+ All Categories
Home > Documents > Clutter Rejection

Clutter Rejection

Date post: 04-Jun-2018
Category:
Upload: michael-liu
View: 230 times
Download: 0 times
Share this document with a friend

of 37

Transcript
  • 8/14/2019 Clutter Rejection

    1/37

    Radar Course_1.pptODonnell 10-26-01

    MIT Lincoln Laboratory

    Introduction to Radar Systems

    Clutter RejectionMTI and Pulse Doppler Processing

  • 8/14/2019 Clutter Rejection

    2/37

    MIT Lincoln LaboratoryRadar Course_2.pptODonnell (2) 6-19-02

    Disclaimer of Endorsement and Liability

    The video courseware and accompanying viewgraphs presented onthis server were prepared as an account of work sponsored by anagency of the United States Government. Neither the United StatesGovernment nor any agency thereof, nor any of their employees, northe Massachusetts Institute of Technology and its Lincoln Laboratory,nor any of their contractors , subcontractors, or their employees,makes any warranty, express or implied, or assumes any legal l iabilityor responsibil ity for the accuracy, completeness, or usefulness of anyinformation, apparatus, products, or process disclosed, or representsthat its use would not infringe privately owned rights. Reference hereinto any specific commercial product, process, or service by trade name,trademark, manufacturer, or otherwise does not necessarily constitute

    or imply its endorsement, recommendation, or favoring by the UnitedStates Government, any agency thereof, or any of their contractors orsubcontractors or the Massachusetts Institute of Technology and itsLincoln Laboratory.

    The views and opinions expressed herein do not necessarily state orreflect those of the United States Government or any agency thereof or

  • 8/14/2019 Clutter Rejection

    3/37

    MIT Lincoln LaboratoryRadar Course_3.pptODonnell (2) 6-19-02

    MTI and Doppler Processing

    Transmitter

    PulseCompression

    Recording

    Receiver

    Tracking &Parameter Estimation

    Console /Display

    Antenna

    PropagationMedium

    TargetCross

    Section Doppler Processing A / D

    Waveform

    Generator

    Detection

    Signal Processor

    Main Computer

  • 8/14/2019 Clutter Rejection

    4/37

    MIT Lincoln LaboratoryRadar Course_4.pptODonnell (2) 6-19-02

    How to Handle Noise and Clutter

  • 8/14/2019 Clutter Rejection

    5/37

    MIT Lincoln LaboratoryRadar Course_5.pptODonnell (2) 6-19-02

    How to Handle Noise and Clutter

    If he doesnttake his arm off

    my shoulderIm going to hide

    his stash of Hershey Bars !! Why does Stevealways talk me into doing

    ridiculousstunts like this ?

  • 8/14/2019 Clutter Rejection

    6/37

    MIT Lincoln LaboratoryRadar Course_6.pptODonnell (2) 6-19-02

    Ground Clutter

    Sea Clutter

    Rain Clutter Chaff

    Naval Air Defense Scenario

    MIT Lincoln LaboratoryMTI_RadSys2001-6

    JW 7/31/2008

    Moving Target Indicator (MTI) and Pulse-Doppler (PD)processing use Doppler to reject clutter and enhancedetection of moving targets

    Smaller targets require more clutter suppression

    Birds

  • 8/14/2019 Clutter Rejection

    7/37

    MIT Lincoln LaboratoryRadar Course_7.pptODonnell (2) 6-19-02

    Outline

    Introduction Moving Target Indicator (MTI) Techniques Pulse Doppler Processing Techniques

    Summary

  • 8/14/2019 Clutter Rejection

    8/37

    MIT Lincoln LaboratoryRadar Course_8.pptODonnell (2) 6-19-02

    Terminology

    Just separate moving targetsfrom clutter

    Use short waveforms (twoor three pulses) Do not provide target velocity

    estimation

    Separate targets into differentvelocity regimes in addit ionto canceling clutter

    Provide good estimates oftarget velocity

    Use long waveforms -- (manypulses, tens to thousands ofpulses)

    Moving Target Indicator (MTI)Techniques

    Pulsed Doppler (PD)Techniques

  • 8/14/2019 Clutter Rejection

    9/37

    MIT Lincoln LaboratoryRadar Course_9.pptODonnell (2) 6-19-02

    Doppler Frequency

    1 10 100 100010

    100

    1000

    10000

    Radial Velocity (m/s)

    D o p p

    l e r

    F r e q u e n c y

    ( H z )

    1 5 0 M

    H z 4 5 0 M H z

    3 G H z

    1 0 G H z 3 5 G

    H z At S-Band (2800 MHz)

    f d ~ 1 kHz / 40 m/s

    f dV

    =

    2

    Doppler Frequency

  • 8/14/2019 Clutter Rejection

    10/37

    MIT Lincoln LaboratoryRadar Course_10.pptODonnell (2) 6-19-02

    Example Clutter Spectra

    0 50 100 150 200

    -20-10

    0

    1020

    30

    4050

    60

    70

    Radial Velocity (m/s)

    R e

    l a t i v e

    P o w e r

    ( d B )

    Land Clutter

    Sea Clutter

    Rain Clutter

    Chaff Clutter

    Clutter comes from same range/angle cellas a target

    Clutter RCS can be much larger than targetsof interest (>50 dB)

    Characteristics vary with terrain (land/sea),weather, etc.

    PPI Display of Heavy Rain

    Aircraft

    Birds

  • 8/14/2019 Clutter Rejection

    11/37

    MIT Lincoln LaboratoryRadar Course_11.pptODonnell (2) 6-19-02

    MTI and Pulse Doppler Waveforms

    Tc = MT r Tr

    T

    Time

    T = Pulse length

    B = 1/T Bandwidth

    Tr = Pulse repetit ion interval (PRI)f r = 1/T r Pulse repetition frequency (PRF)

    = T /T r Duty Factor

    Tc = MT r Coherent processing interval (CPI)M = Number of pulses in the CPI

    M = 2, 3, or sometimes 4 for MTIM usually much greater for Pulse Doppler

    T = Pulse length

    B = 1/T Bandwidth

    Tr = Pulse repetit ion interval (PRI)f r = 1/T r Pulse repetition frequency (PRF)

    = T /T r Duty Factor

    Tc = MT r Coherent processing interval (CPI)M = Number of pulses in the CPI

    M = 2, 3, or sometimes 4 for MTIM usually much greater for Pulse Doppler

  • 8/14/2019 Clutter Rejection

    12/37

    MIT Lincoln LaboratoryRadar Course_12.pptODonnell (2) 6-19-02

    Data Collection for Doppler Processing

    Samples at same range gate

    Sample No.

    Range - >

    P

    u l s e

    N u m

    b e r

    ( S l o w

    t i m e

    )

    11 L

    M

    TimeRange

    A/DIn-phase andQuadratureSampling

    ComplexI / Q samples

    (the complexenvelope of

    receivedwaveform)

    Pulse 1Sample 12e.g. 8.3 km

    Pulse 3Sample 12e.g. 8.3 km

    Pulse 2Sample 12e.g. 8.3 km

  • 8/14/2019 Clutter Rejection

    13/37

    MIT Lincoln LaboratoryRadar Course_13.pptODonnell (2) 6-19-02

    Outline

    Introduction Moving Target Indicator (MTI) Techniques Pulse Doppler Processing Techniques

    Summary

  • 8/14/2019 Clutter Rejection

    14/37

    MIT Lincoln LaboratoryRadar Course_14.pptODonnell (2) 6-19-02

    Moving Target Indicator (MTI) Processing

    Notch out Doppler spectrum occupied by clutter Provide broad Doppler passband everywhere else

    Blind speeds occur at multiples of the pulse repetitionfrequency When sample frequency (PRF) equals a multiple of the

    Doppler frequency

    0 f r = 1/T 2f r

    Clutter Notch Blind Speeds

    ClutterSpectrum

    MTI Filter

  • 8/14/2019 Clutter Rejection

    15/37

    MIT Lincoln LaboratoryRadar Course_15.pptODonnell (2) 6-19-02

    Two Pulse MTI Canceller

    Fixed Clutter echoes If one pulse is subtracted from the previous pulse, fixed clutter

    echoes will cancel and will not be detected

    Moving targets Moving targets change in amplitude from one pulse to the next

    because of their Doppler frequency shift.

    If one pulse is subtracted from the other, the result will be anuncancelled residue

    DelayTr=1/PRF Subtract

    Input Output

    Voutput = V i+1 - Vi

    Block Diagram

    Figure by MIT OCW.

  • 8/14/2019 Clutter Rejection

    16/37

    MIT Lincoln LaboratoryRadar Course_16.pptODonnell (2) 6-19-02

    MTI Improvement Factor

    S in and C in - Input target and clutter power per pulse S out (f d) and C out (f d) Output target and clutter power from

    processor at Doppler frequency, f d

    MTI Improvement Factor = I(f d) =

    0 50 100 150 200

    -20

    0

    20

    40

    60

    Radial Velocity (m/s)

    R e

    l a t i v e

    P o w e r

    ( d B ) Land Clutter

    Rain Clutter

    Aircraft

    (Signal / Clutter) out(Signal / Clutter) in f d

    I(f d) = x

    f d

    C inC

    outS

    in

    S out

    Clutter Attenuation

    SignalGain

    MTI Improvement Factor

  • 8/14/2019 Clutter Rejection

    17/37

    MIT Lincoln LaboratoryRadar Course_17.pptODonnell (2) 6-19-02

    MTI Improvement Factor Examples

    Spread Clutter ( v=1 m/s, c=10 Hz )

    0 200 400 600 800 10000

    10

    20

    30

    40

    50

    60

    Doppler Frequency (Hz)

    I m p r o v e m e n

    t F a c

    t o r

    ( d B )

    2 Pulse MTI3 Pulse MTI2 Pulse MTI3 Pulse MTI

    Voutput = V i - Vi-1

    Voutput = V i - 2V i-1 + V i-2

    3-Pulse MTI

    2-Pulse MTI

    Frequency = 2800 MHzCNR = 50 dB per pulsef d = 1000 Hz

    Three-pulse canceller provides wider clutter notch andgreater clutter attenuation

  • 8/14/2019 Clutter Rejection

    18/37

    MIT Lincoln LaboratoryRadar Course_18.pptODonnell (2) 6-19-02

    Staggered PRFs to Increase Blind Speed

    0 100 200 300 400 500 600 700 800

    -20

    -10

    0

    Radial Velocity (m/s)

    S N R R

    e l a t i v e

    t o S i n g

    l e P u

    l s e

    ( d B )

    0 100 200 300 400 500 600 700 800

    -20

    -10

    0

    Radial Velocity (m/s)

    Fixed 2 kHz PRI at S-Band

    Staggered 2 kHz, 1.754 kHz PRI

    321-00423HGT 03/04/98

    Staggering or changing thetime between pulses willraise the blind speed

    Although the staggeredPRFs remove the blind

    speeds that would have beenobtained with a constantPRF, there will be a newmuch higher blind speed

    MTI Frequency Response

  • 8/14/2019 Clutter Rejection

    19/37

    MIT Lincoln LaboratoryRadar Course_19.pptODonnell (2) 6-19-02

    Outline

    Introduction Moving Target Indicator (MTI) Techniques Pulse Doppler Processing Techniques

    Pulse Doppler Filtering Concept

    Basic Concepts

    Example - Moving Target Detector (MTD)

    Range Doppler Ambiguities

    Airborne Radar

    Summary

  • 8/14/2019 Clutter Rejection

    20/37

    MIT Lincoln LaboratoryRadar Course_20.pptODonnell (2) 6-19-02

    Data Collection for Doppler Processing

    Samples at same range gate

    Sample No.

    Range - >

    P u

    l s e

    N u m

    b e r

    ( S l o w

    t i m e

    )

    11 L

    M

    Time

    Range

    A/DIn-phase andQuadratureSampling

    ComplexI / Q samples

    (the complexenvelope of

    receivedwaveform)

    Pulse 1Sample 12e.g. 8.3 km

    Pulse 3Sample 12e.g. 8.3 km

    Pulse 2Sample 12e.g. 8.3 km

  • 8/14/2019 Clutter Rejection

    21/37

    MIT Lincoln LaboratoryRadar Course_21.pptODonnell (2) 6-19-02

    Pulse Doppler Processing

    Coherent integration of all pulses of a CPI Clutter rejection Resolving targets into different velocity segments and allowing for fine-

    grain target radial velocity estimation

    Filter 1(f 1, v 1)

    Filter 2(f 2, v 2)

    Filter 3(f 3,v 3)

    Filter M(f M,v M)

    Doppler Filter Bank

    M pulses in

    M Doppler velocitybins out

    Doppler FrequencyDoppler Velocity

  • 8/14/2019 Clutter Rejection

    22/37

    MIT Lincoln LaboratoryRadar Course_22.pptODonnell (2) 6-19-02

    Moving Target Detector (MTD)

    Pulse Doppler filtering on groups of 8 or greater pulses with a finegrained clutter map.

    Aircraft are detected in ground clutter and / or rain with the Doppler

    fil ter bank & use of 2 PRFs. Birds and ground traffic are rejected in post processing, using

    Doppler velocity and a 2 nd fine grained clutter map

    PostProcessing

    Thresholding

    8 or Greater Pulse Doppler

    Filter Bank

    Clutter MapFilter

    AdaptiveThresholding

    ZeroVelocity

    Filter

    Digit ized Radar Echoes From

    Each Range Cell

    OutputDetections

  • 8/14/2019 Clutter Rejection

    23/37

    MIT Lincoln LaboratoryRadar Course_23.pptODonnell (2) 6-19-02

    ASR-9 8-Pulse Filter Bank

    0 20 40 60 80 100-70

    -60

    -50

    -40

    -30

    -20

    -10

    010

    Radial Velocity (kts)

    M a g

    n i t u

    d e

    ( d B )

    ASR-9 Filter Bank

    0 20 40 60 80 100-70

    -60

    -50

    -40

    -30

    -20

    -10

    010

    Radial Velocity (kts)

    M a g n

    i t u

    d e

    ( d B )

    ASR-9 One Doppler Fi lter

    RainEcho

    Aircraft

    Courtesy of Northrop GrummanUsed with permission.

  • 8/14/2019 Clutter Rejection

    24/37

    MIT Lincoln LaboratoryRadar Course_24.pptODonnell (2) 6-19-02

    Unprocessed Radar Returns

    0 + 60 Kt 60 Kt

    Doppler Veloci ty

    Doppler Spectrum of Rain

    80

    60

    40

    20

    0 R e c e

    i v e

    d P

    o w e r

    ( d B )

    MTD Performance in Rain

    Time History of Radar Tracker Output August 1975, FAA Test Center

  • 8/14/2019 Clutter Rejection

    25/37

  • 8/14/2019 Clutter Rejection

    26/37

    MIT Lincoln LaboratoryRadar Course_26.pptODonnell (2) 6-19-02

    Range Ambiguities

    RcT

    ur

    = 2

    Unambiguous range

    Range ambiguit ies occur when echoesfrom one pulse are not all received beforethe next pulse

    Strong close targets (clut ter) can mask farweak targets

    TrueRange

    Radar Range

    Target 1

    R 1 R R R u2 1

    Target 2

  • 8/14/2019 Clutter Rejection

    27/37

    MIT Lincoln LaboratoryRadar Course_27.pptODonnell (2) 6-19-02

    Unambiguous Range and Doppler Velocity

    100 1000 10000 100000

    10

    100

    1000

    PRF (Hz)

    U n a m

    b i g u o u s

    V e

    l o c

    i t y

    ( m / s

    )

    1500 150 15 1.5Unambiguous Range (km)

    500 50 5

    1 5 0 M

    H z

    4 5 0 M

    H z

    3 G H z

    1 0 G H

    z

    3 5 G H z

    V

    f u

    r

    2

    R cTur =

    2c=

    2 f r

    l ( )

  • 8/14/2019 Clutter Rejection

    28/37

    MIT Lincoln LaboratoryRadar Course_28.pptODonnell (2) 6-19-02

    Sensitivity Time Control (STC)

    0 dBsm Aircraft at 200 km-64 dBsm Mosquito at 5 km

    Both Targets Give Returns with Same Signal-to-Noise ratio

    Attenuation of radar return by R -4 will result in constant SNR asa function of range for a constant cross section target

    STC cannot be used if the radars waveform is ambiguous inrange Targets which are beyond the ambiguous range of the radar will

    be attenuated, because they folded over to close ranges

    Deliberately reduce radar sensitivity at short rangesWhy?

    321-00418HGT 03/04/98

    Cl f MTI d P l D l R d

  • 8/14/2019 Clutter Rejection

    29/37

    MIT Lincoln LaboratoryRadar Course_29.pptODonnell (2) 6-19-02

    Classes of MTI and Pulse Doppler Radars

    Wind blown clutter maybe a problem Range eclipsing losses

    Far out targets competewith near in clutter Cant use STC Ambiguities hardest toremove

    Wind blown cluttermay be a problem Can use STC

    Range eclipsing losses Far out targets competewith near in clutter

    Cant use STC

    Low PRF Medium PRF High PRF

    RangeMeasurement

    VelocityMeasurement

    Unambiguous

    Unambiguous

    Ambiguous

    AmbiguousVery Ambiguous

    Very Ambiguous

    Low PRF Medium PRF High PRF

    V l i A bi i R l i

  • 8/14/2019 Clutter Rejection

    30/37

    MIT Lincoln LaboratoryRadar Course_30.pptODonnell (2) 6-19-02

    Velocity Ambiguity Resolution

    Split dwell into multiple CPIs at different PRFs Scan to scan, even pulse-to-pulse changes also possible

    Moves blind velocities to ensure detection of all non-zero velocity targets True target velocity is where best correlation across CPIs occurs Choose PRFs so that least common multiple occurs above desired

    maximum unambiguous velocity

    f 2

    CPI #1PRF = f 1

    CPI #2PRF = f 2

    f 1

    2f 2 3f 2 4f 2

    2f 1 3f 1 4f 1 5f 1 Doppler (Velocity)

    Doppler

    (Velocity)

    Unfold detections out to some maximum velocity

    Individual CPI

    unambiguous velocityregions

    BlindZones

    E l f Ai b R d

  • 8/14/2019 Clutter Rejection

    31/37

    MIT Lincoln LaboratoryRadar Course_31.pptODonnell (2) 6-19-02

    Examples of Airborne Radar

    E-2C APS-125

    F-18 APG-65

    F-16 APG-66 , 68

    JOINT STARS E-8A APY-3

    AWACSE-3A APY-1

    F-15 APG-63 , 70

  • 8/14/2019 Clutter Rejection

    32/37

    MIT Lincoln LaboratoryRadar Course_32.pptODonnell (2) 6-19-02 MIT Lincoln Laboratory

    Figure by MIT OCW.

    Airborne Radar Clutter Spectrum

  • 8/14/2019 Clutter Rejection

    33/37

    MIT Lincoln LaboratoryRadar Course_33.pptODonnell (2) 6-19-02

    Airborne Radar Clutter Spectrum

    Illustrative example without Pulse Doppler ambiguities

    Figure by MIT OCW.

    Airborne Radar Clutter Spectrum

  • 8/14/2019 Clutter Rejection

    34/37

    MIT Lincoln LaboratoryRadar Course_34.pptODonnell (2) 6-19-02

    Airborne Radar Clutter Spectrum

    Illustrative example without Pulse Doppler ambiguities

    Figure by MIT OCW .

    Displaced Phase Center Antenna (DPCA)C

  • 8/14/2019 Clutter Rejection

    35/37

    MIT Lincoln LaboratoryRadar Course_35.pptODonnell (2) 6-19-02

    Concept

    344334_2.pptRMO 9-01-00

    If the aircraft motion is exactly compensated by the movement of thephase center of the antenna beam, then there will be no clutterspread due to aircraft motion, and the clutter can be cancelled with atwo pulse canceller

    T1

    T2

    Summary

  • 8/14/2019 Clutter Rejection

    36/37

    MIT Lincoln LaboratoryRadar Course_36.pptODonnell (2) 6-19-02

    Summary

    Moving Target Indicator (MTI) techniques Doppler fi ltering techniques that reject stationary clutter

    No velocity measurement

    Blind speeds are regions of Doppler space where targets with thatDoppler veloci ty cannot be detected

    Changing the PRF between sets of pulses can alleviate the blindspeed problem

    MTI techniques have a limited capabil ity to suppress rain clutter

    Pulse Doppler techniques Used to optimally reject various forms of radar clutter

    Measurement of target radial velocity

    Moving Target Detector techniques are an example of opt imum Dopplerprocessing and associated adaptive thresholding

    Ambiguities in range and Doppler velocity can be resolved bytransmitting multiple bursts of pulses with different PRFs

    Airborne radars use multiple PRF waveforms to suppress clutter

    References

  • 8/14/2019 Clutter Rejection

    37/37

    MIT Lincoln LaboratoryRadar Course_37.pptODonnell (2) 6-19-02

    References

    Skolnik, M., Introduction to Radar Systems, New York,McGraw-Hill, 3 rd Edition, 2001


Recommended