+ All Categories
Home > Documents > CHEM 212 CH 12-16 Review 2014chemistry.bd.psu.edu/justik/CHEM 212/CHEM 212 CH 12-16 Review … ·...

CHEM 212 CH 12-16 Review 2014chemistry.bd.psu.edu/justik/CHEM 212/CHEM 212 CH 12-16 Review … ·...

Date post: 08-Mar-2018
Category:
Upload: doankhue
View: 221 times
Download: 5 times
Share this document with a friend
14
Study Guide for Exam 2 Aldehydes and Ketones Oxidation of Alcohols to Carbonyl Compounds The oxidation of alcohols to carbonyl compounds is the reverse of nucleophilic addition (below). Most oxidants accept the alcohol oxygen as a nucleophile followed by loss of the acidic hydrogen. The process is completed by an E2like elimination of hydrogen from the protocarbonyl carbon in concert with formation of the C=O πbond and reductive loss of the leaving group. General Mechanism Swern Chromic Acid Scope and Limitations 1. As a hydrogen atom is needed for the elimination step, 3 o alcohols do not oxidize to carbonyl compounds. 2. Normally 1 o alcohols are converted to aldehydes and 2 o alcohols to ketones. 3. However, in the presence of water, aldehydes form hydrates that undergo more rapid oxidation than the starting 1 o alcohols. Thus with CrO3/H2SO4, Na2CrO7,K2CrO7,H2CrO4,1 o alcohols are converted to carboxylic acids. 4. This overoxidation is avoided with the Swern oxidation or the use of PCC. H O H Ox H O H Ox -H + H O Ox B O Ox B H H O H H O H -HCl H O S B O B H Me S Me Cl S Me Me Me Me S Me Me H O H H O H B O B H O Cr O O O Cr O O H + xfer H O Cr O OH O Cr O OH O HO R H O H HO R H O H B H R O B H O Cr O O O Cr O O H + xfer HO R H O Cr O OH O Cr O OH O H 2 O HO R O
Transcript

Study  Guide  for  Exam  2-­‐  Aldehydes  and  Ketones  

Oxidation  of  Alcohols  to  Carbonyl  Compounds  

The  oxidation  of  alcohols  to  carbonyl  compounds  is  the  reverse  of  nucleophilic  addition  (below).    Most  oxidants  accept  the  alcohol  oxygen  as  a  nucleophile   followed  by   loss  of   the  acidic  hydrogen.    The  process   is  completed  by  an  E2-­‐like  elimination  of  hydrogen  from  the  proto-­‐carbonyl  carbon  in  concert  with  formation  of  the  C=O  π-­‐bond  and  reductive  loss  of  the  leaving  group.  

General  Mechanism  

                       

Swern    

 

       

Chromic  Acid  

 

 

Scope  and  Limitations  

1. As  a  hydrogen  atom  is  needed  for  the  elimination  step,  3o  alcohols  do  not  oxidize  to  carbonyl  compounds.  2. Normally  1o  alcohols  are  converted  to  aldehydes  and  2o  alcohols  to  ketones.  3. However,   in   the   presence   of   water,   aldehydes   form   hydrates   that   undergo   more   rapid   oxidation   than   the  

starting  1o  alcohols.    Thus  with  CrO3/H2SO4,  Na2CrO7,  K2CrO7,  H2CrO4,  1o  alcohols  are  converted  to  carboxylic  acids.    

   

4. This  over-­‐oxidation  is  avoided  with  the  Swern  oxidation  or  the  use  of  PCC.  

 

 

 

HOH

OxH

OHOx -H+ H

O Ox

B

O Ox

B H

HOH

HOH

-HClH

O S

B

O

B H

Me S Me

ClSMe

Me

Me

MeSMe

Me

HOH

HOH

B

O

B H

OCr OO

OCr OO H+

xferH

O Cr OOH

OCr OOH

O

HORH

OH HO

RH

OH

B

HR O

B H

OCr OO

OCr OO H+

xferHORH

O Cr OOH

O

Cr OOH

O

H2O

HO

RO

Nucleophilic  Addition  

Most  of  the  reactions  of  aldehydes  and  ketones  in  these  chapters  are  nucleophilic  addition  reactions.    The  oxygen  in  C=O  polarizes  the  bond.    Therefore,  while  electrophilic  addition  (electrophile  first,  followed  by  nucleophile)  was  favored   for   the   comparatively   non-­‐polar,   electron-­‐rich   alkene,   carbonyls   undergo   nucleophilic   addition  (nucleophile  first,  followed  by  electrophile).    Note  how  all  the  mechanisms  begin  exactly  the  same  way:  

General  Mechanism  

                       

Hydride    

LiAlH4  is  similar  

             

Carbanion  

Grignard/Alkyllithium/Acetylide  

 

Ylide    

Wittig  Reaction  

   

The  Wittig   is   unique   in   that   the   alkoxide   oxygen   in   the   tetrahedral   intermediate   attacks   the   phosphonium   center  forming   an   oxaphosphetane   intermediate.     Thus,   the   electrophile   is   not   H+   as   in   the   previous   examples   but   the  phosphonium  center.      The   intermediate  undergoes  a   reverse  2+2  process   to   form   triphenylphosphine  oxide  and  an  alkene  product  to  complete  the  process.  

If  the  nucleophile  is  a  weaker  base  than  the  alkoxide  in  the  tetrahedral  intermediate,  an  alternative  mechanism  is  proposed.    Here,  the  electrophile  (usually  H+)  is  added  first  to  enhance  the  polarity  of  the  C=O  bond,  and  reduce  the  energy  of  the  tetrahedral  intermediate  (transition  state  resembles  this  intermediate;  stabilizing  it  will  increase  the  rate).    The  reverse  reaction  rates  are  also  enhanced,  so  the  mechanisms  feature  equillibria.      

 

Alcohol  as  Nucleophile  –  Acetal/Ketal  Formation  

 

O

Nu

O

Nu

O

Nu

E+ E

tetrahderal intermediate

O O

H

O

H

H

B HHH

H

H ORH3B+ H3BOR

O O

R

O

R

HH OBrMg+ BrMgOH2

Mg RBr

1)2)

HH

O O

Ph3P CH2 Ph3P CH2

O

Ph3P CH2

O

PPh3 CH2+

OO H

R O H

OH

R O H

OH

R O

HH+

xferOH

R O

RH3O+

OH

R O

R-H2O O

R O

R-H3O+

1o  Amine  as  Nucleophile  –  Imine  Formation  

 

2o  Amine  as  Nucleophile  –  Enamine  Formation  

 

Cyanide  as  Nucleophile  –  Cyanohydrin  Formation  

 

Peracid  as  Nucleophile  –  Baeyer-­‐Villager  Oxidation  

 

Developmental  Problems  

1. Complete  the  following  ‘reactivity  tree’  for  a  ketone:  

 

   

OO H

R N H

OH

R N H

OH

R N

HH+

xfer

R N

H3O+ -H2O

H H H

OO H

R N H

OH

R N H

OH

R N

HH+

xfer

R N

H3O+ -H2O

R R R R

H

HO H

R NR

HO HH

OO H

N C

OHHCN

N C

OO H

OO H

OH H+

xferH3O+

OR

OO H

OR

OH

OO

OR

H

O

O

O

HOR

B:B H

Ph

OH3O+, H2O

ROH, H3O+

HO OH,

H3O+

RNH2, pH 5.5

R2NH, pH 5.5

NH2OH,pH 5.5

1) LiAlH42) dil H3O+

1) RMgBr 2) dil. H3O+

HCN, KCN

PPh3

2. Predict  the  products:    a.    

 b.  

 c.  

 

d.  

 

e.  

 

f.  

 g.  

 

h.  

 i.  

j.  

2) dil. H3O+

O

1) LiAlH4

O

2) dil. H3O+

1) PhMgBr

O PPh3H2C

H2SO4/H2OOH

HO

Na2Cr2O7

3. Predict  the  products  –  Part  II:    a.    

 

 

b.  

 

 

c.  

   

d.  

 

 

e.  

 

 

f.  

 

 

g.  

 

 

h.  

   

i.  

j.  

OmCPBACH2Cl2

OPPh3

H

OAg2O, KOH

O

O

1) DIBAH, -78 oC2) H3O+

1) KCN, HCl2) HCl, H2O

O

1) DIBAH, -78 oC2) H3O+

OO

1) (COCl)2, DMSO2) Et3N

OH

OH PCCCH2Cl2

Br

1) Mg, ether2)

3) H3O+

O

O

O

ONaBH4EtOH

4. Treatment  of  cathecol  with  formaldehyde  in  the  presence  of  dilute  acid  leads  to  a  product  with  formula  C7H6O2.  Identify  it!  

 

5. How would you synthesize the following from cyclopentanone?

a.

b.

c.

6. Glutaraldehyde is a germicidal agent used to sanitize surgical equipment that cannot be autoclaved. Propose a mechanism for the following transformation:

 

7. Hydrolyze the following derivatives back to the original aldehydes and ketones: a.

b.

c.

d.

e.

8. Difficult to start; however easy once you finish! Propose a synthesis for the following transformations:

 

9. Identify  A,  B,  C  and  D:  

 

 

 

OH

OH

H H

O

H3O+

cathecol

CHOO

OH

H H

O OH3O+ OHO OH

N NOO

OO

OOCH3

O

O Oa. b. O

O

O

OO

1) O32) Me2S

AlCl3

MgBr1)

2) H3O+

NH

pH 5.5N

A

B

C

D

10. Identify  A-­‐E:  

 

11. Provide an efficient synthesis for the following:

a.  

 

b.  

 

c.  

 

d.  

 

e.  

 

f.  

 

g.  

 

h.  

 

i.  

 

j.  

 

CH2Cl2PCC

2) H3O+

Br2

FeBr3

Mg H

O

H

1)

HO OH H2SO4

A B C D

E

Br

Br

MeO OMe

O

O

O

O

Br

OH

CN

Br

O

H

EXAM  PREPARAT ION  

Nomenclature:    Aldehydes  and  Ketones  

Syntheses:    This  is  the  first  exam  with  targeted  syntheses  that  you  need  to  work  out  prior  to  the  exam.  You  are  free  to  work  with  your  classmates  as  much  as  you  want  (except  during  the  exam  of  course!).     I  will  not  post  a  key,  nor  provide   you   finished   syntheses.     If   you   want   questions   answered   you  must   have  made   a   reaonable   attempt   (in  writing)  at  solving  the  synthesis  on  your  own.    During  review  sessions,  any  student  that  asks  about  the  syntheses  will  be  asked  to  go  to  the  board  to  present  what  they  have  worked  out  so  far.    I  will  guide  the  class  towards  through  any  difficulties.  

Enovid®: This common contraceptive contains the compound norethynodrel. Convert the precursor to this component using any reagents you require. (Hint: at some point you will need to use a protecting group!)

Tamoxifen®: This is a drug used in the treatment of breast cancer. Propose a synthesis of tamoxifen from the following 3’-hydroxybenzophenone, benzene and any carbon containing compounds of three carbons or less with any reagents you require.

Ibuprofen (Motrin®, Advil® Nuprin ®) Synthesize this common NSAID (non-steroidal anti-inflammatory drug) from benzene and any other reagents you wish.

Disparlure: This molecule is a sex attractant of the Porthetria dispar gypsy moth. Propose a synthesis of disparlure starting with any two aldehydes and/or ketones you wish as your sole sources of carbon atoms. Assume any Wittig reaction (hint) would give you exclusively the Z-isomer alkene as a product:

 

 

O

OH

O

OHC CH

NorethynodrelPrecursor

OH

O

ON

Tamoxifen

CO

OH

KEY  

1. Complete  the  following  ‘reactivity  tree’  for  a  ketone:  

 

2. Predict  the  products:  a.    

   b.  

   

c.  

   

d.  

 

e.  

 

f.  

 

Ph

OH3O+, H2O

ROH, H3O+

HO OH,

H3O+

RNH2, pH 5.5

R2NH, pH 5.5

NH2OH,pH 5.5

1) LiAlH42) dil H3O+

1) RMgBr 2) dil. H3O+

HCN, KCN

PPh3Ph

HO

Ph

OR

Ph

Ph

NR

Ph

NR2

Ph

N Ph

OH

Ph

OH

Ph

OH

Ph

OH

RO

OO

OH

R

CN

2) dil. H3O+

O

1) LiAlH4

OH

O

2) dil. H3O+

1) PhMgBrHO Ph

O PPh3H2C

g.  

 

h.  

  i.  

j.  

 3. Predict  the  products  –  Part  II:    

a.    

   

b.  

   

c.  

   

d.  

 

e.  

  f.  

 

H2SO4/H2OOH

HO

Na2Cr2O7OH

O

O

OmCPBACH2Cl2 O

O

OPPh3

H

OAg2O, KOH

HO

O

O

O

1) DIBAH, -78 oC2) H3O+

H

O

1) KCN, HCl2) HCl, H2O

O HOCO

OH

1) DIBAH, -78 oC2) H3O+

OO OHO

H

g.  

 

h.  

 

i.  

j.  

4. Treatment  of  cathecol  with  formaldehyde  in  the  presence  of  dilute  acid  leads  to  a  product  with  formula  C7H6O2.  Identify  it!  

 

 

 5. How  would  you  synthesize  the  following  from  cyclopentanone?  

 

 

1) (COCl)2, DMSO2) Et3N

OH O

OH PCCCH2Cl2

O

H

Br

1) Mg, ether2)

3) H3O+

OOH

O

O

ONaBH4EtOH O

OH

O

OH

OH H3O+H H

OO

O

CHOO

OH

O

a)

1) MeMgBr2) H3O+

OHH2SO4

O

b)Ph3P CH2

O

c)

CNHOH3O+, H2OKCN/HCl

6. Glutaraldehyde is a germicidal agent used to sanitize surgical equipment that cannot be autoclaved. Propose a mechanism for the following transformation:

 

7. Hydrolyze the following derivatives back to the original aldehydes and ketones:

 

8. Difficult to start; however easy once you finish! Propose a synthesis for the following transformations:

 

H H

O OH3O+

H H

O O-H+

H

O H

H

H H

O OH3O+H

O H

H

H H

O OH

O H

H3O+

H H

O OH

O H

HH3O+ OHO

HOHHH

-H+ OHO OH

O

a.HO OH

H3O+

OO 1) O32) Me2S

OO

OO

HH

1) LiAlH42) H3O+

OO

OHOH

1) LiAlH42) H3O+

OO

OHOH

H3O+

OHOH

O

H3O+ O O

 

9. Identify  A,  B,  C  and  D:  

 

10. Identify  A-­‐E:  

 

11. Provide an efficient synthesis for the following:

b.

O

O

HO OH

H3O+

1) LiAlH42) H3O+ H3O+

H3O+

O

O

O

O

O

O O

OH

OH

O O

OH

OH

O

1) O32) Me2S

O

O

ClAlCl3

MgBr1)

2) H3O+

HO

NH

pH 5.5N

CH2Cl2PCC

2) H3O+

Br2

FeBr3

Mg

Br

H

O

H

1)OH

MgBr OH

HO OH H2SO4

OO

a.  

 H3O+H2O

OH

CH2Cl2PCC O PPh3

b.  

 

c.  

 

d.  

 

e.  

 

f.  

 

g.  

 

h.  

 

i.  

 

j.  

 

Br

Br

MeO OMeNaNH2, Δ

H2SO4

H2O

O

H3O+CH3OH

O

O1) O32) Me2S

O

OH

H

NaBH4CH3OH OH

OHO

H2SO4

O

OKMnO4

NaOH

OH

OHH H

O

H2SO4

Br

1) Mg, ether2)

3) H3O+

OH

OH

CH2Cl2PCC

O

H2C PPh3

OH

CNH3O+H2O

OH

CH2Cl2PCC O

HClKCN

BrKOtBu 1) BH3.THF

2) H2O2, KOHOH CH2Cl2

PCC

O

H


Recommended