+ All Categories
Home > Documents > Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1...

Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1...

Date post: 08-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
105
Β© 2017 Synopsys, Inc. 1 Optical Engineering Services John R. Rogers, Ph.D. Senior Scientist, Imaging Engineering November, 2018 Multiple Ways to Look At IT Color Correction
Transcript
Page 1: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 1 Optical Engineering Services

John R. Rogers, Ph.D. Senior Scientist, Imaging Engineering November, 2018

Multiple Ways to Look At ITColor Correction

Page 2: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 2 Optical Engineering Services

Classical Approach: n, V, PIt’s all about choosing the right glasses… Or is it?

OSC Lecture: Color Correction

Page 3: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 3 Optical Engineering Services

The P vs. V Map

OSC Lecture: Color Correction

Page 4: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 4 Optical Engineering Services

Abbe Number

𝑉𝑉 =𝑛𝑛𝑑𝑑 βˆ’ 1𝑛𝑛𝐹𝐹 βˆ’ 𝑛𝑛𝐢𝐢

𝑉𝑉 β‰ˆ 64 for NBK7𝑉𝑉 β‰ˆ 30 for NSF1

What is the physical significance of 𝜈𝜈?

𝑛𝑛𝐹𝐹 βˆ’ 𝑛𝑛𝐢𝐢 =𝑛𝑛𝑑𝑑 βˆ’ 1𝑉𝑉

…And?

OSC Lecture: Color Correction

Page 5: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 5 Optical Engineering Services

Primary Color of a Singlet in Air

Power of a singlet in air:πœ™πœ™πœ†πœ† = (𝑐𝑐1 βˆ’ 𝑐𝑐2)(π‘›π‘›πœ†πœ† βˆ’ 1)

Ξ”πΉπΉπΆπΆπœ™πœ™ ≑ πœ™πœ™πΉπΉ βˆ’ πœ™πœ™πΆπΆ

Δ𝐹𝐹,πΆπΆπœ™πœ™ = 𝑐𝑐1 βˆ’ 𝑐𝑐2 𝑛𝑛𝐹𝐹 βˆ’ 𝑛𝑛𝐢𝐢

Ξ”πΉπΉπΆπΆπœ™πœ™ = 𝑐𝑐1 βˆ’ 𝑐𝑐2𝑛𝑛𝑑𝑑 βˆ’ 1𝑉𝑉

Ξ”πΉπΉπΆπΆπœ™πœ™ =πœ™πœ™π‘‰π‘‰

Primary color (Ξ”πΉπΉπΆπΆπœ™πœ™) of a singlet: 1/64th of πœ™πœ™ for NBK71/30th of πœ™πœ™ for NSF1

OSC Lecture: Color Correction

Page 6: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 6 Optical Engineering Services

Partial Dispersion

𝑃𝑃𝑑𝑑,𝐢𝐢 =𝑛𝑛𝑑𝑑 βˆ’ 𝑛𝑛𝐢𝐢𝑛𝑛𝐹𝐹 βˆ’ 𝑛𝑛𝐢𝐢

𝑃𝑃𝑑𝑑,𝐢𝐢 β‰ˆ 0.3076 for NBK7𝑃𝑃𝑑𝑑,𝐢𝐢 β‰ˆ 0.2895 for NSF1

What is the physical significance of 𝑃𝑃𝑑𝑑,𝐹𝐹?

𝑃𝑃𝑑𝑑,𝐢𝐢 = π‘›π‘›π‘‘π‘‘βˆ’π‘›π‘›πΆπΆπ‘›π‘›πΉπΉβˆ’π‘›π‘›πΆπΆ

= The fraction of the dispersion that occurs between the d-line and the C-line

OSC Lecture: Color Correction

Page 7: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 7 Optical Engineering Services

Primary Color Correction for a Thin DoubletCorrect Ξ”πΉπΉπΆπΆπœ™πœ™β€’ For a thin lens:

Ξ”πΉπΉπΆπΆπœ™πœ™ =πœ™πœ™π‘‰π‘‰

β€’ For a thin doubletπœ™πœ™ = πœ™πœ™1 + πœ™πœ™2

Ξ”πΉπΉπΆπΆπœ™πœ™ =πœ™πœ™1𝑉𝑉1

+πœ™πœ™2𝑉𝑉2

β€’ Want πœ™πœ™1𝑉𝑉1

+πœ™πœ™2𝑉𝑉2

= 0

πœ™πœ™1 = 𝑉𝑉1𝑉𝑉1βˆ’π‘‰π‘‰2

πœ™πœ™

πœ™πœ™2 =βˆ’π‘‰π‘‰2

𝑉𝑉1 βˆ’ 𝑉𝑉2πœ™πœ™

(β‰ˆ 1.9 πœ™πœ™, for NBK7 and NSF1)

(β‰ˆ -0.9 πœ™πœ™, for NBK7 and NSF1)

OSC Lecture: Color Correction

Page 8: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 8 Optical Engineering Services

Primary Color Correction for a Thin DoubletCorrect Ξ”πΉπΉπΆπΆπœ™πœ™β€’ For a thin lens:

Ξ”πΉπΉπΆπΆπœ™πœ™ =πœ™πœ™π‘‰π‘‰

β€’ For a thin doubletπœ™πœ™ = πœ™πœ™1 + πœ™πœ™2

Ξ”πΉπΉπΆπΆπœ™πœ™ =πœ™πœ™1𝑉𝑉1

+πœ™πœ™2𝑉𝑉2

β€’ Want πœ™πœ™1𝑉𝑉1

+πœ™πœ™2𝑉𝑉2

= 0

πœ™πœ™1 = 𝑉𝑉1𝑉𝑉1βˆ’π‘‰π‘‰2

πœ™πœ™

πœ™πœ™2 =βˆ’π‘‰π‘‰2

𝑉𝑉1 βˆ’ 𝑉𝑉2πœ™πœ™

(β‰ˆ 1.9 πœ™πœ™, for NBK7 and NSF1)

(β‰ˆ -0.9 πœ™πœ™, for NBK7 and NSF1)

NOTE: Ξ”V in the denominatorKeep Ξ”V large to avoid strong powers

OSC Lecture: Color Correction

Page 9: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 9 Optical Engineering Services

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™1 = Ξ”πΉπΉπΆπΆπœ™πœ™1 𝑃𝑃𝑑𝑑,𝐢𝐢,1

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™2 = Ξ”πΉπΉπΆπΆπœ™πœ™2 𝑃𝑃𝑑𝑑,𝐢𝐢,2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ = Ξ”π‘‘π‘‘πΆπΆπœ™πœ™1 + Ξ”π‘‘π‘‘πΆπΆπœ™πœ™2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ =πœ™πœ™1𝑃𝑃𝑑𝑑,𝐢𝐢,1𝑉𝑉1

+πœ™πœ™2𝑃𝑃𝑑𝑑,𝐢𝐢,2𝑉𝑉2

𝑃𝑃𝑑𝑑,𝐢𝐢 β‰ˆ 0.274 + 0.0005𝑉𝑉

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ =πœ™πœ™1 0.274 + 0.0005𝑉𝑉1

𝑉𝑉1+πœ™πœ™2 0.274 + 0.0005𝑉𝑉2

𝑉𝑉2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ = 0.274 πœ™πœ™1𝑉𝑉1

+ πœ™πœ™2𝑉𝑉2

+0.0005 πœ™πœ™1 + πœ™πœ™2

Secondary Color for a Thin Achromat

Sec. Color for Singlet 1

Sec. Color for Singlet 2

Sec. Color for Doublet

β€œNormal glass line”

OSC Lecture: Color Correction

Page 10: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 10 Optical Engineering Services

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™1 = Ξ”πΉπΉπΆπΆπœ™πœ™1 𝑃𝑃𝑑𝑑,𝐢𝐢,1

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™2 = Ξ”πΉπΉπΆπΆπœ™πœ™2 𝑃𝑃𝑑𝑑,𝐢𝐢,2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ = Ξ”π‘‘π‘‘πΆπΆπœ™πœ™1 + Ξ”π‘‘π‘‘πΆπΆπœ™πœ™2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ =πœ™πœ™1𝑃𝑃𝑑𝑑,𝐢𝐢,1𝑉𝑉1

+πœ™πœ™2𝑃𝑃𝑑𝑑,𝐢𝐢,2𝑉𝑉2

𝑃𝑃𝑑𝑑,𝐢𝐢 β‰ˆ 0.274 + 0.0005𝑉𝑉

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ =πœ™πœ™1 0.274 + 0.0005𝑉𝑉1

𝑉𝑉1+πœ™πœ™2 0.274 + 0.0005𝑉𝑉2

𝑉𝑉2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ = 0.274 πœ™πœ™1𝑉𝑉1

+ πœ™πœ™2𝑉𝑉2

+0.0005 πœ™πœ™1 + πœ™πœ™2

Secondary Color for a Thin Achromat

Sec. Color for Singlet 1

Sec. Color for Singlet 2

Sec. Color for Doublet

β€œNormal glass line”

(Sum = Zero, for Achromat)

OSC Lecture: Color Correction

Page 11: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 11 Optical Engineering Services

Secondary Color for a Thin Achromat

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™1 = Ξ”πΉπΉπΆπΆπœ™πœ™1 𝑃𝑃𝑑𝑑,𝐢𝐢,1

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™2 = Ξ”πΉπΉπΆπΆπœ™πœ™2 𝑃𝑃𝑑𝑑,𝐢𝐢,2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ = Ξ”π‘‘π‘‘πΆπΆπœ™πœ™1 + Ξ”π‘‘π‘‘πΆπΆπœ™πœ™2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ =πœ™πœ™1𝑃𝑃𝑑𝑑,𝐢𝐢,1𝑉𝑉1

+πœ™πœ™2𝑃𝑃𝑑𝑑,𝐢𝐢,2𝑉𝑉2

𝑃𝑃𝑑𝑑,𝐢𝐢 β‰ˆ 0.274 + 0.0005𝑉𝑉

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ =πœ™πœ™1 0.274 + 0.0005𝑉𝑉1

𝑉𝑉1+πœ™πœ™2 0.274 + 0.0005𝑉𝑉2

𝑉𝑉2

Ξ”π‘‘π‘‘πΆπΆπœ™πœ™ = 0.274 πœ™πœ™1𝑉𝑉1

+ πœ™πœ™2𝑉𝑉2

+0.0005 πœ™πœ™1 + πœ™πœ™2

πœŸπœŸπ’…π’…π’…π’…π“π“ = 𝝓𝝓/𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐

Sec. Color for Singlet 1

Sec. Color for Singlet 2

Sec. Color for Doublet

β€œNormal glass line”

(Sum = Zero, for Achromat)Rule of Thumb for β€œNormal” Achromat

OSC Lecture: Color Correction

Page 12: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 12 Optical Engineering Services

Rule of Thumb For Secondary Color(For a Thin Doublet)β€’ Secondary color is about 1/2000th of the focal lengthβ€’ This is a VERY useful rule of thumb to keep in mind!β€’ Example:

– Customer has a 1080p format sensor (1920 x 1080 pixels)– He asks for lateral color < 1/4th of a pixel– Even if axial color is (somehow) perfectly corrected, lateral color is proportional to βˆ†π€π€π“π“β€“ The customer is asking for lateral color to be corrected to 1 part in 7680.– This far exceeds what can be expected with an ordinary achromat

β€’ The above rule of thumb is for a THIN achromat, i.e., no air space β€’ As we will see, systems that are not thin doublets but have substantial spaces (e.g.,

telephoto, retrofocus, etc.) are usually WORSE than 1 part in 2000

OSC Lecture: Color Correction

Page 13: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 13 Optical Engineering Services

Chromatic Difference of Magnification(The old-timers’ word for lateral color)

OSC Lecture: Color Correction

Page 14: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 14 Optical Engineering Services

Lateral Color (defined one way)

β€’ "Longitudinal color" or "Axial color" is βˆ†πœ†πœ† 𝐡𝐡𝐡𝐡𝐡𝐡‒ β€œLateral color” is sometimes defined as βˆ†πœ†πœ† �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖

– This definition depends on the choice of the image plane– This definition depends on the stop location– If longitudinal color is present, then a stop can be chosen so that the β€œlateral color” is eliminated (even though the

Red, Green, and Blue images are different sizes!)

OSC Lecture: Color Correction

All three blur circles are co-aligned, so there isn’t a β€œlateral” effect on the image.

Page 15: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 15 Optical Engineering Services

Lateral Color (defined one way)

β€’ "Longitudinal color" or "Axial color" is βˆ†πœ†πœ† 𝐡𝐡𝐡𝐡𝐡𝐡‒ β€œLateral color” is sometimes defined as βˆ†πœ†πœ† �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖

– This definition depends on the choice of the image plane– This definition depends on the stop location– If longitudinal color is present, then a stop can be chosen so that the β€œlateral color” is eliminated (even though the

Red, Green, and Blue images are different sizes!)

OSC Lecture: Color Correction

All three blur circles are co-aligned, so there isn’t a β€œlateral” effect on the image.

BUT: this only works if there is axial color, i.e., the system is bad.

Page 16: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 16 Optical Engineering Services

Lateral Color (Chromatic Difference Of Magnification)

β€’ We can also define β€œLateral color” is sometimes defined as βˆ†πœ†πœ† οΏ½π‘¦π‘¦π‘–π‘–π‘Žπ‘Ž π‘Žπ‘Žπ‘‘π‘–π‘– 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑒𝑒𝑑 𝑠𝑠𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒 𝑒𝑒𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓

– Chromatic Difference of Magnification – Chromatic Difference of Focal Length– Chromatic Difference of Power– Independent of the choice of the image plane– Independent of the stop location

OSC Lecture: Color Correction

Page 17: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 17 Optical Engineering Services

Lateral Color (Chromatic Difference Of Magnification)

β€’ We can also define β€œLateral color” is sometimes defined as βˆ†πœ†πœ† οΏ½π‘¦π‘¦π‘–π‘–π‘Žπ‘Ž π‘Žπ‘Žπ‘‘π‘–π‘– 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑒𝑒𝑑 𝑠𝑠𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒 𝑒𝑒𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓

– Chromatic Difference of Magnification βˆ†πœ†πœ† π‘šπ‘šπ‘šπ‘šπ‘šπ‘šβ€“ Chromatic Difference of Focal Length βˆ†πœ†πœ† 𝑓𝑓– Chromatic Difference of Power βˆ†πœ†πœ† πœ™πœ™β€“ Independent of the choice of the image plane– Independent of the stop location

OSC Lecture: Color Correction

For the purpose of optical design, this is usually a much more useful concept

In most designs, longitudinal color will be corrected in the end, so it doesn’t hurt to start thinking aboutβˆ†πœ†πœ† πœ™πœ™ from the very beginning

Page 18: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 18 Optical Engineering Services

Lateral or Longitudinal?

β€’ Although quantities like βˆ†πœ†πœ† 𝑓𝑓 or βˆ†πœ†πœ† πœ™πœ™ may SEEM like longitudinal quantities, the correlate better to lateral color than to longitudinal color!

β€’ A system with a non-zero value of βˆ†πœ†πœ† 𝑓𝑓 has zero axial color if the chromatic variation of the principal plane locations is just right.

β€’ On the other hand, a system with a non-zero value of βˆ†πœ†πœ† 𝑓𝑓 must have a chromatic variation of the image size!

OSC Lecture: Color Correction

Page 19: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 19 Optical Engineering Services

Glass Selection Considerations(Things to watch out for)

OSC Lecture: Color Correction

Page 20: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 20 Optical Engineering Services

Spherochromatism

β€’ Variation of Spherical Aberration with apertureβ€’ Glass Choices that work well at F/10 may not be optimal at F/2.8!

– In fact, such glass choices are more often than not, highly problematic– Choosing glasses for a low P difference usually means that Δ𝑉𝑉 is small– Small Δ𝑉𝑉 implies stronger elements, i.e., more spherical and more spherochromatism

β€’ The same is usually true for three-glass apochromats

OSC Lecture: Color Correction

Page 21: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 21 Optical Engineering Services

Sensitivity to Thermal Shock

β€’ The FK and PK glasses are extremely sensitive to thermal shock– Some fabricators have worked out procedures for dealing with this– Others haven’t:

– β€œOh, that’s the glass that breaks when you touch it! We can’t work with that glass, you’ll have to redesign the system.”

– Think about the application: will the sensitive glasses be exposed to sudden changes in temperature?

OSC Lecture: Color Correction

Page 22: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 22 Optical Engineering Services

Thermal Expansion Mismatch

β€’ Be careful about thermal expansion mismatch in cemented doublets– The FK and PK glasses have very high Coefficients of Thermal Expansion (CTEs)… be careful what

you cement them to!

OSC Lecture: Color Correction

Page 23: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 23 Optical Engineering Services

Thermal Expansion Mismatch in Cemented Elements

β€’ How much mismatch is allowed between the Coefficients of Thermal Expansion (CTEs) in a cemented doublet?

How much shear is generated here because the crown element expands more than the flint?

Will the cement fail (de-laminate) because of the shear stress?

Will it pull the glass apart?

Radial Shear = (π‘†π‘†π‘†π‘†π‘šπ‘šπ‘†π‘† π΅π΅π‘†π‘†π‘šπ‘šπ‘šπ‘šπ‘†π‘†π·π·π‘†π‘†π·π·) βˆ— βˆ†π‘‡π‘‡ βˆ— βˆ† 𝐢𝐢𝑇𝑇𝐢𝐢

OSC Lecture: Color Correction

Page 24: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 24 Optical Engineering Services

Default Thermal Shear Limit in Glass Expert (CODE V)

β€’ The Default Setting in Glass Expert is intended to help, but does not guarantee that you will not have problems.

β€’ By default, Glass Expert will avoid cement layers with radial shear of more than 0.1 Β΅m per degree Celsius. (The 0.1 value can be changed by the user)– Over a Β±50ΒΊC Temperature range, this allows a maximum shear of 5 Β΅m.– Note that this is not simply a limit on Ξ”(CTE); it also takes the diameter into account, with smaller

elements being allowed larger Ξ”(CTE) values.β€’ Will the cement layer tolerate 5 Β΅m of shear? It’s complicated!

– If it is an β€œordinary-looking” doublet with a relatively thin flint element, the shear stress causes the doublet to bend, and neither the glass nor the cement fails

– If the two elements are unusually thick, then they are too stiff to bend, and a failure is likely!– We have seen a β€œHastings Triplet” fail, for similar reasons

OSC Lecture: Color Correction

Page 25: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 25 Optical Engineering Services

Glass Expert CTE Checking

β€’ It is important to realize that Glass Expert only limits the CTE mismatch when it makes a glass substitution.

β€’ If the initial lens has a CTE mismatch problem, and Glass Expert does not make a substitution for either glass, then the output lens will still have a CTE mismatch problem!

Always ensure that the starting lens for Glass Expert meets the CTE mismatch criterion you have entered.

If the starting lens does not meet the criterion, the ending lens might also not meet it.

OSC Lecture: Color Correction

Page 26: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 26 Optical Engineering Services

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0 2 4 6 8 10 12 14 16

Pric

e R

el. t

o N

-BK7

CTE

Expense and CTE

N_FKN-KZFSN-LAFN-LAKN-LASFN-PKN-PSKN_SFN-SK, N-SSKSF-SeriesLASF35

Expensive and High CTE Glasses

N-KZFS11

LASF35

N-PK51N-FK51A

N-FK58

N-PK52A

N-LASF31A

OSC Lecture: Color Correction

Page 27: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 27 Optical Engineering Services

The Schuppmann SystemA one-glass Achromat…A great way to study color aberrations

OSC Lecture: Color Correction

Page 28: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 28 Optical Engineering Services

Solving the Equations for Achromatism (of Power) for Two Separated Elements

β€’ Primary color is corrected if:

𝑦𝑦12πœ™πœ™1𝑉𝑉1

+𝑦𝑦22πœ™πœ™2𝑉𝑉2

= 0

β€’ Secondary color is corrected if:

𝑦𝑦12πœ™πœ™1𝑃𝑃1𝑉𝑉1

+𝑦𝑦22πœ™πœ™2𝑃𝑃2𝑉𝑉2

= 0

(Reference: almost ANY textbook, e.g., Kingslake, Kidger, etc.)

OSC Lecture: Color Correction

Page 29: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 29 Optical Engineering Services

Look for a One-Glass Solution for Primary ColorFor a one-glass system:

𝑉𝑉2 = 𝑉𝑉1 = 𝑉𝑉

𝑃𝑃2 = 𝑃𝑃1 = 𝑃𝑃Primary color is corrected if:

𝑦𝑦12πœ™πœ™1𝑉𝑉

+𝑦𝑦22πœ™πœ™2𝑉𝑉

=1𝑉𝑉

𝑦𝑦12πœ™πœ™1 + 𝑦𝑦22πœ™πœ™2 = 0

The solution occurs when:𝑦𝑦12πœ™πœ™1 + 𝑦𝑦22πœ™πœ™2 = 0

Or:

πœ™πœ™2 = βˆ’π‘¦π‘¦1𝑦𝑦2

2

πœ™πœ™1

(Note: this is independent of 𝑉𝑉, so it is the same solution regardless of glass type!)

OSC Lecture: Color Correction

Page 30: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 30 Optical Engineering Services

What About Secondary Color?Secondary Color is corrected when:

𝑦𝑦12πœ™πœ™1𝑃𝑃1𝑉𝑉1

+𝑦𝑦22πœ™πœ™2𝑃𝑃2𝑉𝑉2

= 0

For a one-glass achromat, this is:

𝑦𝑦12πœ™πœ™1𝑃𝑃𝑉𝑉 +

𝑦𝑦22πœ™πœ™2𝑃𝑃𝑉𝑉 =

𝑃𝑃𝑉𝑉 𝑦𝑦12πœ™πœ™1 + 𝑦𝑦22πœ™πœ™2 = 0

The solution is:𝑦𝑦12πœ™πœ™1 + 𝑦𝑦22πœ™πœ™2 = 0

Or:

πœ™πœ™2 = βˆ’π‘¦π‘¦1𝑦𝑦2

2

πœ™πœ™1This is the same as the solution for primary color !

OSC Lecture: Color Correction

Page 31: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 31 Optical Engineering Services

Primary and Secondary Colors Are Both Corrected!

β€’ The equations say that if we correct for primary color, then secondary color is automatically corrected!

β€’ This happens because both 𝑉𝑉 and P factor out of the equations, because it is a one-glass system.

β€’ Once 𝑉𝑉 and P are factored out of the equations, the solution holds for ANY glass! – The equation can be solved for any glass, and the solution is the same for all glasses– The only requirement is that the two elements be made of the same glass!– Note that because of the factoring, the solution for secondary color is exact.

OSC Lecture: Color Correction

Page 32: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 32 Optical Engineering Services

A Schuppmann System with Truly Thin Elements

β€’ The color equations are for thin, separated elementsβ€’ To investigate the chromatic properties using elements that are truly thin, we will use diffractive

elements rather than glass elements.– The same equations still hold, provided that we are considering the same orders from the two

elements– This is a good test because the individual elements create a LOT of color!

OSC Lecture: Color Correction

Page 33: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 33 Optical Engineering Services

A Diffractive Schuppmann System

Diff_Schuppmann Scale: 1.20 23-May-17

20.83 MM

There is a family of solutions to the one-glass achromat equation.

All solutions have a virtual image.

(It is often mis-stated that they all have negative power.)

In this case, we have modeled the diffractives as holograms, that self-correct for spherical aberration.

We have curved the substrates to satisfy the Abbe sine condition (zero coma).

OSC Lecture: Color Correction

Page 34: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 34 Optical Engineering Services

Ray Fans, On-AxisSecondary Color

656.2725 NM 627.5618 NM 587.5618 NM 547.5618 NM 486.1327 NM

Red and Blue are similarly focused (with some spherochromatism), Green is focused differently

Primary color is corrected, but a substantial amount of secondary color is present.

RMS Spot Dia. = 238 um

-0.236546

0.236546

-0.236546

0.236546

TANGENTIAL 0.00 RELATIVE SAGITTALFIELD HEIGHT

( 0.000 )O

OSC Lecture: Color Correction

Page 35: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 35 Optical Engineering Services

Chromatic Differences of EFL and Focus

Ξ”EFL:EFL β‰ˆ 28:33 β‰ˆ 1:1.2(!)Expect lots of lateral color!

Ξ”focus β‰ˆ 2 mm over full band

OSC Lecture: Color Correction

Page 36: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 36 Optical Engineering Services

Why Is There ANY Secondary Color?

β€’ We noted earlier that if the equation for primary color correction is met, then the equation for secondary color is met… exactly!

β€’ The equations tell us we should not see ANY secondary colorβ€’ By extension, we don’t expect to see any color of ANY order

– We expect the equations for tertiary and quaternary color to be like those for secondary color, with factors (call them T and Q) that can be factored out of the equation

– In that case, the solution for primary color is a solution for ALL ORDERS of color

β€’ The above is not the case!

β€’ What is wrong with the equations?

OSC Lecture: Color Correction

Page 37: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 37 Optical Engineering Services

Schuppmann System with R, G, B Wavelengths Shown

Diff_Schuppmann Scale: 1.20 24-May-17

20.83 MM

We see the (separated) intermediate images for R, G, and B.

As a result of that separation, the values of yat the second element vary with wavelength.

The equations don’t take into account the possibility that the y-values might depend on wavelength!

(They are blind to β€œinduced” color aberrations.)

OSC Lecture: Color Correction

Page 38: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 38 Optical Engineering Services

Fixing β€œThe Problem”

β€’ We can make the equations more accurate by explicitly taking the wavelength dependence of the y-values into account– That is, taking the induced color aberrations into account

β€’ We can β€œfix” the system by inserting a field lens at the (green) internal image, to re-image the blue and red rays back together at the third element

OSC Lecture: Color Correction

Page 39: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 39 Optical Engineering Services

Schuppmann, with Diffractive Field Lens

OSC Lecture: Color Correction

Page 40: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 40 Optical Engineering Services

Schuppmann, with Diffractive Field Lens

A

A’

The field lens images Point A onto Point A’, thereby bringing the various colors back together again.

The field Lens itself does not introduce color aberration into the main image, since y = 0 at the internal image.

(The imaging of A onto A’ does suffer chromatic aberration… we will see that it makes a difference.)

OSC Lecture: Color Correction

Page 41: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 41 Optical Engineering Services

Chromatic Differences of EFL and FocusDiffractive Schuppmann with (Diffractive) Field Lens

Ξ”EFL:EFL β‰ˆ 2:33 β‰ˆ1:17 (much better)

Ξ”focusβ‰ˆ 0.2 mm (10x better)

OSC Lecture: Color Correction

Page 42: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 42 Optical Engineering Services

Ray FansDiffractive Schuppmann with (Diffractive) Field Lens

656.2700 NM 627.5600 NM 587.5600 NM 547.5600 NM 486.1300 NM

-0.024843

0.024843

-0.024843

0.024843

TANGENTIAL 0.00 RELATIVE SAGITTALFIELD HEIGHT

( 0.000 )O

Chromatic focus error greatly reduced.

Spherochromatism now dominant.

Central 3 wavelengths nearly at a common paraxial focus.

Extreme wavelengths still slightly out of focus.

RMS Spot Dia. = 23 um

OSC Lecture: Color Correction

Page 43: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 43 Optical Engineering Services

Schuppmann, with Lens Module Field Lens

β€’ Using a diffractive field lens improves the color correction, but it is still not perfect.β€’ This is because the diffractive field lens suffers chromatic aberration itself, and cannot bring

the rays perfectly back together at the last element.β€’ If we use a CODE V lens module to create the field lens, the color correction becomes perfect.

OSC Lecture: Color Correction

Page 44: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 44 Optical Engineering Services

Schuppmann, with Lens Module Field Lens

β€’ Using a diffractive field lens improves the color correction, but it is still not perfect.β€’ This is because the diffractive field lens suffers chromatic aberration itself, and cannot bring

the rays perfectly back together at the last element.β€’ If we use a CODE V lens module to create the field lens, the color correction becomes perfect.

OSC Lecture: Color Correction

Ξ”focus = zero!

Ξ”EFL:EFL β‰ˆ 0.0005:33β‰ˆ1:66,000

Page 45: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 45 Optical Engineering Services

Conclusion:

β€’ The Schuppmann system appeared to violate the equation for correction of secondary color, because the colors separated from each other

β€’ This makes perfect sense:– At the rear element, the beam diameters for blue and red are different, and the y-values are different– We should expect that the chromatic aberration, in the neighborhood of blue, would be different than

the chromatic aberration in the neighborhood of red. This is a way of describing secondary colorβ€’ Secondary chromatic aberration is β€œinduced” at the rear element because of uncorrected

primary color in the front elementβ€’ The chromatic splitting of rays induces secondary color in elements downstreamβ€’ We reduced this effect by using a lens module to bring the colors back together again

β€’ More important: we can make use of induced secondary color to correct the residual secondary color of a system!

OSC Lecture: Color Correction

Page 46: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 46 Optical Engineering Services

McCarthy’s 1955 PatentFirst Reference to Induced Chromatic Aberrations in the Literature

OSC Lecture: Color Correction

Page 47: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 47 Optical Engineering Services

Induction of Secondary ColorUS Patent #2,698,555, E. L. McCarthy (1955)

OSC Lecture: Color Correction

K, FBackwardsCorrected!

F, KZero Power

But Contributes Color

Page 48: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 48 Optical Engineering Services

Induction of Secondary ColorUS Patent #2,698,555, E. L. McCarthy (1955)

OSC Lecture: Color Correction

First Doublet Disperses the Beam… Causes Ray Separation at the Second Doublet

Second Doublet Puts The Colors Back Together Again

Page 49: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 49 Optical Engineering Services

Optmized F/10 McCarthy Concept

OptimizedF10Mac Scale: 0.90 OSG 06-Nov-18

27.78 MM

OSC Lecture: Color Correction

NBK7 NF2 NBK7NF2

Page 50: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 50 Optical Engineering Services

Optimized F/10 McCarthy Concept

OSC Lecture: Color Correction

OSG 06-Nov-18

OptimizedF10Mac

RAY ABERRATIONS ( MILLIMETERS )

656.2725 NM 587.5618 NM 486.1327 NM

-0.000214

0.000214

-0.000214

0.000214

TANGENTIAL 0.00 RELATIVE SAGITTALFIELD HEIGHT

( 0.000 )O

Scale = Β±0.2 Β΅m !

RMS WFE = 0.001Ξ»

BUT…

Page 51: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 51 Optical Engineering Services

Optmized F/10 McCarthy Concept

OSC Lecture: Color Correction

OSG 06-Nov-18

OptimizedF10Mac

RAY ABERRATIONS ( MILLIMETERS )

656.2725 NM 587.5618 NM 486.1327 NM

-0.002407

0.002407

-0.002407

0.002407

0.00 RELATIVE

FIELD HEIGHT

( 0.000 )O

-0.002407

0.002407

-0.002407

0.002407

0.50 RELATIVE

FIELD HEIGHT

( .0100 )O

-0.002407

0.002407

-0.002407

0.002407

TANGENTIAL 1.00 RELATIVE SAGITTALFIELD HEIGHT

( .0200 )O

Dominated by lateral color at even 0.02ΒΊ field!

Page 52: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 52 Optical Engineering Services

Configuration Considerations

OSC Lecture: Color Correction

Page 53: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 53 Optical Engineering Services

Schematic Depiction of Secondary Color(For a Thin Achromat)

P

N

Ο†G > Ο†R , Ο†B

|Ο†G| > |Ο†R|, |Ο†B|

OSC Lecture: Color Correction

Page 54: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 54 Optical Engineering Services

Pure Axial Color(For a Thick System)

Primary

Secondary

Δλ(BFD)

Δλ(BFD)

OSC Lecture: Color Correction

Page 55: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 55 Optical Engineering Services

Lateral Color(Chromatic Difference of Magnification)

Primary

Secondary

Δλ(NA)

Δλ(NA)

OSC Lecture: Color Correction

Page 56: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 56 Optical Engineering Services

Absence of Chromatic Aberration

Δλ(BFD) = 0Δλ(NA) = 0

β€’ Marginal rays for all colors must arrive at the same image point at the same angle.β€’ That means the marginal rays must arrive at the last surface (or group) at the same point, and

leave with the same angle

OSC Lecture: Color Correction

Page 57: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 57 Optical Engineering Services

Configurations of Separated Thin AchromatsWhich ones are easily corrected for secondary color?

OSC Lecture: Color Correction

Page 58: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 58 Optical Engineering Services

Petzval System

P PGiven

Goal

OSC Lecture: Color Correction

Page 59: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 59 Optical Engineering Services

Petzval System

P PGiven

Goal

OSC Lecture: Color Correction

Page 60: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 60 Optical Engineering Services

Petzval System

P PGive

Goal

P P

The only way this system can be corrected for secondary color is for the two groups to be independently corrected for secondary color

OSC Lecture: Color Correction

Page 61: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 61 Optical Engineering Services

Telephoto System

P NGiven

Goal

P N

Both groups must be independently corrected for secondary color

OSC Lecture: Color Correction

Page 62: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 62 Optical Engineering Services

Retrofocus System

N PGiven

Goal

N P

Both groups must be independently corrected for secondary color

OSC Lecture: Color Correction

Page 63: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 63 Optical Engineering Services

Cooke Triplet System

Given

Goal

In this case, it appears possible for the negative achromat to correct for the secondary color caused by the outer, positive achromats.

We can at least say that the SIGN of the secondary color of the middle achromat is correct!

P N P

OSC Lecture: Color Correction

Page 64: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 64 Optical Engineering Services

PPN Triplet

Given

Goal

In this case, all three achromats must be independently corrected for secondary color.

P P N

OSC Lecture: Color Correction

Page 65: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 65 Optical Engineering Services

Conclusion

β€’ Certain systems (telephoto, retrofocus) appear to be difficult to correct for secondary color (at least if the individual groups are achromatic)…

β€’ While other system types (e.g., the Cooke triplet) appear easier to correctβ€’ Correctability of secondary color is very much configuration dependent!β€’ This is a good opportunity to use GS to find the good configurations!

β€’ Note: There is no requirement that every group be independently achromatic

OSC Lecture: Color Correction

Page 66: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 66 Optical Engineering Services

Some Comments on Lateral Color SpecsDo the specs make sense?

OSC Lecture: Color Correction

Page 67: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 67 Optical Engineering Services

Does the Spec for Lateral Color Make Sense?

β€’ Rule of thumb: correcting lateral color to less than 1:2000 (or even 1:1000) can be trickyβ€’ Does the customer’s spec make sense?

– Warren Smith: β€œAlways challenge your customer’s specifications.”

β€’ The customer should have a good justification for asking for:– Lateral color < 1 pixel (particularly if the pixels aren’t going to be resolvable by the viewer)– Lateral color < 1 Airy Disk radius – Lateral color < 1 arcmin in a visual system

β€’ Note that once the lateral color spec is smaller than the system resolution, its meaning becomes blurred

β€’ Some crazy requests we have encountered:– Lateral color < 0.1 pixel– Lateral color < 0.05 Airy Disk radius– Lateral color well below the resolution of the eye

β€’ In all cases, the customer had a good reason, but we made them explain it to us!

OSC Lecture: Color Correction

Page 68: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 68 Optical Engineering Services

A System for Investigating Pure Lateral Color

Using two prisms allows us to adjust the primary color and the secondary color separately

Dispersing prisms

Perfect lens

OSC Lecture: Color Correction

Page 69: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 69 Optical Engineering Services

21 Ξ»

Separations:R-G = 0.37 pixB-G = 0.62 pix

Customer did not want to see color around the boundary of a pixel

3 Ξ»

Pixel Simulations with Pure Lateral ColorSimulate (with IMS) the Corner Pixel of a Display

OSC Lecture: Color Correction

Page 70: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 70 Optical Engineering Services

A Real System, Designed for Very Low Visibility of Secondary Color

The customer wanted the lateral color to β€œnot be visible” for cosmetic reasons.

Initially they tried to specify a small value for lateral color; unfortunately, even very small amounts of lateral color are visible, as color changes around the boundary of the white pixel.

Quantifying this is a question of chromaticity, not microns

From the designer’s point of view, what is necessary is not only that the lateral color be very small, but that the chromatic variation of aberrations also be small.

OSC Lecture: Color Correction

Page 71: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 71 Optical Engineering Services

Using Induced Aberrations to Reduce Secondary ColorHow to do itHow dangerous is it?

OSC Lecture: Color Correction

Page 72: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 72 Optical Engineering Services

Sensitivity

β€’ Designs whose elements have large individual aberrations that balance each other tend to be sensitive to tolerances– Errors is radius, thickness and index disturb the numerical balance of the aberrations– Misalignments of the elements cause the aberration fields to be misaligned

– Misaligned spherical aberration causes coma on axis– Misaligned longitudinal color causes lateral color on axis

β€’ As a general rule, it is advisable to avoid designs with large individual element contributions– (But sometimes it cannot be avoided)

OSC Lecture: Color Correction

Page 73: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 73 Optical Engineering Services

Questions:

β€’ How dangerous is using separated, intentionally uncorrected elements to correct secondary color?

β€’ Which of the following is better, after tolerances are considered?– A design with secondary color extremely well corrected using uncorrected individual elements

– Extremely well corrected for secondary color– But tolerance sensitive

– A design with every element turned into an achromatic doublet– Such a design has NO induced secondary color– But it has intrinsic secondary color of the individual achromats– This design should be less tolerance sensitive

OSC Lecture: Color Correction

Page 74: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 74 Optical Engineering Services

A Realistic Projector Design Problem(Based Loosely on a Recent Project)

β€’ Resolution Goal : β€œHigh Definition (HD) Quality”– 1280 x 1024 pixels at a minimum– Lateral color < 1/10th of a pixel (!)– 60 degree full Field of View– Long back focal distance (retrofocus design type)– F/2.5– Temperature range: Β±50Β° C

β€’ Note that the 1/10th pixel goal requires Ξ”F:F to be 1:12,800β€’ An ordinary achromat has Ξ”F:F of 1 : 2,000

– Can do better with special glasses, if they don’t breakβ€’ Retrofocus systems are worse than single achromats, by as much as a factor of 2!

OSC Lecture: Color Correction

Page 75: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 75 Optical Engineering Services

Design Specifications

β€’ Spectrum: d, F, C wavelengthsβ€’ Focal Length 40 mmβ€’ 60 degree full field diameter

– Covers diagonal of 24 x 36 film formatβ€’ Image Clearance > 55 mmβ€’ Diameters < 160 mmβ€’ Distortion < 1%β€’ Chief ray angle < 7 degreesβ€’ Illuminance at corner β‰ˆ 70%β€’ Materials: Any Schott Glass allowed, provided:

– Thermally induced shear at edge of the part < 5 um over 50Β°C– Transmission > 80% at the blue end

OSC Lecture: Color Correction

Page 76: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 76 Optical Engineering Services

Design Comparison

β€’ First design: NO induced chromatic aberration– Turn every element into an achromat– No induced secondary color (hope for less sensitivity)– No induced secondary color (cannot correct the intrinsic secondary color of the achromats)

β€’ Second design: Same number of doublets, but no requirement that the doublets be individually achromatized– Allows induced secondary color to balance intrinsic secondary color– Expect better as-designed performance– Expect higher sensitivity to tolerances

β€’ Which design is better, as-built?

OSC Lecture: Color Correction

Page 77: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 77 Optical Engineering Services

Ξ”F:F

β€’ Ξ”F:F is a useful performance metricβ€’ Define Ξ”F as (EFLmax – EFLmin)β€’ Define F as (EFL @ W2)

β€’ Note that this definition uses the worse of Primary Color and Secondary Color

OSC Lecture: Color Correction

Page 78: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 78 Optical Engineering Services

Wide Angle Starting PointT. Sugiyama, US Patent 4,217,034 (1980, 8 singlets)

USP4217034 Scale: 0.53 LVU 24-Aug-13

47.17 MM

27

53

RMS Spot Size, in Β΅m(after reoptimization)

Ξ”F:F = 1:679

OSC Lecture: Color Correction

Page 79: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 79 Optical Engineering Services

Design Approach

β€’ In both cases:– Replace all singlets with doublets– Use Global Synthesis to find the best solution using variable glass types

– Glasses constrained (by default) to lie on the β€œnormal glass line”– Apply weighted constraints on SN2, to reduce tolerance sensitivity

– Replace the fictitious glasses with the nearest β€œreal” glasses and optimize locally– Use Glass Expert to improve the glass choice

– Glass substitutions subject to realistic constraints on thermal mismatch and transmission– Apply weighted constraints on SN2, to control tolerance sensitivity

β€’ The only difference:– In the first case, the doublets are required to be individually achromatic– In the second case, we drop this requirement

OSC Lecture: Color Correction

Page 80: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 80 Optical Engineering Services

WA_8Dub_Start Scale: 0.48 LVU 09-Oct-13

52.08 MM

Replace Singlets with DoubletsRe-Optimize Locally

34

43

RMS Spot Dia., in Β΅m(after reoptimization)

Ξ”F:F = 1: 659

OSC Lecture: Color Correction

Page 81: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 81 Optical Engineering Services

Allow the Pupil to Float, Re-Optimize with GSDoublets Constrained to Be Achromatic

Achr_FloatPupil_best Scale: 0.70 LVU 09-Oct-13

35.71 MM

Ξ”F:F = 1:900 9

13

RMS Spot Dia., in Β΅m(after reoptimization)

OSC Lecture: Color Correction

Page 82: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 82 Optical Engineering Services

Last Steps: Glass Expert and Freeze the Stop

β€’ Replace fictitious glasses with real glasses using Glass Fitβ€’ Re-optimize locally (Doublets constrained to be achromatic)β€’ Use Glass Expert to improve the glass choiceβ€’ Materials: Any Schott glass allowed, provided:

– Thermally induced shear at edge of the part < 5 um over 50 degrees C– Transmission > 80% at the blue end

β€’ Insert a real stop β€’ Re-optimize (Doublets constrained to be achromatic)β€’ Set apertures for approximately 70% illuminance at the corner of the field

OSC Lecture: Color Correction

Page 83: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 83 Optical Engineering Services

First Solution: 8 Achromats

NLAF35

SF11

SF6HT

NPSK53A

NPSK53A

SF6HT

SF6HT

NLAK8

SF6HT

NLAF2

NPSK53A

NBAK2

NLASF31

LAFN7

NPSK53A

All_Achromat_Retrofocus Scale: 0.68 ORA 05-Aug-13

36.76 MM

NBAF4

Ξ”F:F = 1:1,045

811

RMS Spot Dia., in Β΅m

OSC Lecture: Color Correction

Page 84: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 84 Optical Engineering Services

Ray Fans8 Achromats

ORA 05-Aug-13

All_Achromat_Retrofocus RAY ABERRATIONS ( MILLIMETERS )

656.3000 NM 587.6000 NM 486.1000 NM

-0.015

0.015

-0.015

0.015

0.00 RELATIVE

FIELD HEIGHT

( 0.000 )O

-0.015

0.015

-0.015

0.015

0.46 RELATIVE

FIELD HEIGHT

( 15.00 )O

-0.015

0.015

-0.015

0.015

0.66 RELATIVE

FIELD HEIGHT

( 21.00 )O

-0.015

0.015

-0.015

0.015

0.84 RELATIVE

FIELD HEIGHT

( 26.00 )O

-0.015

0.015

-0.015

0.015

TANGENTIAL 1.00 RELATIVE SAGITTALFIELD HEIGHT

( 30.00 )O

Scale: Β±15 Β΅m

Performance limited by secondary color and secondary chromatic variation of aberration

OSC Lecture: Color Correction

Page 85: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 85 Optical Engineering Services

Spot Diagrams8 Achromats

10:19:06

0.000,0.000 DG 0.00, 0.00

0.000,15.00 DG 0.00, 0.46

0.000,21.00 DG 0.00, 0.66

0.000,26.00 DG 0.00, 0.84

0.000,30.00 DG 0.00, 1.00

FIELDPOSITION

DEFOCUSING 0.00000All_Achromat_Retrofocus

.500E-01 MM

100% = 0.019703

RMS = 0.007875

ORA 24-Aug-2013

100% = 0.022137

RMS = 0.008532

100% = 0.024730

RMS = 0.008666

100% = 0.025932

RMS = 0.008796

100% = 0.028977

RMS = 0.010843

OSC Lecture: Color Correction

Page 86: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 86 Optical Engineering Services

Doublet-by-Doublet Aberration Contributions (8 Achromats)

Note: Axial color contributions are zero

OSC Lecture: Color Correction

Page 87: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 87 Optical Engineering Services

WA_8Dub_Start Scale: 0.48 LVU 09-Oct-13

52.08 MM

Return to 8-Doublet Starting Point

34

43

RMS Spot Dia., in Β΅m(after reoptimization)

Ξ”F:F = 1: 659

OSC Lecture: Color Correction

Page 88: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 88 Optical Engineering Services

WA_8Dub_bestFict Scale: 0.93 LVU 09-Oct-13

26.88 MM

Global Synthesis, Fictitious Glasses(Doublets No Longer Required to Be Achromatic)

8

12

RMS Spot Dia., in Β΅m(after reoptimization)

Ξ”F:F = 1: 1285

OSC Lecture: Color Correction

Page 89: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 89 Optical Engineering Services

NBASF64SF4

NLAF2NBASF2

NLAF3NLAF2

NLAF2SF5

NLAK12NBAF10

NBK10

SF2

NSK5NSF1

NLAK22SF4

WA_8Dub_bestFict Scale: 0.67 LVU 09-Oct-13

37.31 MM

Convert to Nearest Real Glass, Re-Optimize

9

12

RMS Spot Dia., in Β΅m(after reoptimization)

Ξ”F:F = 1: 1547

OSC Lecture: Color Correction

Page 90: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 90 Optical Engineering Services

Last Steps: Glass Expert and Freeze the Stop

β€’ Use Glass Expert to look for real glasses that improve performanceβ€’ Materials: Any Schott glass allowed, provided:

– Thermally induced shear at edge of the part < 5 um over 50 degrees C– Transmission > 80% at the blue end

β€’ Insert a real stop, β€’ Re-optimizeβ€’ Set apertures for approximately 70% illuminance at the corner of the field

OSC Lecture: Color Correction

Page 91: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 91 Optical Engineering Services

Second Design 8 Doublets (not Achromatic)

Uncorrected_Doublets Scale: 0.31 ORA 06-Aug-13

80.65 MM

NLAF35

SF6HT

NLASF31A

NLAFN7

NPSK53A

SF6HT

NPSK53A NPSK53A

SF6HT

NLASF41

NLASF31A

SF6HT

Note: Several of the doublets could be turned into singlets at no loss of performance

Ξ”F:F = 1: 4535

34

RMS Spot Dia., in Β΅m

OSC Lecture: Color Correction

Page 92: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 92 Optical Engineering Services

Ray Fans8 Doublets

Scale: Β±15 Β΅m

Significantly better!

ORA 06-Aug-13

Uncorrected_Doublets

RAY ABERRATIONS ( MILLIMETERS )

656.3000 NM 587.6000 NM 486.1000 NM

-0.015

0.015

-0.015

0.015

0.00 RELATIVE

FIELD HEIGHT

( 0.000 )O

-0.015

0.015

-0.015

0.015

0.46 RELATIVE

FIELD HEIGHT

( 15.00 )O

-0.015

0.015

-0.015

0.015

0.66 RELATIVE

FIELD HEIGHT

( 21.00 )O

-0.015

0.015

-0.015

0.015

0.84 RELATIVE

FIELD HEIGHT

( 26.00 )O

-0.015

0.015

-0.015

0.015

TANGENTIAL 1.00 RELATIVE SAGITTALFIELD HEIGHT

( 30.00 )O

OSC Lecture: Color Correction

Page 93: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 93 Optical Engineering Services

Ray Fans(All-Achromat Design, for Comparison)

ORA 05-Aug-13

All_Achromat_Retrofocus RAY ABERRATIONS ( MILLIMETERS )

656.3000 NM 587.6000 NM 486.1000 NM

-0.015

0.015

-0.015

0.015

0.00 RELATIVE

FIELD HEIGHT

( 0.000 )O

-0.015

0.015

-0.015

0.015

0.46 RELATIVE

FIELD HEIGHT

( 15.00 )O

-0.015

0.015

-0.015

0.015

0.66 RELATIVE

FIELD HEIGHT

( 21.00 )O

-0.015

0.015

-0.015

0.015

0.84 RELATIVE

FIELD HEIGHT

( 26.00 )O

-0.015

0.015

-0.015

0.015

TANGENTIAL 1.00 RELATIVE SAGITTALFIELD HEIGHT

( 30.00 )O

Scale: Β±15 Β΅m

OSC Lecture: Color Correction

Page 94: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 94 Optical Engineering Services

Spot Diagrams8 Doublets

10:14:57

0.000,0.000 DG 0.00, 0.00

0.000,15.00 DG 0.00, 0.46

0.000,21.00 DG 0.00, 0.66

0.000,26.00 DG 0.00, 0.84

0.000,30.00 DG 0.00, 1.00

FIELDPOSITION

DEFOCUSING 0.00000Uncorrected_Doublets

.500E-01 MM

100% = 0.006569

RMS = 0.003367

ORA 24-Aug-2013

100% = 0.008405

RMS = 0.003425

100% = 0.012735

RMS = 0.004042

100% = 0.010342

RMS = 0.003918

100% = 0.015545

RMS = 0.004365

OSC Lecture: Color Correction

Page 95: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 95 Optical Engineering Services

Doublet-by-Doublet Aberration Contributions (8 Doublets, not Achromatized)

Color is present but is not the dominant aberration

OSC Lecture: Color Correction

Page 96: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 96 Optical Engineering Services

Doublet-by-Doublet Aberration Contributions (8 Achromats, for Comparison)

OSC Lecture: Color Correction

Page 97: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 97 Optical Engineering Services

As-Built Performance Comparison

β€’ For a meaningful comparison, the tolerances must be selected carefully– For extremely tight tolerances (practically indistinguishable from zero), the tolerance sensitivity does

not matter, and the system with the better as-designed performance wins– For extremely loose tolerances, the tolerance-induced aberrations overwhelm the as-designed

performance, and the system with the lower tolerance sensitivity wins– A meaningful comparison can only be obtained using realistic tolerances

β€’ We defined β€œrealistic” tolerances as meaning those that caused a 30% increase in RMS wavefront error in the all-achromat design– Starting with loose, β€œdrop-in” level tolerances, we identified and tightened tolerance types until we

reduced the increase in RMS wavefront to 30%– For simplicity, we applied all tolerances of a given type (radii, decenters, etc.) uniformly across all

surfacesβ€’ Tolerances for the 8-doublet design were identical to those for the all-achromat design

OSC Lecture: Color Correction

Page 98: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 98 Optical Engineering Services

Tolerance List

β€’ Radius errors: Β±3 fringes at 0.6328 nmβ€’ Surface irregularity: Β±0.5 fringes at 0.6328 nmβ€’ Glass thickness errors: Β±0.025 mmβ€’ Air space errors: Β±0.025 mmβ€’ Refractive index errors Β±0.0002 (Schott β€œStep 1”)β€’ Abbe errors: Β±0.002 (Schott β€œStep 1”)β€’ Wedge errors: Β±0.005 mm Total Indicated Runout (applies to both singlets and doublets)β€’ Element tilt: Β±0.005 mm Total Indicated Runoutβ€’ Element decenters: Β±0.030 mm

β€’ The only compensator we considered with these tolerances was refocus of the image plane.

OSC Lecture: Color Correction

Page 99: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 99 Optical Engineering Services

Sensitivities by Tolerance Type8-Achromat Design

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 500 1000 1500 2000 2500 3000 3500 4000

Sens

itivi

ty (d

elta

-RM

S)

Rank

Sensitivity By Tolerance Type

Wedge, Tilt

Index

Irregularity

Radius, Thickness

OSC Lecture: Color Correction

Page 100: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 100 Optical Engineering Services

Sensitivities by Tolerance Type8-Doublet Design

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 500 1000 1500 2000 2500 3000 3500 4000

Sens

itivi

ty (d

elta

-RM

S)

Rank

Sensitivities by Tolerance Type

Wedge, Tilt

Index

Irregularity

Radius, Thickness

OSC Lecture: Color Correction

Page 101: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 101 Optical Engineering Services

Cumulative Probability Distributions8-Achromat Design

OSC Lecture: Color Correction

Page 102: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 102 Optical Engineering Services

Cumulative Probability Distributions8-Doublet Design

OSC Lecture: Color Correction

Page 103: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 103 Optical Engineering Services

Cumulative Probability DistributionsBoth Designs

OSC Lecture: Color Correction

Page 104: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 104 Optical Engineering Services

Conclusions

β€’ The induction of secondary color is a powerful design toolβ€’ It tends to increase the tolerance sensitivity of the systemβ€’ In the system studied, the design that used uncorrected, separated elements to correct secondary

was so much better, that with reasonable tolerances, it still had better performance than the all achromat design

β€’ Recommended procedure:– Optimize with Global Synthesis and Fictitious Glasses

– Use WTC constraints on SN2 to minimize sensitivity– Use ATC, ATE constraints to keep the design realistic

– Use Glass Fit to Replace Fictitious Glasses with Real Glasses– Replace them all at once (don’t bother to re-optimize between replacements)– Check to be sure there are no CTE violations; change glasses if needed

– Use Glass Expert to improve the glass choices– Use WTC constraints on SN2 to minimize sensitivity– Use ATC, ATE constraints to keep the design realistic

– Consider re-optimizing locally with SAB

OSC Lecture: Color Correction

Page 105: Color Correction - University of ArizonaΒ Β· 2018-11-14Β Β· 𝑉𝑉= 𝑛𝑛. 𝑑𝑑 βˆ’1 𝑛𝑛. 𝐹𝐹 βˆ’π‘›π‘›. 𝐢𝐢. π‘‰π‘‰β‰ˆ64 for NBK7. π‘‰π‘‰β‰ˆ30 for NSF1.

Β© 2017 Synopsys, Inc. 105 Optical Engineering Services

Thank You


Recommended