+ All Categories
Home > Documents > Chapter 4 Multivariate Normal Distribution

Chapter 4 Multivariate Normal Distribution

Date post: 23-Jan-2016
Category:
Upload: petra
View: 406 times
Download: 36 times
Share this document with a friend
Description:
Chapter 4 Multivariate Normal Distribution. 4.1 Random Vector. Random Variable. X. Random Vector. X 1 , , X p are random variables. A. Cumulative Distribution Function ( c.d.f. ). Random Variable. F( x ) = P(X  x ). Random Vector. - PowerPoint PPT Presentation
29
Chapter 4 Multivariate Normal Distribution
Transcript
Page 1: Chapter 4 Multivariate Normal Distribution

Chapter 4Multivariate Normal

Distribution

Page 2: Chapter 4 Multivariate Normal Distribution

4.1 Random Vector4.1 Random Vector4.1 Random Vector4.1 Random Vector Random Variable

Random Vector

X

,1

pX

X

X

X1, , Xp are random variables

Page 3: Chapter 4 Multivariate Normal Distribution

A. Cumulative Distribution Function (c.d.f.)

Random Variable

F(x) = P(X x)

F(x) = F(x1,,xp) = P(X1 x1, , Xp xp)

Marginal distribution

• F(x1) = P(X1x1) = P(X1x1, X2, , Xp) = F(x1, , , )

• F(x1, x2) = P(X1x1 ,X2x2) = F(x1, x2, , , )

Random Vector

Page 4: Chapter 4 Multivariate Normal Distribution

B. Density Random Variable

Random Vector

)()(

)()(F

xF'xf

xdttfxx

p

pp

ppp

x x

pp

xx

xxxxf

xxdtdtttfxxp

1

11

1111

),,(F),,(

),,(),,(),,(F1

R

Page 5: Chapter 4 Multivariate Normal Distribution

C. Conditional Distribution

Random Variable

Random Vector

P(A)

P(B)

B)P(A)BP(A

Conditional Probability of A given B

when A and B are not independent

Conditional Density of x1,, xq given xq+1= xq+1, , xp= xp .

),,|,,( 11 pqq xxxxf ),,(

),,,,,(

1

11

pq

pqq

xxf

xxxxf

h

g where h: the joint density of x1,, xp ;

g: the marginal density of xq+1, , xp .

Page 6: Chapter 4 Multivariate Normal Distribution

D. Independence Random Variable

Random Vector

t.independen are Y and X

,)P(Y)P(X

)Y,P(X

yxyx

yx

(X1,X2) ~ F(x1, x2)

If

F(x1, x2)= F1 (x1) F2 (x2) , x1, x2

x1 and x2 are said to be independent.

(X1,,Xp) ~ F(x1, ,xp)

If

X1, ,Xp are said to be mutually independent.

pixxxx i

p

iiip ,,1,)(F),,(F

11

Page 7: Chapter 4 Multivariate Normal Distribution

(X1,X2) ~ F(x1, x2)

If

F(x1, x2)= F1 (x1) F2 (x2) , x1, x2

x1 and x2 are said to be independent.

(X1,,Xp) ~ F(x1, ,xp)

If

X1, ,Xp are said to be mutually independent.

pixxxx i

p

iiip ,,1,)(F),,(F

11

Random Vector

X ~ F(x1, ,xp), Y ~ G(y1, , yq) X and Y are independent if

.,,,,,any for

,,,,,,,,,

11

111111

qq

pp

qpqqpp

RyyRxx

yyGxxFyYyYxXxXP

Page 8: Chapter 4 Multivariate Normal Distribution

E. Expectation Random Variable

Random Vector

)()E( xdFxx

pnxX

pnxX

ij

ij

:)E()E(

:)(

Page 9: Chapter 4 Multivariate Normal Distribution

Some Properties:

E(AX) = AE(X)

E(AXB + C) = AE(X)B + C

E(AX + BY) = AE(X) + BE(Y)

E(tr AX) = tr(AE(X))

Page 10: Chapter 4 Multivariate Normal Distribution

F. Variance - Covariance Random Variable

Random Vector

2

2

)(EE

)()(E)Var(

xx

xxxx

dF

qjpiYX

YYXX

ji

qp

,,1,,,1),,Cov(),Cov(

)',,()',,( 11

yx

yx

.tindependenareandif0),(Cov yxyx

Page 11: Chapter 4 Multivariate Normal Distribution

Other Properties: Cov(x) = Cov(x, x)

Cov(Ax , By) = A Cov(x, y) B

Cov(Ax) = A Cov(x) A

Cov(x - a, y - b) = Cov(x, y), where a and b are constant vectors

Cov(x - a) = Cov(x) , where a is constant vector

E(xx) = Cov(x) + E(x)E(x)

E(x - a)(x - a) = Cov(x) + (E(x)- a)(E(x)- a) a Rn

Assume that E(x)= and Cov(x) = exist, and A is an pp constant matrix, then

E(xAx) = tr(A) + A

Page 12: Chapter 4 Multivariate Normal Distribution

G. Correlation Random Variable

Random Vector

x = (X1, ,Xp)

that is called correlation matrix of x .

21

Var(Y) Var(X)

Y)Cov(X,Y)Corr(X,

Corr(x) = (Corr(Xi,Xj)): pp

Page 13: Chapter 4 Multivariate Normal Distribution

4.2 Multivariate Normal Distribution4.2 Multivariate Normal Distribution4.2 Multivariate Normal Distribution4.2 Multivariate Normal Distribution

Random Variable:

X ~ N(,2)

N(0,1)~YY,Xd

22

)(2

1

2

1...

xefdp

2

21

2

1...

yefdp

Page 14: Chapter 4 Multivariate Normal Distribution

Definition of Multivariate Normal DistributionDefinition of Multivariate Normal DistributionDefinition of Multivariate Normal DistributionDefinition of Multivariate Normal Distribution

standard normal: y = (Y1,,Yq), Y1,,Yq i.i.d, N(0, 1) y ~ Nq(0, Iq)

xxexpx 'p

q

y 21

21

:Density

qIy

y

cov

E:Moments 0

Page 15: Chapter 4 Multivariate Normal Distribution

Definition of Multivariate Normal DistributionDefinition of Multivariate Normal DistributionDefinition of Multivariate Normal DistributionDefinition of Multivariate Normal Distribution

definite negative-non ,

,pp:DD ,μ N~x

qp:D 1,p:μ,Dyμx

p

'ΣΣ

μ-xΣ μ-xΣ x

Σ

x-1

2

1exp

2

1

0when :Density

21

'pp

Σx

μx

cov

E:Moments

Page 16: Chapter 4 Multivariate Normal Distribution

4.3 The bivariate normal distribution4.3 The bivariate normal distribution4.3 The bivariate normal distribution4.3 The bivariate normal distribution

2

1

2

1

,xX

X

2221

2121

2221

1211

Σ

2221

21 Var ,Var XX

2121 ,Cov XX

21, XXCorr

1 0 001 2122

221 ,,Σ

2221

212

12

2221

2122

222

21

1

1

1

1

1

1

1

Σ

Page 17: Chapter 4 Multivariate Normal Distribution

The density function x is

2

1

1122

21

21 12

1

12

1

x

xxp exp,

2

2

22

2

22

1

112

xxx

The contour of p(x1, x2) is an ellipsoid

μxΣμx 1'c

Page 18: Chapter 4 Multivariate Normal Distribution

4.4 Marginal and conditional distributions4.4 Marginal and conditional distributions

Theorem 4.4.1

.,

.,

:Proof

.,~Then

and ,~ Assume

'N

''N

'N

N

m

m

m

p

A Σ AAμd

ADD AAμd~ADyAμdyμAdz

A Σ AAμdz

p,m:A p;m:d Ax,dzΣμx

Page 19: Chapter 4 Multivariate Normal Distribution

Corollary 1

.Σ,μ~x

.,:Σ,:μ,:x

ΣΣ

ΣΣΣ,

μ

μμ,

x

xx

Σ μ x,Σ,μ~x

1111

1111

2221

1211

2

1

2

1

:Then

0 1 1 where

into andPartition . Assume

m

p

N

pmmmmm

N

Corollary 2

All marginal distributions of are still normal distributions.

Σ μ,x pN~

Ax

3

2

1

32

21

X

X

X

XX

XX

110

011

Example 4.4.1 Σ μ,x 3~ N

Then,

Page 20: Chapter 4 Multivariate Normal Distribution

32

21

3

2

1

μμ

μμ

μ

μ

μ

Aμ110

011

-

-

33232213222312

13222312221211

332323221312

231322121211

332313

232212

131211

2

210

11

0110

11

01

110

011

-

-'A Σ A

The distribution of Ax is multivariate normal with mean

And covariance matrix

Page 21: Chapter 4 Multivariate Normal Distribution

Theorem 4.4.2

Let x be a p × 1 random vector. Then x has a multivariate normal distribution if and only if a’x follows a normal distribution for any

.

Note: Σaaxaxa

μaxa

'''

''E

covvar

pRa

Page 22: Chapter 4 Multivariate Normal Distribution

Theorem 4.4.3

The assumption is the same as in corollary 1 of Theorem 4.4.1. Then the conditional distribution of x1 given x2 = x2 is

where

21121 .. Σ,μ mN

211211211

212121

Σ Σ ΣΣΣ

μx ΣΣμμ 1-

22.

21-

22.

.,μμ~|

.Σ,μ~x

22

212

112222

12221

2

1

xNxXX

N

Example 4.4.2

Page 23: Chapter 4 Multivariate Normal Distribution

Example 1

Let x = (x1, …, xs) be some body characteristics of women, wher

e x1: Hight (身高 )

x2: Bust (胸圍 )

x3: Waist (腰圍 )

x4: Height below neck (頸下高度 )

x5: Buttocks (臀圍 )

363272135703205321933610

0337227254033589

85939536258471

530305146

66029

.....

....

...

..

Σ,

91.52

61.32

70.26

83.39

154.98

μ

.

with~known isIt Σ μ, x sN

Page 24: Chapter 4 Multivariate Normal Distribution

The correlation of R can be computer from Σ

00013760627067603630

0001133024206480

000173200540

00012160

0001

.....

....

...

..

.

R

Take x(1) = (x1, x2, x3), x(1) = (x4) and x(3) = (x5).

Page 25: Chapter 4 Multivariate Normal Distribution

52.9119.032.61

52.9176.026.70

52.9171.039.83

52.9138.098.154

52.91363.27

213.5

703.20

532.19

336.10

32.61

26.70

39.83

98.154

5

5

5

5

51

5

4

3

2

1

x

x

x

x

xx

x

x

x

x

E

Page 26: Chapter 4 Multivariate Normal Distribution

0406717118103897

717119524758109735

181075810588168640

38979735864075625

2135 70320 53219 3361036327

2135

70320

53219

336100337227254033589

227285939536258471

540353625530305146

35898471514666029

1

5

4

3

2

1

....

....

....

....

.,.,.,..

.

.

.

.....

....

....

....

x

x

x

x

x

Cov

Page 27: Chapter 4 Multivariate Normal Distribution

70723707108733

582166430

71716

1.717- 1810 38970406

7171

1810

3897

19524758109735

75810588168640

9735864075625

1

5

4

4

3

2

1

...

..

.

,.,..

.

.

.

...

...

...

x

x

x

x

x

x

Cov

Homework 3.5. Please directly compute and computer it by the recursion formula.

5

4

3

2

1

x

x

x

x

x

E

Page 28: Chapter 4 Multivariate Normal Distribution

We see that

1540.0195.0

10386.0

1

859.39707.23,|

530.30582.16,|

660.29717.16,|

5

4

3

2

1

3543

2542

1541

x

x

x

x

x

xxxx

xxxx

xxxx

Corr

VarVar

VarVar

VarVar

Page 29: Chapter 4 Multivariate Normal Distribution

4.5 Independent4.5 Independent4.5 Independent4.5 Independent

Theorem 4.5.1

.Σxx

ΣΣ

ΣΣΣ,

μ

μμ,

x

xx

Σμ x,Σ,μ~x

1221

2221

1211

2

1

2

1

0 ifonly and ift independen are and Then

into andPartition . Assume

pN

Corollary 1

t.independen are - and

tindependen are - and

21

221212

11

112121

xΣΣxx

xΣΣxx


Recommended