+ All Categories
Home > Documents > CMOS/SiGe BiCMOS 2.4GHz RF Linear Power Amplifier on PCB Module

CMOS/SiGe BiCMOS 2.4GHz RF Linear Power Amplifier on PCB Module

Date post: 30-Dec-2015
Category:
Upload: jorden-cortez
View: 145 times
Download: 6 times
Share this document with a friend
Description:
CMOS/SiGe BiCMOS 2.4GHz RF Linear Power Amplifier on PCB Module. 指導教授:劉致為 博士 學生:賴宏諱 台灣大學電子工程學研究所. Outline. Introduction Basic Concepts and Design Flow CMOS Power Amplifier SiGe BiCMOS Power Amplifier PCB Module Fabrication Summary. Outline. Introduction - PowerPoint PPT Presentation
53
RTO RTCVD poly RTCVD nitride Clean Module Load lock ellipso- meter foup NTU GIEE NanoSiOE 2005/06/18 1 CMOS/SiGe BiCMOS 2.4GHz RF Linea CMOS/SiGe BiCMOS 2.4GHz RF Linea r Power Amplifier on PCB Module r Power Amplifier on PCB Module 指指指指 指指指 指指 指指 指指指 指指指指指指指指指指指指
Transcript

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 1

CMOS/SiGe BiCMOS 2.4GHz RF Linear PCMOS/SiGe BiCMOS 2.4GHz RF Linear P

ower Amplifier on PCB Moduleower Amplifier on PCB Module

指導教授:劉致為 博士學生:賴宏諱

台灣大學電子工程學研究所

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 2

OutlineOutline

IntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power Amplifier SiGe BiCMOS Power Amplifier

PCB Module Fabrication PCB Module Fabrication

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 3

OutlineOutline

IntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power Amplifier SiGe BiCMOS Power Amplifier

PA Module AssemblyPA Module Assembly

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 4

Wireless TechnologyWireless TechnologyTechnology Standard Usage Data Rate Range Frequency

UWB 802.15.3a WPAN 1.3Gbps 30 feet 3.1-10.6Ghz

Wi-Fi 802.11b WLAN 11Mbps 100 feet 2.4Ghz

Wi-Fi 802.11a/g WLAN 54Mbps 100 feet 5.8/2.4Ghz

Wi-Fi 802.11n WLAN >100Mbps 100 feet 5.8/2.4Ghz

WiMax 802.16a WMAN 75Mbps 4-6 miles 2-11Ghz

WiMax 802.16e Mobile, WMAN 30Mbps 1-3 miles 2-6Ghz

WCDMA 3G Mobile 2Mbps 1-5 miles 1.8~2.1Ghz

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 5

Technology For PA DesignTechnology For PA Design

GaAs

CMOS

SiGe BiCMOS

LDMOS

InGaP

Moderate Cost and Performance

High Cost and Performance

In past, GaAs was the first choice for high frequency PA desi

gn because of high electron mobility and breakdown voltage.

After technology improvement, more and more technologies

are used.

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 6

Why CMOS and SiGe BiCMOS?Why CMOS and SiGe BiCMOS?

VCO

LNA

Mixer

Mixer

PA LPF

BPF Baseband

Baseband

Antenna

Fabricated by CMOS

Fabricated by other technology

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 7

VCO

LNA

Mixer

Mixer

PA LPF

BPF Baseband

Baseband

Antenna

Fabricated by Si-based

Why CMOS and SiGe BiCMOS?Why CMOS and SiGe BiCMOS?

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 8

OutlineOutlineIntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power Amplifier SiGe BiCMOS Power Amplifier

PA Module AssemblyPA Module Assembly

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/18 9

Classification of Power Classification of Power AmplifierAmplifier

Linear: for non-constant envelope modulation (ex: OFDM)

Class A : 100% duty cycle, effmax= 50%

Class B : 50% duty cycle, effmax= 78.5%

Class C : <50% duty cycle, effmax=78.5%~100%

Class AB: 50%~100% duty cycle, effmax=50%~78.5%

Nonlinear: for constant envelope modulation (ex: GMSK)

Class D: ideal 100% efficiency

Class E: ideal 100% efficiency

Class F: ideal 100% efficiency

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1815

Linear Power AmplifierLinear Power Amplifier

VGS

Vds

ZLoad

Ids

VDD

ids

V0

Vq

VtGate voltage

VIN

Idc

ImaxiD

0

Drain current

0

VDSV0

2ππ 3π 4π

Drain voltage

ω t

VDD

Vds=VDD+ids*ZLoad

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1816

Load LineLoad Line

Ropt

=(Vbreakdown

-Vknee

)/Ids

VGS

operation point

Vbreakdown

Vknee

I DS

VDS

Vin and iD swing

Vo swing

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1817

Pure Resistance ZPure Resistance ZLoadLoad

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1818

∠∠ZZLoadLoad from 0 from 0o o to 90to 90oo

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1819

∠∠ZZLoadLoad from 0 from 0o o to 90to 90oo

Vds=Idsx50∠30o →Vds leads more 30o to Ids

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1820

Load Line for different PLoad Line for different P inin

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1821

Inductive ZInductive ZLoadLoad

0.5 1.0 1.5 2.00.0 2.5

1

2

3

4

0

5

40

60

80

100

20

120

time, nsec

ts(Ids.i), mAts

(Vds

), V

Clockwise for inductive load

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1822

Capacitive ZCapacitive ZLoadLoad

0.5 1.0 1.5 2.00.0 2.5

1.5

2.0

2.5

3.0

3.5

1.0

4.0

40

50

60

70

80

90

30

100

time, nsec

ts(Ids.i), mAts

(Vds

), V

Counterclockwise for capacitive load

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1825

Design FlowDesign FlowEstablish Specification According to

Standard & Product Data Sheet

Circuit Topology DeterminationUnit Cell Selection & Characterization

Circuit Topology Determination & Output Power Planning

Design Each Stage: DC, Small & Large Signal Simulation

Layout, Parasitic Extraction and Post-layout Simulation

Adding Matching and Bias circuit

PCB Design (Loadpull, TRL & Matching)

Performance Measurement

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1826

OutlineOutlineIntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power Amplifier SiGe BiCMOS Power Amplifier

PA Module AssemblyPA Module Assembly

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1827

Self-Biased Cascode Self-Biased Cascode

VoutVin

Vdc

1 2 3 4 50 6

20

40

60

80

0

100

VDS

casc

ode.

i, m

AC

S.i,

mA

Vout

Vin

Vdc

R

C

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1828

Schematic of 0.25um CMOS PASchematic of 0.25um CMOS PA

Unit Device : 64 fingers 10/0.25um RF NMOSVDD=3.3V

X1

X2 X6

X4

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1829

Bond wire and Pad ModelBond wire and Pad Model

80 µm

80 µm0.082 pF

625 ohmM5

1mm

1nHQ=72.6@2GHz

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1830

Circuit LayoutCircuit Layout

Chip size : 0.98mm x 0.73mm=0.7154mm2

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1831

Die Photo and PA ModuleDie Photo and PA Module

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1832

MeasurementMeasurement

Linear gain=26dB, P1dB=18.5dBm, Psat=21.8dBm

Select VGS=1.1V, VDD=3.3V

Current versus Pin for different VGS

Output power and gain versus Pin

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1833

MeasurementMeasurement

IDC=170mA, PAE@P1dB=13%, maximum PAE=23%

2.2 2.4 2.6 2.82.0 3.0

-40

-30

-20

-10

-50

0

freq, GHz

dB(S

(1,1

))dB

(S(1

,2))

dB(S

(2,2

))

At 2.45GHz, S11=-12.3dB, S22=-16.4dB, S12=-40.7dB

IDC and PAE versus Pin S-parameters

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1834

SummarySummaryFrequency (GHz) 2.4~2.484

VDD (Volts) 3.3

Psat (dBm) 21.8

P1dB(dBm) 18.5

Linear Gain (dB) 26

IDC (mA) 170

IDC (mA)@P1dB 177

S11(dB) -12.3

S12(dB) -40.7

S22(dB) -16.4

PAE@P1dB(%) 13

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1835

Schematic of 0.18um CMOS PASchematic of 0.18um CMOS PA

Unit Device : 64 fingers 2.5/0.18um RF NMOSVDD=2.5V

X1

X2 X6

X4

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1836

Bias Control CircuitBias Control Circuit

Powerdetector

VD1

VDD

C2C1

R3

R1

R2VGS2

Sensing power

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1837

SimulationSimulation

1 dB compressed point→ +1.3dBm

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1838

OutlineOutlineIntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power AmplifierSiGe BiCMOS Power Amplifier

PA Module AssemblyPA Module Assembly

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1839

Schematic of 0.35um SiGe PASchematic of 0.35um SiGe PA

Input

OUTPUT

stage2bias

circuit

λ /4 λ /4 λ /4

Vcc VccVcc

Q1 Q2 Q3

stage1bias

circuit

stage3bias

circuit

Unit Device : hw153c2 (emitter:20.3um/0.9um)

Vcc=3.3V, Q1:4X, Q2:16X, Q3:48X

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1840

Bond-wire and Pad ModelBond-wire and Pad Model

80 µm

80 µm 40 µm0.23 pF

180 ohm

M1, M2 & M3

1mm

1nHQ=72.6@2GHz

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1841

Active Bias CircuitActive Bias Circuit

Vcc

R2R1

R3R4

C1

Q1

Q2

VBE

Main signal path

DC base current

IE1

+

-VBE1

VBE1

IE1

-40 -30 -20 -10 0 10 209

101112131415161718

hw153c2x2 + 0.375 nH LE

Gai

n (

dB

)

Pout

(dBm)

VBE

=0.81V V

BE=0.84V

VBE

=0.87V

Linearity improvement

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1842

Active Bias CircuitActive Bias Circuit

Vcc

R2R1

R3R4

C1

Q1

Q2

VBE

Main signal path

DC base current

IE1

+

-VBE1

Temperature Compensation

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1843

Circuit LayoutCircuit Layout

Die size : 1.36mm x 0.68mm (0.9248mm2 )

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1844

Die Photo and PA ModuleDie Photo and PA Module

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1845

MeasurementMeasurement

Pout and gain versus Pin PAE and ICC versus Pin

IDC=360mA, PAE@P1dB=15%,

maximum PAE=24%

Linear gain=27.6dB, P1dB=20.7dBm, Psat=25.4dBm

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1846

MeasurementMeasurement

Data rate=54Mbps, 64QAM OFDM

S-parameters

At 2.45GHz, S11=-12.6dB, S22=-14dB, S12=-39.7dB

Error Vector Magnitude

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1847

Spectrum MaskSpectrum Mask

Transmit Emission Mask

Frequency/MHz2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500

-87

-77

-67

-57

-47

-37

-27

-17

-7

3

13Transmit Emission Mask

Frequency/MHz2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500

-93

-83

-73

-63

-53

-43

-33

-23

-13

-3

7

Pout=17.8dBm (CCK) Pout=15.2dBm (OFDM)

fc=2.45GHz,802.11b,11MB/s,CCK 802.11g,54MB/s, 64QAM OFDM

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1848

SummarySummaryFrequency (GHz) 2.4~2.484

Vcc (Volts) 3.3

Psat (dBm) 25.4

P1dB(dBm) 20.7

Pout@11b 17.8

Pout@11g 15.2

Linear Gain (dB) 27.6

IDC (mA) 361

IDC (mA)@P1dB 385

S11(dB) -12.6

S12(dB) -39.7

S22(dB) -14

PAE@P1dB(%) 15

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1849

Loop of Power Control Loop of Power Control

PAVGA

Power Detector

Controller

Antenna

Output signalInput signal

Power detector senses present output power level

and inform the controller by a corresponding DC voltage

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1850

Power Detector Circuit Power Detector Circuit (( II ))

Vdetect

Diode

Main power flow

Antenna

Vdc

Diode

PA output terminal

Sensing power

Temperature compensation

circuit

Use BC junction for smaller capacitance.

Added a diode to cancel DC offset caused by temperature variation.

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1851

Power Detector Circuit Power Detector Circuit (( IIII ))VdcVdc

Vdetect+ -

Sensing power

Vi

Ic

Q1 Q2

-10 0 10 20 300.0

0.5

1.0

1.5

2.0

2.5

Vde

tect(v

olts

)Pout(dBm)

25oC

55oC

85oC

Vi=VQ+Vaccosθ

Ic=Isexp(VQ/VT)exp(Vaccosθ/VT) A DC component can be extracted from the term exp(Vaccosθ/VT)

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1852

Dual Power Amplifier for IEEE Dual Power Amplifier for IEEE 802.11n802.11n

TGn Sync(Task Group n)

Agere, Atheros, Cisco, Intel, InterDigital, Marvell, Mitsubishi , Nortel, Panasonic, Philips, Qualcomm , Samsu

ng, SANYO, Sony, and Toshiba

WWiSE(World Wide Spectrum E

fficiency)

Airgo, Broadcom, Buffalo, Conexant, ETRI, Hughes, Motorola, Nokia, Ralink, Realtek, STMicro, TI, TrellisW

are, and Winbond

The main techniques multiply the data rate :

(1) Spatial multiplexing (MIMO): 2 to 4 Tx/Rx.

(2) Increasing the channel bandwidth: 2040 MHz/channel.

(3) Increasing the constellation size: 64-QAM or Higher

(4) Increasing the coding rate: (3/45/6 or 7/8)

(5) Reducing the guard interval: (800ns400ns)

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1853

Dual Power Amplifier for IEEE Dual Power Amplifier for IEEE 802.11n802.11n

Die size : 1.98mm x 1.28mm (2.5344mm2 )

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1854

OutlineOutlineIntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power Amplifier SiGe BiCMOS Power Amplifier

PA Module AssemblyPA Module Assembly

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1855

Load Pull SystemLoad Pull System

Signal Generator

PA(Psat: 40dBm)

Power Meter

Power Supply

Spectrum Analyzer

Power Spliter-16dB

IsolatorBias Tee

Source Tuner

DUTLoad Tuner Bias Tee

Power Spliter

Antenuator

First, one tuner remains unchanged, and the other tuner varies to find

the optimal impedance of maximum output power.

Then the latter tuner keeps the optimal impedance, and the former

tuner starts tuning.

After iterated tuning, the optimal ZS and ZL are found.

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1856

Load Pull& TRL PCBLoad Pull& TRL PCB

344mil344mil

648mil

648mil

344mil 344mil

Load Pull PCB TRL PCB(Through, Reflect, Load)

Use TRL to eliminate effect of 344mil TL line.

FR4 648mil/28mil TL line equals toλ/4 of 2.45GHz

Die

Use load pull PCB to find optimal ZS and ZL for maximum power output

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1857

Matching PCBMatching PCB

Matching PCB

Photo of matched PA Module

Passive Device: Murata SMD

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1858

Power ContourPower Contour

After doing load pull on matched PA module, the optimal ZL is near 50 Ohm.It means that the matching is well done.

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1859

OutlineOutlineIntroductionIntroduction

Basic Concepts and Design FlowBasic Concepts and Design Flow

CMOS Power AmplifierCMOS Power Amplifier

SiGe BiCMOS Power Amplifier SiGe BiCMOS Power Amplifier

PA Module AssemblyPA Module Assembly

SummarySummary

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

NTU GIEE NanoSiOE 2005/06/1860

SummarySummary A 2.4GHz 0.25um CMOS PA achieves linear gain=26dB, Psat=21.8dBm,

P1dB=18.5dBm and maximum PAE=23%.

We designed a 2.4GHz 0.18um CMOS PA with bias control circuit. From simulation, the 1dB compressed point increases 1.3dBm.

A 2.4GHz 0.35um SiGe BiCMOS PA achieves linear gain=27.6dB, Psat=

20.4dBm, P1dB=20.7dBm and maximum PAE=24%. Under IEEE 802.11

b operation, maximum Pout=17.8dBm; under IEEE 802.11g operation, maximum Pout=15.2dBm.

Two types power detector are designed.

Based on SiGe PA topology, we design a dual power amplifier for new standard 802.11n.


Recommended