+ All Categories
Home > Documents > Chapt 3 French

Chapt 3 French

Date post: 07-Jul-2018
Category:
Upload: saurabh-borse
View: 227 times
Download: 0 times
Share this document with a friend

of 61

Transcript
  • 8/18/2019 Chapt 3 French

    1/61

    Lectures on

    Oscillations and WavesBy

    D. D. PantAssociate Professor

    Department of Physics

    BITS PilaniChamber No. 3258

    Email Id [email protected]

    Mobile No. 09950425605

    mailto:[email protected]:[email protected]

  • 8/18/2019 Chapt 3 French

    2/61

    Text Book:

    Vibrations and Wavesby

    A. P. FrenchReference Book:

    Waves and Oscillations

    by

    N. K. Bajaj

  • 8/18/2019 Chapt 3 French

    3/61

    Oscillations and Waves

    Why s tudy o sc i llat ions and waves? 

     – Almost al l phy sical s i tuat ions involve periodic or

    osc i l latory behavior 

    • Motion of the planets• Stable mechanical systems

    • Electrical systems

    • Fundamental forces

     –Per iod ic mo t ion in con t inuous media 

    • Wave propagation

    • Electromagnetic radiation (light/optics)

    • Matter particles are “waves”.

  • 8/18/2019 Chapt 3 French

    4/61

    The world is full of oscillatory motions

    -A child on a swing-A guitar string being played

    -Swinging pendulum of wall clock

    -Atoms in molecules or in solid lattice

    -Air molecules as a sound wave passes by

    -Radio waves, microwaves and visible light are

    oscillating magnetic and electric field vectors

  • 8/18/2019 Chapt 3 French

    5/61

    Isaac Newton(1642-1727)

    Early Studies of Oscillations

    Robert Hooke(1635-1703)

    Christian Huygens(1623-1697)

  • 8/18/2019 Chapt 3 French

    6/61

    Periodic motion:- Any motion that

    repeats itself in equal intervals oftime.

    Oscillatory motion:- If a particlemoves back and forth over the

    same path.

    Harmonic motion:- Oscillatory

    motions which can be expressed in

    terms of sine and cosine functions.

  • 8/18/2019 Chapt 3 French

    7/61

    Simple Harmonic Oscillators

    A simple pendulum

    A mass fixed to a wall via a spring

    A frictionless U tube containing liquid

    A hydrometer floating in a liquid

    An inductor connected across a

    capacitor carrying a charge q    

  • 8/18/2019 Chapt 3 French

    8/61

  • 8/18/2019 Chapt 3 French

    9/61

    Floating objects

    Example I : The up-down motion of a partiallyimmersed solid

    x

    Equilibrium Position Pushed down by x

    F

     xg  A Force Buoyancy Additional  F     

  • 8/18/2019 Chapt 3 French

    10/61

    Equation of motion of the body is :

     x g  Adt  xd m    2

    2

    Simple Harmonic motion withm

     g  A    

  • 8/18/2019 Chapt 3 French

    11/61

  • 8/18/2019 Chapt 3 French

    12/61

    yy

    2yg

    L

    M)y(U  

    M : Total mass of liquid

    L : Total length of the water column

    2yM

    2

    1KE  

  • 8/18/2019 Chapt 3 French

    13/61

    Energy conservation :

    0dt

    dE

    0yyL

    Mg2yyM    

    0yL

    g2y    

    SHM of frequency :

    L

    g2

    22 ygL

    MyM

    2

    1E    

  • 8/18/2019 Chapt 3 French

    14/61

    Example III

    Prob. 6.17 ( K & K): A rod of length l and mass m, pivoted at one end, isheld by a spring at its midpoint and a spring at its

    far end, both pulling in opposite directions. The

    springs have spring constant k, and at equilibrium

    their pull is perpendicular to the rod. Find thefrequency of small oscillations about the

    equilibrium position.

     g 

    m

    2

    3

    4

    15 

  • 8/18/2019 Chapt 3 French

    15/61

    tsin&tcos  

    0equationSHMof Solution 2..

      x x    

    The two independent solutions are :

    The most general solution of SHM equation is :

    )sin()cos()(   t  Bt  At  x       

    (A & B are arbitrary constants)

  • 8/18/2019 Chapt 3 French

    16/61

     Any arbitrary initial condition on position and

    velocity can be accommodated within the solution

    of above kind, with appropriate values of A & B

    Example :

    Suppose the initial (t = 0) position and initial

    velocity are respectively. Obtain thesolution.

    00   v&x

      Bv;Ax00

    tsinv

    tcosx)t(x   00  

  • 8/18/2019 Chapt 3 French

    17/61

  • 8/18/2019 Chapt 3 French

    18/61

    The solution of a linear differential equation with

    constant coefficient is an exponential function :

    t  jt  j eC eC t  x        21)(

    t  peC t  x   )(

    Substituting this into the eq.

       j p  

    So the most general complex solution is :

    )tCos(A

    )tCos(C2CC )()(

      

          

        t   jt   j

    ee

    complexare& 21   C C 

    022

    2

      xdt 

     xd  

    We get

  • 8/18/2019 Chapt 3 French

    19/61

    The complex solution :

    )(        t  je A

    )(       

      t   je A z 

    A

    t

    is thus, a rotating vector of fixed length ,

    rotating counter-clockwise, with an angular

    velocity

    A

  • 8/18/2019 Chapt 3 French

    20/61

    )(          t  je A z 

    )tcos(Ax  

    The SHM is the projection of the vector on the x-

    axis.

    )sin(          t  A y

  • 8/18/2019 Chapt 3 French

    21/61

  • 8/18/2019 Chapt 3 French

    22/61

  • 8/18/2019 Chapt 3 French

    23/61

    Prob. 3.19

    Mass m connected to two

    springs on frictionless

    horizontal table. Spring

    constant k and unstretched

    lengths of springs  0

    x

    y

    (k) (k)

    xk 2

    dt

    xdm

    2

    2

    m

    k 2

    a) Eq. of motion along x

    F = - 2kx

  • 8/18/2019 Chapt 3 French

    24/61

    y

     

       

     

     

     

     

     

     

     

    2

    22/1

    2

    2

    2

    y

    1

    y

    1

    )(2

    y)( 0

    2

    00  

     

    yk 2F   0y    

      

      

    b) Eq. of motion along y :    y

    yk 2dt

    yd

    m  0

    2

    2

     

     

     

      

    2/1

    0y

    m

    k 2 

      

       

  • 8/18/2019 Chapt 3 French

    25/61

    x

    y

    2/1

    0y

    x

    T

    T

     

     

     

     

    t  At  x x

     cos)( 0

    t  At  y  y cos)( 0

    c) Ratio of periods along x & y

    d) x & y as functions of time if and mass

    starts from rest

      0

    00   A y x  

    00

      A,A

    at t = 0

    x

    y

  • 8/18/2019 Chapt 3 French

    26/61

    Damped Simple Harmonic Motion

    1. Pendulum with air drag

    In addition to the restoring force, there is adamping force, always opposing the motion

    of the oscillator 

    2. U-tube with viscous liquid

    The damping force is usually proportional tothe velocity of the oscillator :

    dt

    dx bv bF

    damp

     

  • 8/18/2019 Chapt 3 French

    27/61

    Damped Simple Harmonic Motion

    Equation of motion :

    dt

    dx bxk 

    dt

    xdm

    2

    2

    Or, 0xdt

    dx

    dt

    xd   202

    2

    frequencynaturalorfrequencyundampedcalledisIt

    absentisdampingwhenfrequencyangularisand 0m

    k  

    frequencyof dimensionhaswhere

    m

    b  

  • 8/18/2019 Chapt 3 French

    28/61

  • 8/18/2019 Chapt 3 French

    29/61

    Each value of this term describes particular

    type of motion

     negativeorzero positive, becan4

     root termSquare 20

    2

     

     

     

      

      

    eC t  x

     

    20

    2

    42

    )(

         

  • 8/18/2019 Chapt 3 French

    30/61

    Real exponential functions means

    Non Oscillatory Motion

    For example Pendulum inside thick syrup

    Most general solution is

     CCex(t) 212-

    qt qt t 

    ee 

     

    Case 1: Heavily Damped or Over Damped

    Motion

    q2

    0

    2

    4 writeusLet  

      

    2

    0

    2

       or square root term is +ve

    Or damping force > restoring force

  • 8/18/2019 Chapt 3 French

    31/61

    i) Initial conditions :Pendulum released from rest

    0)0(;)0(i.e. 0     x x x  

    qt t qt 

    eqeqeq

     xt  x 

      224

    )(   20       

    t

    x(t)

  • 8/18/2019 Chapt 3 French

    32/61

    ii) With the initial conditions :

    0v)0(x;0)0(x    

    t qt qt 

    eeeq

    vt  x

     

      20

    2)(

     

    t

    x(t)

  • 8/18/2019 Chapt 3 French

    33/61

    The most general solution is

    t2e)tBA()t(x

    Case 2: Critical Damping

    2

    0

    2

    4 i.e.    

      

    This is the limiting case of behaviour of case 1

    as q changes from +ve to –ve value.

    square root term is zero i.e. q = 0

  • 8/18/2019 Chapt 3 French

    34/61

    i) With the initial conditions :

    0)0(x;x)0(x 0    

    t2

    0   et21x)t(x

      

        

    t

    x(t)

  • 8/18/2019 Chapt 3 French

    35/61

    ii) With the initial conditions :

    0v)0(x;0)0(x    

    t2

    0

      etv)t(x

    t

    x(t)

  • 8/18/2019 Chapt 3 French

    36/61

     Applications of Critical Damping Mechanism

    In many systems, quick damping is desirable

    to bring the system to a quick stop.

    i) Needle in meters such as ammeter,

    voltmeter etc.

  • 8/18/2019 Chapt 3 French

    37/61

    ii) Door closers :

    Out of the two non-oscillatory damping – over

    damping and critical damping – it is the latterthat brings the system back to equilibrium

    quicker

  • 8/18/2019 Chapt 3 French

    38/61

    t

    x(t) Critical Damping

    Over Damping

    0)t(x

    )t(xim

    od

    cd

    t

  • 8/18/2019 Chapt 3 French

    39/61

    motiondampedof frequencyangularis

    4 Where

    22

    0

          

       

      j p

     p

    2

     i.e.

    quantitycomplexaisSo

    Case 3: Damped Simple Harmonic Motion

    2

    0

    2

    4

       

    or square root term is -veOr damping force < restoring force

  • 8/18/2019 Chapt 3 French

    40/61

    The most general complex solution :

    t  jt  j

    e Be Aet  z     

      

      2

    )(

    The most general real solution :

    )tcos(eA)t(xt

    20  

    This is a SHM with decaying amplitude

    conditioninitialfromobtainedareand0

        A

  • 8/18/2019 Chapt 3 French

    41/61

  • 8/18/2019 Chapt 3 French

    42/61

  • 8/18/2019 Chapt 3 French

    43/61

    Rotating vector representation of Damped SHO

    A lit d f th ill t d ith ti

  • 8/18/2019 Chapt 3 French

    44/61

    Energy of the oscillator also decays with time as

    e Amt  Ak  E 

        

     

     

    2

    0

    2

    0

    2

    2

    1

    )(2

    1

    t

    0 eE 

    4

    ),(2

    2

    0

    2

    0

            

    t2

    0

     eA)t(A

     Amplitude of the oscillator decays with time as

    Frequency of damped oscillator is less than theundamped oscillator 

  • 8/18/2019 Chapt 3 French

    45/61

    22

  • 8/18/2019 Chapt 3 French

    46/61

    1

    22

    2

    2

    2

    2

    0

    2

     

     

     

     

     

     

     

     

    m

     E 

     x

    m

     E 

     x  

     

    This is an equation of an ellipse

    P h i lli

  • 8/18/2019 Chapt 3 French

    47/61

    Path is an ellipse

    x

    x  m

    E2

    2m

    E2

  • 8/18/2019 Chapt 3 French

    48/61

  • 8/18/2019 Chapt 3 French

    49/61

  • 8/18/2019 Chapt 3 French

    50/61

    Q lit F t Q l

  • 8/18/2019 Chapt 3 French

    51/61

    Quality Factor or Q – valueIt describes the charactertics of Damped

    Harmonic Motion

      

     

      

     

    T2 timein thisradiansof  Number

      

      

    1 t

    1

    00

     

    e E e E  E   t 

      

     Q

    It is defined as the number of radians through

    which damped oscillator oscillates as its energy

    decays to e-1 of its initial value.

    )t(x

  • 8/18/2019 Chapt 3 French

    52/61

    )t(x

    t

    )t(x

    t

    t

    )t(x

    1

    2

    3

    Quality Factor 

  • 8/18/2019 Chapt 3 French

    53/61

    4

    Oscillator 4 is a better quality oscillator than

    1 -3 , even though its amplitude decreases

    faster 

  • 8/18/2019 Chapt 3 French

    54/61

    The true quality of a damped SHO is not

    measured by how long it lives (time in

    which the amplitude drops substantially),but rather, by how many cycles of

    oscillations it completes in this lifetime.

  • 8/18/2019 Chapt 3 French

    55/61

  • 8/18/2019 Chapt 3 French

    56/61

     Amplitude after n cycles :

    Q

    n

    0n   eAA

    Energy after n cycles :

    Q

    n2

    0n   eEE

     

      

     

    cycle perlostenergy

    systeminstoredenergy2 Q

    Q is also obtained from following energy relation

    P b 3 16

  • 8/18/2019 Chapt 3 French

    57/61

    Prob. 3.16 According to classical electro-magnetic theory an accelerated electron

    radiates energy at the rate :

    3

    22

    c

    aeK P  

    229106   C m N  K   

    e = electron chargec = speed of light

    a = instantaneous acceleration

    ) If l ill i l

  • 8/18/2019 Chapt 3 French

    58/61

    a) If an electron were oscillating along astraight line :

    tsinAx  

    how much energy would it radiate in one cycle?

     Ans :   tsinAxa

      2

     

    tsin

    c

    AeK P

      2

    3

    242

    3

    232T

    0

    cyclec

    AeK dtPE 

  • 8/18/2019 Chapt 3 French

    59/61

    b) What is the Q of this oscillator?

     

      

     cycle perlostenergy

    systeminstoredenergy2 Q

       

     

      2

    3

    232

    322

    Ae2K 

    Am2

     Ke

    mcc

    Q    

     

     

     

    c) After how many oscillations will the

  • 8/18/2019 Chapt 3 French

    60/61

    c) After how many oscillations, will theenergy be down to half the initial value?

    2

    EeEE   0Q

    n2

    0n  

    2n2Qn  

    d) Putting for the typical optical

  • 8/18/2019 Chapt 3 French

    61/61

    opt  Ke

    mcQ 2

    3

    115

    opt

    opt   sec100.4c2  

    810

    sec107.12nQn2

    T 82/12/1

    d) Putting for the typical opticalfrequency, find Q and the half life


Recommended