+ All Categories
Home > Documents > Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD

Date post: 19-Mar-2016
Category:
Upload: roscoe
View: 56 times
Download: 0 times
Share this document with a friend
Description:
Color Superconductivity in High Density QCD. Roberto Casalbuoni. Department of Physics and INFN - Florence. Villasimius, September 21-25, 2004. Introduction. Motivations for the study of high-density QCD:. Understanding the interior of CSO’s - PowerPoint PPT Presentation
33
1 Color Color Superconductivity Superconductivity in High Density in High Density QCD QCD Roberto Casalbuoni Roberto Casalbuoni Department of Physics and INFN - Department of Physics and INFN - Florence Florence Villasimius, September Villasimius, September 21-25, 2004 21-25, 2004
Transcript
Page 1: Color Superconductivity in High Density QCD

1

Color Color Superconductivity in Superconductivity in

High Density QCDHigh Density QCD

Roberto CasalbuoniRoberto Casalbuoni

Department of Physics and INFN - FlorenceDepartment of Physics and INFN - Florence

Villasimius, September 21-25, 2004Villasimius, September 21-25, 2004

Page 2: Color Superconductivity in High Density QCD

2

IntroductionIntroductionMotivations for the study of high-density QCD:Motivations for the study of high-density QCD:

● Understanding the interior of CSO’sUnderstanding the interior of CSO’s

● Study of the QCD phase diagram at Study of the QCD phase diagram at T~0 and high T~0 and high

Asymptotic region in Asymptotic region in fairly well fairly well understood: understood: existence of a CS existence of a CS phasephase. Real question: . Real question: does this does this

type of phase persists at relevant type of phase persists at relevant densities ( ~5-6 densities ( ~5-6

Page 3: Color Superconductivity in High Density QCD

3

SummarySummary

● Mini review of CFL and 2SC phasesMini review of CFL and 2SC phases

● Pairing of fermions with different Fermi momentaPairing of fermions with different Fermi momenta

● The gapless phases g2SC and gCFLThe gapless phases g2SC and gCFL

● The LOFF phaseThe LOFF phase

Page 4: Color Superconductivity in High Density QCD

4

Study of CS back to 1977 (Barrois 1977, Frautschi 1978, Study of CS back to 1977 (Barrois 1977, Frautschi 1978, Bailin and Love 1984) based on Cooper instabilityBailin and Love 1984) based on Cooper instability::

CFL and 2SCCFL and 2SC

At T ~ 0 a degenerate fermion gas is unstableAt T ~ 0 a degenerate fermion gas is unstable

Any weak attractive interaction leads to Any weak attractive interaction leads to Cooper pair formationCooper pair formation

Hard for electrons (Coulomb vs. phonons)Hard for electrons (Coulomb vs. phonons)

Easy in QCD for di-quark formation (attractive Easy in QCD for di-quark formation (attractive channel )channel )3 (3 3 = 3 6)Ä Å

Page 5: Color Superconductivity in High Density QCD

5

In QCD, CS easy for large In QCD, CS easy for large due to asymptotic due to asymptotic freedomfreedom

At high At high , m, mss, m, mdd, m, muu ~ 0, 3 colors and 3 flavors ~ 0, 3 colors and 3 flavors

Possible pairings:Possible pairings:

Antisymmetry in color (Antisymmetry in color () for attraction) for attraction

Antisymmetry in spin (a,b) for better use of the Antisymmetry in spin (a,b) for better use of the Fermi surfaceFermi surface

Antisymmetry in flavor (i, j) for Pauli principleAntisymmetry in flavor (i, j) for Pauli principle

α βia jb0 ψ ψ 0

Page 6: Color Superconductivity in High Density QCD

6

p

p

s

s

Only possible pairings Only possible pairings

LL and RRLL and RR

Favorite state Favorite state CFLCFL (color-flavor locking) (color-flavor locking) ((Alford, Rajagopal & Wilczek 1999Alford, Rajagopal & Wilczek 1999))

α β α β αβCaL bL aR bR abC0 ψ ψ 0 = - 0 ψ ψ 0 = Δε ε

Symmetry breaking patternSymmetry breaking pattern

c L R c+L+RSU(3) SU(3) SU(3) SU(3)Ä Ä Þ

Page 7: Color Superconductivity in High Density QCD

7

What happens going down with What happens going down with ? If ? If << m<< mss we get we get

3 colors and 2 flavors (2SC)3 colors and 2 flavors (2SC)α β αβ3aL bL ab0 ψ ψ 0 = Δε ε

c L R c L RSU(3) SU(2) SU(2) SU(2) SU(2) SU(2)Ä Ä Þ Ä Ä

But what happens in real world ?

Page 8: Color Superconductivity in High Density QCD

8

● Ms not zero

● Neutrality with respect to em and color

● Weak equilibrium

All these effects make Fermi momenta of All these effects make Fermi momenta of different fermions unequal causing problems to different fermions unequal causing problems to

the BCS pairing mechanismthe BCS pairing mechanism

Page 9: Color Superconductivity in High Density QCD

9

Consider 2 fermions with mConsider 2 fermions with m1 1 = M, m= M, m22 = 0 at the same = 0 at the same chemical potential chemical potential . The Fermi momenta are. The Fermi momenta are

221F Mp 2Fp

Effective chemical potential for the massive quarkEffective chemical potential for the massive quark2

2 2eff

MM2

m = m- » m- m

Mismatch:Mismatch:2M

2dm» m

Page 10: Color Superconductivity in High Density QCD

10

If electrons are present, weak equilibrium makes chemical potentials of quarks of different charges

unequal:

d u ed ue m- m® n =mÞIn general we have the relation: i i Q( Q )m=m+ m

e Qm=- m

N.B. N.B. e e is not a free parameteris not a free parameter

Page 11: Color Superconductivity in High Density QCD

11

Neutrality requires:Neutrality requires:e

V Q 0¶ =- =¶m

Example 2SC: normal BCS pairing whenExample 2SC: normal BCS pairing when

u d u dn nm =m Þ =But neutral matter forBut neutral matter for

1/ 3d u d u e d u u

1n 2n 2 04

» Þ m » m Þ m=m- m » m ¹

Mismatch:Mismatch:d uF F d u e up p

20

82 2- m- m mmd = = = »m ¹

Page 12: Color Superconductivity in High Density QCD

12

Also color neutrality requiresAlso color neutrality requires

3 83 8

V VT 0, T 0¶ ¶= = = =¶m ¶m

As long as As long as is small no effects on BCS pairing, but is small no effects on BCS pairing, but when increased the BCS pairing is lost and two when increased the BCS pairing is lost and two possibilities arise:possibilities arise:

● The system goes back to the normal phaseThe system goes back to the normal phase

● Other phases can be formedOther phases can be formed

Page 13: Color Superconductivity in High Density QCD

13

In a simple model with two fermions at chemical potentials In a simple model with two fermions at chemical potentials the system becomes normal at the the system becomes normal at the Chandrasekhar-Clogston point. Chandrasekhar-Clogston point. Another unstable phase exists.Another unstable phase exists.

BCS1 2

Ddm=

BCSdm=D

Page 14: Color Superconductivity in High Density QCD

14

2 2E(p) (p )= dm± - m +D

2 2E(p) 0 p =m± dmÛ - D=

The point The point is special. In the is special. In the presence of a mismatch new features are presence of a mismatch new features are present. The spectrum of quasiparticles ispresent. The spectrum of quasiparticles is

For |For |an an unpairing (blocking) unpairing (blocking) region opens up and region opens up and gapless modesgapless modes are are present.present.

For |For |the gaps the gaps are are and and

2dm Energy cost for pairing

2D Energy gained in pairing

2 2dm> Dbegins to unpair

Page 15: Color Superconductivity in High Density QCD

15

g2SCg2SC Same structure of condensates as in 2SC Same structure of condensates as in 2SC ((Huang & Shovkovy, 2003Huang & Shovkovy, 2003))

4x3 fermions:4x3 fermions:● 2 quarks 2 quarks ungappedungapped q qubub, q, qdb db

● 4 quarks 4 quarks gappedgapped q qurur, q, qugug, q, qdrdr, q, qdg dg

General strategy (NJL model):General strategy (NJL model):

● Write the free energy:Write the free energy:

● Solve: Solve:

NeutralityNeutrality

Gap equationGap equation

3 8 eV( , , , , )mm m m D

e 3 8

V V V 0¶ ¶ ¶= = =¶m ¶m ¶mV 0¶ =¶D

α β αβ3aL bL ab0 ψ ψ 0 = Δε ε

Page 16: Color Superconductivity in High Density QCD

16

● For For ( (==ee/2/2) 2 gapped quarks become ) 2 gapped quarks become gapless. The gapless quarks begin to unpair destroying gapless. The gapless quarks begin to unpair destroying the BCS solution. But a new stable phase exists, the the BCS solution. But a new stable phase exists, the gapless 2SC (g2SC) phase. gapless 2SC (g2SC) phase.

● It is the unstable phase which becomes stable in this It is the unstable phase which becomes stable in this case (and CFL, see later) when charge neutrality is case (and CFL, see later) when charge neutrality is required.required.

Page 17: Color Superconductivity in High Density QCD

17

g2SCg2SC

Page 18: Color Superconductivity in High Density QCD

18

● But evaluation of the gluon masses (5 out of 8 become But evaluation of the gluon masses (5 out of 8 become massive) shows an instability of the g2SC phase. Some of massive) shows an instability of the g2SC phase. Some of the gluon masses are imaginary (the gluon masses are imaginary (Huang and Shovkovy 2004Huang and Shovkovy 2004).).

● Possible solutions are: gluon condensation, or another Possible solutions are: gluon condensation, or another phase takes place as a crystalline phase (see later), or this phase takes place as a crystalline phase (see later), or this phase is unstable against possible mixed phases.phase is unstable against possible mixed phases.

● Potential problem also in gCFL (calculation not yet Potential problem also in gCFL (calculation not yet done).done).

Page 19: Color Superconductivity in High Density QCD

19

Generalization to 3 flavors Generalization to 3 flavors ((Alford, Kouvaris & Rajagopal, 2004Alford, Kouvaris & Rajagopal, 2004) )

gCFLgCFL

α β αβ1 αβ2 αβ3aL bL 1 ab1 2 ab2 3 ab30 ψ ψ 0 = Δ ε ε + Δ ε ε + Δ ε ε

3

3

3 2

2

1

1

1

2

g2SC : 0,g

CFL :

CF0

L :D ¹ D =D =D >D

D =D =D D

>D

=

Different phases are characterized by different values for Different phases are characterized by different values for the gaps. For instance (but many other possibilities exist)the gaps. For instance (but many other possibilities exist)

Page 20: Color Superconductivity in High Density QCD

20

Strange quark mass effects:Strange quark mass effects:

● Shift of the chemical potential for the strange Shift of the chemical potential for the strange quarks: quarks: 2

ss s

M2a am Þ m - m

● Color and electric neutrality in CFL requires Color and electric neutrality in CFL requires 2s

8 3 eM , 02

m=- m=m=m● gs-bd unpairing catalyzes CFL to gCFLgs-bd unpairing catalyzes CFL to gCFL

( ) 2s

bd gs bd gs 812

M2- = m - m =- m=dm m

2s

rd gu e rs bu eM,2- -dm =m dm =m- m

Page 21: Color Superconductivity in High Density QCD

21

2Mm

Energy cost for pairing

2D Energy gained in pairing

2M 2> Dmbegins to unpair

It follows:It follows:

Again, by using NJL model (modelled on one-gluon Again, by using NJL model (modelled on one-gluon exchange):exchange):● Write the free energy:Write the free energy:

● Solve: Solve:

NeutralityNeutrality

Gap equationsGap equations

3 8 e s iV( , , , , M , )mm m m D

e 3 8

V V V 0¶ ¶ ¶= = =¶m ¶m ¶m

i

V 0¶ =¶D

Page 22: Color Superconductivity in High Density QCD

22

● CFL CFL gCFL 2gCFL 2ndnd order order transition at Mtransition at Mss

22// ~ ~ 22when the pairing gs-when the pairing gs-bd starts breakingbd starts breaking

● gCFL has gapless gCFL has gapless quasiparticles. Interesting quasiparticles. Interesting transport propertiestransport properties

Page 23: Color Superconductivity in High Density QCD

23

● LOFF (LOFF (Larkin, Ovchinnikov, Fulde & Ferrel, 1964Larkin, Ovchinnikov, Fulde & Ferrel, 1964):): ferromagnetic alloy with paramagnetic impurities. ferromagnetic alloy with paramagnetic impurities.

● The impurities produce a constant exchange The impurities produce a constant exchange fieldfield acting upon the electron spins giving rise to acting upon the electron spins giving rise to an an effective difference in the chemical potentials effective difference in the chemical potentials of the opposite spins producing a of the opposite spins producing a mismatchmismatch of the of the Fermi momentaFermi momenta

Page 24: Color Superconductivity in High Density QCD

24

According to LOFF, close to first order point (CC point), According to LOFF, close to first order point (CC point), possible condensation withpossible condensation with non zero total momentumnon zero total momentum

qkp1

qkp2

xqi2e)x()x(

m2iq xm m

m

ψ(x)ψ(x) = Δ c e ×å r rMore generallyMore generally

q2pp 21

|q|

|q|/q

fixed variationallyfixed variationally

chosen chosen spontaneouslyspontaneously

Page 25: Color Superconductivity in High Density QCD

25

Single plane wave:Single plane wave:2 2E(p) E( p q) (p )- m® ± + - m dm» - m +D mr r r m m

qvF

Also in this case, for Also in this case, for F| | v qm=dm- × >Drr

a unpairing (blocking) region opens up and a unpairing (blocking) region opens up and gapless gapless modes are presentmodes are present

Possibility of a crystalline structure (Possibility of a crystalline structure (Larkin & Larkin &

Ovchinnikov 1964, Bowers & Rajagopal 2002Ovchinnikov 1964, Bowers & Rajagopal 2002))i

i

2iq x

|q |=1.2δμ

ψ(x)ψ(x) = Δ e ×å r r

r

The qThe qii’s define the crystal pointing at its vertices.’s define the crystal pointing at its vertices.

Page 26: Color Superconductivity in High Density QCD

26

Crystalline Crystalline structures in LOFFstructures in LOFF

Page 27: Color Superconductivity in High Density QCD

27

Preferred Preferred structure:structure:

face-centered face-centered cubecube

Analysis via Analysis via GL expansionGL expansion

((Bowers and Bowers and

Rajagopal (2002)Rajagopal (2002)))

Page 28: Color Superconductivity in High Density QCD

28

Effective gap equation for the LOFF phaseEffective gap equation for the LOFF phase((R.C., M. Ciminale, M. Mannarelli, G. Nardulli, M. Ruggieri & R. Gatto, 2004R.C., M. Ciminale, M. Mannarelli, G. Nardulli, M. Ruggieri & R. Gatto, 2004))

See next talk by M. Ruggieri See next talk by M. Ruggieri

Page 29: Color Superconductivity in High Density QCD

29

Multiple phase transitions from the CC Multiple phase transitions from the CC point (point (MMss

22//2SC2SCup to the cube up to the cube case (case (MMss

22// ~ 7.5 ~ 7.5 2SC2SCExtrapolating to Extrapolating to CFL (CFL (2SC2SC ~ 30 MeV) one gets that LOFF ~ 30 MeV) one gets that LOFF should be favored from about should be favored from about

MMss22// ~120 MeV ~120 MeV up up

MMss22//MeVMeV

Page 30: Color Superconductivity in High Density QCD

30

ConclusionsConclusions

● Under realistic conditions (MUnder realistic conditions (Mss not zero, color not zero, color and electric neutrality) new CS phases might existand electric neutrality) new CS phases might exist

● In these phases gapless modes are present. This In these phases gapless modes are present. This result might be important in relation to the result might be important in relation to the transport properties inside a CSO.transport properties inside a CSO.

Page 31: Color Superconductivity in High Density QCD

31

g2SC parameters:g2SC parameters:

S D

2S D S

NJL with chiral (G ) and diquark (G ) couplings:

G 5.0163 GeV , G G , 0.750.6533 GeV, 400 MeV

-= =h h=L = m=

gCFL parameters:gCFL parameters:

0

NJL modelled on one gluon-exchange:25 MeV, 800 MeV, 500 MeVD = L = m=

Page 32: Color Superconductivity in High Density QCD

32

0 0 0 -1 +1 -1 +1 0 0ru gd bs rd gu rs bu gs bd

rugdbsrdgursbugsbd

Q%

1D2D3D

3D2D 1D

3- D3- D

2- D2- D

1- D1- D

Gaps Gaps in in

gCFLgCFL

Page 33: Color Superconductivity in High Density QCD

33

● gCFL has gCFL has ee not zero, with charge cancelled by not zero, with charge cancelled by unpaired u quarksunpaired u quarks


Recommended