+ All Categories
Home > Documents > Chapter 10: Noise in Analog Modulation A. Bruce Carlson Paul B....

Chapter 10: Noise in Analog Modulation A. Bruce Carlson Paul B....

Date post: 26-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
34
Communication Systems, 5e Chapter 10: Noise in Analog Modulation A. Bruce Carlson Paul B. Crilly © 2010 The McGraw-Hill Companies
Transcript
  • Communication Systems, 5e

    Chapter 10: Noise in Analog Modulation

    A. Bruce CarlsonPaul B. Crilly

    © 2010 The McGraw-Hill Companies

  • Chapter 10: Noise in Analog Modulation

    • Bandpass Noise• Linear CW Modulation With Noise• Exponential CW Modulation With Noise• Comparison Of CW Modulation Systems• Phase-locked Loop Noise Performance• Analog Pulse Modulation With Noise

    © 2010 The McGraw-Hill Companies

  • 3

    Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

    Figure 10.2-1

    Model of receiver for SNR

    • Select the noise model that best fits the receiver and demodulator operations– Quadrature (good for mixing)– Magnitude-phase (good for envelope detection)

  • 4

    Synchronous Demodulation DSB (1)

    • DSB

    • Synchronous Detector: mix to baseband and LPF

    tftntftntxAtv cqcic 2sin2cos

    thtftftntftntxAty LPFccqcic 2cos2sin2cos

    thtftntftntxAty LPFcqcic

    2222sin

    2222cos

    21

    tntxAty iic 21

    tntxtv c

  • 5

    Synchronous Demodulation DSB (2)

    • DSB Pre-D SNR (RF BPF bandwidth BT=2W)

    22

    21 tntxAEtyE iic

    22 tntxEtvE c TRc BNStnEtxEtvE 0222

    21

    2 000

    2

    Pr T

    R

    TT

    R

    T

    xc

    De BW

    WNS

    BW

    BNS

    BNSA

    NS

    • DSB Post-D SNR (BB LPF bandwidth BLPF=W)

    LPFRLPFxc BNSBNSAtyE 0022 22412

    41

    WNS

    BNSA

    NS R

    LPF

    xc

    DPost 00

    2

    2

    2

    2xc

    RSASwhere

    WNSAwhere xc

    0

    2

    2

  • Synchronous Demodulation DSB (3)

    • Pre-D vs. Post-D SNR

    6

    21

    2 000

    2

    Pr T

    R

    TT

    R

    T

    xc

    De BW

    WNS

    BW

    BNS

    BNSA

    NS

    WNS

    BNSA

    NS R

    LPF

    xc

    DPost 00

    2

    2

    2

    21

    Pr

    De

    DPost

    NSNS

    • A factor of 2 improvement in the SNR!

  • MATLAB DSB Complex Downconversion

    • Complex mixing, filtering and LPF

    7

    tftntftntxAtv cqcic 2sin2cos

    thjtfjjtf

    tftntftntxAty

    LPFcc

    cqcicComplex

    2sin2cos

    2sin2cos

    th

    tftntftnj

    tftntxAjtftntxAty LPF

    cq

    cq

    cic

    cic

    Complex

    2222sin

    2222cos

    21

    2222sin

    2222cos

    21

    tntxAtyty iicComplex 21Re

    tnjtntxAty qqiicComplex 21

    WNWNS

    NS X

    DeComplex

    00Pr WNS

    NS X

    DPost

    0

  • MATLAB Note

    • The simulation was adjusted for an equivalent Bandpass Filter.– It is not every applied, just the LPF after mixing– The complex noise output is 2x the real noise power

    • The simulation SNR iterations is based on knowing the processing so that the result, if perfect, matches the SNR iteration value.– The result is slightly different than the “theory” …

    why?• Think about theory vs. using actual filters on the signal power.

    8

  • 9

    Synchronous Demodulation AM (1)

    • AM

    • Synchronous Detector: mix to baseband, DC block and and LPF

    tftntftntxAtv cqcic 2sin2cos1

    thtftftntftntxAty ccqcic 2cos2sin2cos1

    thtftntftntxAty cqqciic

    2222sin

    2222cos

    211

    tntxAty iic 21

    tntxtv c

  • 10

    Synchronous Demodulation AM (2)

    • AM Pre-D SNR (RF BPF bandwidth BT=2W) 2c2 tntxEtvE

    TXCc BNSAtnEtxEtvE 022

    222 12

    T0

    X2

    2c

    T0

    R

    DePr BN

    S12

    A

    BNS

    NS

    • AM Post-D SNR (BB LPF bandwidth BLPF=W)

    22

    21 tntxAEtyE iic

    LPFXc BNSAtyE 0222 241

    DeXX

    DeLPF

    T

    Xc

    Xc

    LPF

    Xc

    DPost NS

    SS

    NS

    BB

    SASA

    BNSA

    NS

    Pr2

    2

    Pr22

    22

    0

    22

    12

    1222

  • Synchronous Demodulation AM (3)

    • Pre-D vs. Post-D SNR ( definition change)

    11

    • A change of the SNR!

    24

    1

    0

    22

    Pr

    WNSA

    NS Xc

    De

    X

    X

    XX

    Xc

    DPost SS

    SS

    WNSA

    NS

    2

    2

    22

    0

    22

    112

    DeX

    X

    DPost NS

    SS

    NS

    Pr2

    2

    21

    WN

    SANS Xc

    De

    0

    22

    Pr 212

  • 12

    Synchronous Demodulation AM (4)

    • Defining

    • Textbook use of for AM

    WNSA xc

    0

    22

    2

    X

    X

    T

    Xc

    De SS

    BN

    SA

    NS

    2

    2

    0

    22

    Pr 2112

    WNSA

    NS Xc

    DPost 0

    22

    2

    X

    X

    DeX

    X

    DPost SS

    NS

    SS

    NS

    2

    2

    Pr2

    2

    112

    WN

    SANS Xc

    De

    0

    22

    Pr 212

    If defined variable is Post-D SNR then

  • 13

    Synchronous Demodulation AM (5)

    • For = 1 and Sx = 0.5

    WN

    AWN

    ABN

    SA

    BNS

    NS cc

    T

    Xc

    T

    R

    De

    0

    2

    0

    2

    0

    22

    0Pr 835.01

    4

    12

    WNA

    WNA

    BNSA

    NS cc

    LPF

    Xc

    DPost

    0

    2

    0

    2

    0

    22

    425.0

    2

    DeDeDeX

    X

    DPost NS

    NS

    NS

    SS

    NS

    PrPrPr2

    2

    32

    5.015.02

    12

  • MATLAB Note

    • The simulation was adjusted for an equivalent Bandpass Filter.– It is not every applied, just the LPF after mixing– The complex noise output is 2x the real noise power

    • The simulation SNR iterations is based on knowing the processing so that the result, if perfect, matches the SNR iteration value.– The result is slightly different than the “theory” …

    why?• Only the AM LPF was taken into account when generating the

    noise. Since the HPF is used, the noise power is slightly less. 14

  • 15

    AM vs DSB Demod Comparison

    WNSA

    BNSA

    NS xc

    T

    xc

    De

    0

    2

    0

    2

    Pr 42

    WNSA

    NS xc

    DPost

    0

    2

    2 WNSA

    NS Xc

    DPost

    0

    22

    2

    WN

    SANS Xc

    De

    0

    22

    Pr 41

    DeX

    X

    DPost NS

    SS

    NS

    Pr2

    2

    12

    DSB AM

    DeDPost NS

    NS

    Pr

    2

    DPost

    xcDSB N

    SWN

    SA

    0

    2

    2

    De

    XcAM N

    SWN

    SA

    Pr0

    22

    22

    1

  • 16

    AM Conclusions

    • 67% or more of the Pre-D signal power comes from the carrier (therefore CNR).– There is only 33% of the “signal” SNR for AM as

    compared to DSB

    • The Post-D SNRs for DSB and AM can be made the same.

    • If the signal powers (SX) are identical, AM is transmitting 3 or more time the power of DSB to achieve the same output, Post-D SNR.

  • 17

    Envelope Demodulation AM

    • AM Envelope Detection (non-coherent demod)

    – where

    tf2sintntf2costntx1tAtv cqcic

    tntxtv c

    ttf2costAtv vcv

    2q2icv tntntx1AtA

    tntx1tA

    tnarctant

    ic

    qv

    A Phaser representation of the Signal + Noise

    tf2jexptjexptARetv cvv tfjtxtAtx ccc 2exp1Re tjtfjtAtn ncn 2expRe

  • 18

    Envelope Demodulation AM

    • Envelope Detection is the magnitude with a DC block

    – Carrier dominate

    tAEtAty vvD

    The same as a coherent demodulator!

    tAEtntntx1Aty v2q2icD

    tAEtntxA

    tntntxAty v

    ic

    qicD

    2

    2

    111

    22c nEA

    tntxAty icD

    tAEtntxA

    tntntxAty v

    ic

    qicD

    2

    2

    12111

  • 19

    Envelope Detector Threshold Effect

    • The demodulator required the assumption

    • If the condition is not met, the modulation process degrades into signal modulated noise which is not intelligible.– Rule of thumb: Pre-D SNR > 8-10 dB

    – For “normal” signal (not DSSS) you need to have the signal above the noise floor … 8 dB is a useful starting point.

    22c nEA

  • 20

    Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

    Figure 10.3-1

    Model for detection of exponential modulation plus noise

  • 21

    Demodulation of FM/PM

    • Phase Isolation and Processing

    – Where

    • Apply a limiter to remove the AM and apply coherent downconversion to isolate the phase

    ttftAttfAtv ncncc 2cos2cos tntxtv c

    ttcostAAttsintAarctant

    nnc

    nn

    A Phaser representation of the Signal + Noise

    2n2c AEA

    tttf2costtcostAAtv cnnc

    Note: A good derivation can be found in Gagliardi, “Introduction to Communication Engineering”, p. 123-125.

  • 22

    Demodulation of FM/PM

    • After Limiting (and bandpass filtering)

    • Perform phase discrimination

    – where

    tttf2costtcostAAtv cnnc

    tttf2cosAtpred cL

    ttty

    c

    nn

    nnc

    nn

    AtsintAarctan

    ttcostAAttsintAarctant

    2n2c AEA

    c

    q

    c

    nn

    Atn

    AttAttt sinsintan

  • 23

    Demodulation of FM/PM

    • After Extracting the Phase

    • The noise PSD, when filtered by BW=B becomes

    – PM post-detection noise is rectangular

    • Apply appropriate filters for PM or FM– PM: include a post detection low pass filter (BW=W)– FM: a derivative and low pass filter

    R

    q

    c

    nn

    Stn

    tA

    ttAtty

    2

    sin

    R

    q

    c

    nnn S

    tnA

    ttAty

    2

    sin

    Bfrect

    AN

    Bfrect

    S2NfS 2

    c

    0

    R

    0yn

  • 24

    PM Post-D SNR

    • PM Phase output

    • Post-D SNR (BW=W)

    • RF Input SNR

    ttxty nPM

    xPMR

    xPMRxPM

    R

    xPM

    PostD

    SWN

    SSWN

    SS

    SWNS

    NS 2

    0

    2

    0

    2

    0

    2

    22

    TT0

    R

    eDPr BW

    BNS

    NS

    WNSwhere R

    0

    eD

    TxPM

    PostD NS

    WBS

    NS

    Pr

    2

  • 25

    FM: Differentiation and Filter

    • FM Phase output

    • Noise PSD, when filtered by BW=B becomes

    – Notice that the power is 0 at DC and the power spectrum increases as the square of the frequency

    tdttx2ty nFM

    thdt

    tdtxthdt

    tdy nFM

    21

    21

    Bfrect

    SNf

    Bfrect

    SNffS

    RRyn 222

    12 0202

    2

    t

    ttxtty n

    FM

    2

  • 26

    FM Post-D SNR

    • Noise PSD integrated to find the noise power

    • SNR (with B=W)

    – Note: the RF input SNR is the same as for PM!

    Bfrect

    SNffS

    Ryn 2

    02

    BNSS

    B3

    BNS3S

    NS

    NS

    0

    Rx2

    2FM

    30

    Rx

    2FM

    FM

    x2

    FM

    PostD

    RR

    B

    B RFM S

    BNBBS

    NdfS

    NfN

    33322

    30

    33002

    x2

    x

    2FM

    PostD

    SD3SW

    3NS

    WNSwhere R

    0

  • 27

    SNR Improvement Using PM & FM

    • RF Input SNR

    TT0

    R

    eDPr BW

    BNS

    NS

    WNSwhere R

    0

    • PM Post-D SNR • FM Post-D SNR

    x2

    x

    2FM

    PostD

    SD3SW

    3NS

    PreD

    Tx

    PostD NS

    WBSD

    NS

    23

    xPMPostD

    SNS 2

    eD

    TxPM

    PostD NS

    WBS

    NS

    Pr

    2

  • 28

    Summarizing Derivations (1)• The post-detection (demodulation) noise spectral densities

    in PM and FM have out-of-band components that call for post-detection filtering– Clean up demod and limit noise with a LPF of bandwidth B=W

    – The PM noise spectrum is flat, like linear modulation except for the out-of-band components.

    – The FM noise spectrum increases parabolically, f2, so higher baseband signal frequencies suffer more noise contamination than lower frequencies.

    Bfrect

    SNffS

    Ryn 2

    02

    Bfrect

    AN

    Bfrect

    S2NfS 2

    c

    0

    R

    0yn

  • 29

    Summarizing Derivations (2)• Since the FM noise spectrum increases parabolically, f2, so

    higher baseband signal frequencies suffer more noise contamination than lower frequencies. – De-emphasis filtering can compensates for this effect, provided

    that the message has been pre-emphasized at the transmitter.(See Deemphasis and Preemphasis Filtering in Chap. 5 p. 245-247.

    – That is, increase power in high frequencies prior to transmission and then decrease power in high frequencies (back to flat) after demodulation. The concept for Dolby noise reduction.

    Bfrect

    SNffS

    Ryn 2

    02

  • 30

    Summarizing Derivations (3)• The effective destination noise power in PM and FM

    decreases as SR increases, a phenomenon known as noise quieting.– Gamma increases for larger SR

    • There is a threshold effect before demodulation works for PM, FM and envelope detected AM.– AM ~ 6-8 dB– PM ~

    WNSwhere R

    0

    x

    PostDFM

    SDNS 23

    xPM

    PostDPM

    SNS 2

  • 31

    Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

    Including 12 dB deemphasis improvement of FM: Figure 10.4-1

    Performance of CW Systems

  • 32

    Comparison of Modulation Systems

    Type WBT

    PostDNS γ thresh Complexity Comments

    Baseband 1 1 Minor No Mod

    AM 2 x

    2x

    2

    S1S

    20 Minor Envelope

    DSB 2 1 Major Synch Demod

    PM PMM2 x2PM S 10xb Moderate Phase, Const.

    Amplitude

    FM DM2 x2 SD3 10xb Moderate Freq.

    Disc.,Const. Amplitude

  • MATLAB Simulations: AM, FM, PM and FM (D=5)

    33

    0 5 10 15 20 25 30 35 40 45-10

    0

    10

    20

    30

    40

    50

    60

    70SNR Simulation for AM, PM, and FM D=5

    Pre-D SNR (dB)

    Pos

    t-D S

    NR

    (dB

    )

    AM simAMDSB simDSBPM simPMFM5 simFM5

  • MATLAB Simulations: FM

    34

    0 5 10 15 20 25 30 35 40 45-40

    -20

    0

    20

    40

    60

    80SNR Simulation for FM D=10, 5, 1, 0.5 and 0.1

    Pre-D SNR (dB)

    Pos

    t-D S

    NR

    (dB

    )

    simD=10simD=5simD=1simD=0.5simD=0.1


Recommended