+ All Categories
Home > Documents > Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Date post: 04-Jan-2016
Category:
Upload: maximillian-patterson
View: 241 times
Download: 6 times
Share this document with a friend
123
Chapter 2 Nonnegative Matrices
Transcript
Page 1: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Chapter 2

Nonnegative Matrices

Page 2: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

2-1

Introduction

Page 3: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Entrywise nonnegative

,0nmA

(entrywise ) nonnengative means

jiaij ,0 different from positive semidefinite

Page 4: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Strictly positive

0nmA

strictly positive means

jiaij ,0

different from positive definite

Page 5: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

000 AA

e.g.

01

10

nonzero, nonnegative but not positive

semipositive≡nonzero, nonnegative

Page 6: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

BA

0 BA

jiba ijij ,

Page 7: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

00,0 ABBA

CBCABCACCBA ,0,

000,0 AAxandxA

000,0 AABandBA

Page 8: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

000 BorAAB

e.g.

00

10BA

Page 9: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

2-2

Perron’s Theorem

Page 10: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

spectral radius

)(CMA n

spectral radius

)(max)( AA

譜半徑

Page 11: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Example

30

01 iA

3)( A

Page 12: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

ijnm aA

ijnmaA

BAAB

Proven in next page

Page 13: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

BAABHence

BA

ba

ba

ABAB

ij

n

kkjik

n

kkjik

ijij

1

1

Page 14: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Collatz Wielandt

0A

collatz weilandt

XAXtsXA ..000)(

Page 15: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Lemma 2.2.2 (1)

)()( AA

0A

Proven in next page

Page 16: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

0

A

AzA

zA

Az

zz

Page 17: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Lemma 2.2.2 (2)

)(A

0A

Proven in next page ( 證明很重要 )

is closed and bounded above

Page 18: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

.)(

)(

,

01,lim

1,..00

,

,lim)(

:)(

)(

)(0

closedisAHence

Awthen

wXAX

klettingbyobtainwe

XwAXSince

XandXthenXXLet

XesubsequencconvergentahasX

XXwAXtsX

Nkfor

thenwwandAwIf

AofCloseness

A

A

kkk

k

k

iii

ik

ii

kkkkk

kkNkk

Page 19: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

.)(

)(

.max

00

)(

,111

:)(

aboveboundedisAHence

Aforboundupperanis

xe

xe

xe

xAew

eAethen

AofsumcolumnimunthebeLet

wxe

xAe

xewwxeAxe

xsomeforwxAx

AwanyFor

ReLet

aboveboundedisA

TT

TT

TT

TT

TTT

nT

Page 20: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

andAAA )()(max)(0

0A

Proven in next page

uAAutsu )(..0

Page 21: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(00

0

0,00

)(

.0)()(

)(

0)(

0

,

..00

),(max

max

max

max

max

max

max

max

max

max

max

max

max

Aandu

Auu

AuuandASince

uAu

A

smallsuffiAuAuA

AuAuA

uAuA

ABut

vesemipositiisuAu

thenuAuSuppose

uAuthatshowTo

uAutsu

thenALet

Page 22: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

generalized eigenvector

NkAsomefor ),(

u is called generalized eigenvector ofA if

0)( uIA k

Page 23: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

AJAPP 1

Proven in next page

the columns of P are the

generalized eigenvectors of A.

Page 24: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

11

23323

12212

111

21

21

1

)(

)(

)(

0)(

*0

01

01

kkkkk

nk

nk

A

A

PPIAPPAP

PPIAPPAP

PPIAPPAP

PIAPAP

PPPP

PPPPA

PJAP

JAPP

Page 25: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

tocorrklenghofchainJordancalled

PPP

PIAPIAPIAP

and

PIA

PIA

PIA

PIA

kk

kk

kkk

kk

.

)(,,)(,)(,

0)(

0)(

0)(

0)(

121

12

33

22

1

Page 26: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

eigenvaluegleisA sin)(

The geometric multiple of λ =1 and

there is no generalized eigenvector

other than eigenvector corr. to λ

Page 27: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

.sin)( eigenvaluegleisA

0A

Proven in next page

Page 28: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

1)(

)()()(0

..

,,0

)(,)(..,

.

1)(1

AofmultiplegeometricHence

vuAvuABut

positivenotbutvesemipositiisvu

tsRchoosecanwethen

tindependenlineararevuandu

vAAvuAAutsRvu

notSuppose

AofmultiplegeometricthatshowoT

n

Page 29: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

.sin)(

)(max)(,

)()(

.0))((

)0()(

)(

0

,.sin.

)(

)())((..

,

)(.

2

eigenvaluegleisATherefore

AAthatbecauseimpossibleiswhich

AA

smallsuffallforyAAy

uyAAy

uyAAy

ythatassumemaywe

smallsuffrgchooByRranyfor

ruybyyreplacemaywethatNote

uyAAy

uAAuwhereuyIAAtsRy

thennotSuppose

Atorrecorseigenvectothanother

reigenvectodgeneralizenohasAthatshowTo

n

Page 30: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

)()( AandA

0A

Proven in next page

)()( AandA

Page 31: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

argarg

,,1

)(.

)(

,)(

)(,)(

)(

)(

..0

1

1111

A

othereachofmultiplearezandz

zz

zazazaza

nkfor

Atocorresp

AofreigenvectoaniszandzAAz

zAAzzzA

thenAIf

AthenAifthatshowTo

A

A

zAAzz

zAztsCz

n

nknknknk

n

Page 32: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark

If A>0, then A has no nonnegative

eigenvector other than

(multiple of) u , where u>0 and

uAAu )( Proven in next page( 證明很特

別 )

Page 33: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

uofmultiplethanother

reigenvectoenonnegativnohasAHence

impossibleiswhich

XvceA

XvA

XvAAXvXv

vAAvthen

vAvAtsvLet

Athen

uAAuanduwhere

uofmultipleanotisXandXAX

tsXthatSuppose

T

T

TTT

TT

T

0sin,)(

0))((

)(

)(

)(..0

)(

)(0

..00

Page 34: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Theorem 2.2.1 p.1

(Perron’s Thm)thenAIf ,0

0)( A

)()( AA (b)

(c)

(a)

uAAutsu )(..0

Page 35: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

eigenvaluesimpleaisA)(

)(),()( AAA

(f)

(g)

(e)

1,)(,)(

,)(

lim

vuandvAvAuAAu

whereuvA

A

TT

Tm

m

(d)

A has no nonnegative eigenvector

other than (multiples of) u.

Page 36: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Norm on a vector space

Vxx 0

(i)

(iii)

(ii) scalarxx

is a norm on V

= hold iff x=0

Vyxyxyx ,

Page 37: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

d

we introduce a metric

is a metric space

yxyxd ),(

with

on V, by

dV ,

kasxxk

kasxxd k 0,

Page 38: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Convergent matrix sequence

LA Nkk

NkMA nk

can be interpreted in

where

ijk

ijk

lanjiji

)(lim,1,

one of the following equivalent way:

(i)

ijkijk lLaA ,)(

Page 39: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

kasLAk 0

is in any fixed norm of

where

nM

The topology of

(ii)

nM is independent of

Page 40: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

(the maximum norm)

to be

ijnjiaA

,1max

we obtain (i)

In (ii), take

Page 41: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Bounded matrix sequence

NkkA

,2,1,1..0 )( knjiMatsM kij

(ii)

(i)

,2,1..0 kMAtsM k

is bounded means

Page 42: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Fact 2.2.4

kk

kk

kkk

BABA

limlimlim

)lim)(lim(lim kk

kk

kkk

BABA

(ii)

(i)

Page 43: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

kp

k

k

k

k

k

k

p

k

A

A

A

A

A

A

lim

lim

lim

lim

2

1

2

1

(iii)

Page 44: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Apply of Fact 2.2.4 (ii)

PgularnonsomeforJAPP A sin1

LAkk

lim

PAPPAP kk

kk

)lim(lim 11

and P is nonsigularIf

then

convergent problem of A is corresponding to convergent problem of

AJ

Page 45: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Theorem 2.2.3

)(1 A 1)( A

nMA

NkkA

Let

(i) The sequence

converges to the zero matrix iff

Page 46: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

11

1)( A

1)( A

NkkA

(ii) converges iff

or

and 1 is the only eigenvalue

with modulus 1 and the corresp.

Jordan blocks are all

Page 47: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(A

1)( A

1)( A

NkkA

(iii) is bounded iff

either

and

if then

or

1 1)( Av

Page 48: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Lemma 2.2.5

1)(lim

km

kJ

1

1

0)(lim

km

kJ (i) If

(ii) If

then

and m=1, then

Page 49: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

1 convergesk

1

1

Nkk

mJ )(

(iii) If

the sequence

and m=1, then

is bounded

Note:

In this case, the seqence does not

converge if

explain in next page

Page 50: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

θ

Page 51: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

2m

1

1

Nkk

mJ )(

(iv) If

then the sequence

or

is unbounded

and

Page 52: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)0(

0

1

0

010

1

01

)(

)(

1

00miifNN

i

kN

i

k

NwhereNI

J

i

iim

i

ikik

i

ik

k

k

km

Page 53: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

0)(lim

0!

)1()1(

01

2

2

12

)(

1

2

1

21

121

km

k

ikik

k

k

kk

k

kk

kkk

mkkkk

km

J

kasi

ikkki

k

and

k

kk

kk

m

kkk

J

Page 54: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

unboundedisJ

kaskk

mandCase

unboundedisJCase

k

kk

kk

m

kkk

J

iv

Nkk

m

k

Nkk

m

k

kk

k

kk

kkk

mkkkk

km

)(

21:2

)(1:1

2

2

12

)(

)(

1

1

2

1

21

121

Page 55: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.2.7

)(),( AA

nMA

)(A

)0)(( A

eigenvalue and

is non-nipotent

for every

Suppose that )(A is a simple

Page 56: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.2.7k

k AA

)(lim

what can you tell about the vector

Prove that

x and y?

exists and is of the form *xy

Page 57: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

2-3

Nonnegative Matrices

Page 58: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Lemma 2.2.2

)(A0A

is closed , bounded above and

If , then

)()(: AA

Page 59: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Lemma 2.3.1

0AIf , then

)()(max AA

Page 60: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

XXA

AX

A

A

XXA

A

XAAX

tsXthen

AAtsSuppose

AAshowtoremainsIt

AAhavealreadyWe

0

2

0

0

0

00

)()(

)(

)(

..00

)()(..0

0)()(

)()(

Page 61: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

00,

0

0)(

lim

3.2.2

1)(

)(

)(

,2,1)(

,

0

00

0

Xasoncontraditiaiswhich

X

A

A

TheoremBy

A

A

A

ABut

kXXA

A

yInductivel

k

k

k

Page 62: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Lemma 2.3.2

BA0If , then

)()( BA

Page 63: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)()(

)()(max)(

)()(

)(

)(..00

)()(

BA

BBA

BA

BXXA

BXAXso

BABut

AXXAtsX

AA

Page 64: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Fact

)()()( 2121 AAAA

)(),(max)( 2121 AAAA

Page 65: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Corollary 2.3.3

0, AMA n

)()( AB

, and B is a principal submatrix of A

If

then

In particular )(max1

Aaniii

Page 66: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)()(

)()ˆ()(

,00

**

*

AB

ABB

thenAB

BLet

BAthatassummay

generalityofloseWithout

Page 67: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.4

BAMBA n 0,,

)()( BA then

If

Hint: There is some α>1 such that

BAA 0

Page 68: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)()(

),()()()(0

)()()(

,2.3.2

0

,1,1,0;min

,10

0)(:2

)()(0

,0)(:1

0)(,

0,0

BAhaveweso

BAAA

BAA

LemmaBy

BAA

thennjiaa

bLet

njibaSince

AthatAssumeCase

BA

thenAthatAssumeCase

BhaveweThmPerronby

BBASince

ijij

ij

ijij

Page 69: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Theorem 2.3.5 (Perron-Frobenius Thm)

XAAX )(

0A

..00 tsX

)()( AA , thenIf

and

Page 70: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(#)()(lim

)()()()(

0

,1

,2,1

321

321

existsAA

AAAA

AAAAAlso

keachforAthen

jiak

AandMALet

kFor

kk

k

ijijknk

Page 71: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(),#(#)(#

)#(#)(

)(

,

)(1,00

,

1,,1,11)(

..0

,

AandBy

Ahence

A

xAxkLetting

xAxAandxexthen

xx

sayesubsequencconvergentahasIt

sequenceboundedaisx

ewherexeandxAxA

tsx

ThmPerronbykeachFor

kkkk

k

iiiiT

i

Nkk

Tk

Tkkkk

k

Page 72: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Ri (A)

n

jija

1

)(ARi = i th row sum of A

Page 73: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Cj (A)

n

iija

1

)(AC j = j th column sum of A

Page 74: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Corollary 2.3.6

)(max)()(min11

ARAAR ini

ini

)(max)()(min11

ACAAC jnj

jnj

0 AandMA n

Then

Let

and

Page 75: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(max)()(min

)(

,0

)(

)(

)(..00

Re

,111

),(max,)(min

)(max)()(min)1(

11

11

11

ARAAR

RAr

havewesoezBut

eRzezAerz

eRzAezerz

zAAzthen

zAzAtszisthere

ThmFrobeniusPerronBy

Aere

thenRe

andARRARrLet

ARAARthatshowTo

ini

ini

T

TTT

TTT

TT

T

nT

ini

ini

ini

ini

Page 76: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(max)()(min

)()(),()(

)(max)()(min

)(max)()(min

),2(

)(max)()(min)2(

11

11

11

11

ACAAC

AAtctcSince

ACAAC

ARAAR

haveweBy

ACAACthatshowTo

jnj

jnj

TAA

jnj

Tj

nj

Tj

nj

TTj

nj

jnj

jnj

T

Page 77: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Matrix norm

nM

)()()( BNANABN

is called a matrix norm if N( - ) is a

A norm N( - ) on

norm on

, and N( - ) is submultiplicative i.e.

nM

Page 78: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Matrix norm Induced by Vector norm

nC

nM

AXAx 1max

be a (vector) norm on

Let

Define on by

matrix norm induced by the vector norm

Page 79: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Proposition of matrix norm induced by vector norm

BABA

BAAB

Page 80: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

BAx

ABxAB

xBABxABxAABx

xAAx

x

AxAxA

BA

BxAx

BxAx

xBABA

x

xx

xx

x

x

0

01

11

1

1

max

)(

maxmax

maxmax

max

)(max

Page 81: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark 2.3.7

nMA

nM

)(AA

is a marix norm on If

then

Page 82: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

..0)(

AA

A

AXAXXA

XAX

tsXchooseandALet

not Euclidean

matrix normcorrect proof in

next page( 很重要 )

Page 83: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

..0)(

AAHence

A

BBABBAthen

BXXX

AXAXXA

XXXAAB

MXXXBLet

XAX

tsXchooseandALet

n

Page 84: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Special norm:l∞,lp

llp p

ini

n

l

1

2

1

max

pn

i

p

i

n

pl

1

1

2

1

Page 85: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Special Matrix norm

nM

nCl

be the matrix norm on

Let

induced by the norm of

Page 86: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Corollary

0, AMA n

)(A

If the row sums of A are constant

Let

then A row sum of A

Page 87: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(),#(#)(#

)#(#)(

max

1

1

1

:

:

)(#)(

)(

1

111

1

21

ArandBy

Arso

AAxrHence

eandrAeBut

raXaxa

nisomeforxaAX

XwithCxxxXFor

pf

ArClaim

Arr

Ar

reAethen

AofsumrowcommontheberLet

x

n

jij

n

jij

n

jjij

n

jjij

nn

Page 88: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.8 p.1

1

A

n

iij

njaA

111max

max absolute column sum of A

Page 89: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.8 p.2

A

n

jij

niaA11

max

max absolute row sum of A

Page 90: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

n

iij

njx

n

iij

nj

n

iijjj

n

iij

n

iij

nj

n

iij

nj

n

iij

nj

n

jj

n

iij

nj

j

n

j

n

iij

njj

n

j

n

iij

n

i

n

jjij

n

i

n

jjij

n

ii

nTn

n

iij

nj

aAxAHence

aaAAethen

njsomeforaaLet

a

xaxa

xaxa

xaxaAxAx

xwithRxxxxanyFor

aAthatshowTo

11111

11111

0111

11

111111

1 111 1

1 11 111

121

111

maxmax

max

1max

max

maxmax

max

1

max)1(

1

000

0

Page 91: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

n

jij

nix

n

jij

ni

n

jjii

n

jji

n

jiji

nTniii

n

jji

n

jij

ni

n

jij

ni

n

jij

ni

n

jjij

ni

n

jjij

nii

ni

nTn

n

iij

ni

aAxAHence

aAy

thenaAyand

iaaAyandythen

RaaayLet

aatsniLet

axa

xaxaAxAx

xwithRxxxxanyFor

aAthatshowTo

111

11

1

11

21

1110

1111

11111

21

11

maxmax

max

,

1

)sgn()sgn()sgn(

max..

maxmax

maxmaxmax

1

max)2(

00

0

000

0

Page 92: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.9

)(A

0, AMA n

Prove that if A has a positive eigenvector, then the corresponding eigenvalue is

Let

[Hint: Apply the Perron-Frobenius Thm

to AT ]

Page 93: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(#)(

0,000

)(#)(

)(

)(

)(

)(..00

..)(

,0

byA

uvvanduSince

uvAuv

uvAuv

uvAAuv

vAAv

vAvAtsv

ThmFrobeniusPerronBy

uAutsA

thenAofeigenvalueanbeuLet

T

TT

TT

TT

TT

T

Page 94: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Remark 2.3.10

1)( AA

AA)(

0, AMA n

If A has equal row sums, then

Let

If A has equal column sums, then

Page 95: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

AAHence

AA

CorollaryBy

ArrA

Ar

ExercisebyArandreAethen

sumrowcommontheberLet

solutioneAlternativ

ArAExerciseBy

AofreigenvectopositiveiseSince

ExercisebyArandreAethen

sumrowcommontheberLet

AAthatshowTo

)(

)(

,6.3.2

)(

)(

8.3.2,

.

:

.)(9.3.2

,

8.3.2,

.

)()1(

Page 96: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

1

1

1

1

1

1

1

)(

)(,6.3.2

)(

)(

8.3.2

.

:

.)()(9.3.2

,

8.3.2

.

)()1(

AAHence

AACorollaryBy

ArrA

Ar

ExercisebyArandreeAthen

sumrowcommontheberLet

solutioneAlternativ

ArAAExerciseBy

AofreigenvectopositiveiseSince

ExercisebyArandreeAthen

sumcolumncommontheberLet

AAthatshowTo

T

T

T

Page 97: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

a row stochastic matrix

0, AMA n

with row sums all equal to 1,then

A is called a row stochastic matrix.

If

1)( AandeAe

Page 98: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

a column stochastic matrix

0, AMA n

with column sums all equal to 1,then

A is called a column stochastic matrix.

If

1)( AandeAe TT

Page 99: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.11

)(min1

ARini

)(A

AB

))(

,,)(

,)(

(21 ARARAR

diagn

[ Hint: Let

Deduce Corollary 2.3.6 from Remark

2.3.9 and Lemma 2.3.2

To show that inequality

consider B=DA, where D is the diagonal

matrix

show that

Page 100: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

))(

,,)(

,)(

(

0:2

)(0:1

0),(min

)()(min)1(

21

1

1

ARARARdiagDwhere

DABConsider

Case

ACase

thenARLet

AARthatshowTo

n

ini

ini

Page 101: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(),#(#)(#

)#(#)(,9.3.2

,,,2,1)(

)(#)()(

0

,,,2,11)(

0

)(

)(

)(

22

11

Aandby

BExerciseby

eeBandniBRBut

AB

AB

niAR

Since

AAR

AAR

AAR

Bthen

i

i

nn

Page 102: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

0)(

0)(0

,0)(0

0)()(

),,,(

0),(max

)(max)()1(

21

1

1

ARif

ARifc

andARif

ARifARd

withddddiagDwhere

CDABConsider

thenARLet

ARAthatshowTo

i

ii

i

iii

n

ini

ini

Page 103: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(max)(

)(),#(#)(#

)#(#)(,9.3.2

,,,2,1)(

)(#)()(

0

0)(1)(

100)(

1ARAHence

Aandby

BExerciseby

eeBandniBRBut

AB

ABthen

ARifAR

andnjaARSince

ini

i

ii

iji

Page 104: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Diagonally Similar p.1

ADDB 1

00,0 BDA

00,0 BDA

nMBA , are diagonal similar

In particular

if there is nonsingular matrix D s.t.

Page 105: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Diagonally Similar p.2

00,0 BDA

00,0 BDA

preserves the class of nonnegative

(as well as , positive) matrices.

In particular

nonnegative diagonal similarity

Page 106: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Corollary 2.3.12

nCx

n

i i

ijj

nj

n

i i

ijj

nj x

axA

x

ax

1111max)(min

n

jjij

ini

n

jjij

inixa

xAxa

x 1111

1max)(

1min

0, AMA nThen for any positive vector

and

we have

Page 107: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

n

j i

ijj

nj

n

j i

ijj

nj

n

jjij

ini

n

jjij

ini

n

jjij

ini

n

jjij

ini

jiji

n

nTn

x

axA

x

ax

haveweSimilarlly

xax

Axax

xax

ADDxax

CorollaryBy

xax

ADDofentryji

thenxxxdiagD

letandRxxxxLet

1111

1111

11

1

11

1

21

21

maxmin

,

1max

1min

1max

1min

6.3.2

1),(

,),,,(

0),,,(

Page 108: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.13 p.1

nTn Rxxxx ,,, 21

For any semipositive vector

Wielandt numbers of A with respect to x are defined and denoted respectively by:

the upper and the lower Collatz-

0, AMA nLet

Page 109: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.13 p.2

xAxxRA :0inf)(

wxAxwxrA :0sup)(

(we adopt the convention that inf ψ=∞)

Prove that for any semipositive x, we have

Page 110: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.13

0:)(

max)( ii

iA x

x

AxxR

0:min)( ii

iA x

x

Axxr

Page 111: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

0;max)(

max

0..

0..

,,2,1

0

ii

iA

i

i

x

ii

i

iii

ii

xx

AxxRHence

x

Ax

xtsix

Ax

xtsixAx

nixAx

xAx

i

Page 112: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

0;min)(

min

0..

0..

,,2,1

0

ii

iA

i

i

x

ii

i

iii

ii

xx

AxxrHence

x

Ax

xtsix

Ax

xtsixAx

nixAx

xAx

i

Page 113: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.14 p.1

)(A

Axxts ..0

0, AMA n

(i) Prove that if

Let

for some positive vector x then

Page 114: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

min)(

,12.3.2

min

0sin,,,1

,,1

1

1

AHence

x

AxA

haveweCorollaryBy

x

Ax

xcenix

Ax

nixAx

Axx

i

i

ni

i

i

ni

i

i

ii

Page 115: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.14 p.2

)(A

xAxts ..0

0, AMA n

(ii) Prove that if

Let

for some positive vector x then

Page 116: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

max)(

,12.3.2

max

0sin,,,1

,,1

1

1

AHence

x

AxA

haveweCorollaryBy

x

Ax

xcenix

Ax

nixAx

xAx

i

i

ni

i

i

ni

i

i

ii

Page 117: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.14 p.3

)(A

0, AMA n

(iii) Use parts (i) and (ii) to deduce that

Let

if A has a positive eigenvector thenthe corresponding eigenvalue is

Page 118: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

)(

)()(

),()(

0,00

)(

,

AHence

AandA

haveweiiandiBy

uAuanduAu

uandASince

AsomeforuAu

thenAofreigenvectopositiveabeuLet

Page 119: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.15 p.1

2221

1211

aa

aa

2221

1211

aa

aa

are diagonally similar.

Show that the matrices

and

Page 120: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

.

10

01

10

01

2221

1211

2221

1211

2221

1211

2221

1211

similardiagonallyare

aa

aaand

aa

aathen

aa

aa

aa

aa

Page 121: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Exercise 2.3.15 p.2

333231

232221

131211

aaa

aaa

aaa

are diagonally similar ?

Are the matrices

and

333231

232221

131211

aaa

aaa

aaa

Page 122: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

.

1,,

1,1,1

..),,(

sin

.

323121

31

231

121

1

332321

31311

3

3231

2221211

2

3131

12121

111

3

2

1

333231

232221

131211

13

12

11

333231

232221

131211

321

similardiagonally

notarematricestwothisHence

impossibleiswhich

ddanddddd

ddanddddd

adaddad

dadadad

daddada

d

d

d

aaa

aaa

aaa

d

d

d

aaa

aaa

aaa

tsddddiagD

matrixdiagonalgularnonisthereThen

matricesdiagonalarematricestwotheseSuppose

Page 123: Chapter 2 Nonnegative Matrices. 2-1 Introduction.

Recommended