+ All Categories
Home > Documents > Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2....

Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2....

Date post: 30-Aug-2019
Category:
Upload: others
View: 36 times
Download: 8 times
Share this document with a friend
51
Nonlinear Control Techniques for Low-Voltage, Low-Power Applications: Class D Audio Amplifiers Class D Audio Amplifiers Miguel Angel Rojas-González and Edgar Sánchez-Sinencio ([email protected], [email protected]) Analog and Mixed Signal Center Texas A&M University S i 2008 Spring 2008
Transcript
Page 1: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

Nonlinear Control Techniques for Low-Voltage, Low-Power Applications:

Class D Audio AmplifiersClass D Audio AmplifiersMiguel Angel Rojas-González and Edgar Sánchez-Sinencio

([email protected], [email protected])

Analog and Mixed Signal CenterTexas A&M University

S i 2008Spring 2008

Page 2: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

OutlineOutline

1. Introduction to audio amplifiersa) A dio amplifiers applicationsa) Audio amplifiers applicationsb) Linear vs. nonlinear audio amplifiers

2. Conventional class D audio amplifierpa) Typical architectureb) Parameters affecting amplifier performance

3 Proposed class D audio amplifier (single ended)3. Proposed class D audio amplifier (single-ended)a) Architecture descriptionb) Design procedurec) Experimental results

4. Class D audio amplifiers: two design approachesa) Architecture descriptionsa) Architecture descriptionsb) Preliminary results

Page 3: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

1. Introduction to audio amplifiers1. Introduction to audio amplifiers

In a sound system, the power amplifier y , p psupplies power to the loudspeaker

The typical speaker input impedance is low, usually inthe 4 Ω to 8 Ω range. Thus, the power amplifier must beable to supply the high peak currents required to drivethe low impedance.the low impedance.

Standard audible frequency band is from 20 Hz to 20 KHz

For high-fidelity sound system, THD must be < 0.1 %

Least detectable amount of harmonic distortion by humans is ~ 0.3 % in average

Telephone: THD ~ 10 % BW ~ 4 KHz

y g

Page 4: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

Main power amplifier classesMain power amplifier classes

NonlinearLinear

Linearity

Class A, B, AB Class D

Linearity

Efficiency

Page 5: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

Power amplifier classesPower amplifier classesClass A amplifier• Current flows continuously

Class D amplifier• Switching amplifiery

• High sound quality

• Poor efficiency (25 %)

g p

• Ideal THD 0%

• Highest efficiency (100 %)

70

80

90Power Efficiency of Class A, Class B and Class D AmplifiersClass B amplifier

• Current flows half of the period

40

50

60

70

cien

cy (%

)

• Linearity compromised by crossover

• Higher efficiency (78.5 %)

Class AB amplifier

10

20

30Effic

Class A IdealClass B IdealCl D M d

Class AB amplifier• Hybrid between classes A and B

• Good sound quality0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

Normalized Load Power (PL/PLmax)

Class D MeasuredGood sou d qua ty

• Higher efficiency (78.5 %)

Page 6: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierContinuously switch the output from one rail to another at supersonic frequency (Pulse Width Modulation -PWM-)

There are two main areas of application for class D amplifiers:

1. Low Power Outputs

supersonic frequency (Pulse Width Modulation PWM )

• From few milliwats to around 5 W

• Hearing aids, mobile phones, personal stereos, laptop computer audio, etc.

• Portable products, battery driven

• High efficiency required

2 High Power Outputs2. High Power Outputs

• From 80 W to 1400 W

• Home theatre systems, car audio systems, etc.

• Keeps dissipation and heat sink size minimum

Page 7: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierHistory• First proposed around 1950’s Efficiency• First proposed around 1950 s

• 5 % THD in 1976 state of the art amplifier

Basic Principles

y• 100 % at all output levels ideally

• Between 80% and 90% due toBasic Principles• No output devices operating in the linear mode

• Output stage switches at supersonic frequency

parasitic losses in practice

L

Power Stage

• There is no inherent supply rejection

• Switching frequencies from 50KHz to 1MHz

Audio Signal CPWM

• PWM is generated comparing the audio

signal with a triangle wave carrier signal

• Triangle wave needs to be

Carrier Signal

Speaker

ComparatorPower Stage

Triangle wave needs to be

linear to prevent distortion

Page 8: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierPulse Width Modulation (PWM)Varies the duty cycle of the converter switches at a high switching frequencyy y g g q y(supersonic) to achieve a target average low frequency output voltage.

0

Class D Audio Amplifier (THD = 0.00%)

fin = 1.0e+003 Hz• Class D amplifier THD is calculatedconsidering all harmonics below 20KHz (max.

-40

-20

Mag

nitu

de (d

B)

g (audible frequency)

• Ideal class D amplifier THD is 0.0 %

• Performance is degraded due to system

Power Stage

0 10 20 30 40 50 60-80

-60

Frequency (KHz)

M g ynonlinearities

Audio Signal

L

CPWM

Nonlinearity sources• Passive components nonlinearities

Carrier Signal

Speaker

ComparatorPower Stage

• MOS on-resistance

• Non-ideal triangle carrier signal

Page 9: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierPassive components nonlinearities (†)The low saturation current of the load inductor causes frequency dependent non-

Power Stage

The low saturation current of the load inductor causes frequency dependent nonlinearity.

Saturation current of inductor is defined asthe IDC current level where the effective

Audio Signal

L

CPWM

inductance value is decreased to 90% ofits value at zero DC current.

An approximate expression ofnonlinear inductance is obtained by

Carrier Signal

Speaker

ComparatorPower Stage

nonlinear inductance is obtained byseries representation

( ) 100% harmonicthirdVTHD =( )

( ) 23

2 21.03100% in

lfundamenta

fVLTHD

V

⋅⋅⋅⋅⋅=

π where L, V, fin, R and Isat are the inductance atzero DC current, the output voltage, the inputsignal frequency the speaker resistance and

(†) B. Kelleci, E. Sanchez-Sinencio, and A. Karsilayan, “THD+N Estimation in Class-D Amplifiers”, IEEE ISCAS, pp. 465-468, 2007

( ) 234 satIR ⋅⋅ signal frequency, the speaker resistance andthe inductor saturation current respectively

Page 10: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierMOS on-resistance (†)The class D amplifier is more power efficient (ideally 100% efficiency) than linear

lifi b it t t PWM i it h d

Power Stage

amplifiers because its output PWM is switch mode.The on-resistance is not negligible (~200mΩ) and itwill result in a slightly “amplitude modulated” signalat the PWM output. This modulation becomes more

A di Si l

L

C

Power Stage

PWM

pronounced at higher modulation indexes.

Audio Signal

Carrier Signal

C

Speaker

ComparatorPower Stage

where fc, fs, M and Wp are the carrier signal frequency,the input signal frequency, the modulation index and theoutput transistor size respectively

(†) M. Tan, et al, “An investigation Into The Parameters Affecting THD in Low-Voltage Low-Power Class-D Amplifiers”, IEEE TCAS I , Vol. 50, No. 10, pp. 1304-1315, 2003

output transistor size respectively.

Page 11: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearityCarrier signal non-idealities will affect directly the linearity performance in the class D

L

Power Stage

Carrier signal non idealities will affect directly the linearity performance in the class Daudio amplifier.

There are three main carrier signal modulation schemes:

Audio Signal C

Speaker

PWM

• Triangle wave modulation

• Sawtooth wave modulation

Exponential wave modulation

Carrier Signal

Speaker

ComparatorPower Stage

• Exponential wave modulation

• Harmonic frequency calculation of PWM is complexand is typically done using an FFT analysis of aand is typically done using an FFT analysis of asimulated waveform but it usually leads to errors andmiscalculations

• Analytical calculations of harmonic components is

t-T/2 T/2

y pusually done by using a Double Fourier IntegralAnalysis (DFIA). Mathematical expression is quitecomplex but accurate.

Page 12: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearity• A novel mathematical analysis method to model the carrier waveform has been proposed in (†)y p p (†)

• Assume a exponential carrier signal instead of a triangle wave which may be generatedby charging/discharging an RC integrator circuit with square pulses.

• Shift the nonlinearity of the exponential carrier to the input modulating signal and theny p p g gapply the Double Fourier Integral Analysis

1. Remove the nonlinearity of the trailing-edge exponential carrier by transform it toa linearized exponential carrier (linear sawtooth carrier)

2. Transform the initially-linear modulating signal (audio signal) to a transformed(nonlinear) modulating signal

3. Repeat (1) and (2) for the leading-edge exponential carrier.

4. Derive the Double Fourier coefficients of the double-sided PWM output bysumming the Fourier coefficients of the trailing-edge and leading-edge PWMoutputs.

This mathematical analysis is accurate but its complexity and procedure are extensive

(†) M. Tan, et al, “An investigation Into The Parameters Affecting THD in Low-Voltage Low-Power Class-D Amplifiers”, IEEE TCAS I , Vol. 50, No. 10, pp. 1304-1315, 2003

This mathematical analysis is accurate but its complexity and procedure are extensive

Page 13: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearity• We propose to use a simpler method to analyze carrier signal nonlinearity based on the PWMWe propose to use a simpler method to analyze carrier signal nonlinearity based on the PWMAnalysis by Duty Cycle Variation for any kind of periodic carrier signal in the followingpresentation

Overview of Double Fourier Integral Analysis of a PWM Waveform• Fourier decomposition is based on the principle that any regular time-varying waveform f(t)can be expressed as an infinite series of sinusoidal harmonics:

( ) ( )∑∞

0 ibaf

where

( ) ( )∑=

++=1

0 sincos2 m

mm tmbtmaatf ωω

π1 ( ) ( )

( ) ( )dfb

tdtmtfam ωωπ

π

π

π

i1

cos1

∫−

=

( ) ( )tdtmtfbm ωωπ π

sin1∫−

=

Page 14: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierThe analytical solution for the harmonic components of a PWM waveform assumes theexistence of two time variables

( ) ttx ω

where ωc and ωo are the carrier angular frequency and the input signal (audio wave) angularf ti l

( )( ) tty

ttx

o

c

ωω

==

M M

frequency respectively.

The objective is to find a function f(t) which describes the PWM signal as a periodicfunction of x and y by using Double Fourier Integral Analysis (†)

1 Mcosy = Mcosωot

The purpose of the Double FourierIntegral Analysis is to express thePWM waveform as a function of a

x = ωct-π πPWM waveform as a function of adouble variable controlled waveform.

-1

(†) H. S. Black, Modulation Theory, Princeton, NJ, Van Nostrand, 1953

Page 15: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierIn general, any double-variable time-varying function f(t) can be expressed, by using the DoubleFourier Integral Analysis, in the following form (†)

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )∑ ∑

∑∑∞ ∞

=

=

++++=1

0001

0000

i

sincossincos2 m

mcmn

onon

BA

tmBtmAtnBtnAAtf ωωωω

where m is the carrier index variable and n is the baseband index variable

( ) ( )( )( )

∑ ∑=

≠−∞=

++++1

0

sincosm

nn

ocmnocmn tntmBtntmA ωωωω

where m is the carrier index variable and n is the baseband index variable

• The variables m and n define the angular frequency of each harmonic component

• The magnitudes of the harmonics components are the Amn and Bmn coefficients

This function f(t) will provide a exact solution to determine the harmonic components of a PWMopposed to the traditional method of computing an FFT of the waveform, which will always besensitive to the time resolution of the simulation and the periodicity of the overall waveform.

(†) D. G. Holmes and T. A. Lipo, PWM For Power Converters, Wiley Inter-science, USA, 2003

sensitive to the time resolution of the simulation and the periodicity of the overall waveform.

Page 16: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierAnalyzing the function f(t) we have that

where m = n = 0, corresponds to the DC offset component of the PWM (if any)

h 0 t th f d t l t

200A

( ) ( )( )∑∞

iBA where m = 0, represents the fundamental componentand baseband harmonics (if any)

h 0 d fi th i h i (hi h( ) ( )( )∑∞

iA

( ) ( )( )∑=

+1

00 sincosn

onon tnBtnA ωω

where n = 0, defines the carrier wave harmonics (high-frequency components)

h ≠ 0 t th( ) ( )( )∑ ∑∞ ∞

iBA

( ) ( )( )∑=

+1

000 sincosm

mcm tmBtmA ωω

where m, n ≠ 0, represents thesideband harmonics

( ) ( )( )( )

∑ ∑=

≠−∞=

+++1

0

sincosm

nn

ocmnocmn tntmBtntmA ωωωω

• The different summation terms in the PWM function f(t) will depend on the type of carrier waveThe different summation terms in the PWM function f(t) will depend on the type of carrier wave

• In some cases, it will be easier to express the summations using the Bessel function of the firstkind (J)

Page 17: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 1: Sine-Sawtooth Modulation

1 Mcosy = Mcosωot Harmonic components for sawtooth carrier when M = 0.9 and ωc/ωo = 21

x = ωct-T/2 T/2

1

-40

-20

0

gnitu

de (d

B)

-1 0 10 20 30 40 50 60-80

-60

Harmonic Number

Mag

The PWM function van(t) for a sawtooth carrier signal expressed in terms of its harmonicscomponents is

( ) ( ) ( )[ ]∑∞

−++= 0 sincos12cos DCCC tmMmJmVtMVVtv ωππω( ) ( ) ( )[ ]

( ) ( ) ( )( )

∑ ∑

∑∞

=

−∞=

=

⎥⎦⎤

⎢⎣⎡ +−++

++=

1

10

sin2

coscos2

sin12

sincos2cos

m nococn

DC

mcoDCDCan

tntmntntmnMmJm

V

tmMmJmm

tMVVtv

ωωπωωπππ

ωπππ

ω

As we expected, the THD of a class D audio amplifier will be 0.0 % since there are no basebandharmonics generated as we only have the fundamental tone.

( )≠0n

Page 18: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 2: Sine-Triangle Modulation

1 Mcosy = Mcosωot Harmonic components for triangle carrier when M = 0.9 and ωc/ωo = 21

x = ωct-T/2 T/2

1

-40

-20

0

gnitu

de (d

B)

-1 0 10 20 30 40 50 60-80

-60

Harmonic Number

Mag

The PWM function van(t) for a triangle carrier signal expressed in terms of its harmonicscomponents is

( ) ( ) ∑∞

⎟⎞

⎜⎛++= cossin14cos DC tmmMmJVtMVVtv ωππω( ) ( )

[ ] ( )( )

∑ ∑

∑∞

=

−∞=

=

+⎟⎠⎞

⎜⎝⎛ +⎟

⎠⎞

⎜⎝⎛+

⎟⎠

⎜⎝

++=

1

10

cos2

sin2

14

cos2

sin2

4cos

m nocn

DC

mcoDCDCan

tntmnmMmJm

V

tmmMmJm

tMVVtv

ωωπππ

ωπ

ω

As in the previous case, the THD of a class D audio amplifier will be 0.0 % since there are nobaseband harmonics generated as we only have the fundamental tone.

( )≠0n

Page 19: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearity• Previous examples demonstrated that class D audio amplifier provides 0 0% THD ideallyPrevious examples demonstrated that class D audio amplifier provides 0.0% THD ideally

• In reality, THD > 0.0% because the carrier signals are not ideal

• In fact, for an ideal triangle wave carrier signal f(x) we would have( )1n

• And, for an ideal sawtooth wave carrier f(y) we would have

( ) ( )( )

∑∞

=

⎟⎠⎞

⎜⎝⎛−

=,...5,3,1

2

21

2

2sin18n

n

Txn

nxf π

π

-20

0

(dB)

Ideal Triangle Wave Spectrum

( ) ∑∞

=⎟⎠⎞

⎜⎝⎛−=

1

2sin1121

n Txn

nyf π

πWe would need an infinite bandwidth

-60

-40

Mag

nitu

de (We would need an infinite bandwidth

system to generate a perfect carriersignal!

Unfortunately, band-limited systems

0 10 20 30 40 50-80

Harmonic Number

degrade the performance of theoverall class D amplifier generatingundesired baseband components

Page 20: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearity• Double Fourier Integral Analysis is a complex and tedious mathematical derivationg y p

• Instead, we can use the PWM Analysis by Duty Cycle variation if the input signal (audio wave)is assumed to be constant within each carrier cycle, i.e. ωc >> ωo, which is usually the case.

S SExample 1a: Sine-Sawtooth Modulation• Normalizing the period of the sawtooth to 2π and its amplitude to 1, we have

∞aMcosy = Mcosω t( ) ( )∑

=

++=1

0 sincos2 m

mman mxbmxaatv

( )∫=π

dxmxtva cos1ω t

1 Mcosy Mcosωot

( )

( )∫

∫−

π

π

π

dxmxtvb

dxmxtva

anm

anm

sin1

cosx = ωct-π π

0

• We need to calculate the interval where van(t) switches from 0 to 1

∫−ππ0

Page 21: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

• For am coefficients, when m ≠ 0

2. Conventional class D audio amplifierExample 1a: Sine-Sawtooth Modulation (cont.)

m

• For b coefficients when m ≠ 0

( ) ( )[ ]πππππ

π

π

π

π

myMmVdxmxVdxmxtva DCyM

DCanm sincossin2cos2cos1 cos

+=== ∫∫−−

• For bm coefficients, when m ≠ 0

( ) ( )[ ]yMmmVdxmxVdxmxtvb DCyM

DCanm coscoscos2sin2sin1 cos

πππππ

π

π

π

π

−=== ∫∫−−

• When m= 0 we have

• After some mathematical manipulation and applying the Jacobi-Anger expansions, we get the

( ) 0cos12 00 =+= byMVa DC

same expression obtained by using the Double Fourier Integral Analysis

( ) ( ) ( )[ ]∑∞

=

⎤⎡

−++=1

0 sincos12cosm

cDC

oDCDCan tmMmJmm

VtMVVtv ωπππ

ω

( ) ( ) ( )( )

∑ ∑∞

=

≠−∞=

⎥⎦⎤

⎢⎣⎡ +−++

10

sin2

coscos2

sin12m

nn

ococnDC tntmntntmnMmJ

mV ωωπωωπππ

Page 22: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 2a: Sine-Triangle Modulation• Normalizing the period of the sawtooth to 2π and its amplitude to 1, we have

1 Mcosy = Mcosωot ( ) ( )∑∞

=

++=1

0 sincos2 m

mman mxbmxaatv

π1x = ωct-π π

( )

( )∫

∫−

=

π

ππ

dtb

dxmxtva anm

i1

cos1

• We need to calculate the interval where van(t) switches from 0 to 1

0( )∫

=ππ

dxmxtvb anm sin

• For am coefficients, when m ≠ 0

( )( )

( ) ⎥⎤

⎢⎡

⎟⎞

⎜⎛∫∫

+

MVdVd DC

yM

DC 1i421cos1

2 ππ

π

( )( )

( ) ⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +=== ∫∫

+−−

yMmdxmxdxmxtva DC

yM

DCanm cos1

2sin4cos2cos

cos12

πππ ππ

Page 23: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 2a: Sine-Triangle Modulation• For bm coefficients, since the triangle wave is an even functionm g

( )( )

( )

0sin2sin1cos1

2

cos1

=== ∫∫+

+−

yM

yM

DCanm dxmxVdxmxtvb

π

π

π

π ππ

• When m= 0 we have

( )cos12

+− yM

( )yMVa DC cos120 +=

• After some mathematical manipulation, as well as in the previous example, and applying theJacobi-Anger expansions, we get the same expression obtained by using the Double FourierIntegral AnalysisIntegral Analysis

( ) ( )

[ ] ( )∑ ∑

∑∞ ∞

=

⎟⎞

⎜⎛

⎟⎞

⎜⎛

⎟⎠⎞

⎜⎝⎛++=

10

1

cos2

sin2

14cos

DC

mc

DCoDCDCan

V

tmmMmJm

VtMVVtv

ππ

ωπππ

ω

[ ] ( )( )

∑ ∑=

≠−∞=

+⎟⎠⎞

⎜⎝⎛ +⎟

⎠⎞

⎜⎝⎛+

10

cos2

sin2

14m

nn

ocnDC tntmnmMmJ

mV ωωπππ

Page 24: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearity• We propose to generalize the PWM Analysis by Duty Cycle variation and apply it to a anyp p g y y y y pp y ycarrier waveform to calculate analytically the THD in a class D audio amplifier

Example 3: Sine-Non-Ideal Triangle Modulation• Recall that a triangle wave carrier signal is constructed by an infinite sum of sinusoidal• Recall that a triangle wave carrier signal is constructed by an infinite sum of sinusoidalfunctions and since there are not unlimited bandwidth systems, the number of harmonics (n) ina triangle wave carrier signal is finite

1.5Triangle Wave Carrier

0.5

1

e (V

) -1.1

-1.05

-1

)

Triangle Wave Carrier (Zoom-in)

-1

-0.5

0

Vol

tag

n = 1n = 5n = 15n = 25

-1.25

-1.2

-1.15

Vol

tage

(V)

n = 1n = 5n = 15

0 0.2 0.4 0.6 0.8 1

x 10-5

-1.5

Time (sec)

n = ∞

4.5 5 5.5

x 10-6

-1.35

-1.3

Time (sec)

n 15n = 25n = ∞

Page 25: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierSine-Non-Ideal Triangle Modulation• There are two trivial cases in a triangle wave shaped carrier signal

1. When the number of harmonics is infinite we have an ideal triangle wave carrier signaland the THD of the class D amplifier is 0.0%

2. When the number of harmonics is 1 then we have a sine-cosine modulation PWM andthe THD of the class D amplifier will depend on the modulation index (M)the THD of the class D amplifier will depend on the modulation index (M)

• Lets examine the case where the non-ideal triangle wave carrier signal contains one singleharmonic component

Example 3: Sine-Cosine Modulation

( ) ( )∑∞

=

++=1

0 sincos2 m

mman mxbmxaatv

Example 3: Sine-Cosine Modulation1 Mcosy = Mcosωot

1m

( )∫−

=

π

π

ππdxmxtva anm

1

cos1x = ωct-π π

( )∫−

ππdxmxtvb anm sin1

0

Page 26: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

• For am coefficients, when m ≠ 0

2. Conventional class D audio amplifierExample 3: Sine-Cosine Modulation (cont.)

m

( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−=== ∫∫

⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎞⎛

yMmVdxmxVdxmxtva DC

yM

DCanm cos

8arccossin4cos2cos1 2

cos8

arccos2

2

ππππ

π

π

• For bm coefficients, since the cosine is an even function

⎥⎦⎢⎣ ⎠⎝ ⎠⎝⎟⎟⎠

⎞⎜⎜⎝

⎛−−

−yM

8cos

8arccos

2 πππππ

( ) 0sin2sin1cos

8arccos

2

2

=== ∫∫⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎞⎛

yM

DCanm dxmxVdxmxtvb

π

π

π ππ

• When m= 0 we have

cos8

arccos2

⎟⎟⎠

⎞⎜⎜⎝

⎛−−

−yMππ

⎞⎛V 2

⎟⎟⎠

⎞⎜⎜⎝

⎛−= yMVa DC cos

8arccos4

2

π

Page 27: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

• Finally, the function van(t) will be given by

2. Conventional class D audio amplifierExample 3: Sine-Cosine Modulation (cont.)

y an( ) g y

( ) ( )∑∞

=⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎠⎞

⎜⎝⎛=

2

1cos

82sin2arcsinarccos2

kk

DCan kyMJkVtv ππ

π

∑∞

= ⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−+

⎠⎝ ⎦⎣ ⎠⎝

1

2

coscos8

arccossin4m

DC mxyMmV ππ

• We can see that the fundamental component is not alone in the expression but comes withbaseband harmonics product of the cosine shaped-carrier waveform. Such baseband harmonicswill produce the harmonic distortion in the class D audio amplifierwill produce the harmonic distortion in the class D audio amplifier

• It can be appreciated that as we increment the modulation index M, the distortion incrementsexponentially.

• Same procedure can be applied for a given number of harmonics components present in the• Same procedure can be applied for a given number of harmonics components present in thetriangle wave carrier, however, the only closed-form solution exists when n = 1 and n = ∞. Thesolution when 1 < n < ∞ must be calculated numerically.

Page 28: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

• In order to verify the mathematical derivation and its results, we have created a simple

2. Conventional class D audio amplifierExample 3: Sine-Cosine Modulation (cont.)

y pSIMULINK model to simulate a class D audio amplifier and compare the traditional FFT methodand the analytical solution to find the THD in the amplifier

12

14Class D Amplifier THD (n = 1)

Mathematical model

6

8

10

12

THD

(%)

Simulink simulation

2

2.5

3

)

Class D Amplifier THD (n = 5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

2

4

Modulation index

0.5

1

1.5

THD

(%)

Mathematical modelSimulink simulation

Non-ideal triangle wave carrier signal with n = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

Modulation index

Simulink simulation

Non-ideal triangle wave carrier signal with n = 5

Page 29: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 3: Sine-Cosine Modulation (cont.)

1Class D Amplifier THD (n = 15)

Mathematical model0.7

Class D Amplifier THD (n = 25)

Mathematical model

0.6

0.8

THD

(%)

Mathematical modelSimulink simulation

0.3

0.4

0.5

0.6

THD

(%)

Mathematical modelSimulink simulation

Non ideal triangle wave carrier signal with n = 15 Non ideal triangle wave carrier signal with n = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.2

0.4

Modulation index0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

Modulation index

Non-ideal triangle wave carrier signal with n = 15 Non-ideal triangle wave carrier signal with n = 25

0.03

0.04

)

Class D Amplifier THD (n = 99)

Mathematical modelSimulink simulation

1

10Class D Amplifier THD for M = 0.8

Mathematical modelSimulink simulation

0

0.01

0.02

THD

(%)

0.01

0.1

THD

(%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

Modulation index

Non-ideal triangle wave carrier signal with n = 99 0 20 40 60 80 1000.001

Number of Harmonics in Triangle Wave Carrier

Page 30: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 3: Sine-Cosine Modulation (cont.)

Triangle Wave Carrier (n = 3): Mathematical ModelClass D (THD = 3.59352% (-28.890dB)) Triangle Wave Carrier (n = 3)

1

1.5

2

2.5

3

ltage

(V)

g ( )

60

-40

-20

0

Mag

nitu

de (d

B)

Class D output spectrum when n = 3 (M th ti l M d l)

-0.5 0 0.5-0.5

0

0.5

1

Time (sec)

Vol

0 10 20 30 40 50 60-80

-60

Frequency (Hz)

M

(Mathematical Model)

-20

0

(dB

)

Class D Audio Amplifier (THD = 3.60424% (-28.864dB) Triangle Wave)

HD1 = -3.3 dBHD2 = -138.9 dBHD3 32 4 dB

fin = 1.0e+000 HzThe mathematical model predicts with highaccuracy the result in the SIMULINKsimulation!

0 10 20 30 40 50 60-80

-60

-40

Mag

nitu

de ( HD3 = -32.4 dB

HD4 = -144.4 dBHD5 = -45.4 dB

simulation!

Exercise: Can you provide an analyticalexpression for the THD output spectrum when0 10 20 30 40 50 60

Frequency (Hz)

Class D output spectrum when n = 3 (SIMULINK Simulation)

expression for the THD output spectrum whena sawtooth carrier signal with only oneharmonic is used to PWM an audio signal?

Page 31: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierCarrier signal nonlinearity• Lets now analyze the case when an exponential waveform is used as a carrier signaly p g

• An exponential waveform is usually employed as a carrier signal due to its simpleimplementation

Example 4: Sine-Exponential Modulationp p• The exponential waveform is generated by charging/discharging a simple RC integrator withsquare pulses.

1.5Exponential Carrier Signals

Defining a set of normalized exponential waves

0.5

1

(V)

ABCDE

⎪⎪⎪⎪⎪⎫

⎪⎪⎪⎪⎪⎧

<<−⎪

⎪⎪⎪

⎪⎪⎪

−−

−⎟⎟⎟⎟

⎜⎜⎜⎜

⎛⎟⎠⎞

⎜⎝⎛ +−

02

,11

2

0

2

xTerror

erroreV

t

Tx

DC

Defining a set of normalized exponential waves

-1

-0.5

0V

olta

ge

( )

⎪⎪⎪⎪

⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎟⎟

⎜⎜

⎛−

⎪⎪⎪

⎭⎪⎪⎪

⎩=⎟⎟⎠

⎞⎜⎜⎝

⎛ −

01

1

2

21

0

Te

V

error

xft

x

0.5 1 1.5

x 10-5

-1.5

Time (sec)⎪⎪⎪⎪

⎭⎪⎪⎪⎪

<<

⎪⎪⎪

⎪⎬

⎪⎪⎪

⎪⎨ −

−⎠⎝

20,1

12 x

errorVDC

Page 32: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

Normalizing the exponential carrier to a period of 2π we can calculate the Fourier coefficients

2. Conventional class D audio amplifierExample 4: Sine-Exponential Modulation (cont.)Normalizing the exponential carrier to a period of 2π we can calculate the Fourier coefficientsbased on the PWM Analysis by Duty Cycle Variation

Mcosy = Mcosωot

( ) ( )∑∞

=

++=1

0 sincos2 m

mman mxbmxaatv

x = ω t

1 Mcosy Mcosωot

( )∫=π

πdxmxtva anm cos1

x = ωct-π π

0

( )∫−

π

π

π

π

dxmxtvb anm sin1

0

Page 33: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

• For am coefficients, when m ≠ 0

2. Conventional class D audio amplifierExample 4: Sine-Exponential Modulation (cont.)

m

( ) ( )

( )

== ∫⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−−−

⎟⎟⎞

⎜⎜⎛ +

+−−−

cos2

1cos1211ln

11cosln

0

0

dxmxVa

yVMerrort

errorerroryMt

DCm

DC

ππ ( )

( ) ( ) ( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−−−−⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−−−=

⎟⎟⎠

⎜⎜⎝

211cos

2lnsin1cos1

211lnsin2 00

2cos

20

errorerroryVMtmy

VMerrormt

mVa

DCDC

DCm

e oyV

tDC

ππ

π

• For bm coefficients

( )

== ∫⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−−−

sin2

1cos1211ln0

dxmxVb

yVMerrort

DCDC

( ) ( )

( ) ( ) ( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−−−−⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−−−−=

∫⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−−−

211cos

2lncos1cos1

211lncos2

sin2

00

211cos

2ln0

errorerroryVMtmy

VMerrormt

mVb

dxmxb

DCm

errorerroryVMt

m

DC

ππ

ππ

⎥⎦⎢⎣⎟⎠

⎜⎝ ⎠⎝ ⎠⎝⎟

⎠⎜⎝ ⎠⎝ ⎠⎝ 222 VVm DCDCπ

Page 34: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier

• For am coefficients, when m ≠ 0

2. Conventional class D audio amplifierExample 4: Sine-Exponential Modulation (cont.)

m

( )

( )

= ∫⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−−−

⎟⎞

⎜⎛ +

2

1cos1211ln

10

0

dxVa

yVMerrort

errorM

DCDC

π( ) ( )

( ) ( ) ( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−++⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−−−=

⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−−−

211cos

2ln1cos1

211ln2 000

211cos

2ln0

errorerroryVMty

VMerrortVa

DCDC

DC

errorerroryVMt

DC

ππ

π

• As in the previous example, the coefficient a0 will have the fundamental tone as well as

⎥⎦⎢⎣ ⎠⎝ ⎠⎝⎠⎝ ⎠⎝ DCDC

0baseband harmonics that will degrade the class D audio amplifier THD

• As the ‘error’ parameter increases, the exponential wave behaves in a quasi-triangular wayand the baseband harmonics magnitude decrease.

• Like in the previous example, a SIMULINK model was created and simulated in order tocompare the results of both procedures.

Page 35: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 4: Sine-Exponential Modulation (cont.)

1.5Exponential Carrier Signals

0

0.5

1

ge (V

)

ABCDE

1

10

%)

Class D Amplifier THD (Exponential waves 'B' and 'A')

-1

-0.5

0

Vol

tag

0.01

0.1THD

(%

Mathematical model (wave 'B')Mathematical model (wave 'A')Simulink simulation (wave 'B')Simulink simulation (wave 'A')

0.5 1 1.5

x 10-5

-1.5

Time (sec)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.01

Modulation index

0.8Class D Amplifier THD (Exponential waves 'D' and 'C')

Mathematical model (wave 'D')Mathematical model (wave 'C')

0.02Class D Amplifier THD (Exponential wave 'E')

0.2

0.4

0.6TH

D (%

)Mathematical model (wave 'C')Simulink simulation (wave 'D')Simulink simulation (wave 'C')

0.005

0.01

0.015

THD

(%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.2

Modulation index0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.005

Modulation index

Mathematical modelSimulink simulation

Page 36: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

2. Conventional class D audio amplifier2. Conventional class D audio amplifierExample 4: Sine-Exponential Modulation (cont.)

Class D (THD = 0.23470% (-52.590dB)) Exponential Carrier3

Exponential Carrier: Mathematical Model

-40

-20

0

gnitu

de (d

B)

1

1.5

2

2.5

Vol

tage

(V)

0 10 20 30 40 50 60-80

-60

Frequency (Hz)

Ma

-0.5 0 0.5-0.5

0

0.5

Time (sec)

V

Cl D t t t ( th ti l d l)

0

B)

Class D Audio Amplifier (THD = 0.23494% (-52.5dB) Exponential Wave)

HD1 = -3.7 dBHD2 = -144.8 dB

fin = 1.0e+000 Hz

Class D output spectrum (mathematical model)

The mathematical model predicts with highaccuracy the result in the SIMULINKsimulation!

-60

-40

-20

Mag

nitu

de (d

B HD2 144.8 dBHD3 = -56.3 dBHD4 = -146.4 dBHD5 = -103.7 dB

simulation!

This analysis method can be further applied toany carrier wave or even multiphase systems

0 10 20 30 40 50 60-80

Frequency (Hz)

Class D output spectrum (SIMULINK simulation)

any carrier wave or even multiphase systemswhere multilevel PWM is generated.

Page 37: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier (†)3. Proposed class D audio amplifier (†)(single ended architecture)

Controller Comparator Power Stage Output Filter

L

C R

U

vc

iLVINVOUT

SlidingMode

ControllerVOUT

VA

MDP

MDN

VDD

VSS

Class D amplifier with sliding surface

(†) M. Rojas-Gonzalez, E. Sanchez-Sinencio, “Design of a Class D Audio Amplifier IC Using Sliding Mode Control and Negative

Feedback”, IEEE Transactions on Consumer Electronics, Vol. 53, No. 2, May 2007.

Page 38: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier:3. Proposed class D audio amplifier:PWM generation

Traditional architecture

• Ideally fixed frequency

• Jitter (degrades linearity)( g y)

• Non-linear circuit

• Carrier generator adds complexity

• Non ideal triangle wave

Proposed architecture

• Non-ideal triangle wave

L

C R

U

vc

iLVINVOUT

SlidingMode

ControllerVOUT

VA

Controller Comparator Power Stage Output Filter

VDD

Proposed architecture• No dedicated triangle wave

• Linearity no compromisedC Rvc

MDP

MDN

DD

VSS

• Good transient response

• Variable frequency (450KHz-600KHz)

Page 39: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier3. Proposed class D audio amplifier

Error function

( ) ( ) ( )Switching function

( )OUTA VVeV −== 11

Error function

( ) ( ) ( )sesαeαeeαeeesV 11121213 1, +=+=+== &

Class D Amplifier with sliding surfacePhase portraits in a class D audio amplifier

Page 40: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier3. Proposed class D audio amplifier

( )OUTA VVeV −== 11

Error function

( ) ( ) ( )sesαeαeesV 11113 1+=+== &

Switching function

IC MicrophotographIC Microphotograph

Page 41: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier3. Proposed class D audio amplifier

Efficiency vs. input signal

Sliding mode phases

A – Initial condition

B R hi dB – Reaching mode

C – Sliding surface

D – Sliding equilibrium point

Output spectrum (300 mVpp)

Page 42: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier3. Proposed class D audio amplifier

THD versus audio frequency inputTHD versus audio voltage inputTHD versus audio voltage input

SNR versus audio frequency inputSNR versus audio frequency inputPSRR versus audio frequency input

Page 43: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

3. Proposed class D audio amplifier3. Proposed class D audio amplifierDesign THD η Supply Load I0

[1] 0.28% 92% 2.5 V 8 Ω 25.2 μA

[2] 0.11% 70% 5.0 V 8 Ω -[2] 0.11% 70% 5.0 V 8 Ω

[3] 0.03% 76% 4.2 V 8 Ω 4.7 mA

[4] 0.20% 90% 5.0 V 4 Ω -

[5]* 0.08% 85% 5.0 V 4 Ω 8.0 mA

[6]* 0.40% 87% 2.7 V 4 Ω 2.8 mA

[7] 0.04% 79% 3.6 V 8 Ω 2.5 mA

[8] 0.10% 92% 12 V 8 Ω -

This work 0.08% 91% 2.7 V 8 Ω 2.0 mA

[1] S. C. Li, V. C. Lin, K. Nandhasri and J. Ngarmnil, “New high-efficiency 2.5V/0.45W RWDM class D audio amplifier for portable consumer electronics”, IEEE Trans. on Circuits and Systems I, Vol. 52, No. 9, pp. 1767-1774, September 2005.

[2] K. Philips, J. Van Der Homber and C. Dijkmas, “Power DAC: a single-chip audio DAC with 70% efficient power stage in 0.5um CMOS”, IEEE International Solid-State Circuits Conference, pp. 154-155, February 1999.

[3] B F jt V R t l J D A t d G B “A 700+ W l D d i ith di t b tt h k i 90 ” IEEE J l f S lid St t Ci it[3] B. Forejt, V. Rentala, J. D. Arteaga and G. Burra, “A 700+-mW class D design with direct battery hookup in a 90nm process”, IEEE Journal of Solid-State Circuits, Vol. 40, No. 9, pp. 1880-1887, September 2005.

[4] J. Lee, J. Lee, G. Lee and S. Kim, “A 2W BTL single-chip class D power amplifier with very high efficiency for audio applications”, IEEE International Symposium on Circuits and Systems, Vol. 5, pp. 493-496, May 2000.

[5] TPA2000D2 2W Filterless Stereo class D Audio Power Amplifier Datasheet, Texas Instruments Inc., Publication Number SLOS291E, May 2003.

[6] MAX4295 Mono, 2W Switch-Mode (class D) Audio Power Amplifier Datasheet, Maxim Integrated Products Inc., January 2001.

[7] P. Muggler, W. Chen, C. Jones, P. Dagli and N. Yazdi, “A filter free class D audio amplifier with 86% power efficiency”, Proceedings of the 2004 International Symposium on Circuits and Systems, Vol. 1, pp. I-1036-1039, May 2004.

[8] S. Choi, J. Lee, W. Jin and J. So, “A design of a 10W single-chip class D audio amplifier with very high efficiency using CMOS technology”, IEEE Trans. on Consumer Electronics, Vol. 45, No. 3, pp. 465-473, August 1999.

Page 44: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

4. Class D audio amplifiers: two design4. Class D audio amplifiers: two design approaches

Motivation Single-ended class D amplifier• Single ended architecture generates even-order distortion tones which degrades linearity

• Single ended version generates “quasi” differential output by adding an extra inverter (causes delay and

g p

output by adding an extra inverter (causes delay and distortion)

Advantages of fully-differential version

Fully-differential class D amplifier• Even-order cancellation enhances linearity

• No delay in signal paths

Improvements from single-ended version• Reduction of building blocks (operations are done in a single OPAMP)

C t d i i d ith i t l iti• Comparator design is done with internal positive feedback instead of poly-resistors

Page 45: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

4. Class D audio amplifiers: two design4. Class D audio amplifiers: two design approaches

Output waveforms

Output spectrum

Page 46: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

4. Class D audio amplifiers: two design4. Class D audio amplifiers: two design approaches

MotivationM ltil l t t b tt li it b f• Multilevel converters present better linearity as number of

level increases

• High frequency components are pushed to higher frequencies (for three level modulation, carrier fs is pushed to 2xfs)2xfs)

• Possibility of adding an extra-level by using H-bridge already present in class D output stage

Advantages of three-level architectureAdvantages of three-level architecture• Multi-level modulation = linearity improvement

• No additional hardware cost

CharacteristicsCharacteristics• Two identical switching surfaces are created (Two binary comparators are used)

• Each switching surface is fed by the audio signal shifted 180 degrees from each othershifted 180 degrees from each other

• Each output stage operates at two different levels

• Differential output becomes multi-level!!!

Page 47: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

4. Class D audio amplifiers: two design4. Class D audio amplifiers: two design approaches

Output waveform

Three-level PWM

Output spectrum

Page 48: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

4. Class D audio amplifiers: two design4. Class D audio amplifiers: two design approaches

90 Class D Amplifiers Efficiency

70

75

80Class D Amplifiers SNR

60

70

80

90

55

60

65

70

SNR

(dB

)

30

40

50

60

Effic

ienc

y (%

)

102

103

10440

45

50

Frequency (Hz)

Class D Fully DifferentialClass D Multilevel

10

20

30E

Class D Fully DifferentialClass D Multilevel 70

75

80Class D Amplifiers PSRR

0 0.05 0.1 0.15 0.2 0.250

Output Power (W)

60

65

PSR

R (d

B)

Class D fully-differential and multilevel have similar efficiencies and linearity but multilevel

102

103

10450

55

Frequency (Hz)

Class D Fully DifferentialClass D Multilevel

similar efficiencies and linearity but multilevel modulation gives better SNR and PSRR due to

the extra level of quantization.

Page 49: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

Table of comparison 3100eTHDIFM

××=

ηTable of comparisonDesign THD η Supply Load I0 SNR PSRR fs PO, max Area Process FM

[3] 0.20% - 3.0V 8Ω -81dB - 1.5MHz 381 mW

1.20 mm2 0.35um CMOS

-

[4] 0.07% 92% 2.5V 8Ω 25.2uA80dB 85dB 200KHz 330mW

0.60 mm2 0.50um CMOS

5

31000 eTHDI ××

[ ]CMOS

[5] 0.50% 85% - - - 85dB 40dB - - - - -

[6] 0.11% 70% 5.0V 8Ω -- 90dB 1.0MHz 250mW

12.5 mm2 0.50um CMOS

-

[7] 0.03% 76% 4.2V 8Ω 4.7mA98dB 70dB 410KHz 700mW

0.44 mm2 90nm DCMOS

6

[8] 0.20% 90% 5.0V 4Ω -- - 450KHz 1250mW

12.3 mm2 0.65um CMOS

-

[9]* 0.08% 70% 5.0V 4Ω 4.0mA 87dB 77dB 250KHz 1000mW - - 2

[10]* 0.40% 87% 2.7V 4Ω 2.8mA - - 125KHz 700mW - - 1- 84dB 250KHz 500mW 1 2um

[11] 0.04% 79% 3.6V 8Ω 2.5mA84dB 250KHz 500mW

2.25 mm2 1.2um BiCMOS

8

[12] 0.10% 92% 12.0V 8Ω -- - 180KHz 10.0W

25.0 mm2 4.00um CMOS

-

[13] 0.19% - 3.0V 8Ω -95dB - 700KHz 400mW

2.25 mm2 0.35um CMOS

-

[14] 0.04% 80% 3.3V 4Ω -- - 20MHz -

-0.35um CMOS

-

SE 0.08% 91% 2.7V 8Ω 2.0mA65dB 70dB 500KHz 200mW

4.70 mm2 0.50um CMOS

6

FD 0.04% 89% 2.7V 8Ω 1.3mA75dB 62dB 450KHz 250mW

1.88 mm2 0.50um CMOS

17CMOS

ML 0.10% 85% 2.7V 8Ω 836uA78dB 75dB 450KHz 250mW

2.48 mm2 0.50um CMOS

10

* Commercial product.

Page 50: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

Thank you

Page 51: Class D Audio AmplifiersClass D Audio Amplifierss-sanchez/ECEN 607 Class D 2011.pdf · 2. Conventional class D audio amplifier2. Conventional class D audio amplifier Continuously

ReferencesReferences

[3] A. Yasuda, T. Kimura, K. Ochiai and T. Hamasaki, “A class D amplifier using a spectrum shaping technique”, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference, pp. 173-176, October 2004.[4] S. C. Li, V. C. Lin, K. Nandhasri and J. Ngarmnil, “New high-efficiency 2.5V/0.45W RWDM class D audio amplifier for portable consumer electronics”, IEEE Trans. on Circuits and Systems I, Vol. 52, No. 9, pp. 1767-1774, September 2005.[5] M. Score and D. Dapkus, “Optimized modulation scheme eliminates output filter”, Proceedings of the 109th

AES Convention pp 22-25 September 2000AES Convention, pp. 22 25, September 2000.[6] K. Philips, J. Van Der Homber and C. Dijkmas, “Power DAC: a single-chip audio DAC with 70% efficient power stage in 0.5um CMOS”, IEEE International Solid-State Circuits Conference, pp. 154-155, February 1999.[7] B. Forejt, V. Rentala, J. D. Arteaga and G. Burra, “A 700+-mW class D design with direct battery hookup in a 90nm process”, IEEE Journal of Solid-State Circuits, Vol. 40, No. 9, pp. 1880-1887, September 2005.[8] J L J L G L d S Ki “A 2W BTL i l hi l D lifi ith hi h ffi i f[8] J. Lee, J. Lee, G. Lee and S. Kim, “A 2W BTL single-chip class D power amplifier with very high efficiency for audio applications”, IEEE International Symposium on Circuits and Systems, Vol. 5, pp. 493-496, May 2000.[9] TPA2000D2 2W Filterless Stereo class D Audio Power Amplifier Datasheet, Texas Instruments Inc., Publication Number SLOS291E, May 2003.[10] MAX4295 Mono, 2W Switch-Mode (class D) Audio Power Amplifier Datasheet, Maxim Integrated Products [ ] , ( ) p , gInc., January 2001.[11] P. Muggler, W. Chen, C. Jones, P. Dagli and N. Yazdi, “A filter free class D audio amplifier with 86% power efficiency”, Proceedings of the 2004 International Symposium on Circuits and Systems, Vol. 1, pp. I-1036-1039, May 2004.[12] S Choi J Lee W Jin and J So “A design of a 10W single chip class D audio amplifier with very high[12] S. Choi, J. Lee, W. Jin and J. So, A design of a 10W single-chip class D audio amplifier with very high efficiency using CMOS technology”, IEEE Trans. on Consumer Electronics, Vol. 45, No. 3, pp. 465-473, August 1999.


Recommended