+ All Categories
Home > Documents > CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d -...

CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d -...

Date post: 10-Mar-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
25
CML 100: Time has come for the baton change ! Physical Chemistry Dr Shashank Deep Inorganic Chemistry Dr Anil. J. Elias
Transcript
Page 1: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

CML 100:  Time has come for the baton change ! 

Physical Chemistry Dr Shashank Deep

Inorganic  Chemistry Dr Anil. J. Elias

Page 2: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

CML 100   Inorganic Chemistry Component 

Coordination ChemistryCrystal field theory, Crystal Field Stabilization Energy, Explaining physical properties, magnetic properties, distortion of shape 

and  color of complexes using CFT

Organometallic ChemistryThe 18 electron rule, Metal sandwich compounds and 

Carbonyls , Unique reactions of organometallics and their use in explaining homogeneous catalysis

Bio inorganic  ChemistryRole of transition metals such as Fe and Zn in biological systems, 

Cytochromes, Myoglobin, Hemoglobin, and Carbonic 

anhydrase

Main Group ChemistrySilicones, silicates, 

aluminosilicates, zeolites and shape selective catalysis

Instructor:  Prof. Anil J. Elias,             Room:  MS 733:  IIG1. Tel 15044.30  to 6.00 PM

11 lectures –mostly in powerpoint :  three sets of  home assignments; solved problems with home assignments; copies of powerpoint slides will 

be made available as pdf on course coordinators website.

Page 3: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Text books for Inorganic  Chemistry Part

IIT D 2015 L1‐S2

Most important : Attending classes: Questions will be based on what is taught in the classSee my  IIT Delhi website for more  problems in organometallic chemistry  

J. E. HuheeyKeiter & Keiter

B.D.GuptaA. J. Elias

Worked out 

problems

Copies available  in the textbook section of library

Page 4: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

NCERT CHEMISTRY     Class 12 Textbook     Book 1

Background requirement: +2 level CBSE/ICSE and JEE advanced syllabus levelIIT D 2015  L1‐S3

Page 5: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

NCERT CHEMISTRY     Class 12 Textbook     Book 1

IITD 2015 L1‐S4

Page 6: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Theories of Bonding in transition metal complexesTheories of bonding  were proposed  and used to explain the observed properties of transition metal complexes such as color, magnetism, shape of complexes

Valence bond theory

Crystal Field theory

Molecular Orbital Theory

Mulliken (Nobel 1966) & Hund

Linus PaulingNobel 1954,1962

Hans BetheNobel 1967

IITD 2015 L1‐S6

Page 7: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Anurag sharma

Ajoy Ghatak

Theories of bonding in transition metal complexes – in a nutshellto explain the observed properties of the metal complexes such as color, magnetism, shape

Valence bond theory

Crystal Field theory

Molecular Orbital Theory

Mulliken & Hund

Linus Pauling

Hans Bethe

• Based on the concept of hybridization sp3, dsp2, dsp3, d2sp3 & sp3d2 : Predicts shapes of complexes very efficiently• Can determine magnetic moment if hybridization is known and vice versa• Does not explain color of complexes, distortion of shape of complexes• Does not predict  strength of ligands or temperature dependence of magnetic moments 

•Basic assumptions: Ligands and metal are point charges and the  attraction between them is purely electrostatic in nature•Considers how the energies  of the five metal d orbitals change in the presence of a ligand field (removing /lifting of the degeneracy).•Provides explanation to color, arranges ligands according to their strength, explains distortion of complexes and anomalies in their physical properties•VBT and CFT should not be MIXED: A common mistake done by many students

•A larger picture where both metal orbitals and ligand group orbitals are made to form bonding, non bonding and antibonding orbitals.• CFT splitting is included in this picture; also orbital overlap:  π bonding•Explains color, magnetism and energetics (does not predict shape)

IITD 2015 L1‐S7

Page 8: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Finding an  explanation for the observed properties of transition metal complexes using Crystal Field Theory

Color of metal complexes

Magnetic properties of complexesVariation of some physical properties of metal complexes across a period

Distortion in the shape of complexes

IITD 2015 L1‐S8

Temperature dependence of magnetic moments

Page 9: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Energetics involved in the CFT model

i) Separated metal and ligands at high energy

ii) Electrostatic attraction between metal  and ligands leading to stabilization (heart of CFT)

iii) Destabilization due to ligandelectrons‐metal  d electrons repulsion in a spherical field

iv) Further splitting  of the 5 d orbitalsto 2 sets due to an octahedral field.

i

ii

iiiiv

Basic Assumptions of Crystal Field theory ( concept borrowed from solid state physics)

•The ligands and the metal are considered as point charges•The attraction between the metal and the ligands is purely electrostatic•Properties of the metal complexes are explained based on changes happening to the d orbitals of the metal only

IITD 2015 L1‐S9

Page 10: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Orbitals affected when ligands approach a metal in an octahedral arrangement 

Ligands with their pair of electrons approach the metal along the X, Y and Z axes for an octahedral complex formation

d‐orbitals not pointing directly at x, y and z  axis are stabilized to maintain the overall energy same

d‐orbitals having lobes pointing directly at x,y and z axis are repelled most by electron‐electron repulsion

IITD 2015 L1‐S10

Page 11: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Energy

d - orbitals stabilized by metal- ligandelectrostatic attraction

d - orbitals in a spherical field of six ligands

d - orbitals splitting in anoctahedral crystal field

eg

t2g

d xy d yz d xz

d x2– y

2 d z2

Δo or 10Dq

‐0.4Δo

+0.6Δo

Splitting of the d‐orbitals in an octahedral field

t2g : triply degenerate  set of orbitals : eg doubly degenerate set of orbitalsg= gerade: symmetric with respect to the centre of inversionu= ungerade : antisymmetric w. r. t the centre of inversion

Barycenter: A point between objects where they balance each other

IITD 2015 L1‐S11

Page 12: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

High Spin Vs. Low Spin (d1 to d10)

When does a complex prefer High Spin/ low spin arrangement of electrons?

Δo < Pairing energy :  High Spin               Δo >  Pairing Energy : Low Spin

Δo P[Fe(H2O)6 ]2+ d6 9350    19150   High Spin[Fe(CN)6 ]4‐ d6 32200    19150   Low Spin

IITD 2015 L1‐S12

Δo < P

Δo > P

Page 13: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Because the sample absorbs most strongly around the green  region of the visible spectrum, it appears purple. 

Significance of  Δo  and its physical measurement 

Electronic spectrum of  [Ti(H2O)6]3+

494 nm = 20,300 cm‐1

1 kj = 83.7 cm‐1

[Ti(H2O)6]3+ Δo = 20,300 cm‐1 = 243 kj/mol

Since an electron in the t2g set is stabilized by ‐0.4 Δo 243 X ‐0.4   = ‐97 kj/mol

The complex is stabilized  to the extent of 97 kj/mol compared to a hypothetical spherical field due to the splitting of the d orbitals; This extra stablization of the complex is called crystal field stablizationenergy (CFSE)t2g1eg0 t2g0eg1

UV –Visible Spectroscopy

t2g

eg

3d14s0

IITD 2015 L1‐S13

Page 14: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

eg

t2g

Δo < Peg

t2g

Energy

Weak Field/ High Spin Strong  Field/Low Spin

Δo > P

Crystal   Field Stabilization  Energy :  The d4 Case

t2g3eg1 t2g4eg0

CFSE =  ‐1.2 Δo + 0.6Δo= ‐ 0.6 Δo

CFSE =  ‐1.6 Δo + 1 pairing= ‐ 1.6 Δo + P

‐0.4Δo

+0.6Δo+0.6Δo

‐0.4Δo

IITD 2015 L1‐S14

Page 15: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

What is Pairing Energy, P?

The pairing energy is not an experimentally obtained value like Δo and is same for a metal ion irrespective of the ligands. It is made up of two terms.

1) The inherent coulombic repulsion that must be overcome when two electrons are forced to occupy the same orbital. (Destabilizing energy contribution of Pc for each doubly occupied orbital).

2) Loss of exchange energy ( based on Hunds rule) that occurs as two electrons with parallel spin (↑↑) are forced to become antiparrallel (↑↓)in an orbital. (contribution of Pe for each pair having same spin and same energy)

P = sum of all Pc and Pe interactions

IITD 2015 L1‐S15

Page 16: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

‐0.4Δo

+0.6Δo

CFSE = -2.0Δo +2P

‐0.4Δo

+0.6Δo

CFSE = -2.4Δo +2P

CFSE = -2.4Δo +3P

The d5  and d6  low spin cases and the correct  way  to determine  pairing energy contribution

Always compare  the extent of pairing with the situation before the splitting  of  five  d orbitals occurred

IITD 2015 L1‐S16

Page 17: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

The crystal field stabilization energy (CFSE) 

The stability that results from placing a transition metal ion in thecrystal field generated by a set of ligands.

It arises due to the fact that when the d‐orbitals are split in a ligandfield, some of them become lower in energy than before withrespect to a spherical field in which all five d‐orbitals weredegenerate.

For example, in an octahedral case, the t2g set becomes lower inenergy with respect to the barycenter. As a result, if there are anyelectrons occupying these t2gorbitals, the metal ion is more stablein the ligand field relative to the barycenter by an amount knownas the CFSE.

Conversely, the eg orbitals (in the octahedral case) are higher inenergy with respect to the barycenter, so having electrons in theseorbitals reduces the amount of CFSE.

IITD 2015 L1‐S17

Page 18: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

dn Mag moment Elec. Config. CFSE

d1 1.73 BM t2g1 -0.4 Δo

d2 2.83 BM t2g2 -0.8 Δo

d3 3.87 BM t2g3 -1.2 Δo

d4 4.90 BM t2g3 eg

1 -0.6 Δo

d4 LS 2.83 BM t2g4 -1.6 Δo +P

d5 5.92 BM t2g3 eg

2 0 d5 LS 1.73 BM t2g

5 -2.0 Δo +2Pd6 4.90 BM t2g

4 eg2 -0.4 Δo

d6 LS 0 BM t2g6 -2.4 Δo +2P

d7 3.87 BM t2g5 eg

2 -0.8 Δo

d7 LS 1.73 BM t2g6 eg

1 -1.8 Δo+ Pd8 2.83 BM t2g

6 eg2 -0.1.2 Δo

d9 1.73 BM t2g6 eg

3 -0.6 Δo

d10 t2g6 eg

4 0

IITD 2015 L1‐S18

Page 19: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Factors affecting the magnitude of crystal field splitting, Δ

1. Nature of metal ion (row to which it belongs)Going from the first row to second row there is an increase in Δo : Larger the metal larger is the Δ

2. Oxidation state of the metal ion  (higher the oxidation state more is the Δo

3. Number  of ligands and shape of complex (Octahedral, tetrahedral, square planar….)

4. Relative strength of the ligand (SpectrochemicalSeries)

IITD 2015 L1‐S19

Page 20: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Factors Affecting the Magnitude of  Crystal Field Splitting  Δ

Size of the metal ion / Row to which the metal ion belongLarger the size (row to which it belongs) larger the Δ value

[Co(en)3]3+                                                  23,200 cm‐1

[Rh(en)3]3+                                                  34,600 cm‐1

[Ir(en)3]3+                                                    41,000 cm‐1

∼ 50% increase

∼ 25% increase

Consequence:Second and third row transition metals will have greater tendency to form low spin complexes

Reason:Around a  large metal ion, a given set of ligands experience less stericcrowding and therefore can approach closer to the metal ion. More closer‐ larger will be the  splitting

IITD 2015 L1‐S20

Page 21: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Factors Affecting the Magnitude of  Crystal Field Splitting  Δ

Charge on the metal ion / Oxidation state of the metal ionGreater the charge  larger the Δ value

[Co(NH3)6]2+                                                  10,000 cm‐1

[Co(NH3)6]3+                                                 22,900 cm‐1

[Cr(H2O)6]2+                                                  14,000 cm‐1

[Cr(H2 O)6]3+                                                 17,400 cm‐1

Reason:Higher the charge on the metal, the ligands are pulled in towards the metal more  and therefore the ligands split the energies of the metal d orbitals to a greater extent 

IITD 2015 L1‐S21

Page 22: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Factors Affecting the Magnitude of  Crystal Field Splitting  Δ

Number  of ligands around the metal and shape of complex (Octahedral, tetrahedral, square planar….

ΔSP ≈ 1.74  ΔO

IITD 2015 L1‐S22

Page 23: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Splitting of d‐orbitals by a tetrahedral field and a square planar field of ligands.

tetrahedral square planar

Square planar is related to octahedral splitting: Removing the  axial ligands of an octahedron to infinity results in a  square plane

Tetrahedron  is related to cube in splitting of energy levels  Δt  =1/2 ΔCSame arrangement  of orbitals

IITD 2015 L1‐S23

e

t2

Page 24: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

Factors affecting Δ; Strength of the Ligand

The effect of different ligands on the degree of Δ splitting is understood from the UV‐Vis absorption spectra of complexes of the same metal‐ion with different ligands

There is an increase in the frequency of the υ1 (Δo) absorption band as the ligandson Cr3+ is changed from F → O based→ N based  ligands

IITD 2015 L1‐S24

Page 25: CML has come for the baton change Inorganicweb.iitd.ernet.in/~sdeep/Elias_Inorg_lec_1.pdfEnergy d - orbitals stabilized by metal- ligand electrostatic attraction d - orbitals in a

The Spectrochemical series

I − < Br − < S2- < SCN − < Cl − < F − < OH − < Ox < ONO − < H2O Weak field< NCS− < edta 4 − < NH3 ∼ Py < en < bipy < Phen < NO2

− < PPh3 < CN- ∼CO Strong field

COBALT(III) Complexes of(a) CN–, (b) NO2

–, (c) phen, (d) en, (e) NH3, (f) gly, (g) H2O, (h) ox2–, (i) CO32–

Halides ; sulfur donors < Oxygen donors < Nitrogen donors < CN‐, CO

Stepwise addition of ‘en’ to [Ni(H2O)6]2+

IITD 2015 L1‐S25


Recommended