+ All Categories
Home > Documents > Chapter 9 Uniform Flow in Open Channel

Chapter 9 Uniform Flow in Open Channel

Date post: 03-Apr-2018
Category:
Upload: farhana-jani
View: 230 times
Download: 0 times
Share this document with a friend

of 33

Transcript
  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    1/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    By:-

    MR WAN AFNIZAN BIN WAN MOHAMED

    DEPT. OF WATER & ENVIRONMENTAL ENGINEERING

    FAC. OF CIVIL & ENVIRONMENTAL ENGINEERING

    e-mail: [email protected]

    HYDRAULICSHYDRAULICSHYDRAULICSHYDRAULICS

    (DFC 2053)(DFC 2053)(DFC 2053)(DFC 2053)

    CHAPTER 9CHAPTER 9CHAPTER 9CHAPTER 9

    UNIFORM FLOW IN

    OPEN CHANNEL

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    2/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    CONTENT

    CHANNEL GEOMETRY

    TYPES OF FLOW

    DISCHARGE FORMULA

    APPLICATION OF NORMAL

    DEPTH : CHART APPROACH

    BEST EFFECTIVE SECTION

    STATE OF FLOW

    TYPES OF FLOW

    Two criteria :-

    A TIME AS THE CRITERION

    (i) Steady Flow

    Depth of flow does not change with time

    (ii) Unsteady Flow

    Depth of flow changes with time

    B SPACE AS THE CRITERION

    (i) Uniform Flow

    Depth of flow is same at every section of channel

    (ii) Non Uniform Flow

    Depth of flow changes along of channel section

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    3/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    TYPES OF FLOW

    B SPACE AS THE CRITERION

    (iii) Rapidly Varied Flow

    Depth of flow changes abruptly over a comparativelyshort distance (e.g : Hydraulic jump)

    (iv) Gradually Varied Flow

    Depth of flow changes gradually over a comparativelylong distance

    C COMBINATION OF TWO CRITERION

    (i) Steady Uniform

    (ii) Steady Rapidly Varied

    (iii) Steady Gradually Varied

    .... Cont.... Cont.... Cont.... Cont

    TYPES OF FLOW

    C COMBINATION OF TWO CRITERION

    (iv) Unsteady Rapidly Varied

    (v) Unsteady Gradually Varied

    Open Channel Flow

    Steady Flow Unsteady Flow

    Uniform Flow Non Uniform Flow

    Gradually Varied FlowRapidly Varied Flow

    Figure 9.1 : Types of flow in open channel

    Note : Unsteady Uniform

    Flow Not exist

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    4/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    STATE OF FLOW

    Influenced by three factors :-

    Inertial Force

    Viscosity Force

    Gravity Force

    A EFFECT OF INERTIAL & VISCOSITY FORCES

    )(RNumbereynoldsRForceViscosity

    ForceInertiale====

    or represent as :-

    ====

    ==== vRvRRe

    . 9.1

    STATE OF FLOW

    State of flow ( based on Reynolds Number ) :-

    .... Cont.... Cont.... Cont.... Cont

    where ;

    v = Velocity (m/s)

    = Dynamic viscosity (N.s/m2) = Water density (1000 kg/m3)= Kinematic viscosity (m2/s)R = Hydraulic radius (m)

    P

    AR ====

    . 9.2

    (i) Re 500 Laminar Flow

    Flow : Slow & Shallow

    Slippery surface

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    5/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    STATE OF FLOW

    Cont .. State of flow ( based on Reynolds Number ) :-

    .... Cont.... Cont.... Cont.... Cont

    (ii) Re 12500 Turbulent Flow

    Flow : Normally occurred in open channel

    Transitional Flow(iii) 500 Re 12500

    STATE OF FLOW

    B EFFECT OF INERTIAL & GRAVITY FORCES

    )(FNumberFroudeForceGravity

    ForceInertialr====

    or represent as :-

    . 9.3

    .... Cont.... Cont.... Cont.... Cont

    gD

    vFr ====

    where ;

    v = Velocity (m/s)

    g = Earths gravity (m/s2)

    D = Hydraulic depth (m)

    T

    AD ==== . 9.4

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    6/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    STATE OF FLOW

    State of flow ( based on Froude Number ) :-

    .... Cont.... Cont.... Cont.... Cont

    (i) Fr = 1 Critical Flow

    (ii) Fr < 1 Sub Critical Flow

    Super Critical Flow(iii) Fr >1

    Flow in slow condition

    Flow in turbulent condition

    CHANNEL GEOMETRY

    Three types of channel :-

    A NATURAL CHANNEL

    Figure 9.2 : Natural channel

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    7/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    B ARTIFICIAL CHANNEL

    Figure 9.3 : Artificial channel

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    C PRISMATIC CHANNEL

    Uniform cross section & slope at whole channel

    length.

    Usually artificial channel.

    CHANNEL GEOMETRY ELEMENT

    y = Depth of water (m)T = Top width water surface (m)B = Base width water surface (m)P = Wetted perimeter (m)A = Wetted area (m2)R = Hydraulic radius R = A/P (m)D = Hydraulic depth D = A/T (m)

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    8/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    T

    B

    Py

    Figure 9.4 : Channel geometric element

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    Figure 9.5 : Channels sides slope

    I SIDES SLOPE, Z

    1

    z

    Note : If slope, = 45 z = 1( z at left & right side is same )

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    9/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    Figure 9.5 : Channels sides slope

    II CHANNEL SLOPE, So ( unit less )

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    III RELATIONSHIP BETWEEN v & Q

    AVQ ==== . 9.5where ;

    Q = Discharge or flow rate (m3/s)

    v = Velocity (m/s)

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    10/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENTDERIVATION OF CHANNEL FORMULA

    B

    y

    1

    z

    1

    z

    31

    2

    L

    Figure 9.6 : Derivation of channel formula

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    From Figure 9.6 :

    T = Top width water surface

    zy2BT ++++====

    A = Wetted area

    A = Area 1 + Area 2 + Area 3

    (((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]] (((( )))) (((( ))))

    2zyByA

    yzy2

    1yByzy

    2

    1A

    ++++====

    ++++++++

    ====

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    11/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    Cont . From Figure 9.6 :

    P = Wetted perimeter

    (((( ))))

    2

    22

    222

    22

    z1yL

    z1yL

    yzyL

    zyyL

    ++++====

    ++++====

    ++++====

    ++++====

    .... Cont.... Cont.... Cont.... Cont

    CHANNEL GEOMETRY

    CHANNEL GEOMETRIC ELEMENT

    Cont . From Figure 9.6 :

    P = Wetted perimeter

    2

    z1y2BP

    L2BP

    ++++++++====

    ++++====

    therefore ;

    Note :Use this trapezoidal formula (A, T & P) to find formulae forrectangular & triangular shape.

    For Rectangular z = 0 for Triangular B = 0

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    12/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont CHANNEL GEOMETRY

    B + 2zyBy + zy2

    2zyzy2

    B + 2yBBy

    PTASHAPE

    B

    y

    T

    zz11 y

    T

    y1z

    T

    B

    1z

    d

    T

    y

    2z1y2 ++++

    2z1y2B ++++++++

    )sin(8

    d2

    2

    sind

    2

    d

    ( in radian ) ( in radian )( in angle )

    To sum up .. Table 9.1 : Channels geometric elements

    LetLetLetLets take as take as take as take a

    break!!!break!!!break!!!break!!!

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    13/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    Based on the figure given find :-

    i) Top width water surface (T), wettedarea (A), wetted perimeter (P) &hydraulic radius (R).

    ii) If Q = 2.4 m3/s, determine the flowstate.

    iii) If inclined length (L) = 50 m, find thecost to construct this channel (Given

    excavation cost = RM 3/m3

    and liningcost = RM 5/m2)

    EXAMPLE 9.1EXAMPLE 9.1EXAMPLE 9.1EXAMPLE 9.1

    3 m

    2 m

    1 m

    60

    .... Cont.... Cont.... Cont.... Cont

    SOLUTION:SOLUTION:SOLUTION:SOLUTION:

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    14/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTIONSOLUTIONSOLUTIONSOLUTION

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    15/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    16/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    17/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    18/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    Water flows 0.8 m depth inside a 1.2 mdiameter culvert. Calculate top widthwater surface (T), wetted area (A),wetted perimeter (P) and hydraulic radius(R).

    EXAMPLE 9.2EXAMPLE 9.2EXAMPLE 9.2EXAMPLE 9.2

    SOLUTION:SOLUTION:SOLUTION:SOLUTION:

    SOLUTIONSOLUTIONSOLUTIONSOLUTION

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    19/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    20/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    DISCHARGE FORMULA

    Several discharge formula includes :

    oRSACQ ==== Chezy formula

    oSARn

    1Q 3

    2

    ==== Manning formula

    Where ;

    A = Channel area (m2)

    C = Chezys coefficient (m0.5/s)

    n = Mannings coefficient

    R = Hydraulic radius (m)

    So = Channel slope

    Most popular !!

    . 9.6

    . 9.7

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    21/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont DISCHARGE FORMULA

    0.013xii) Unreap Wood

    0.012xi) Reap Wood

    0.012x) Steel

    0.016ix) Aspalt (rough)

    0.013viii) Aspalt (smooth)

    0.015vii) Masonry (inside cement mortar)

    0.013vi) Stone (covered)

    0.017v) Concrete

    0.013iv) Cement (mortar)

    0.011iii) Cement (plane / smooth)

    0.027 0.035ii) Earth ground (vegetation)

    0.022i) Earth ground (clean)

    Artificial Channel:

    0.040 0.050iii) Mountain River

    0.100ii) Vegetation

    0.030i) Clean and Straight

    Natural Channel:

    MANNING VALUE,nTYPES OF CHANNEL SURFACE

    Water flows inside trapezoidal channelhaving sides slope 1.5, base width 2.5 m,channel slope 0.0016 and Manningscoefficient 0.012. If normal depth insidethe channel is 3 m, what is the discharge?

    EXAMPLE 9.3EXAMPLE 9.3EXAMPLE 9.3EXAMPLE 9.3

    SOLUTION:SOLUTION:SOLUTION:SOLUTION:

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    22/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTIONSOLUTIONSOLUTIONSOLUTION

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    23/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    APPLICATION OF NORMAL DEPTH

    Normal depth determination approaches :

    Trial & Error

    Graph

    ChartOnly this part will be

    focused in this course !!

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    24/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    APPLICATION OF NORMAL DEPTH

    .... Cont.... Cont.... Cont.... Cont

    CHART METHOD

    Section factor, Zo is divided with B8/3 ( B = Channel width )

    or d8/3 ( D = Channel diameter )

    Limited if channel is triangular

    Formula used :-

    3

    8

    o3

    8

    3

    2

    BS

    nQ

    B

    AR====

    3

    8

    oo3

    8

    o

    32

    dS

    nQ

    d

    AR====

    Rectangular &

    Trapezoidal shape

    Circular shape

    . 9.8

    . 9.9

    APPLICATION OF NORMAL DEPTH.... Cont.... Cont.... Cont.... Cont

    Figure 9.7 : Determination of normal depth using chart method

    38oBS

    nQ====

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    25/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    Water flows through rectangular channelat 10 m3/s having base width 6 m, channelslope 0.0001 and Mannings coefficient0.013. Find normal depth using chartmethod ?

    EXAMPLE 9.4EXAMPLE 9.4EXAMPLE 9.4EXAMPLE 9.4

    SOLUTION:SOLUTION:SOLUTION:SOLUTION:

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    26/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    BEST EFFECTIVE SECTION

    Shape that will be studied :

    Rectangular

    Trapezoidal

    Triangular

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    27/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    What

    is

    Effective Section

    BEST EFFECTIVE SECTION

    .... Cont.... Cont.... Cont.... Cont

    BEST EFFECTIVE SECTION Can convey Dischargemaximum (Qmax) or Hydraulic Radius maximum (Rmax) withWetted Perimeter minimum (Pmin)

    How it is derived ??? P is differentiated from Manningformula.

    BEST EFFECTIVE SECTION

    oSARn

    1Q 3

    2

    ====

    o

    3

    2S

    P

    A

    n

    1Q

    35

    ====

    Note :A, n & So value - fix

    Attempt to get Qmax Pmin 0y

    PminP ====

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    28/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    .... Cont.... Cont.... Cont.... Cont

    BEST EFFECTIVE SECTION

    Advantages of P minimum :

    Reduced flow friction

    Reduced construction cost

    Get P equation in

    y value

    How to determine best effective section ???

    y

    P

    0

    y

    P====

    Trapezoidal

    Triangular

    Rectangular

    TOP WIDTH

    (T)

    HYDRAULIC

    RADIUS

    (R)

    WETTED

    PERIMETER

    (P)

    AREA

    (A)

    SHAPE

    .... Cont.... Cont.... Cont.... Cont BEST EFFECTIVE SECTION

    To sum up . (this formula need to remember !!)

    2y2 y42

    yy2

    2

    y2y2

    4

    2y

    3y2

    y2

    3y22

    y

    3

    3y4

    3/1z ==== For another z or sides s lope angle use this formulato get new A valuezy2z1y2B

    2++++====@ = 60

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    29/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    Water flows 14.5 m3/s inside rectangularchannel having channel slope 0.002 andMannings coefficient 0.017. Find the besteffective section for this channel.

    EXAMPLE 9.5EXAMPLE 9.5EXAMPLE 9.5EXAMPLE 9.5

    SOLUTION:SOLUTION:SOLUTION:SOLUTION:

    SOLUTIONSOLUTIONSOLUTIONSOLUTION

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    30/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    31/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    Water flows 3.45 m3/s inside trapezoidalchannel having sides slopes angle 45,channel slope 1:1200 and Manningscoefficient 0.014. Find the best effectivesection for this channel.

    EXAMPLE 9.6EXAMPLE 9.6EXAMPLE 9.6EXAMPLE 9.6

    SOLUTION:SOLUTION:SOLUTION:SOLUTION:

    SOLUTIONSOLUTIONSOLUTIONSOLUTION

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    32/33an Afnizan b Wan Mohamed

    KAP/FKAAS

    SOLUTIONSOLUTIONSOLUTIONSOLUTION

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

  • 7/29/2019 Chapter 9 Uniform Flow in Open Channel

    33/33

    SOLUTION .... ContSOLUTION .... ContSOLUTION .... ContSOLUTION .... Cont

    TIMETIMETIMETIMES UPS UPS UPS UP

    THANK YOU


Recommended