+ All Categories
Home > Documents > Chapter 10 Optics homework solutions - p1 Prob...

Chapter 10 Optics homework solutions - p1 Prob...

Date post: 20-Feb-2021
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
12
Chapter 10 Optics homework solutions - p1 Prob 10.1 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -2 -1.5 -1 -0.5 0 0.5 1 n = 1.00 n = 2.00 -1 -0.5 0 0.5 1 1.5 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 n = 1.00 n = 2.00 1
Transcript
  • Chapter 10 Optics homework solutions - p1

    Prob 10.1

    -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    n = 1.00n = 2.00

    -1 -0.5 0 0.5 1 1.5 2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    n = 1.00n = 2.00

    1

  • Chapter 10 Optics homework solutions - p2

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    n = 1.00

    n = 2.00

    -0.5 0 0.5 1 1.5

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    n = 1.00n = 1.50

    The code on the next page produced the graphs.

    2

  • Chapter 10 Optics homework solutions - p3

    [1] function c10p1(n_i,n_t,theta_i_d,N)

    [2] % makes a diagram showing Huygens method of computing refraction

    [3] % n_i = incident index of refraction

    [4] % n_t = transmitted index of refraction

    [5] % theta_i = incident angle

    [6] % N = number of wavefronts to draw.

    [7] L = 1;

    [8] theta_i = theta_i_d*pi/180;

    [9] dr_i = L*tan(theta_i) / N;

    [10] dr_t = n_i * dr_i / n_t;

    [11] theta_t = asin(sin(theta_i)*n_i/n_t);

    [12] C = cos(theta_i);

    [13] S = sin(theta_i);

    [14] figure(1)

    [15] plot([-0.5,1.3]*L/C,[0,0],’g’)

    [16] hold on

    [17] nN = round(N*n_i/n_t);

    [18] Nt = N+15;

    [19] for n = -nN:N

    [20] x = + n * dr_i * S;

    [21] y = - n * dr_i * C;

    [22] if n

  • Chapter 10 Optics homework solutions - p4

    Prob 10.3Since E does not depend on the θ or φ we have that

    ∇2E = 1r

    ∂2

    ∂r2(rE)

    =1

    r

    ∂2

    ∂r2

    (rE0r0

    eikr

    r

    )= E0r0

    1

    r

    ∂2

    ∂r2(eikr

    )= E0r0

    1

    r(ik)

    2eikr

    = −k2E0r0eikr

    r

    = −k2E−→ ∇2E + k2E = 0

    4

  • Chapter 10 Optics homework solutions - p5

    Prob 10.4(a) Let Eφ = E0r0

    ei(kr−ωt)

    r then

    ~E = 0 r̂ + 0 θ̂ + Eφφ̂

    (i) In spherical coordinates ~A = Ar r̂ +Aθ θ̂ +Aφφ̂ the divergence is

    ∇ · ~A = 1r2

    ∂r

    (r2Ar

    )+

    1

    sin θ

    ∂θ(sin θAθ) +

    1

    r sin θ

    ∂Aφ∂φ

    so

    ∇ · ~E = 1r2

    ∂r

    (r20)

    +1

    sin θ

    ∂θ(sin θ0) +

    1

    r sin θ

    ∂Eφ∂φ

    =1

    r sin θ

    ∂φE0r0

    ei(kr−ωt)

    r

    = 0

    So Gauss’ Law is satisfied.

    (ii) In the same way we see that the terms in the curl of ~E are all zero except one.

    ∇× ~E = −θ̂1r

    ∂r(rEφ)

    = −θ̂1r

    ∂r

    (E0r0e

    i(kr−ωt))

    = −ik 1rE0r0e

    i(kr−ωt)θ̂

    = −ikEφθ̂

    −→ ∂~B

    ∂t= −∇× ~E = ikEφθ̂ = ikE0r0

    ei(kr−ωt)

    rθ̂

    −→ ~B = ik−iω

    E0r0ei(kr−ωt)

    rθ̂

    −→ ~B = −1cE0r0

    ei(kr−ωt)

    rθ̂

    = −1cEφθ̂

    −→ Bθ = −1

    cEφ

    Thus we have found the magnetic field from the electric field by using Faraday’s law.

    (iii) Now we can check the divergence of ~B.

    ∇ · ~B = 1r2

    ∂r

    (r20)

    +1

    sin θ

    ∂θ(sin θBθ) +

    1

    r sin θ

    ∂0

    ∂φ

    =1

    sin θ

    ∂θ(sin θBθ)

    =1

    sin θ

    [Bθ

    ∂θsin θ + sin θ

    ∂Bθ∂θ

    ]=

    1

    sin θ[Bθ cos θ + sin θ · 0]

    = −1c

    cot θEφ

    6= 0

    (iv) Since ~B is just in the θ̂ direction and only varies in r we get just one non-zero term inthe curl.

    ∇× ~B = φ̂1r

    ∂r(rBθ) = −

    1

    cφ̂

    1

    r

    ∂r(rEφ) = −

    1

    cφ̂ (ikEφ) = −

    ik

    c~E = − iω

    c2~E

    while

    µ0�0∂ ~E

    ∂t= −iωµ0�0 ~E = −

    c2~E

    Thus

    ∇× ~B = µ0�0∂ ~E

    ∂t

    and Ampere’s law is satisfied.

    (b) We see that we need sin θ � 1 and kr � 1 in order for the simpler field E0r0 ei(kr−ωt)

    r φ̂to be a good approximation.

    5

  • Chapter 10 Optics homework solutions - p6

    We note that the field can be written in complex form with α = kr − ωt

    ~E = Re

    {A sin θ

    r

    [cosα− 1

    krsinα

    ]}φ̂

    = Re

    {A sin θ

    r

    [cosα+

    i

    kri sinα

    ]}φ̂

    = Re

    {A sin θ

    r

    [(cosα+ i sinα) +

    i

    kr(cosα+ i sinα)

    ]}φ̂

    = Re

    {A sin θ

    r

    [1 +

    i

    kr

    ]eiα}φ̂

    = Re

    {A sin θ

    r

    √1 +

    1

    k2r2eiβeiα

    }φ̂ with tanβ =

    1

    kr

    = Re

    {A sin θ

    r

    √1 +

    1

    k2r2ei(kr−ωt+β)

    }φ̂

    =A sin θ

    r

    √1 +

    1

    k2r2cos(kr − ωt+ β)φ̂

    So we have an oscillation with phase kr+β and amplitude of the oscillation is A sin θr

    √1 + 1k2r2 .

    0.05

    0.05

    0.05

    0.05

    0.05

    0.05

    0.05

    0.05

    0.1

    0.1

    0.1

    0.1

    0.1

    0.1

    0.1

    0.1

    0.15

    0.15

    0.15

    0.15

    0.15

    0.15

    0.2

    0.20.2

    0.2 0.25

    0.25

    0.25

    0.25

    0.3

    0.3

    0.3

    0.3

    0.35

    0.35

    0.4

    0.4

    0.45

    0.45

    0.5

    0.5

    0.55

    0.55

    0.6

    0.6

    0.65

    0.65

    0.7

    0.7

    0.750.75

    0.8

    0.8

    0.850.85

    0.9

    0.9

    0.950.95

    1

    1

    -10 -8 -6 -4 -2 0 2 4 6 8 10-10

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    [1] function c10p4

    [2] figure(1)

    [3] x = -10:0.1:10;

    [4] y = x’;

    [5] r2 = x.^2 + y.^2;

    [6] amp = sqrt(1+1./r2).*abs(x).*(1./r2);

    [7] contour(x,y,amp,0:0.05:1,’ShowText’,’on’);

    [8] texText(’$kx$’,’x’)

    [9] texText(’$ky$’,’y’)

    [10] texText(’amplitude $\vert E\vert$’,’t’)

    [11] graphToPDF(’c10p4.pdf’,6,6)

    [12] end

    6

  • Chapter 10 Optics homework solutions - p7

    Prob 10.5We have the approximation

    Ẽ(x, y, z) =1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)e

    ik2zDdx′dy′

    with D ≡[(x− x′)2 + (y − y′)2

    ]. We note here for future reference that

    ∂D

    ∂x= 2(x− x′)

    ∂D

    ∂y= 2(y − y′)

    Now we compute the following derivatives.

    ∂zẼ(x, y, z) =

    ∂z

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)e

    ik2zDdx′dy′

    = − 1iλz2

    ∫ ∫Ẽ(x′, y′, 0)e

    ik2zDdx′dy′ +

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    ∂zeik2zD

    = −1zẼ(x, y, z) +

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    (−ik2z2

    )De

    ik2zDdx′dy′

    = −1zẼ(x, y, z)− k

    2λz3

    ∫ ∫Ẽ(x′, y′, 0)De

    ik2zDdx′dy′

    2ik∂

    ∂zẼ(x, y, z) = −2ik

    zẼ(x, y, z)− ik

    2

    λz3

    ∫ ∫Ẽ(x′, y′, 0)De

    ik2zDdx′dy′

    and∂

    ∂xẼ(x, y, z) =

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    ∂xeik2zD

    =1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    ik

    2z

    ∂D

    ∂xeik2zDdx′dy′

    =1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    ik

    2z2(x− x′)e ik2zDdx′dy′

    =ik

    z

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)(x− x′)e ik2zDdx′dy′

    so∂2

    ∂x2Ẽ(x, y, z) =

    ik

    z

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    ∂x

    [(x− x′)e ik2zD

    ]dx′dy′

    =ik

    z

    1

    iλz

    ∫ ∫Ẽ(x′, y′, 0)

    [1 + (x− x′) ik

    2z2(x− x′)

    ]eik2zDdx′dy′

    =ik

    zẼ(x, y, z) +

    (ik

    z

    )21

    iλz

    ∫ ∫Ẽ(x′, y′, 0)(x− x′)2e ik2zDdx′dy′

    =ik

    zẼ(x, y, z) +

    ik2

    λz3

    ∫ ∫Ẽ(x′, y′, 0)(x− x′)2e ik2zDdx′dy′

    In the same way

    ∂2

    ∂y2Ẽ(x, y, z) =

    ik

    zẼ(x, y, z) +

    ik2

    λz3

    ∫ ∫Ẽ(x′, y′, 0)(y − y′)2e ik2zDdx′dy′

    Adding these last two results we see that[∂2

    ∂x2+

    ∂2

    ∂y2

    ]Ẽ(x, y, z) =

    2ik

    zẼ(x, y, z) +

    ik2

    λz3

    ∫ ∫Ẽ(x′, y′, 0)De

    ik2zDdx′dy′

    But then we see that this is exactly −2ik ∂∂z Ẽ(x, y, z). Thus we find that[∂2

    ∂x2+

    ∂2

    ∂y2+ 2ik

    ∂z

    ]Ẽ(x, y, z) = 0

    7

  • Chapter 10 Optics homework solutions - p8

    Prob 10.6First we compute the following integral∫ a

    −ae−ibxdx =

    [e−ibx

    −ib

    ]a−a

    =e−iba − eiba

    −ib

    =eiba − e−iba

    ib

    =2i sin(ba)

    ib

    = 2asin(ba)

    ba

    = 2a sinc(ba)

    Now we compute

    E(x, y, z) = E0eikz

    iλzeik2z (x

    2+y2)

    ∫ ∆x/2−∆x/2

    dx′e−ikxz x′∫ ∆y/2−∆y/2

    dy′e−ikyz y′

    = E0eikz

    iλzeik2z (x

    2+y2)2∆x

    2sinc

    (kx

    z

    ∆y

    2

    )2

    ∆y

    2sinc

    (ky

    z

    ∆y

    2

    )= E0

    eikz

    iλzeik2z (x

    2+y2)∆x∆y sinc

    (π∆x

    λzx

    )sinc

    (π∆y

    λzy

    )Thus

    I = 12�0c|E|2 = I0

    (∆x∆y

    λz

    )2sinc2

    (π∆x

    λzx

    )sinc2

    (π∆y

    λzy

    )with I0 =

    12�0c|E0|

    2

    8

  • Chapter 10 Optics homework solutions - p9

    Prob 10.7For definitness we will assume that in the y direction we have an aperature of length a.

    E(x, y, z) = E0eikz

    iλzeik2z (x

    2+y2)

    ∫ L/2−L/2

    dx′ cosπx′

    Le−i

    kxz x′∫ a/2−a/2

    dy′e−ikyz y′

    = E0eikz

    iλzeik2z (x

    2+y2)

    ∫ L/2−L/2

    dx′eiπLx′+ e−i

    πLx′

    2e−i

    kxz x′a sinc

    (πaλzy)

    = E0eikz

    iλzeik2z (x

    2+y2)a sinc(πaλzy) 1

    2

    [∫ L/2−L/2

    dx′e−i(kxz −

    πL )x

    ′+

    ∫ L/2−L/2

    dx′e−i(πL+

    kxz )x

    ]

    = E0eikz

    iλzeik2z (x

    2+y2)a sinc(πaλzy) 1

    2

    [L sinc

    (L2 (

    kxz −

    πL ))

    + L sinc(L2 (

    kxz +

    πL ))]

    = E0eikz

    iλzeik2z (x

    2+y2)La sinc(πaλzy) 1

    2[sinc (πLλz x−

    π2 ) + sinc (

    πLλz x+

    π2 )]

    Let ξ = πLλz x then we have the x dependent part is

    1

    2[sinc(ξ − π/2) + sinc(ξ + π/2)]

    while for the uniform slit we had just sinc(ξ). Let us graph four things E+ =12 sinc(ξ + π/2)

    and E− =12 sinc(ξ − π/2) and E = E− + E+ and Eu = sinc(ξ).

    -4 -2 0 2 4 6 8-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    We see that the sidelobes are mostly removed because the phase of the E+ sidelobes is oppositeof the phase of the E− side lobes, that is when one is up the other is down. This becomes evenmore apparent when we look that intensity.

    -4 -2 0 2 4 6 80

    0.2

    0.4

    0.6

    0.8

    1

    9

  • Chapter 10 Optics homework solutions - p10

    Prob 10.8Passing to cylindrical coordinates

    E(x, y, z) =1

    ∫aperture

    E(x′, y′, 0)eikR

    Rdx′dy′

    =1

    ∫aperture

    E(r, φ, 0)eikR

    Rρ dφ dρ

    =E0iλ

    ∫ 2π0

    ∫ D/20

    ρ dρeikR

    R

    Starting with the Fresnel approximation

    E(x, y, z) =E0iλ

    ∫ 2π0

    ∫ D/20

    ρ dρeikR

    R

    Eb(x, y, z) =E0e

    ikzeik2z (x

    2+y2)

    iλz

    ∫ 2π0

    ∫ D/20

    ρ dρ eik2z ρ

    2

    e−ikz (xρ cosφ+yρ sinφ)

    so

    Eb(0, 0, z) =E0e

    ikz

    iλz

    ∫ 2π0

    ∫ D/20

    ρ dρ eik2z ρ

    2

    =E0e

    ikz

    iλz2π

    ∫ D/20

    ρ dρ eik2z ρ

    2

    =E0e

    ikz

    iλzπ

    ∫ D2/40

    du eik2zu

    =E0e

    ikz

    iλzπ

    2z

    ik

    [eik2z

    D2

    4 − 1]

    = −E0eikz[eikD2

    8z − 1]

    = −E0eikzeikD2

    16z

    [eikD2

    16z − e−i kD2

    16z

    ]= −2iE0eik(1+(

    D4z )

    2)z sin

    (kD2

    16z

    )−→ Ib(0, 0, z) = I04 sin2

    (k2D2

    16kz

    )In the Fraunhofer approximation we also toss the term e

    ik2z ρ

    2

    , so that

    Ec(0, 0, z) =E0e

    ikz

    iλz

    ∫ 2π0

    ∫ D/20

    ρ dρ

    =E0e

    ikz

    iλz2π

    1

    2

    (D

    2

    )2= E0

    eikz

    i

    k2D2

    8kz

    −→ Ic(0, 0, z) = I0(k2D2

    8kz

    )2This can be compared with the intensity gotten from the Huygens-Fresnel equation.

    Ia = I02

    [1− cos

    (√14 (kD)

    2 + (kz)2 − kz)]

    = I04 sin2

    (12

    √14 (kD)

    2 + (kz)2 − 12kz)

    101 102 1030

    1

    2

    3

    4

    5

    10

  • Chapter 10 Optics homework solutions - p11

    Prob 10.9

    11

  • Chapter 10 Optics homework solutions - p12

    Prob 10.e1First we recall some results ∫ b/2

    −b/2e−iβxdx = b sinc(βb/2)

    ∫ a/2−a/2

    dx cos(αx)e−iβx =

    ∫ a/2−a/2

    dxeiαx + e−iαx

    2e−iβx

    =

    ∫ a/2−a/2

    dxe−i(β−α)x + e−i(β+α)x

    2

    =a sinc

    ((β − α)a2

    )+ a sinc

    ((β + α)a2

    )2

    =a

    2

    [sinc

    ((β − α)a

    2

    )+ sinc

    ((β + α)

    a

    2

    )]We assume a

    E(x, y, 0) = E0 cos(πxa

    )[1− cos

    (4nπy

    b

    )]over the aperture −a2 < x <

    a2 and −

    b2 < y <

    b2 . In the Fraunhofer approximation we have

    E(x, y, z) =E0e

    ikzeik2z (x

    2+y2)

    iλz

    ∫ a/2−a/2

    dx′ cos

    (πx′

    a

    )e−i

    kxz x′

    ×∫ b/2−b/2

    dy′[1− cos

    (4nπy′

    b

    )]e−i

    kyz y′

    =E0e

    ikzeik2z (x

    2+y2)

    iλz

    a

    2

    [sinc

    ((kx

    z− πa

    )a

    2

    )+ sinc

    ((kx

    z+π

    a)a

    2

    )]×∫ b/2−b/2

    dy′[1− cos

    (4nπy′

    b

    )]e−

    ikyz y′

    =E0e

    ikzeik2z (x

    2+y2)

    iλz

    a

    2

    [sinc

    ( a2zkx− π

    2

    )+ sinc

    ( a2zkx+

    π

    2

    )]×

    [∫ b/2−b/2

    dy′e−ikyz y′−∫ b/2−b/2

    dy′ cos

    (4nπy′

    b

    )e−

    ikyz y′

    ]

    =E0e

    ikzeik2z (x

    2+y2)

    iλz

    a

    2

    [sinc

    ( a2zkx− π

    2

    )+ sinc

    ( a2zkx+

    π

    2

    )]×[b sinc

    (ky

    z

    b

    2

    )− b

    2

    [sinc

    ((ky

    z− 4nπ

    b)b

    2

    )+ sinc

    ((ky

    z+

    4nπ

    b)b

    2

    )]]=E0e

    ikzeik2z (x

    2+y2)

    iλz

    a

    2

    [sinc

    ( a2zkx− π

    2

    )+ sinc

    ( a2zkx+

    π

    2

    )]b

    2×[2 sinc

    (b

    2zky

    )− sinc

    (b

    2zky − 2nπ

    )− sinc

    (b

    2zky + 2nπ

    )]

    12


Recommended