+ All Categories
Home > Documents > Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2...

Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2...

Date post: 01-Feb-2018
Category:
Upload: buithuy
View: 219 times
Download: 2 times
Share this document with a friend
27
Chapter 18 - 1 ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators? For metals, how is conductivity affected by imperfections, T, and deformation? For semiconductors, how is conductivity affected by impurities (doping) and T? Chapter 18: Electrical Properties
Transcript
Page 1: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 1

ISSUES TO ADDRESS...

• How are electrical conductance and resistancecharacterized?

• What are the physical phenomena that distinguishconductors, semiconductors, and insulators?

• For metals, how is conductivity affected byimperfections, T, and deformation?

• For semiconductors, how is conductivity affectedby impurities (doping) and T?

Chapter 18: Electrical Properties

Page 2: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 2

• Scanning electron microscope images of an IC:

• A dot map showing location of Si (a semiconductor):-- Si shows up as light regions.

• A dot map showing location of Al (a conductor):-- Al shows up as light regions.

Fig. (a), (b), (c) from Fig. 18.0,

Callister 7e.

Fig. (d) from Fig. 18.27 (a), Callister 7e. (Fig. 18.27 is

courtesy Nick Gonzales, National Semiconductor Corp.,

West Jordan, UT.)

(b)

(c)

View of an Integrated Circuit

0.5mm

(a)(d)

45µm

Al

Si (doped)

(d)

Page 3: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 3

Electrical Conduction

• Resistivity, ρ and Conductivity, σ:-- geometry-independent forms of Ohm's Law

E: electricfieldintensity

resistivity(Ohm-m)

J: current density

conductivity

-- Resistivity is a material property & is independent of sample

ρ=∆

A

I

L

V

σ =

1

ρ• Resistance:

σ=

ρ=

A

L

A

LR

• Ohm's Law:∆V = I R

voltage drop (volts = J/C)C = Coulomb

resistance (Ohms)current (amps = C/s)

Ie-A

(cross sect. area) ∆V

L

Page 4: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 4

Electrical Properties

• Which will conduct more electricity?

• Analogous to flow of water in a pipe

• So resistance depends on sample geometry, etc.

D

2D ll I

VARA ==ρ

Page 5: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 5

Definitions

Further definitions

J = σ ε <= another way to state Ohm’s law

J ≡ current density

ε ≡ electric field potential = V/l or (∆V/∆l )

flux a like area surface

current

A

I==

Current carriers• electrons in most solids • ions can also carry (particularly in liquid solutions)

Electron flux conductivity voltage gradient

J = σ (∆V/∆l )

Page 6: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 6

• Room T values (Ohm-m)-1

Selected values from Tables 18.1, 18.3, and 18.4, Callister 7e.

Conductivity: Comparison

Silver 6.8 x 10 7

Copper 6.0 x 10 7

Iron 1.0 x 10 7

METALS conductors

Silicon 4 x 10-4

Germanium 2 x 10 0

GaAs 10 -6

SEMICONDUCTORS

semiconductors

= (Ω - m)-1

Polystyrene <10-14

Polyethylene 10-15-10-17

Soda-lime glass 10

Concrete 10-9

Aluminum oxide <10-13

CERAMICS

POLYMERS

insulators

-10-10-11

Page 7: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 7

What is the minimum diameter (D) of the wire so that ∆V < 1.5 V?

Example: Conductivity Problem

100m

Cu wire I = 2.5A- +e-

∆V

Solve to get D > 1.87 mm

< 1.5V

2.5A

6.07 x 10 (Ohm-m)7 -1

100m

I

V

A

LR

∆=

σ=

4

2Dπ

Page 8: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 8

Electronic Band Structures

Adapted from Fig. 18.2, Callister 7e.

Page 9: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 - 9

Band Structure

• Valence band – filled – highest occupied energy levels

• Conduction band – empty – lowest unoccupied energy levels

valence band

Conduction

band

Adapted from Fig. 18.3, Callister 7e.

Page 10: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -10

Conduction & Electron Transport

• Metals (Conductors):-- Thermal energy puts

many electrons intoa higher energy state.

• Energy States:-- for metals nearby

energy states

are accessible

by thermal

fluctuations.

+-

-

filled band

Energy

partly filled valence band

empty band

GAP

fille

d s

tate

s

Energy

filled band

filled valence band

empty band

fille

d s

tate

s

Page 11: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -11

Energy States: Insulators & Semiconductors

• Insulators:-- Higher energy states not

accessible due to gap (> 2 eV).

Energy

filled band

filled valence band

empty band

fille

d s

tate

s

GAP

• Semiconductors:-- Higher energy states separated

by smaller gap (< 2 eV).

Energy

filled band

filled valence band

empty band

fille

d s

tate

s

GAP?

Page 12: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -12

Charge Carriers

Two charge carrying mechanisms

Electron – negative charge

Hole – equal & opposite positive charge

Move at different speeds - drift velocity

Higher temp. promotes more electrons into the conduction band

∴ σ as T

Electrons scattered by impurities, grain boundaries, etc.

Adapted from Fig. 18.6 (b), Callister 7e.

Page 13: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -13

Metals: Resistivity vs T, Impurities

• Imperfections increase resistivity-- grain boundaries

-- dislocations-- impurity atoms

-- vacancies

These act to scatterelectrons so that theytake a less direct path.

• Resistivityincreases with:-- temperature-- wt% impurity-- %CW

Adapted from Fig. 18.8, Callister 7e. (Fig. 18.8 adapted from J.O.

Linde, Ann. Physik 5, p. 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd ed., McGraw-Hill Book Company,

New York, 1970.)

ρ = ρthermal

+ ρimpurity

+ ρdeformation

deformed Cu + 1.12 at%Ni

T (°C)-200 -100 0

Cu + 3.32 at%Ni

Cu + 2.16 at%Ni

1

2

3

4

5

6

Resis

tivity,

ρ

(10

-8O

hm

-m)

0

Cu + 1.12 at%Ni

“Pure” Cu

Page 14: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -14

Estimating Conductivity

Adapted from Fig. 7.16(b), Callister 7e.

• Question:-- Estimate the electrical conductivity σ of a Cu-Ni alloy

that has a yield strength of 125 MPa.

mmOh10x30 8 −=ρ −

16 )mmOh(10x3.31 −−=ρ

Yie

ld s

tren

gth

(M

Pa)

wt. %Ni, (Concentration C)0 10 20 30 40 50

6080

100

120140160180

21 wt%Ni

Adapted from Fig. 18.9, Callister 7e.

wt. %Ni, (Concentration C)R

esis

tivity,

ρ

(10

-8O

hm

-m)

10 20 30 40 500

10

20

30

40

50

0

125

CNi = 21 wt%Ni

From step 1:

30

Page 15: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -15

Pure Semiconductors: Conductivity vs T

• Data for Pure Silicon:-- σ increases with T-- opposite to metals

Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

electrical conductivity, σ

(Ohm-m)-1

50 100 100010 -2

10 -1

100

101

102

103

104

pure (undoped)

T(K)

electrons

can cross

gap athigher T

material

SiGe

GaP

CdS

band gap (eV)

1.110.67

2.252.40

Selected values from Table

18.3, Callister 7e.

kT/Egap−∝σ eundoped

Energy

filled band

filled valence band

empty band

fille

d s

tate

s

GAP?

Page 16: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -16

Conduction in Terms of Electron and Hole Migration

Adapted from Fig. 18.11, Callister 7e.

electric field electric field electric field

• Electrical Conductivity given by:

# electrons/m3 electron mobility

# holes/m 3

hole mobilityhe epen µ+µ=σ

• Concept of electrons and holes:

+-

electron holepair creation

+-

no applied applied

valence electron Si atom

applied

electron holepair migration

Page 17: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -17

• Intrinsic:# electrons = # holes (n = p)

--case for pure Si

• Extrinsic:--n ≠ p

--occurs when impurities are added with a different

# valence electrons than the host (e.g., Si atoms)

Intrinsic vs Extrinsic Conduction

• n-type Extrinsic: (n >> p)

no applied electric field

5+

4+ 4+ 4+ 4+

4+

4+4+4+4+

4+ 4+

Phosphorus atom

valence electron

Si atom

conductionelectron

hole

een µ≈σ

• p-type Extrinsic: (p >> n)

no applied electric field

Boron atom

3+

4+ 4+ 4+ 4+

4+

4+4+4+4+

4+ 4+ hep µ≈σ

Adapted from Figs. 18.12(a)

& 18.14(a), Callister 7e.

Page 18: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -18

• Allows flow of electrons in one direction only (e.g., useful

to convert alternating current to direct current.

• Processing: diffuse P into one side of a B-doped crystal.

• Results:

--No applied potential:no net current flow.

--Forward bias: carrierflow through p-type andn-type regions; holes andelectrons recombine atp-n junction; current flows.

--Reverse bias: carrierflow away from p-n junction;carrier conc. greatly reducedat junction; little current flow.

p-n Rectifying Junction

++

++

+

---

--

p-type n-type+ -

+

++

+

+

-

-

--

-

p-type n-typeAdapted from Fig. 18.21, Callister 7e.

+++

+

+

---

--

p-type n-type- +

Page 19: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -19

Intrinsic Semiconductors

• Pure material semiconductors: e.g., silicon & germanium

– Group IVA materials

• Compound semiconductors

– III-V compounds

• Ex: GaAs & InSb

– II-VI compounds

• Ex: CdS & ZnTe

– The wider the electronegativity difference betweenthe elements the wider the energy gap.

Page 20: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -20

Doped Semiconductor: Conductivity vs. T

• Data for Doped Silicon:-- σ increases doping-- reason: imperfection sites

lower the activation energy toproduce mobile electrons.

Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15

adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

doped 0.0013at%B

0.0052at%B

ele

ctr

ical co

nd

uctivity,

σ

(Oh

m-m

)-1

50 100 100010-2

10-1

100

101

102

103

104

pure (undoped)

T(K)

• Comparison: intrinsic vs

extrinsic conduction...-- extrinsic doping level:

1021/m3 of a n-type donorimpurity (such as P).

-- for T < 100 K: "freeze-out“,

thermal energy insufficient to

excite electrons.

-- for 150 K < T < 450 K: "extrinsic"-- for T >> 450 K: "intrinsic"

Adapted from Fig. 18.17, Callister 7e. (Fig. 18.17 from S.M. Sze, Semiconductor

Devices, Physics, and

Technology, Bell Telephone Laboratories, Inc., 1985.)

co

nd

uctio

n e

lectr

on

co

nce

ntr

atio

n (

10

21/m

3)

T(K)60040020000

1

2

3

fre

eze

-ou

t

extr

insic

intr

insic

dopedundoped

Page 21: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -21

Number of Charge Carriers

Intrinsic Conductivity

σ = n|e|µe + p|e|µe

n =σ

e µe + µn( )=

10−6(Ω⋅m)−1

(1.6x10−19C)(0.85 + 0.45 m2/V ⋅ s)

For GaAs n = 4.8 x 1024 m-3

For Si n = 1.3 x 1016 m-3

• for intrinsic semiconductor n = p

∴ σ = n|e|(µe + µn)

• Ex: GaAs

Page 22: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -22

Properties of Rectifying Junction

Fig. 18.22, Callister 7e. Fig. 18.23, Callister 7e.

Page 23: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -23

Transistor MOSFET

• MOSFET (metal oxide semiconductor field effect transistor)

Fig. 18.24, Callister 7e.

Page 24: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -24

Integrated Circuit Devices

• Integrated circuits - state of the art ca. 50 nm line width

– 1 Mbyte cache on board

– > 100,000,000 components on chip

– chip formed layer by layer • Al is the “wire”

Fig. 18.26, Callister 6e.

Page 25: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -25

Ferroelectric CeramicsFerroelectric Ceramics are dipolar below Curie TC = 120ºC

• cooled below Tc in strong electric field - make material with strong dipole moment

Fig. 18.35, Callister 7e.

Page 26: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -26

Piezoelectric Materials

at rest

compression induces voltage

applied voltage induces

expansion

Adapted from Fig. 18.36,

Callister 7e.

Piezoelectricity – application of pressure produces current

Page 27: Chapter 18: Electrical Properties - Portalweb.eng.fiu.edu/wangc/EGN3365-18.pdf · Chapter 18 - 2 • Scanning electron microscope images of an IC: • A dot map showing location of

Chapter 18 -27

• Electrical conductivity and resistivity are:-- material parameters.

-- geometry independent.

• Electrical resistance is:-- a geometry and material dependent parameter.

• Conductors, semiconductors, and insulators...-- differ in accessibility of energy states for

conductance electrons.

• For metals, conductivity is increased by-- reducing deformation

-- reducing imperfections

-- decreasing temperature.

• For pure semiconductors, conductivity is increased by-- increasing temperature

-- doping (e.g., adding B to Si (p-type) or P to Si (n-type).

Summary


Recommended