+ All Categories
Home > Science > Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion...

Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion...

Date post: 15-Jul-2015
Category:
Upload: chromatography-mass-spectrometry-solutions
View: 115 times
Download: 6 times
Share this document with a friend
Popular Tags:
55
1 The world leader in serving science Rosanne Slingsby, Kate Comstock, and Paul Voelker March 18, 2015 Analysis of Phosphate and Manganese Degradation Products in Aged Lithium Ion Batteries Part #: PP71583-EN 0315S
Transcript
Page 1: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

1 The world leader in serving science

Rosanne Slingsby, Kate Comstock, and Paul Voelker March 18, 2015

Analysis of Phosphate and Manganese Degradation Products in Aged Lithium Ion Batteries

Part #: PP71583-EN 0315S

Page 2: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

2

Li-ion Battery Analysis: IC-HRMS What Steps Are Involved?

IC-HRMS Thermo Scientific™ Q Exactive™ Orbitrap™ MS

• Component Identification in Untargeted and Unknown Workflows

IC-CD

Time (min) 125 135 145 155 165 175 185 m/z

0

100

169.0272

C 4 H 10 O 5 P

155.0115 C 3 H 8 O 5 P

125.0009 C 2 H 6 O 4 P

139.0166

C 3 H 8 O 4 P

Phosphate esters

Chemical formula

Exact mass

Delta ppm

C2H6O4P 125.0009 -0.1

C3H8O4P 139.0166 0.2

C3H8O5P 155.0115 0.1

C4H10O5P 169.0272 0.4

Rel

ativ

e ab

unda

nce

1.  IC Separation using a KOH eluent

2.  Full scan MS/MS acquisition

3.  Component ID based on HRAM Data

4.  Propose Structure

Source for Dimethyl phosphate image: CSID:2982799, http://www.chemspider.com/Chemical-Structure.2982799.html (accessed 00:59, Feb 5, 2015)

Page 3: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

3

Ion Chromatography Coupled to High Resolution Mass Spectrometry

Eluent Generator (OH– or H+)

Conductivity Detector

High-Pressure

Non-Metallic Pump

H2O

Autosampler Electrolytic

Eluent Suppressor

CR-TC

Separation column

Pump

Solvent/H2O

CD Thermo Scientific

Q ExactiveTM

HRMS

C-trap HCD Cell Segmented Quadrupole

RF Lens

Injection flatapole

Electrospray inlet

Page 4: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

4

Methods

•  IC Parameters Column: Thermo Scientific™ Dionex™ IonPac™AG11, AS11 (2 mm) Eluent: 1mM KOH from 0 to 5 minutes, 1-30 mM KOH from 5 to 25 minutes 30-65 mM KOH from 25.1-45 minutes Eluent Source: Thermo Scientific Dionex EGC 500 KOH Cartridge Flow Rate: 0.25 mL/min Inj. Volume: 2.5 µL Temperature: 30 ˚C Detection: Suppressed Conductivity, Thermo Scientific™ Dionex™ AERS™ 500 (2 mm) Suppressor AutoSuppression, recycle mode

Post column solvent: 90/10 Acetonitrile/water, 0.25 mL/min

•  MS Parameters HRAM full scan MS and data dependent top 3 MS/MS were collected at resolution 70K and 17.5K, respectively Stepped NCE setting were: 30, 40, 60.

Page 5: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

5

7. Methylsulfonate 8. Pyruvate 9. Chlorite 10. Valerate 11. Monochloroacetate 12. Bromate 13. Chloride 14. Nitrite 15. Trifluoroacetate 16. Bromide 17. Nitrate 18. Chlorate 19. Selenite 20. Carbonate 21. Malonate 22. Maleate 23. Sulfate 24. Oxalate 25. Ketomalonate 26. Tungstate 27. Phthalate 28. Phosphate 29. Chromate 30. Citrate 31. Tricarballylate 32. Isocitrate 33. cis-Aconitate 34. trans-Aconitate

Peaks: 1. Isopropylmethylphosphonate

mg/L 2. Quinate 3. Fluoride 4. Acetate 5. Propionate 6. Formate

0

10

µS

0 5 15 Minutes 10

1 2

3 4

5

6

7 8

9

10

11

12

13

14

15

16

17

18 19

34 21

20

22

23

24

25

26

27

28

29

30

31

32

33

Monovalent Divalent Trivalent

Anion Exchange Gradients: Dionex IonPac AS11 Separation of Anions

Page 6: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

6

Lithium Ion Battery (LiB) Samples

•  Overall Objectives •  Screen samples to identify changes among sample types •  Use ion exchange separation to help identify analyte properties •  Identify as many components as possible

•  Samples •  Control •  Calendar aged 20% loss in capacity •  Cycle Aged 20% loss in capacity •  Additional Cycle Aged 45% loss in capacity

•  Other Injections •  DI water blank •  Process control blank

Page 7: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

7

Preparation of LiB Anode Samples

• Anodes were cut to known weight • Samples were sonicated and rinsed in deionized water • Extracts were filtered thru Whatman PP 0.45 µm filters • Weight losses were calculated • Filtered extracts were injected into the IC-CD-HRMS

system

Page 8: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

8

IC-CD Chromatograms of Anode Samples

e:\lib\nov20-run\va-3-pp 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.00 - 55.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

µS

3.77

4.0715.924.91

5.27 17.9215.569.78 10.73 27.71 49.1524.688.15 14.94 26.675.81 23.01 54.8250.66 53.58

NL:1.19E1ECD_1 UV MA-0-PP

RT: 0.00 - 54.99

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

µS

4.91 16.1415.8922.94

14.2117.925.22 27.79

24.10 49.1448.5710.73 26.66 41.6613.867.00 9.76 50.65 51.53 53.1919.66 28.64

NL:1.54E1ECD_1 UV UA-1-PP

RT: 0.00 - 54.99

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

µS

4.91

16.1415.87

22.95

14.2027.77

17.925.17

49.7249.0226.6724.1313.86 50.67

NL:3.21E1ECD_1 UV va-3-pp

Control Calendar Aged 20% Loss Cycle Aged 45% Loss

Sulfate 17.12

Phosphate

Monovalent Divalent Trivalent components

Page 9: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

9

IC-HRMS Chromatograms of Anode Samples

e:\lib\nov20-run\va-3-pp 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.04 - 55.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

5

10

15

20

Rel

ativ

e A

bund

ance

5.32

9.82

8.214.11 16.2211.07

15.593.93 27.7424.7514.06

NL:3.09E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS MA-0-PP

RT: 0.00 - 54.99

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

5

10

15

20

Rel

ativ

e A

bund

ance

23.02

4.16 5.31 16.1914.237.04 8.163.76 9.81 15.576.22 27.77

24.13 41.7217.9911.07 24.30 49.7513.99

NL:2.57E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS UA-1-PP

RT: 0.09 - 55.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

5

10

15

20

Rel

ativ

e A

bund

ance

23.00

14.24

5.294.20 16.19

27.7315.553.59 27.868.153.32 9.80

7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.27

NL:2.79E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp

Monovalent Divalent Trivalent components

Control Calendar Aged 20% Loss Cycle Aged 45% Loss

Page 10: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

10

Anionic Compounds and Classes Found in LiB Samples to Date

• Solvents- Methyl carbonate

•  Inorganic Anions- sulfate, phosphate, hexafluorophosphate etc

• Carboxylic acids- succinate, malate, malonate, oxalate etc

• Organic sulfonates – propylsulfonate

• Sulfate esters

• Phosphate esters

• Fluorophosphate esters

Page 11: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

11

Example Data Analysis - Identify Methyl Carbonate

E:\LiB\Nov20-Run\VA-3-PP 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.04 - 55.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

5

10

15

Rel

ativ

e A

bund

ance

23.00

14.245.294.20 16.19

27.7315.553.59 27.868.153.32 9.807.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.2728.2118.86 47.442.23 37.581.26 38.48 50.6136.4529.7822.53 31.87 46.0833.04 42.33

NL :2.79E 9B as e  P eak  F :  F TMS  -­‐  p  E S I  F ull  ms  [50.00-­‐750.00]    MS  VA -­‐3-­‐P P

VA-3-PP #1865 RT: 4.21 AV: 1 NL: 1.41E8T: FTMS - p ESI Full ms [50.00-750.00]

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210m/z

0

50

100

Rel

ativ

e A

bund

ance

75.0087C2 H3 O 3

122.9853C2 H4 O 4 P89.0245

C3 H5 O 360.9930C H O 3

59.0137C2 H3 O 2

RT: 0.00 - 55.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

20

40

60

80

100

Rel

ativ

e A

bund

ance

4.20

17.11

NL :  1.75E 8m/z=  74.38-­‐75.38  F :  F TMS  -­‐  p  E S I  F ull  ms  [50.00-­‐750.00]    MS  VA -­‐3-­‐P P

VA-3-PP #1854 RT: 4.19 AV: 1 NL: 2.21E7F: FTMS - p ESI d Full ms2 [email protected] [50.00-100.00]

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210m/z

0

50

100

Rel

ativ

e A

bund

ance

75.0088C2 H3 O 3

Full Scan c-gram Peak at 4.20 minutes EIC of 75.0088 m/z Delta 0.4 ppm MS2 at 4.20 min.

C2H3O3

Page 12: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

12

E:\LiB\Nov20-Run\VA-3-PP 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.09 - 55.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

2

4

6

8

10

12

14

16

Rel

ativ

e A

bund

ance

23.00

14.24

5.29 4.20 16.19

27.7315.553.59 27.868.153.32 9.803.24 7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.2718.31 18.48 28.21 47.442.23 37.581.26 38.48 50.6136.4529.78 31.87 44.9633.04 42.33

NL:2.79E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

VA-3-PP #1568-1694 RT: 3.58-3.84 AV: 32 NL: 5.89E7T: FTMS - p ESI Full ms [50.00-750.00]

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240m/z

0

20

40

60

80

100

Rel

ativ

e A

bund

ance

169.0272C4 H10 O 5 P

139.0166C3 H8 O 4 P

125.0009C2 H6 O 4 P

155.0115C3 H8 O 5 P

185.0222C11 H5 O 360.9930

C H O 3153.0323

C4 H10 O 4 P119.0349C4 H7 O 4

133.0507C5 H9 O 4

89.0245C3 H5 O 3

179.0562C6 H11 O 6

110.9853C H4 O 4 P

163.0613C6 H11 O 5

103.0401C4 H7 O 3

RT: 0.00 - 55.00 SM: 7B

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

20

40

60

80

100

Rel

ativ

e A

bund

ance

5.30

3.87

5.63

NL:1.70E8m/z= 138.51-139.51 F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

Early Eluting Phosphate Esters

Phosphate esters

Chemical formula

Exact mass Delta ppm

C2H6O4P 125.0009 -0.1

C3H8O4P 139.0166 0.2

C3H8O5P 155.0115 0.1

C4H10O5P 169.0272 0.4

(RT 3.6-3.8 minutes)

EIC of 139.01 m/z

RT 3.6-3.8 minutes

Base peak chromatogram

Page 13: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

13

Later Eluting Phosphate Esters

e:\lib\nov20-run\va-3-pp 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.00 - 55.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

50

1000

50

1000

50

10017.16

23.0014.245.294.20 16.19 27.733.59 8.15 9.80 49.7926.7317.9813.95 41.79 53.2714.24

3.65 17.065.94 23.03 28.94 30.9226.152.78 38.5335.459.80 52.9046.5313.78 41.0721.93 45.378.68 49.8019.24 33.70 41.9914.39

24.333.36 27.0114.85 22.993.74 17.2310.01 47.1938.53 54.2640.0922.1211.97 49.420.86 36.8635.3130.26 43.50 45.56 50.9733.578.256.96

NL: 2.79E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp

NL: 3.23E7Base Peak m/z= 282.49-283.49 F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp

NL: 2.70E7Base Peak m/z= 212.51-213.51 F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp

va-3-pp #6257-6338 RT: 14.19-14.36 AV: 21 SB: 129 14.50-15.08 , 13.35-13.92 NL: 1.22E8T: FTMS - p ESI Full ms [50.00-750.00]

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

140.9958C2 H6 O5 P

125.0009C2 H6 O4 P

110.9852C H4 O4 P78.9590

O3 P

282.9991C4 H13 O10 P2267.0039

C4 H13 O9 P2

121.0295C7 H5 O2

213.0170C5 H10 O7 P

236.9935C3 H11 O8 P2

96.9600H O4 S

(RT14.2-14.4 minutes)

Page 14: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

14

Analysis of an Unknown- Ethanetricarboxylate

e:\lib\nov20-run\va-3-pp 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.04 - 55.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

2

4

6

8

10

12

14

16

18

20

Rel

ativ

e A

bund

ance

23.00

14.24

5.294.20 16.19

27.733.598.15

3.32 9.807.01 49.7926.7317.98 24.16 49.1913.95 41.799.97 53.27

NL:2.79E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp

va-3-pp #12253-12393 RT: 27.65-27.96 AV: 36 SB: 131 28.41-29.16 , 26.94-27.39 NL: 5.27E7T: FTMS - p ESI Full ms [50.00-750.00]

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

117.0193C4 H5 O4

103.0037C3 H3 O4

161.0092C5 H5 O6

59.0137C2 H3 O2 118.9986

C3 H3 O5133.0143C4 H5 O5

73.0295C3 H5 O2

60.9929C H O3

178.9317H2 O6 F P2

149.0092C4 H5 O6

99.0088C4 H3 O3

173.0092C6 H5 O6

115.0037C4 H3 O4

Delta 0.2 ppm

Trivalent elution region

C5H5O6

Page 15: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

15

Simple Case - Propylsulfonate

e:\lib\nov20-run\va-3-pp 11/20/14 21:49:03AS11 2mm 250ul/minRT: 0.04 - 55.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

2

4

6

8

10

12

14

16

18

20

Rel

ativ

e A

bund

ance

23.00

14.24

5.294.20 16.19

27.733.598.15

3.32 9.807.01 49.7926.7317.98 24.16 49.1913.95 41.799.97 53.27

NL:2.79E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp

va-3-pp #3544-3662 RT: 8.00-8.26 AV: 30 SB: 131 28.41-29.16 , 26.94-27.39 NL: 6.20E7T: FTMS - p ESI Full ms [50.00-750.00]

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

123.0121C3 H7 O3 S

79.9572O3 S

Page 16: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

16

Chemical Formula for Propylsulfonate Help from HRMS Data

Chemical formulae, Mass 123.01 Chemical formulae, Mass 123.0121 Formula Delta, ppm Formula Delta, ppm

1 C6H3O3 10.0 1 C3H7O3S -0.3 2 C3H7O3S -17.4 2 C6H3O3 27.1

Page 17: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

17

Summary: ESI(-) Mode Peaks from Sample VA

RT: 0.44 - 55.00

5 10 15 20 25 30 35 40 45 50 55Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Rel

ativ

e A

bund

ance

5.294.20

16.19

27.733.59

27.86

8.15

3.32 9.80

7.01 49.7926.73

17.9824.16 49.19

13.95 41.7953.2718.21

18.66 47.4428.792.23 47.1537.58 50.6136.4529.78 41.34

NL:2.79E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

6.21  

14.24

15.55

17.22

23.03

Retention time Masses Delta (ppm) Possible ID

3.3-3.8 several Phosphate esters

4.20 75.0088 0.4 CH3O3 Methyl carbonate

6.21 112.9810 0.6 CH3O3FP Methylfluorophosphate

8.15 123.0121 -0.3 C3H7O3S Propylsulfonate

14.24 several Phosphate esters

15.55 117.0193 0.3 C4H5O4 Succinate

16.19 103.0036 -0.2 C3H3O4 Malonate

15.62 133.0137 0.4 C4H5O5 Malate

17.22 98.9601 0 HSO4

23.03 98.9696 -0.2 H2PO4

27.73 161.0092 0.2 C5H5O6

41.79 176.9360 0.3 H3P2O7

49.19 175.0249 0.5 C6H7O6

Page 18: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

18

Summary

•  Ion chromatography provides ion exchange separations of anionic (or cationic) sample components

• The IC with a conductivity detector is coupled to HRMS to provide information in the elucidation of unknowns

• Analytes are eluted in the order of monovalent<divalent<trivalent<higher by ion exchange separation so information is provided on key structural features

• To date we have found components from the aging of LiB anodes in several chemical classes including carboxylic acids, esters, phosphate esters, fluorophosphate esters, sulfate esters, as well as inorganic anions

Page 19: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

19

Lithium Ion Battery Anode Samples Analysis

•  Anode samples •  Control Cell Shelf Aged. •  Calendar Aged. Exhibited 20% loss in capacity. •  Cycle Aged. Exhibited 20% loss in capacity. •  Additional Cycle Aged. Exhibited 45% loss in capacity.

•  Objective •  To identify the impurity and degradant present in the sample group. •  To correlate the analysis results with the batteries performance.

•  IC-HRMS Analysis and software •  Thermo Scientific Dionex IC combined with the Q Exactive HRMS was used

for separation and identification. •  Thermo Scientific™ SIEVE™ software used for component extraction and

differential analysis. The Chem Spider report with the high resolution data base for known component screening. Thermo Scientific™ Mass Frontier™ was used for structural elucidation.

Page 20: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

20

Comprehensive Li-ion Battery Analysis Workflow : IC-HRMS

HR MS Analysis Full Scan-MS/MS

Ion Separation

Components Identified .

_________________ . _________________ . _________________ . _________________ . _________________ . _________________

Component ID (Chem Spider and high resolution ion database)

Sample Preparation

Thermo Scientific high resolution accurate mass ion database contains accurate masses for common anions and elemental compositions. Users can quickly identify the common anions by database search.

Report

Thermo Scientific Dionex ICS-2100 System

Q Exactive MS SIEVE Software

Component Extraction Differential Analysis

High Resolution Anion Database . __________ .__________ . __________ .__________ . __________ .__________

Page 21: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

21

Schematic of Q Exactive Benchtop LC-MS/MS

Page 22: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

22

Q Exactive MS Specifications •  Max resolution: 140,000 at m/z 200

•  Scan speed: up to 12 HZ (at 17.5K)

•  Mass Accuracy •  < 3 ppm external

•  < 1 ppm internal

•  Mass range for full scans: 50 < m/z < 6000

•  Intra-scan dynamic range: > 5000:1

•  Sensitivity •  Full MS: 500 fg Buspirone on column S/N 100:1

•  SIM: 50 fg Buspirone on column S/N 100:1

•  Polarity Switching •  One full cycle in < 1 sec (one full scan positive mode and one full scan

negative mode at resolution setting of 35,000)

Resolution at m/z 200

Max. Scan Speed (Hz)

17.500 12 35.000 7 70.000 3

140.000 1.5

Page 23: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

23

Why Use Q Exactive HRMS?

• Q Exactive High Resolution Accurate Mass (HRAM) data provides ultimate confidence for qualitative and quantitative analysis.

• High sensitivity, rapid polarity switching ensure detection of structurally diverse compounds at all level.

• The HRAM full scan and MS/MS provide rich information for component identification and structure elucidation

• Coupled with SIEVE and other Thermo Scientific software, QExactive MS is best suited for known and unknown impurity and degradant analysis for Li-ion battery and other industrial applications.

Page 24: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

24

Q Exactive Instrument Method

• MS Method •  ESI negative ion mode •  AGC target 1e6 •  Full scan MS and data dependent top 3 MS/MS at resolution 70K

and 17.5K •  Stepped NCE: 30, 45, 60 •  Scan range: 50 to 750 m/z

Page 25: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

25

HR-MS for Lithium Ion Battery Anode Analysis

• HR-MS unambiguously identifies ion species based on HRAM data

•  Unit mass vs. high resolution accurate mass

m/z  (-­‐)  Unit  mass  

m/z  (-­‐)  HRAM  

Formula  (-­‐)   Ionic  Species  

97   96.9601   HSO4   Hydrogen  Sulfate  

97   96.9696   H2PO4   DiHydrogen  Phosphate  

139   139.0166   C3H8O4P   Phosphate  Ester  

139   139.0071   C3H7O4S   Sulfate  Ester  

Page 26: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

26

90 100 110 120 130 140 150 160 170 180 190 m/z 0 10 20 30 40 50 60 70 80 90 100

Rel

ativ

e A

bund

ance

139.0166

133.0507 110.9853

120 130 140 150 160 170 180 m/z 0 10 20 30 40 50 60 70 80 90 100

Rel

ativ

e A

bund

ance

139.0071

141.0029 UA-1-PP # 1634 RT: 3.73 T:

50 60 70 80 90 100 110 120 130 140 150 160 m/z 0 10 20 30 40 50 60 70 80 90 100

Rel

ativ

e A

bund

ance

78.9591 O 3 P

0.8 ppm 110.9853 C H 4 O 4 P

0.5 ppm

139.0166 C 3 H 8 O 4 P

0.5 ppm 62.9642 O 2 P

0.3 ppm

UA-1-PP # 2322 RT: 5.26 AV: 1 NL: 2.84E7 T:

50 60 70 80 90 100 110 120 130 140 150 160 m/z 0 10 20 30 40 50 60 70 80 90 100

Rel

ativ

e A

bund

ance

139.0072 C 3 H 7 O 4 S

1.0 ppm 79.9575

O 3 S 1.3 ppm

81.9532 64.9702 H O 2 S

-1.4873 ppm 120.9965 C 3 H 5 O 3 S

-0.1060 ppm

HRAM MS/MS Fragments for Structure Elucidation

(M-H)- (M-H)-

C3H7O4S m/z (-) 139.0071 0.3 ppm

(-) C3H8O4P m/z (-) 139.0166 0.4 ppm

MS/MS

MS/MS

S

O

O

OOHOH P

O

O

O

•  HRAM MS/MS fragments for confident structure characterization

Page 27: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

27

HRAM MS/MS Fragments for Structure Elucidation

The structures of co-eluting peaks were identified by MS/MS fragments

OP

O

O

O

OP

O

O

O

OH OP

O

O

O

OH OP

O

O

O

OHOH

ua-1-pp # 1521 RT: 3.48 AV: 1 NL: 5.71E7 T: FTMS - p ESI Full ms [50.00-750.00]

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 m/z

0 10 20 30 40 50 60 70 80 90

100

Rel

ativ

e A

bund

ance

169.0272

155.0116

185.0222 125.0009

139.0166 183.0122 96.9601 112.9856 121.0295

163.0613 200.9865 89.0245 79.9574 190.9916 172.9915

133.0507 149.0456 255.2331 217.0256 101.0608 237.0148 283.2644 274.9611 293.0074

ua-1-pp # 1510 RT: 3.46 AV: 1 NL: 2.72E6 T: FTMS - p ESI d Full ms2 [email protected] [50.00-150.00]

60 80 100 120 140 m/z 0

10 20 30 40 50 60 70 80 90

100

Rel

ativ

e A

bund

ance

125.0010

62.9641 78.9591

111.9568 94.9905

ua-1-pp # 1518 RT: 3.48 AV: 1 NL: 8.32E6 T: FTMS - p ESI d Full ms2 [email protected] [50.00-180.00]

60 80 100 120 140 160 180 m/z 0

10 20 30 40 50 60 70 80 90

100

Rel

ativ

e A

bund

ance

78.9591 110.9853

155.0117 122.9854

ua-1-pp # 1502 RT: 3.44 AV: 1 NL: 1.82E7 T: FTMS - p ESI d Full ms2 [email protected] [50.00-195.00]

60 80 100 120 140 160 180 m/z 0

10 20 30 40 50 60 70 80 90

100 R

elat

ive

Abu

ndan

ce

78.9591

140.9960 169.0273

125.0010

ua-1-pp # 1496 RT: 3.43 AV: 1 NL: 6.67E6 T: FTMS - p ESI d Full ms2 [email protected] [50.00-210.00]

50 100 150 200 m/z 0

10 20 30 40 50 60 70 80 90

100

Rel

ativ

e A

bund

ance

78.9591

122.9854

185.0223 140.9960

Page 28: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

28

IC-HRMS Result for Aged Anode

F:\Li-Battary-Paul\Nov20-Run\VA-3-PP 11/20/14 21:49:03AS11 2mm 250ul/min

RT: 0.0 - 55.0 SM: 5G

0 5 10 15 20 25 30 35 40 45 50 55Time (min)

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e A

bund

ance

0

5

10

15

20

25

30

µS

4.0

17.1

4.9 16.1 22.914.2 27.817.95.2 49.748.626.724.113.9 50.717.2

23.014.25.34.2 16.2 27.73.6 27.88.1 9.83.3 49.87.0 26.718.0 24.2 49.213.9 41.810.6 53.3

NL:3.21E1ECD_1 UV VA-3-PP

NL:2.73E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

IC Chromatogram

MS Base Peak Chromatogram

Cycle Aged Sample 45% Loss

Page 29: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

29

IC Chromatograms for All Samples

f:\li-battary-paul\nov20-run\ma-0-pp 11/20/14 23:59:15AS11 2mm 250ul/min

RT: 0.0 - 30.0 SM: 7G

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Time (min)

0

10

20

µS

0

10

20

µS

0

10

20

µS

0

10

20

µS

0

10

20

µS

0

10

20

µS

17.1

3.8 4.1 15.94.9

3.917.1

4.9 16.1 22.9

3.9

17.1

4.9 15.9

17.1

4.9 16.1 22.914.2 27.8

NL:2.50E1ECD_1 UV blk_141120225409

NL:2.50E1ECD_1 UV pc-2-pp

NL:2.50E1ECD_1 UV ma-0-pp

NL:2.50E1ECD_1 UV ua-1-pp

NL:2.50E1ECD_1 UV xa-2-pp

NL:2.50E1ECD_1 UV VA-3-PP

Solvent Blank

Control Cell shelf aged

Calendar-aged 20% loss in capacity

Cycle aged 20% loss in capacity

Process Control

Cycle aged 45% loss in capacity

The IC chromatograms show the differences between samples

Page 30: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

30

HRMS Base Peak Chromatograph

f:\li-battary-paul\...\blk_141120225409 11/20/14 22:54:09AS11 2mm 250ul/min

RT: 0.0 - 55.0 SM: 5G

0 5 10 15 20 25 30 35 40 45 50 55Time (min)

0

50

1000

50

1000

50

1000

50

1000

50

1000

50

100

5.3 9.88.24.1 16.211.1 15.63.9 27.824.717.2

23.04.2 5.3 16.214.27.0 8.23.8 9.8 27.824.1 41.711.1 49.8

17.2

23.014.24.2 5.3 16.23.5 27.88.2 9.8 49.826.77.1 13.9

23.014.25.34.2 16.2 27.73.6 8.1 9.8 49.87.0 26.718.013.9 41.8

NL: 2.60E9Base Peak m/z= 50.0000-6000.0000 F: FTMS - p ESI Full ms [50.00-750.00] - m/z= 144.9640-144.9654 MS blk_141120225409

NL: 2.60E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS pc-2-pp

NL: 2.60E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ma-0-pp

NL: 2.60E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ua-1-pp

NL: 2.60E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS xa-2-pp

NL: 2.60E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

Solvent Blank

Control cell shelf aged

Calendar-aged 20% loss in capacity

Cycle aged 20% loss in capacity

Process Control

Cycle aged 45% loss in capacity

See zoomed-in view in next slide (Full Scan Negative mode)

Page 31: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

31

F:\Li-Battary-Paul\Nov20-Run\VA-3-PP 11/20/14 21:49:03AS11 2mm 250ul/min

RT: 0.2 - 54.5 SM: 5G

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time (min)

0

20

40

60

80

100

Rel

ativ

e A

bund

ance

0

20

40

60

80

100

Rel

ativ

e A

bund

ance

0

20

40

60

80

100

Rel

ativ

e A

bund

ance

0

20

40

60

80

100

Rel

ativ

e A

bund

ance 9.8

8.24.1 16.211.1

15.63.9 27.824.713.812.9 18.33.6 26.7

23.0

4.2 5.3 16.214.27.0 8.24.0 9.83.5 6.2 15.6 27.8

24.1 41.711.1 24.3 49.814.0 18.1 49.228.1

23.014.24.2 5.3 16.24.03.5 27.815.68.2 9.8

49.826.77.1 13.913.2 24.2 49.218.2

14.2

5.34.216.2

27.73.6 15.5 27.88.19.83.3

49.87.0 26.718.0 24.2 49.213.9 41.813.4 53.318.6

NL:2.60E8Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ma-0-pp

NL:2.60E8Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ua-1-pp

NL:2.60E8Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS xa-2-pp

NL:2.60E8Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

Yellow –new or increasing

MS Base Peak Chromatograph

Blue – Decrease or disappearing

Control cell shelf aged

Calendar-aged 20% loss in capacity

Cycle aged 20% loss in capacity

Cycle aged 45% loss in capacity

MS show different profiles and more peaks Zoomed-in View

Page 32: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

32

SIEVE Base Peak Alignments (MS Data)

0-30 min

Zoom In View

40-55 min

Page 33: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

33

SIEVE - Trend Intensities and XIC

Trend Intensities RT =11 min

XIC RT =11 min

Component m/z 124.9912 at RT 11.0 min with Elemental Formula C2H5O4S, Ethyl sulfate. The Shelf aged control has high intensity.

Page 34: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

34

SIEVE PCA Showing Differences Between Sample Groups

Trend Intensities at RT =11 min m/z 124.9912

PCA plot for all six samples

Page 35: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

35

Control Cell Shelf Aged

E:\GM-Li Battery\Nov20-Run\MA-0-PP 11/20/14 23:59:15AS11 2mm 250ul/min

RT: 0.0 - 55.0 SM: 5G

0 5 10 15 20 25 30 35 40 45 50 55Time (min)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Rel

ativ

e A

bund

ance 5.3

9.8

8.2

4.1 16.211.1

15.63.9 27.824.713.8

NL:2.95E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS MA-0-PP

HRMS Base Peak Chromatogram

1

2

3

4

5

6

7

8

9

10

11 12

13

Page 36: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

36

Component Identified from “Control Cell Shelf Aged”

Components  idenPfied  in  Control  Sample  Peak  #   RT  (min)   m/z   Formula  (-­‐)   Delta  ppm   Name*  (Based  on  MS  results)**  

1   3.9   89.0244  105.0193  119.0350  

C3H5O3  C3H5O4  C4H7O4  

0.3  -­‐0.4  -­‐0.3  

lactate  

2   4.1   75.0087   C2H3O3   -­‐0.4   Methyl  carbonate  3   5.3   139.0070   C3H7O4S   0   Propyl  sulfate  4   8.2   123.0121   C3H7O3S   -­‐0.1   Propyl  sulfonate  5   9.8   140.9864   C2H5O5S   0.3   2-­‐hydroxyethyl  sulfate  6   11.1   124.9914   C2H5O4S   -­‐0.3   Ethyl  sulfate  7   15.6   117.0193   C4H5O4   0.2   methyl  malonate  8   15.7   133.0143   C4H5O5   0.2   3-­‐carboxy-­‐3-­‐hydroxypropanoate  9   16.2   103.0037   C3H3O4   0   2-­‐carboxyacetate  10   17.2   96.9601   HO4S   -­‐0.2   hydrogen  sulfate  11   24.7   218.9639   C3H7O7S2   0.2   2-­‐hydroxy-­‐3-­‐sulfopropane-­‐1-­‐sulfonate  12   26.7   175.0249   C6H7O6   0.3  13   27.8   117.0193   C4H5O4   0.1   2-­‐carboxy-­‐propanoate  

*            The  compounds  are  proposed  based  on  database  search  using  HRAM  data  .  The  other  possible  structures  are  not  show. **      The  MS  data  were  acquired  in  ESI  negaPve  ion  mode.  The  ions  reported  there  are  all  HRAM  single  charged  negaPve  ions.                  The  names  listed  here  are  corresponding  to  the  single  charge  ionic  species.  ***  The  notes  here  apply  to  other  samples  in  this  experiment.  

Page 37: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

37

Calendar Aged 20% Capacity Loss

E:\GM-Li Battery\Nov20-Run\UA-1-PP 11/21/14 02:09:29AS11 2mm 250ul/min

RT: 1.9 - 50.9 SM: 5G

5 10 15 20 25 30 35 40 45 50Time (min)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Rel

ativ

e A

bund

ance

23.0

4.2 5.3

16.2

14.27.0

8.2

3.8 9.86.2 15.6

27.8

24.1

NL:2.53E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS UA-1-PP

MS Base Peak Chromatogram

1

2, 3 8

4 5

6

7

9

10

11

12, 13, 14

19

23

20

22

18

21

15,16, 17

24 25 29

26

28

27 30

31

Page 38: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

38

Component Identified from Calendar Aged Sample 45% Capacity Loss

Components  IdenPfied  in  Calendar  Aged    Sample  Peak  #   RT  (min)   m/z   Formula  (-­‐)   Delta  ppm   Name  (Based  on  MS  results)*  

1   3.4  To  3.6  

125.0009  155.0116  169.0272  185.0222  

C2H6O4P  C3H8O5P  C4H10O5P  C4H10O6P  

0  0.6  0.6  0.6  

Phosphate  Esters  

2   3.7   139.0166   C3H8O4P   0.5   Phosphoric acid  3   3.9   153.0323   C4H10O4P   0.5   Phosphate  4   4.2   75.0088   C2H3O3   -­‐0.2   Methyl  Carbonate  5   5.3   139.0071   C3H7O4S   0.4   Propyl  sulfate  6   6.2   112.9810   CH3O3FP   0.3   Methyl  Phosphorofluoridate    7   7.0   126.9966   C2H5O3FP   0.1   Ethyl  phosphorofluoridate  8   8.2   123.0122   C3H7O3S   0.3   Propyl  sulfonate  9   9.8   140.9864   C2H5O5S   0.3   2-­‐hydroxyethyl  sulfate  10   10.7   110.9757   CH3O4S   -­‐0.3   methyl  sulfate  11   11.1   124.9914   C2H5O4S   0.1   Ethyl  sulfate  12   14.2   140.9958   C2H6O5P   0.1   2-­‐hydroxyethyl  hydrogen  phosphate  

13   14.3   125.0009   C2H6O4P   -­‐0.1   ethyl  hydrogen  phosphate  14   14.4   110.9853   CH4O4P   -­‐0.2   methyl  hydrogenphosphate  15   15.3   131.0350   C5H7O4   0   3-­‐carboxy-­‐2-­‐methylpropanoate  

16   15.6   117.0193   C4H5O4   0.2   Methyl  Malonate  17   15.7   133.0143   C4H5O5   0.2   3-­‐carboxy-­‐3-­‐hydroxypropanoate  

18   15.9   117.0194   C4H5O4   0.2   Succinate  19   16.2   103.0037   C3H3O4   0.3   2-­‐carboxyacetate  20   16.6   98.9653   HO3FP   0.2   hydrogen  phosphorofluoridate  21   17.2   96.9601   HO4S   -­‐0.2   hydrogen  sulfate  22   23.0   96.9696   H2O4P   -­‐0.5   dihydrogen  phosphate  23   24.1   204.9674   C2H7O7P2   0.7   hydrogen  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate  

24   24.3   190.9517   CH5O7P2   1.1   Methyl  trihydrogen  diphosphate  25   26.7   175.0249   C6H7O6   0.3   Ascorbate  26   27.8   161.0092   C5H5O6   0.1   Ethanetricarboxylate  27   27.9   103.0037   C3H3O4   0.3  28   28.1   133.0143   C4H5O5   0.4  29   41.7   176.9361   H3O7P2   0.9   Trihydrogen  diphosphate  30   49.2   175.0249   C6H7O6   0.6   Tricarballylate  31   49.8   204.9990   C6H5O8   0.1  

Yellow –new or increasing

Blue –Decrease or disappearing

Page 39: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

39

Cycle Aged Sample 20% Capacity Loss

F:\Li-Battary-Paul\Nov20-Run\XA-2-PP 11/20/14 19:38:48AS11 2mm 250ul/min

RT: 0.0 - 55.0 SM: 5G

0 5 10 15 20 25 30 35 40 45 50 55Time (min)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Rel

ativ

e A

bund

ance

23.014.2

4.2

5.3 16.2

4.0

3.5

27.815.6

8.2

9.8

49.826.77.1

13.913.4 24.2 49.218.211.9 24.4

NL:1.96E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS XA-2-PP

MS Base Peak Chromatogram

1

2

4

5

6

8 9

3

19

26 14

18

21

24

30

31 29 10

11, 12, 13

15, 16, 17

20 7

23 25

28

22

32 27

Page 40: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

40

Component Identified from Cycle Aged 20% Loss in Capacity Components  IdenPfied  in  Cycle  Aged  Sample  

Peak  #   RT  (min)   m/z   Formula  (-­‐)   Delta  ppm   Name  (Based  on  MS  results)*  1   3.2-­‐3.6   125.0009  

155.0116  169.0272  185.0222  

C2H6O4P  C3H8O5P  C4H10O5P  C4H10O6P  

0  0.6  0.6  0.6  

Phosphate  Esters  

2   3.8   139.0166   C3H8O4P   0.4   Phosphoric acid  3   4.0   89.0244   C3H5O3   0.1  4   4.2   75.0088   C2H3O3   -­‐0.2   Methyl  Carbonate    5   5.3   139.0071   C3H7O4S   0.4   Propyl  sulfate  6   6.2   112.9810   CH3O3FP   0.3   Methyl  Phosphorofluoridate    7   7.1   126.9966   C2H5O3FP   0.1   Ethyl  phosphorofluoridate  8   8.2   123.0122   C3H7O3S   0.3   Propyl  sulfonate  9   9.8   140.9864   C2H5O5S   0.3   2-­‐hydroxyethyl  sulfate  10   10.0   155.0020   C3H7O5S   -­‐0.3  11   14.2   140.9958   C2H6O5P   0.1   2-­‐hydroxyethyl  hydrogen  phosphate  12   14.3   125.0009   C2H6O4P   -­‐0.1   ethyl  hydrogen  phosphate  13   14.4   110.9853   CH4O4P   -­‐0.2   methyl  hydrogenphosphate  14   15.3   131.0350   C5H7O4   0   3-­‐carboxy-­‐2-­‐methylpropanoate  15   15.6   117.0193   C4H5O4   0.2   methyl  malonate  16   15.7   133.0143   C4H5O5   0.2   3-­‐carboxy-­‐3-­‐hydroxypropanoate  17   15.9   117.0194   C4H5O4   0.2   Succinate  18   16.2   103.0037   C3H3O4   0.3   2-­‐carboxyacetate  19   16.6   98.9653   HO3FP   0   hydrogen  phosphorofluoridate  20   17.1   118.9986   C3H3O5  21   17.2   96.9601   HO4S   -­‐0.2   hydrogen  sulfate  22   23.0   96.9696   H2O4P   -­‐0.5   dihydrogen  phosphate  23   24.2   204.9674   C2H7O7P2   0.7   hydrogen  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate  24   24.4   190.9517   CH5O7P2   1.1   Methyl  trihydrogen  diphosphate  25   26.1   131.0349   C5H7O4   -­‐0.4  26   26.7   175.0249   C6H7O6   0.3  27   26.9   147.0299   C5H7O5   0.3   4-­‐carboxy-­‐3-­‐hydroxybutanoate  28   27.8   161.0092   C5H5O6   0.1   Ethanetricarboxylate  29   27.9   103.0037   C3H3O4   0  30   41.7   176.9360   H3O7P2   0.3   Trihydrogen  diphosphate  31   49.2   175.0249   C6H7O6   0.3   Tricarballyllate  32   49.8   204.9312   C6H5O8   0.1  

Yellow –new or increasing

Blue –Decrease or disappearing

Page 41: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

41

Cycle Aged 45% Loss in Capacity

F:\Li-Battary-Paul\Nov20-Run\VA-3-PP 11/20/14 21:49:03AS11 2mm 250ul/min

RT: 0.0 - 55.0 SM: 5G

0 5 10 15 20 25 30 35 40 45 50 55Time (min)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Rel

ativ

e A

bund

ance

23.0

14.2

5.34.2

16.2

27.73.6 15.5 27.88.1

9.83.3

49.87.026.7

18.0 24.2 49.224.313.9 41.810.6 53.318.3

NL:2.73E9Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP

MS Base Peak Chromatogram

1

2

4

5 6

8 9

3

18

19

21

10

12, 13, 14

15, 16, 17

20

7

22

11 23 24

25

26

27

29

28

30

31 32

33

34

Page 42: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

42

Component Identified from Cycle Aged 45% Loss in Capacity Components  IdenPfied  in  Cycle  Aged  

Peak  #   RT  (min)   m/z  (-­‐)    Measured  

m/z  (-­‐)  Calculated  

Delta  ppm   Formula  (-­‐)   Name  (Based  on  MS  results)*  

1   3.2  To  3.6  

125.0009  155.0116  169.0272  185.0222  

125.0009  155.0115  169.0271  185.0220  

0  0.6  0.6  0.6  

C2H6O4P  C3H8O5P  C4H10O5P  C4H10O6P  

Phosphate  Esters  

2   3.9   139.0166   139.0166   0.4   C3H8O4P   Phosphoric acid  3   4.2   75.0088   75.0088   -­‐0.2   C2H3O3   Methyl  Carbonate    4   5.3   139.0071   139.0071   0   C3H7O4S   Propyl  sulfate  5   6.2   112.9810   112.9809   0.2   CH3O3FP   Methyl  Phosphorofluoridate    6   7.0   126.9966   126.9966   0.1   C2H5O3FP   Ethyl  Phosphorofluoridate  7   7.4   120.9965   120.9965   -­‐0.1   C3H5O3S   2-­‐Propene-­‐1-­‐sulfonic  acid  8   8.2   123.0122   123.0121   0.2   C3H7O3S   Propyl  sulfonate  9   9.8   140.9864   140.9863   0.3   C2H5O5S   2-­‐hydroxyethyl  sulfate  10   10.7   110.9757   110.9758   -­‐0.3   CH3O4S   methyl  sulfate  11   11.1   124.9914   124.9914   0.1   C2H5O4S   Ethyl  sulfate  12   14.2   140.9958   140.9958   0.1   C2H6O5P   2-­‐hydroxyethyl  hydrogen  phosphate  13   14.3   125.0009   125.0009   -­‐0.1   C2H6O4P   ethyl  hydrogen  phosphate  14   14.4   110.9853   110.9853   0   CH4O4P   methyl  hydrogenphosphate  15   15.3   131.0350   131.0350   0   C5H7O4   3-­‐carboxy-­‐2-­‐methylpropanoate  16   15.5   117.0193   117.0193   0.2   C4H5O4   methyl  malonate  17   15.7   133.0143   133.0143   0.2   C4H5O5   3-­‐carboxy-­‐3-­‐hydroxypropanoate  18   15.9   117.0194   117.0194   0.2   C4H5O4   Succinate  19   16.2   103.0037   103.0037   0.3   C3H3O4   2-­‐carboxyacetate  20   16.6   98.9653   98.9653   0   HO3FP   hydrogen  phosphorofluoridate  21   17.2   96.9601   96.9601   -­‐0.2   HO4S   hydrogen  sulfate  22   23.00   96.9696   96.9696   -­‐0.5   H2O4P   dihydrogen  phosphate  23   24.1   204.9674   204.9674   0.7   C2H7O7P2   hydrogen  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate  24   24.3   190.9517   190.9517   1.1   CH5O7P2   Methyl  trihydrogen  diphosphate  25   24.7   218.9639   218.9639   0.2   C3H7O7S2   2-­‐hydroxy-­‐3-­‐sulfopropane-­‐1-­‐sulfonate  26   26.1   175.0249   175.0249   0.5   C6H7O6   Ascorbate  27   26.7   175.0249   175.0249   0.3   C6H7O6  28   26.9   147.0299   147.0299   0.3   C5H7O5   4-­‐carboxy-­‐3-­‐hydroxybutanoate  29   27.7   161.0092   161.0092   0   C5H5O6   Ethanetricarboxylate  30   27.8   103.0037   103.0037   0   C3H3O4  31   41.8   176.9360   176.9360   0.3   H3O7P2   trihydrogen  diphosphate  32   49.2   175.0249   175.0249   0.3   C6H7O6   tricarballylate  33   49.8   204.9990   204.9990   0   C6H5O8  34   53.3   224.9312   224.9312   0.   HO3F6P2   F5P-­‐PO3H2F  

Yellow –new or increasing

Blue –Decrease or disappearing

Page 43: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

43

Summary

•  Ion chromatography coupled with the Orbitrap Q Exactive

mass spectrometer provides a powerful platform for Li-ion battery anode impurity and degradant analysis.

• The HRAM full scan and ms/ms data with polarity switching allows for unambiguous ionic species identification and structure characterization.

• This IC-HR/AM MS-based platform provides comprehensive results which can be used for QA/QC for Lithium-ion battery manufacturers and performance evaluations.

Page 44: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

44

IC-ICP-MS, 55Mn

•  Amount of irreversibly formed Mn species is correlated to aging

Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V.S. Correlation between Dissolution Behavior and Electrochemical Cycling Performance for LiNi1/3Co1/3Mn1/3O2-Based Cells. J. Power Sources 2012, 207, 134–140.

Page 45: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

45

MnxOyz-

Mn2+

Cycle- or Calendar-Aged

LiB

H+

Mn2+

Cathode Anode

Anion Analysis of Cathode Dissolution

LiNi0.42Mn0.42Co0.16O2

Mechanistic Pathway

-Mn3+

Mn4+ +

Anode* Cathode**

* Mn2+ sol .in electrolyte, migrates to anode ** Mn4+ insol .in electolyte, remains on cathode

Manganese IC-ICP-MS Analysis of Aged Li-ion Batteries

Acid-Catalyzed Dissolution of Mn to Mn3+

and Disproportionation to Mn2+ and Mn4+

Page 46: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

46

Permanganate/Manganate Configurations

Manganate(VI) Permanganate(VII)

Page 47: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

47

Control Anode and Calendar-Aged Anode Sample

Anion Analysis Chromatographic Conditions: Column: Dionex IonPac AS11, 2 × 250 mm Eluent: 1 mM KOH 0–5 minutes,1–30 mM KOH 5–25 minutes Eluent Source: Dionex EGC 500 KOH Cartridge Flow Rate: 0.25 mL/min Injection Volume: 2.5 µL Temperature: 30 ˚C Detection: Suppressed conductivity,

Dionex AERS 500 (2 mm) Suppressor, AutoSuppression, recycle mode

Page 48: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

48

Manganate, Permanganate, Anion Standards, and Calendar-Aged Anode Samples

100 ppm Manganate

100 ppm Permanganate

Anion Standard

Fluoride

Chlorite Bromate

Chloride

Nitrite Sulfate

Carbonate

Bromide, Nitrate, Chlorate

0 10 20 30 -10

10

µS

Minutes

Aged Anode Sample

Page 49: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

49

IC Anion-Exchange Analysis of Aged Li-ion Battery Samples

Summary: • Neither manganate nor permanganate are stable on the anion

exchange column

•  They may be reacting on the column and degradation products may be eluting in the vicinity of carbonate as well as earlier

•  It is possible that carbonate is produced during a reaction on the column

Page 50: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

50

Permanganate Standard

• Positive response to direct infusion HRMS in –ESI mode • Negative response to IC-HRMS

O

Mn

O

O O

Theoretical Simulation

Experimental Result

116 117 118 119 120 121 122 123 m/z

0 20 40 60 80

100 0 20 40 60 80

100

Rel

ativ

e A

bund

ance

118.9181

116.9287 120.9221 118.9541 119.9219 117.9288 118.7880 115.9206 118.9183

120.9225 119.9225 122.9267 121.9267

Page 51: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

51

Proposed Mechanism for Anionic Mn Species

•  Compound 1 formed by the reaction of permanganate with a succinic acid adduct, a plausible degradation product

•  Compound 1 degrades under acidic conditions

Tetrahedron 65 (2009) 707–739

?

Page 52: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

52

Cycle Aged (45% Capacity Loss): IC-HRMS

•  Positive response to a Mn containing product •  Proposed Mn species consistent with a retention time of 16-33 min •  pH 10-11 of the aq anode extract •  2 decimal point m/z accuracy supports proposed species •  4 decimal point m/z accuracy disputes proposed species

Experimental  m/z

Calculated  m/z

234.98 234.93

Experimental  m/z

Calculated  m/z

234.9779 234.9281

2 Decimal Point Accuracy 4 Decimal Point Accuracy

Page 53: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

53

IC-HRMS and Direct Infusion HRMS Analysis of Aged Li-ion Battery Samples

Conclusions: •  Permanganate Standard

•  Detected by direct infusion HRMS in –ESI mode •  Not detected by anion exchange IC-HRMS

•  Proposed Mn Oxide complex •  Positive response by IC-HRMS for aged 40% capacity loss sample •  Proposed species was disproved by direct infusion HRMS in –ESI mode with 4

decimal point accuracy •  No anionic Mn containing products observed by IC-HRMS

•  Next Steps •  Cation exchange IC with +ESI mode HRMS to validate presence of Mn2+ from

the degradation of permanganate

Page 54: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

54

Acknowledgement

•  Chris Pohl, Thermo Fisher Scientific, Sunnyvale, CA, USA

•  Charanjit Saini, Thermo Fisher Scientific, Sunnyvale CA, USA

Page 55: Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

55

Questions?


Recommended