Prize in Physics for development of ion trapping techniques

Wolfgang Paul(quadrupole ion traps)

Hans Dehmelt(Penning ion traps)

Page 22: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Quadrupole mass spectrometer

Page 23: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Wiring of a quadrupole

Page 24: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

The potential energy diagram of a quadrupole showing the saddlepoint in the electric field (generated using Simion 7.0)

Page 25: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

3D - Quadrupole ion traps

•linear ion traps

•3D ion traps

•They follow exactly the same rules as quadrupoles

Page 26: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Figure 11. The shape of Paul ion trap mass spectrometers.

r

z

A. a cross-section of a hyperbolic quadrupole ion trap

B. a potential energy diagram of the QIT showing the saddlepoint in the electric field (generated using Simion 7.0)

Page 27: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Quadrupole Ion Traps

Capillary

Skimmer LensesOctopole Ion Guide

Lenses

Entrance Endcap

Ring Electrode

Exit Endcap

Page 28: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Quadrupoles

• qz V/m• qz fion • az U/m

z stability

r stability0.5 1.0 1.5

qz

Operating Line

=1.0qz=.908

Stablez & r

az

0.2

0.0

-0.2

-0.4

-0.6

0.4

+

+

+

-

-

“Matthieu eqn”

A± = U ± Vsin(ωt)

2 2

4z

eVq

m r

2 2

8n

eUa

m r

Page 29: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Quadrupole Ion Traps

• qz V/m• qz fion • az U/m

z stability

r stability0.5 1.0 1.5

qz

Operating Line

=1.0qz=.908

Stablez & r

az

0.2

0.0

-0.2

-0.4

-0.6

0.4

+

+

+

-

-

“Matthieu eqn”

A± = U ± Vsin(ωt)

2 2 2

8

( 2 )z

eVq

m r z

2 2 2

16

( 2 )z

eUa

m r z

Page 30: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Figure 12. Mathieu stability diagram with four stability points marked. Typical corresponding ion trajectories are shown on the right.

0.5 1.0 qz

az0.2

0.0

-0.2

-0.4

-0.6

0.0

z stable

r stable

r and z stable

qz = 0.908

A

A B

C D

B

C

Daz = 0.02, qz = 0.7 az = 0.05, qz = 0.1

az = -0.2, qz = 0.2 az = -0.04, qz = 0.2

Page 31: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

QITMS: Mass-Instability Ion Ejection

0.5 1.0 1.5

qz

Operating Line

=1.0qz=.908

az

0.2

0.0

-0.2

-0.4

-0.6

0.4

+

+

+

-

-

Highm/z

Lowm/z

• Mass Analysis: Ramp RF Volt. on ring electrode

• Ions increase in qz value

• Ions become axially unstable at qz = 0.908

• Ions are ejected from ion trap

• Low m/z ions are detected first

2 2 2

8

( 2 )z

eVq

m r z

Page 32: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

QITMS: Resonant Ejection• Mass Analysis:

Ramp RF Volt. on ring electrode

• As RF increases ions increase in qz

• Apply dipolar AC signal to endcap electrodes for resonant ejection

• Ions are ejected radially from trap

• Low m/z ions are detected first

0.5 1.0 1.5

qz

Operating Line

=1.0qz=.908

az

0.2

0.0

-0.2

-0.4

-0.6

0.4

+

+

+

-

-

Highm/z

Lowm/z

Res. Ejectionat z=2/3

Page 33: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.
Page 34: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

QITMS Parameters

• MALDI

• EI

• ESI

Small, cheap, ubiquitous.

Ion trap instrument

Resolution typically 1000, mass accuracy typically 0.1%

Sensitivity depends on the source. Typically in the 100 fmol range.

MSn compatible

Operates in 10-4 mbar Helium.

Ion Molecule Reactions (e.g. gas phase H/D Exchange) Why is this problematic?

QITMS CalibrationEquationm = AV/r2f2

Page 35: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Quadrupole MS Fundamental Limitations

Resolution:

homogeneity of the electric field (charging of the electrodes, or inaccurate machining distorts this)

scan speed

Sensitivity:

scan speed

ion transfer efficiency

Mass range:

limited on high end by size of trap and potentials available

limited on low end by stability diagram

Page 36: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Octopole ion guide/trap

Page 37: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Octopole ion guide/trap

Page 38: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Hexapole ion trap

Page 39: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Fourier Transform Mass Spectrometer

• MALDI

• EI

• ESI

Big, expensive, but superior performance.

Ion trap instrument

Resolution typically >50000 broadband, >1,000,000 narrowband

Mass accuracy typically 1 ppm internally calibrated 5-10 ppm externally calibrated

Sensitivity depends on the source. Typically in the 100 fmol range.

MSn compatible

Ion Molecule Reactions (e.g. gas phase H/D Exchange)

Page 40: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Electrospray FTMS

Actively Shielded 7T Superconducting

Electromagnet

Turbo pump

Turbo pump

Turbo pump

Electrospray Ion Source

RF-only QuadrupoleIon Guide

CylindricalPenning Trap

How Does FTMS Work?

Page 41: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

VqtrapVftrap

Vinner-rings

ORSKQ0IQ1STQ1IQ2

Q2

IQ3GR

Gate Valve(ground)

Shutter RNG

RF-Only Hexapole

ESI qQq-FTMS Diagram

Page 42: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

How Does FTMS Work?

The Penning Trap

The ions’ view of the cell

Page 43: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

How Does FTMS Work?

+

-

Ions are trapped and oscillate with low, incoherent, thermal amplitude

Excitation sweeps resonant ions into a large, coherent cyclotron orbit

Preamplifier and digitizer pick up the induced potentials on the cell.

Page 44: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

How Does FTMS Work?

600 800 1000 1200 1400 1600m/z

RF Sweep

Transient Image current detection

Mass Spectrum

FFT

10 MHz 10 kHz

RP f≅ •t/2Sensitivity f•t

Calibrate

High Resolution (~50,000 FWHM)

High mass accuracy (~1 ppm)

High sensitivity (femtomoles)

Page 45: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Good FTICR review article

Page 46: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Effect of transient duration

Page 47: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

700 800 900 1000 1100 1200 1300 1400 1500

700 800 900 1000 1100 1200 1300 1400 1500

1080 1090 1100

700 800 900 1000 1100 1200 1300 1400 1500 1600

[M+2H]2+

Beta Casein Tryptic digest, 2 pmol/ul

T15

y7* y8y9

y10

y11

X

X

XX

Xy12 y13 y14b7

b8

*

b9 b10 b11***b12

Y132+

?1+

MS

Isolation

MS/MS

Page 48: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

FTMS Calibration Equation

Theory: ω± = ωc/2 ± (ωc2/4 – 2eVα/ma2)1/2

Practice: m = A/f + B/f2 + C m = A/(f-B-CV-DI)

ωc = qB0/m

1. Zhang, L. K.; Rempel, D.; Pramanik, B. N.; Gross, M. L. Accurate mass measurements by fourier transform mass spectrometry Mass Spectrom Rev 2005, 24, 286-309.

Page 49: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

FTMS Fundamental Limiting Factors•Resolution

•Pressure

•Magnetic field (strength and homogeneity)

•Electric field (homogeneity)

•Space charge

•Sensitivity

•Preamplifier Noise

•Magnetic field strength

•Space charge

•Mass range

•Magnetic field

•Frequency performance of electronics

Page 50: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

A new instrument – the orbitrap

Page 51: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Self Assessment

• In TOF-MS, which ions arrive at the detector first? Why?

• In a QIT, what q-value corresponds to the low m/z cutoff in RF-only mode?

• What part of the Mathieu stability diagram is used in mass filtering mode in a quadrupole or QIT?

• In FTICR, doubling the detection time will result in what change to the resolving power? Doubling the magnetic field will result in what change?

Page 52: CH 908: Mass Spectrometry Lecture 6 Mass Analyzers Prof. Peter B. O’Connor.

Fini…

CH908: Mass spectrometryLecture 6 – Mass Analyzers


Recommended