+ All Categories
Home > Documents > Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4,...

Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4,...

Date post: 26-Dec-2015
Category:
Upload: godfrey-cross
View: 216 times
Download: 0 times
Share this document with a friend
Popular Tags:
39
Chin-Chun Wu 1 , Simon Plunkett 1 , Kan Liou 2 , Angelos Vourlidas 1 , Murray Dryer 3 , S. T. Wu 4 , Richard A. Mewald 5 1 Space Science Division, Naval Research Laboratory 2 Space Department, Applied Physics Laboratory 3 Emeritus, NOAA, Boulder, CO, USA 4 CSPAR, University of Alabama, Huntsville, Alabama, USA 5 California Institute of Technology, Pasadena, CA, USA INTERPRETATION OF THE TIME-INTENSITY PROFILE OF THE 15 MARCH 2013 SOLAR ENERGETIC PARTICLE EVENT WITH GLOBAL MHD SIMULATION ISSI, Bern, Switzerland, 2014-01-20
Transcript
Page 1: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

Chin-Chun Wu1, Simon Plunkett1, Kan Liou2, Angelos Vourlidas1, Murray Dryer3, S. T. Wu4, Richard A. Mewald5

1Space Science Division, Naval Research Laboratory

2Space Department, Applied Physics Laboratory

3Emeritus, NOAA, Boulder, CO, USA

4CSPAR, University of Alabama, Huntsville, Alabama, USA

5California Institute of Technology, Pasadena, CA, USA

INTERPRETATION OF THE TIME-INTENSITY PROFILE OF THE 15 MARCH 2013 SOLAR ENERGETIC PARTICLE EVENT WITH GLOBAL MHD

SIMULATION

ISSI, Bern, Switzerland, 2014-01-20ISSI, Bern, Switzerland, 2014-01-20

Page 2: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

The coronal mass ejection (CME) event on March 15, 2013 is one of the few solar events in cycle 24 that produced a large solar energetic particle (SEP) event and severe geomagnetic activity. SEP observations from the ACE spacecraft show a complex time-intensity profile that is not easily understood with current SEP theories. In this study, we employ a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation to help interpret the observations. The simulation is based on the H3DMHD code and incorporates extrapolations of photospheric magnetic field as the inner boundary condition at 2.5 solar radii (Rs). A Gaussian-shaped velocity pulse is imposed at the inner boundary as a proxy of the CME. It is found that the time-intensity profile of the high-energy (> 10MeV) SEPs can be explained by the evolution of the CME-driven shock and its interaction with the heliospheric current sheet and the non-uniform solar wind. Specifically, we demonstrate that the shock Mach number at the well-connected shock location is correlated (r ≥ 0.8) with the concurrent proton SEP fluxes with energies greater than 10 and 30 MeV. This study demonstrates that global MHD simulation, despite the limitation implied by its physics-based ideal fluid continuum assumption, can be a useful tool for SEP data analysis.

ABSTRACT

Page 3: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

CASE : CME ON MARCH 15, 2013SOURCE LOCATION: N09W02(CME) /N09E06 (FLARE)SPEED: ~1000 KM/S (STEREO COR2A/B) 06:54UT

Page 4: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

IMAGES OF STEREO-A COR2

IMAGES OF STEREO-B COR2

Page 5: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Images of the 15 March 2013 CME from COR2-B (left), C3 (middle), and COR2-A (right). The observation times are shown on the images. The white arrows indicate the white light shock front and the black arrow indicated the erupting flux rope (see Vourlidas et al 2013, for details). The lack of sharp shock signatures in COR2-B indicates that the shock is expanding towards the spacecraft (eastwards). Venus is the bright planet with the saturation streaks in the C3 images.

Page 6: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

ESTIMATED CME SPEED FROM COR2A

Page 7: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

IN-SITU SOLAR WIND PARAMETERS: WIND

SH

OC

K

MCL

ICME

Discontinuity

Density

Velocity

Thermal speed

IMF Bz

ƟB

BTOTAL

φB

Dst

beta

Page 8: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

SOLAR ENERGETIC PARTICLES (SEPs) at STEREO

STEREO-B STEREO-A

Page 9: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Intensity-time profile of solar energetic proton integral flux by the Solar Isotope Spectrometer (SIS) on board the Advanced Composition Explorer (ACE) spacecraft for 2 energy ranges: 10-30 MeV (blue-dotted line) and 30-80 MeV (red-dashed line) during the period 15-19 March 2013.

SEPs at ACE

Page 10: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

SIMULATION RESULTS AT 18 AND 215 SOLAR RADII

ICME crosses HCS

CME source location and Earth are at different side of heliospheric current sheet

Earth

Source location

Page 11: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Solar wind speed (Vsolar-wind) on surface of angular cone at 7.5ºS that is centered at the Sun’s center. The solid circle is at 1 AU (215 Rs). Earth is located at helio-longitude, φ = 0º; thus, the east limb (relative to Earth) is at the top, 90ºE, and the west limb is at the bottom, 90ºW. The outer boundary is at 345 Rs. Symbols “@” and “*” mean positions of STEREO-A and –B, respectively. Red dots mean upstream of IP shocks. White dashed curves show the possible location of the HCS for which the magnetic field in the r-direction is zero.

Page 12: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

(Left panel) Comparison of H3DMHD simulated (red) and situ measurement data from ACE (black) result with ACE. Panels from top to bottom, and B are proton temperature (Tp), proton speed (V), proton density (Np), and magnetic field strength (B), respectively. (Right panel)

Comparisons of observed ACE in situ measurements (black) with H3DMHD simulated results at different latitudinal locations: 12.5 ºN (orange dash-dot-dot-dot-dashed lines), 7.5ºN (blue dash-dotted lines), 2.5ºN (dark-brown dotted lines), 2.5ºS (purple dashed lines), 7.5ºS (red solid lines), and 12.5ºS (green solid lines). Vertical blue-dashed lines indicate the arrival of the IP shock at ACE.

Page 13: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

• STEREO-B observed SEPs right after the CME eruption

• STEREO-A did not observe SEPs

• ACE observed SEPs ~10 hours after the CME onset

• Why there are two sharp SEP enhancements at ACE?

DISCUSSION

Page 14: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

DISCUSSION• First SEP enhancement at ACE: after ICME

(or shock) crossed the heliospheric current sheet (HCS).

• SEPs propagated along the magnetic field lines which were well connected to ACE.

Page 15: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

FAST WAVE PROFILE NEAR ECLIPTIC PLANE

Low speed fast wave

High speed fast wave

ICME propagated into low speed fast wave region

Page 16: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

DISCUSSION

• Second SEP enhancement at ACE: after ICME (or shock) propagated into a low speed fast-mode wave region.

• Increased shock strength by shock propagating into low speed (fast wave) region.

Page 17: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

DISCUSSION

Page 18: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Cfast = Speed of Fast WaveΔt = t2 - t1

Δr = r2 - r1

Vshock = Δr/ΔtMfast-shock = |Vshock-Vsolar-wind|/Cfast

t = t1

t = t2

Schematic illustration for the wave tracing method (adapted from Figure 1 of Wu et al. [2012b]).

Page 19: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Color coded fast-mode shock Mach number in the solar ecliptic plane for the CME event on 15 Mach 2013. The upstream location of the shock at six different times are labeled and represented by contour lines. The location of the Sun and the Earth are marked as “■”and “+” signs. The dotted curve represents the cobpoints (assuming a classical Parker quiet-Sun IMF).

Page 20: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Left panel: the simulated radial profile of fast-mode shock Mach number in the solar ecliptic plane for the 15 March 2013 CME epoch. The upstream location of the shock at six different times are labeled and represented by contour lines. The location of the Sun and the Earth are marked as “■”and “+” signs, respectively. The dotted curve represents the cobpoints (assuming a classical Parker quiet-Sun IMF). Right panel: variation of Mach number (blue curve) marked as dots on the left panel, and the location (black-dotted curve, r- distance away from the Sun.)

Page 21: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

(a) Solar energetic proton integral flux acquired by the Solar Isotope Spectrometer (SIS) on board the Advanced Composition Explorer (ACE) spacecraft for 10-30 MeV (red) and 30-80 MeV (blue) during the period 15-19 March 2013.The simulated fast-mode shock Mach number at the COBpoints is also plotted (black). (b) Scatter plots showing the relationship between the hourly integral fluxes of SEPs and fast-mode shock Mach numbers for the two energy ranges. The Pearson correlation coefficient “r” and linearly fitted line are provided.

* The shock Mach number drops substantially from its peak value near the Sun thus back streaming SEP may not contribute to the observed flux at 1 AU. This view is consistent with the ACE observations.

Page 22: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 23: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Left panels show the Intensity-time profile of solar energetic particles integral flux (hourly resolution) by the Solar Isotope Spectrometer (SIS) on board the Advanced Composition Explorer (ACE) spacecraft for Helion (4He) and Oxygen particles with energy ranges 3.43-41.19 and 7.30-89.79 MeV, respectively during the period 15-19 March 2013. Middle/right panels show correlation coefficients (c.c.s’) between IP shocks’ Mach number and measured/r2-scaled SEP integral flux with different time shift (or delay time from 0 to 15 hours).

Page 24: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 25: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 26: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 27: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 28: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 29: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Page 30: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Time delay for getting best correlation coefficients between time profiles of Mach number and SEP intensities. Left and right panels show results for 4He and O SEPs.

Page 31: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Correlation coefficients between Mach number of IP shocks and measured/scaled 4He intensities.

Scaled with r 0 r -1 r -2 r -3 r -4

3.43-4.74 MeV 0.034 0.166 0.310 0.456 0.522

4.74-6.13 MeV 0.126 0.266 0.410 0.550 0.556

6.13-7.29 MeV 0.209 0.360 0.513 0.631 0.579

7.29-9.72 MeV 0.300 0.448 0.595 0.713 0.720

9.72-13.59 MeV 0.411 0.565 0.691 0.746 0.686

13.59-17.96 MeV 0.586 0.718 0.800 0.816 0.770

17.96-29.35 MeV 0.696 0.777 0.808 0.797 0.757

29.35-41.19 MeV 0.378 0.472 0.545 0.583 0.584

Page 32: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Correlation coefficients between Mach number of IP shocks and measured/scaled Oxygen SEP intensities.

Scaled with r 0 r -1 r -2 r -3 r -4

7.30-9.99 MeV 0.275 0.429 0.581 0.709 0.766

9.99-13.07 MeV 0.422 0.577 0.717 0.815 0.838

13.07-15.63 MeV 0.544 0.691 0.785 0.877 0.607

15.63-20.97 MeV 0.635 0.743 0.808 0.820 0.774

20.97-29.42 MeV 0.758 0.831 0.854 0.829 0.751

29.42-38.94 MeV 0.655 0.676 0.648 0.592 0.517

38.94-63.77 MeV 0.527 0.561 0.499 0.344 0.169

63.77-89.78 MeV 0.091 0.115 0.061 -0.004 -0.049

Page 33: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Best correlation coefficient for Mach number vs. time-delayed SEP intensities of 4He particles

Scaled with r0 r-1 r-2 r-3 r-4

3.43-4.74 MeV 0.918a (11)b 0.928 (10) 0.886 (9) 0.780 (7) 0.616 (5)

4.74-6.13 MeV 0.921 (11) 0.913 (09) 0.835 (7) 0.732 (5) 0.559 (1)

6.13-7.29 MeV 0.918 (10) 0.895 (8) 0.841 (6) 0.763 (5) 0.586 (2)

7.29-9.72 MeV 0.920 (9) 0.893 (7) 0.839 (6) 0.755 (2) 0.720 (0)

9.72-13.59 MeV 0.870 (7) 0.854 (5) 0.791 (4) 0.750 (1) 0.686 (0)

13.59-17.96 MeV 0.749 (7) 0.739 (4) 0.800 (0) 0.816 (0) 0.770 (0)

17.96-29.35 MeV 0.729 (5) 0.777 (0) 0.808 (0) 0.797 (0) 0.757 (0)

29.35-41.19 MeV 0.437 (3) 0.489 (3) 0.545 (0) 0.583 (0) 0.584 (0)a Best correlation coefficient picked from 15 delay-time c.c.s’. b Delay-time required (unit in hours).

Page 34: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

Best correlation coefficient for Mach number vs. time-delayed SEP intensities of Oxygen SEPs

Scaled with r 0 r -1 r -2 r -3 r -4

7.30-9.99 MeV 0.925a (9b) 0.902 (8) 0.851(6) 0.769 (4) 0.766 (0)

9.99-13.07 MeV 0.911(8) 0.881 (7) 0.821(5) 0.815 (0) 0.838 (0)

13.07-15.63 MeV 0.877 (7/6) 0.846 (5) 0.813 (3/2) 0.805 (1) 0.715 (1)

15.63-20.97 MeV 0.870 (5) 0.845 (4) 0.815 (1) 0.820 (0) 0.774 (0)

20.97-29.42 MeV 0.819 (4) 0.831(0) 0.854 (0) 0.829 (0) 0.751 (0)

29.42-38.94 MeV 0.655 (0) 0.696 (0) 0.648 (0) 0.592 (0) 0.517 (0)

38.94-63.77 MeV 0.527 (0) 0.561(0) 0.499 (0) 0.344 (0) 0.254 (3)

63.77-89.78 MeV 0.112 (1) 0.143 (1) 0.102 (1) 0.049 (1) 0.009 (1)a Best correlation coefficient picked from 15 delay-time c.c.s’. b Delay-time required (unit in hours).

Page 35: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

SUMMARY• Sector boundary is an important factor for the

propagation of SEPs.

• Time-profile of shock strength (Mfast) and intensity of SEPs are well correlated.

• Background solar wind plays an important factor on the variation of IP shock strength.

• Global MHD simulation can provide a tool to link the general observations of SEP events observed at 1 AU to their solar sources, as well as to identify the origins of shock formation due to CME and CME/CIR interactions.

Page 36: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

Acknowledgement We thank the Wind and ACE PI teams and National Space Science Data Center at Goddard Space Flight Center, National Aeronautics and Space Administration for management and providing solar wind plasma and magnetic field data, STEREO and LASCO PI teams for providing coronal images, and Kyoto University for providing geomagnetic activity index (Dst). We also thank Dr. Y. M. Wang (NRL) who provided derived solar magnetic fields at 2.5 RSUN. This study is supported partially by ONR 6.1 (CCW, SP), NASA (AV), and NSF base program (KL), AGS1153323 (STW). The Caltech effort was supported by NASA grants NNX13A66G and NNX11A075G. The Hakamada-Akasofu-Fry solar wind model version 2 (HAFv2) was provided to NRL/SSD by a software license from Exploration Physics International, Inc. (EXPI).

Page 37: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

References Agueda, N., R. Vainio, S. Dalla, D. Lardio, and B. Sanahuja, Current sheet regulation of solar near-relativistic electron injection histories, Astrophysical J., 765: 83 (9pp), 2013.Arge, C. N., and V. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res., 105, 10465-10479, 2000.McComas, D. J, R. W. Ebert, H. A. Elliott, B. E. Goldstein, J. T. Gosling, N. A. Schwadron, R. M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun, Geophys. Res. Letter, 25, 18, 2006.Berdichevsky, D. B., D. V. Reames, C.-C. Wu, R. Schwenn, R. P. Lepping, R. J. MacDowall, C. J. Farrugia, J.-L. Bougeret, C. Ng, A. J. Lazarus, Exploring the global shock scenario at multiple points between sun and earth: The solar transients launched on January 1 and September 23, 1978, Adv. Space Res. 43, 113-119, doi: 10.1016/j.asr.2008.03.026, 2009.Cane, H.V., I.G. Richardson, O. C. StCyr, The interplanetary events of January-May, 1997 as inferred from energetic particle data, and their relationship with solar events, Geophys. Res. Lett., 25, 2517-2520, 1998.Detman, T. R., M. Dryer, T. Yeh, S. M. Han, S. T. Wu, A time-dependent, three-dimensional MHD numerical study of interplanetary magnetic draping around plasmoids in the solar wind, J. Geophys. Res., 96, 9531-9540, 1991.Detman, T., Z. Smith, M. Dryer, C. D. Fry, C. N. Arge, V. Pizzo, A hybrid heliospheric modeling system: Background solar wind, . Geophys. Res., 11, A7, doi: 10.1029/2005JA011430, 2006.Dryer, M., Kan Liou; Chin-Chun Wu; Shi Tsan Wu; N. Rich; Simon P. Plunkett; L. Simpson; Craig D. Fry; K. Schenk, Extreme Fast Coronal Mass Ejection on 23 July 2012, SH44B-04, AGU Fall meeting, San Francisco, December 3-7, 2012.Gopalswamy, N., S. Yashiro, A. Lara, M. L. Kaiser, B. J. Thompson, P. T. Gallagher, and R. A. Howard, Large solar energetic particle events of cycle 23: A global view. Geophys. , Res. Lett., 30, 8015, doi: 10.1029/2002GL016435, 2003.Han, S. M., A numerical study of two dimensional time-dependent magnetohydrodynamic flows. In: Ph.D. Thesis, University of Alabama in Huntsville, 1977.Han, S. M., S. T. Wu, and M. Dryer, A three-dimensional, time-dependent numerical modeling of super-sonic, super-Alfvénic MHD flow, Computers and Fluids, 16, 81-103, 1988.Kahler, S. W., E. Hildner, and M. A. I. Hollebeke, Prompt solar proton events and coronal mass ejections, Solar Phys., 57, 429-443, doi: 10.1007/BF001060116, 1978.Kahler, S. W., E. W. Cliver, H. V. Cane, R. E. McGuire, R. G. Stone, N. R. Jr. Sheeley, Solar filament eruptions and energetic particle events, APJ, 302, March 1, 1986, p. 504-510, doi: 10.1086/164009, 1986.Kahler, S. W., E. W. Cliver, H. V. Cane, R. E. McGuire, R. G. Stone, N. R. Jr. Sheeley, olar Energetic Proton Events and Coronal Mass Ejections Near Solar Minimum, Proceedings of the 20th International Cosmic Ray Conference Moscow, Volume 3, p.121, 1987.Kahler, S. W., J. M. Kunches, D. F. Smith, Role of current sheets in the modulation of solar energetic particle events, J. Geophys. Res., 101, 24383-24391, 1996.Kahler, S. W., The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra, J. Geophys. Res., 106, 20947-20955, doi:10.1029/2000JA002231, 2001.Kallenrode, M.-B Particle propagation in the inner heliosphere, J. Geophys. Res., 98, 19037-19047, 1993.Kallenrode, M.-B., Particle acceleration at interplanetary shock-observations at a few tens of keV vs some tens of MeV, Adv. Space Res., 15 (8/9), pp. 375-384, 1995.Lario, D., B. Sanahuja, and A. M. Heras, Energy spectrum of low-energy fluxes of particles accelerated by interplanetary shocks, Adv. Space Res., 15 (8/9), pp.289-292, 1995.

Page 38: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

ReferencesLario, D., Q. Hu, G. C. Ho, R. B. Decker, E. C. Roelof, and C. W. Smith, Statictical properties of fast forward transient interplanetary shocks and associated energetic particles events: ACE observations, in Solar Wind 11, edited by B. Fleck, and T. Zurbuchen, Eur. Space Agency, ESA SP-592, 81, 2005.Lax, P. D., and B. Wendroff, Systems of conservation laws, Comm. Pure. and Appl. Math., 13, 217–237, 1960. Lemen, J. R., A. M. Title, D. J. Akin, and 44 others, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Solar Physics, 275, 17-40, 2012.Lepping, R. P., C.-C. Wu, and D. B. Berdichevsky, Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties, Annales Geophys., 23, 2687-2704, doi:10.5194/angeo-23-2687-2005, 2006.Lepping, R. P., L. F. Burlaga, J. A. Jones, Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11957-11965, doi: 10.1029/JA095iA08p11957, 1990.Liou, Kan, C.-C. Wu, M. Dryer, S. T. Wu, D. B. Berdichevsky, S. Plunkett, R. A. Mewaldt, and G. M. Mason, Relationship Between Solar Energetic Oxygen Flux and MHD Shock Mach Number, PHYSICS OF THE HELIOSPHERE: A 10 YEAR RETROSPECTIVE: Proceedings of the 10th Annual International Astrophysics Conference. AIP Conference Proceedings, Volume 1436, pp. 253-258, 2012. Liou, K., C.-C. Wu, M. Dryer, S.-T. Wu, D. B. Berdichevsky, S. Plunkett, R. A. Mewaldt, and G. M. Mason, Magnetohydrodynamic fast shocks and their relation to solar energetic particle event intensities, Terrestrial, Atmospheric and Oceanic Sciences, 24, NO. 2, 165-173, doi: 10.3319/TAO.2012.05.08.01, 2013a.Liou, K., C.-C. Wu, M. Dryer, S.-T. Wu, a. B. Galvin, N. Rich, S. Plunkett, L. Simpson, C. d. Fry, and K. Schenk, Global Hybrid Simulation of Extremely Fast Coronal Mass Ejection on 23 July 2013, J. Geophys. Res., to be submitted, 2013b.McComas, D. J, H. A. Elliott, J. T. Gosling, R. M. Skoug, Ulysses observations of very different heliospheric structure during the declining phase of solar activity cycle 23, Geophys. Res. Letters, 33, 9, 2008. Pesnell, W. Dean, B. J. Thompson, P. C. Chamberlin, The Solar Dynamics Observatory (SDO), Solar Physics, 275, 3-15, 2012.Reames, D. V., Solar release times of energetic particles in ground-level events, Astrophys. J., 693, 812-821, doi:10.1088/0004-637X/693/1/812, 2009.Smart, D. F., M. A. Shea, K. G. McCracken, The Carrington event: Possible solar proton intensity-time profile, Adv. Space Res., 38, 215-225, 2006.Stone, E.C., C.M.S. Cohen, W.R. Cook, A.C. Cummings, and 13 others, The solar isotope spectrometer for the Advanced Composition Explorer, Space Sci. Rev., 86, 357-408, 1998.Svestka, Z, L. Fritzova-Svestkova, and J. T. Nolte, Low-energy particle events associated with sector boundaries, Solar Physics, 50, 491-500, 1976.Van Nes, P., R. Reinhard, T. R. Sanderson, and K.-P. Wenzel, The energy spectrum of 35- to 1600-KeV protons associated with interplanetary shocks, J. Geophys. Res., 89, 2122, 1984.Vourlidas, A., B. J. Lynch, R. A. Howard, Y. Li, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs, Solar Physics, 284:179-201, DOI:10.1007/s11207-012-0084-8, 2013.Wang, Y.-M, N. R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion, Astrophys. J., 355, 726-732, 1990a.Wang, Y.-M, N. R. Sheeley Jr., Latitudinal distribution of solar wind speed from magnetic observations of the Sun, Nature, 347, 439-444, 1990b.Wang, Y.-M, N. R. Sheeley Jr., D. G. Socker, R. A. Howard, and N. B. Rich, The dynamical nature of coronal streamers, J. Geophys. Res., 105, 25133-25142, 2000.

Page 39: Chin-Chun Wu 1, Simon Plunkett 1, Kan Liou 2, Angelos Vourlidas 1, Murray Dryer 3, S. T. Wu 4, Richard A. Mewald 5 1 Space Science Division, Naval Research.

04/19/23

ReferencesWang, Y.-M, and N. R. Sheeley, JR., Understanding the geomagnetic precursor of the solar cycle, Astriohys. J., 694:L11-L15, 2009.Wang, Y.-M, E. Robbrecht, and N. R. Sheeley, JR., On the weakening of the polar magnetic fields during solar cycle 23, Astrophys. J., 707, 1372-1386, 2009.Wood, B. E., C.-C. Wu, A. P. Rouillard, R. A. Howard, D. G. Socker, A Coronal Holes's Effects on CME Shock Morphology in the Inner Heliosphere, APJ, 755, article id. 43, doi:10.1088/0004-637X/755/1/43, 2012 .Wu, Chin-Chun, and R. P. Lepping, Comparison of the Characteristics of Magnetic Clouds and Magnetic Cloud-Like Structures for the Event of 1995-2003, Solar Phys., 242, 159-165, 2007.Wu, Chin-Chun, and R. P. Lepping, Geomagnetic activity associated with magnetic clouds, magnetic cloud-like structures and interplanetary shocks for the period 1995-2003, Adv. Space Res., 41, 335-338, 2008.Wu, Chin-Chun, J. K. Chao, S. T. Wu and Murray Dryer, Numerical simulation of interplanetary slow shocks in the solar wind, Solar Phys., V. 165, 377-393, 1996. Wu, Chin-Chun, S. T. Wu and Murray Dryer, Evolution of Fast and Slow Shock Interactions in the Inner Heliosphere, Solar Physics, 223, 259-282, 2004. Wu, Chin-Chun, X. S. Feng, S. T. Wu, M. Dryer, C. D. Fry, Effects of the interaction and evolution of interplanetary shocks on "background" solar wind speeds, J. Geophys. Res., 111, A12104, doi:10.1029/2006JA011615, 2006 Wu, Chin-Chun, C. D. Fry, S. T. Wu, M. Dryer, and K. Liou, Three-dimensional global simulation of ICME propagation from the Sun to the heliosphere: 12 May 1997 solar event, J. Geophys. Res., 112, A09104, DOI:10.1029/2006JA012211, 2007a. Wu, Chin-Chun, C. D. Fry, S. T. Wu, M. Dryer, Barbara Thompson, Kan Liou, and X. S. Feng, Three-dimensional global simulation of multiple ICMEs' interaction and propagation from the Sun to the heliosphere following the 25-28 October 2003 solar events, coronal mass ejections, Adv. Space Rev., 40, 1827-1834, doi:10.1016/j.asr.2007.06.025, 2007b. Wu, Chin-Chun, Murray Dryer, S. T. Wu, Brian Wood, C. D. Fry, Kan Liou, and Simon Plunkett, Global Three-dimensional simulation of the interplanetary evolution of the observed geoeffective CME during the epoch August 1-4, 2010, J. Geohys. Res., JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, A12103, 13 PP., doi:10.1029/2011JA016947, 2011. Wu, C.-C., S. T. Wu, K. Liou, and S. Plunkett, Evolution of a Magnetohydrodynamic Coronal Shock, AIP Conf. Proc. 1500, pp. 50-55; doi:http://dx.doi.org/10.1063/1.4768744 (6 pages) SPACE WEATHER: THE SPACE RADIATION ENVIRONMENT: 11th Annual International Astrophysics Conference Date: 19-23 March 2012. Wu, Chin-Chun, Kan Liou, S. Plunkett, C. D. Fry, and S. T. Wu, Investigation of solar/heliospheric anomalies associated with solar minimum during 2007-2008, Terrestrial, Atmospheric and Oceanic Sciences, 24, NO. 2, 243-252, doi: 10.3319/TAO.2012.10.16.01, 2013. Zhao, X. H., X. S. Feng, and C.-C. Wu, Influence of solar flare’s location and heliospheric current sheet on the associated shock’s arrival at Earth, . Geophys. Res., 112, A06107, doi:10.1029/2006JA012205, 2007.Zhang, J., I.G. Richardson, D. F. Webb, N. Gopalswamy, E. Huttunen, J. Kasper, N. Nitta, W. Poomvises, B. J. Thompson, C.-C. Wu, S. Yashiro, and Z. Zhukov, Solar and Interplanetary Sources of Major Geomagnetic Storms (Dst < = - 100 nT) during 1996 - 2005, J. Geophys. Res., 112, A10102, doi:10.1029/2007JA012321, 2007.Zeldovich, M. A., B. M. Kuzhevskij, Low-energy particles in interplanetary magnetic field near the sectorial boundary on September 26, 1977, In: International Cosmic Ray Conference, 17th, Paris, France, July 13-25, 1981, Conference Papers. Volume 3. (A82-22580 09-92) Gif-sur-Yvette, Essonne, France, Commissariat a l'Energie Atomique, 1981, p. 113-116, 1981.


Recommended