+ All Categories
Home > Documents > COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification...

COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification...

Date post: 20-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
45
COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions L-terms, Interpretation, L-formulas, and Satisfiability Constructions Elementary Equivalence and Isomorphism Theories COM SFWR 707: Formal Specification Techniques Dr. Ridha Khedri Department of Computing and Software, McMaster University Canada L8S 4L7, Hamilton, Ontario
Transcript
Page 1: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

COM SFWR 707: Formal SpecificationTechniques

Dr. Ridha Khedri

Department of Computing and Software, McMaster UniversityCanada L8S 4L7, Hamilton, Ontario

Page 2: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

1 Introduction

2 Basic DefinitionsMaps that preserve the interpretation of L

3 L-terms, Interpretation, L-formulas, and Satisfiability

4 ConstructionsL-Substructure (revisited)L–Quotient StructureDirect Product Structure

5 Elementary Equivalence and Isomorphism

6 TheoriesLogical Consequence

Page 3: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Introduction

In mathematical logic, we use first-order languages todescribe mathematical structures

Intuitively, a structure is a set that we wish to studyequipped with a collection of distinguished functions,relations, and elements

After that, we choose a language where we can talkabout them (Funct., rel., and elements) and nothingmore

Page 4: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Introduction

Example

When we study the ordered field of real numbers withthe exponential function

We study the structure 〈R,+, ·, exp, <, 0, 1〉What are the components of this structure?

We would use a language where we have symbols for+, ·, exp, <, 0, 1We can write statements such as:

∀(x , y | x , y ∈ R : exp(x) · exp(y) = exp(x + y) )

That we interpret as the assertion: exey = e(x+y) forall x and y in real numbers.

Page 5: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic Definitions

Definition (Language)

A language L is given by specifying the following data:

1 a set of function symbols F and positive integers nf foreach f ∈ F

2 a set of relation symbols R and positive integers nR foreach R ∈ R

3 a set of constant symbols C.

τ = 〈F ,R, C, nF , nR〉

The numbers nf and nR tell us that f is a function ofnf variables and R is an nR -ary relation

Any or all of the sets F ,R and C may be empty

Page 6: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic Definitions

Example (Language)

〈{+,−, ·}, {}, {0, 1}, {(+, 2), (−, 2), (·, 2)}, {}〉 is thelanguage of rings Lr

〈{+,−, ·}, {<}, {0, 1}, {(+, 2), (−, 2), (·, 2)}, {(<, 2)}〉is the language of ordered rings Lor

The smallest language is that of pure indentity L=, inwhich no function, relation, or constant occur

It means τ = 〈{}, {}, {}, {}, {}〉

Page 7: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic Definitions

Definition (L-structure)

An L-structure M is given by the following data:

a nonempty set M called the universe, domain, orunderlying set of M;

a function f M : Mnf −→ M for each f ∈ F ;

a set RM ⊆ MnR for each R ∈ R;

an element cM ∈ M for each c ∈ C.

Page 8: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic Definitions

We refer to f M,RM, and cM as the interpretations ofthe symbols f ,R, and c

We often write the structure as

M = 〈M, f M,RM, cM : f ∈ F ,R ∈ R, andc ∈ C〉

We will use the notation A,B,M,N, · · · to refer to theunderlying sets of the structures A,B,M,N , · · ·

Page 9: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic Definitions

Example

Suppose that we are studying groups

We might use the language Lg = {·, e}F = {·}n(·) = 2C = {e}

An Lg -structure G = (G , ·G , eG)G = (R, ·, 1) is a Lg -structure

G = (N,+, 0) is a Lg -structureG = (N,+, 0) is NOT a group, but it is a Lg -structure

Page 10: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic DefinitionsMaps that preserve the interpretation of L

Definition (L-embedding)

Suppose that M and N are L-structures with universes M,and N, respectively. An L-embedding η : M−→ N is aone-to-one map (i.e., injective) η : M −→ N that preservesthe interpretation of all the symbols of L.

Which means that:À ∀

(f , a1, · · · , anf

| f ∈ F ∧ a1, · · · , anf∈ M :

η(f M(a1, · · · , anf

))

= f N (η(a1), · · · , η(anf))

)Á ∀

(R, a1, · · · , amR

| R ∈ R ∧ a1, · · · , amR∈ M :

(a1, · · · , amR) ∈ RM ⇐⇒ (η(a1), · · · , η(amR

)) ∈ RN)

 ∀(c | c ∈ C : η(cM) = cN

)

Page 11: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic DefinitionsMaps that preserve the interpretation of L

Definition (L-isomorphism)

A bijective L-embedding is called an L-isomorphism.

Definition (Substructure/Extension)

If M ⊆ N and the inclusion map is an L-embedding, we sayeither that M is a substructure of N or that N is anextension of M.

Example

Z def= (Z,+Z , 0Z) is a substructure of

R def= (R,+R, 0R)

If η : Z −→ R is the function η(x)def= exp x , then η is

an L-embedding of (Z,+, 0) into (R, ·, 1).

Page 12: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic DefinitionsMaps that preserve the interpretation of L

Recall– Cardinal Numbers:

Definition

Two sets, A and B, are said to be equipollent, if there existsa bijective map A −→ B. In this case we write A ∼ B.

Theorem

Equipollence is an equivalence relation on the class of allsets.

Let I0 = ∅ and ∀(n | n ∈ N∗ : Indef= {1, 2, · · · , n} )

In ∼ Im ⇐⇒ n = m

To say that a set A has n elements means that A ∼ InWhen A ∼ In for some unique n ≥ 0, we say that A isfinite

A set that is not finite is infinite

Page 13: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic DefinitionsMaps that preserve the interpretation of L

Definition

The cardinal number (or cardinality) of a set A, denoted by|A|, is the equivalence class of A under the equivalencerelation of equipollence. |A| is an infinite or finite cardinalaccording as A is an infinite or finite set.

We shall identify the integer n ≥ 0 with the cardinalnumber |In| and write |In| = n

So, the cardinal number of a finite set is precisely thenumber of elements in the setWhat about the cardinality of a structure?

The cardinality of M is |M|, the cardinality of theuniverse of M

If η : M−→ N is an embedding then the cardinality ofN is at least the cardinality of M.

Page 14: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic DefinitionsMaps that preserve the interpretation of L

Definition

Let α and β be cardinal numbers. The sum α+ β is definedto be the cardinal number |A ∪ B|, where A and B aredisjoint sets such that |A| = α and |B| = β. The productαβ is defined to be the cardinal number |A× B|.

Theorem

If A is a set and P(A) its power, then |A| < |P(A)|.[Schroeder-Bernstein] If A and B are sets such that|A| ≤ |B| and |B| ≤ |A|, the |A| = |B|.The class of all cardinal numbers is linearly ordered by≤. If α and β are cardinal numbers, then exactly oneof the following is true:

α < β; α = β; β < α (Trichotomy Law)

Page 15: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

Maps

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Basic DefinitionsMaps that preserve the interpretation of L

What about the cardinality of a structure M?

The cardinality of M is |M|, i.e., the cardinality of theuniverse of M.

If η : M−→ N is an embedding, then the cardinalityof N is at least the cardinality of M.

Page 16: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

We use the language L to create formulas describingproperties of L-structures

Formulas will be strings of symbols built using

the symbols of L

variable symbols v1, v2, · · · , vn

the equality symbol =

the Boolean connectives ∧ ,Or ,¬

the quantifiers: ∃ and ∀

and parentheses ( , )

Page 17: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Definition (L-terms)

The set of L-terms is the smallest set T such that

1 ∀(c | c ∈ C : c ∈ T )

2 ∀(i | i ∈ N : vi ∈ T )

3 ∀(f , t1, · · · , tn | f ∈ F ∧ t1, · · · , tn ∈ T :f (t1, · · · , tn) ∈ T )

Example

·(v1,−(v3, 1)), and · (+(v1, v2),+(v3, 1)) are Lr -terms

In the Lr -Structure (Z,+, ·, 0, 1), we think of the term

1 + (1 + (1 + 1)) as a name for the element 4(v1 + v2)(v3 + 1) is a name for the function(x , y , z) 7−→ (x + y)(z + 1)

Defining functions in this way can be done in any L-structure

Page 18: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Interpretation of an L-term

Let M be an L-structure and that t is a term builtusing variables from v = (vi1 , · · · , vim)

We want to interpret t as a function tM : Mm −→ M

For s a subterm of t and a = (ai1 , · · · , aim) ∈ Mm, weinductively define sM(a) as follows.

1 If s is a constant symbol c , then sM(a) = cM.2 If s is the variable vij , then sM(a) = aij .3 If s is the term f (t1, · · · , tnf

), where f is a functionsymbol of L and t1, · · · , tn are terms, thensM(a) = fM

(tM1 (a), · · · , tMnf

(a)).

The function tM is defined by a 7−→ tM(a).

Page 19: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Example

Let L = {f , g , c}, where n(f ) = 1, n(g) = 2, and c is aconstant symbol

take the L-terms t1 = g(v1, c), t2 =f (g(c , f (v1))), and t3 = g(f (g(v1, v2)), g(v1, f (v2)))

Let M be the structure (R, exp,+, 1); that is

fM = expgM = +cM = 1

Give the following

tM1 (a1)tM2 (a1)tM3 (a1, a2)

Page 20: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Example

In breeding a strain of cattle, which can be black or brown,monochromatic or spotted , it is known that black isdominant and brown recessive and that monochromatic isdominant over spotted.

1 Give the possible types of cattle in this herd.

2 Due to dominance, in crossing a black spotted one witha brown monochromatic one, we expect a blackmonochromatic one. Give the “operation” ∗ thatsymbolizes this phenomenon.

3 Define the structure C def= (C , ∗).

Page 21: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Definition (L-formula)

We say that φ is an atomic L-formla if φ is either

1 t1 = t2, where t1 and t2 are terms, or

2 R(t1, · · · , tnR), where R ∈ R and t1, · · · , tnR

are terms.

Definition

The set of L-formulas is the smallest set W containing theatomic formulas such that

1 if φ is in W, then¬φ is in W,

2 if φ and ψ are in W, then φ ∧ ψ and φ ∨ ψ are in W,and

3 if φ is in W, then ∃(vi |: φ ) and ∀(vi |: φ ) are inW.

Page 22: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Definition (sentence)

We call a formula a sentence if it has no free variables.

Definition (Satisfiability)

Let φ be a formula with free variables fromv = (vi1 , · · · , vim) and let a = (ai1 , · · · , qim) ∈ Mm. Weinductively define M |= φ(a) as follows.

If φ is t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a)

If φ is R(t1, · · · , tnR), then M |= φ(a) if

(tM1 , · · · , tMnR) ∈ RR

If φ is ¬ψ, then M |= φ(a) if M 6|= ψ(a)

Page 23: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Definition (Satisfiability–Continued–)

If φ is ψ ∧ θ, then M |= φ(a) if M |= ψ(a) andM |= θ(a)

If φ is ψ ∨ θ, then M |= φ(a) if M |= ψ(a) orM |= θ(a)

If φ is ∃(vj |: ψ(v , vj) ), then M |= φ(a) if there isb ∈ M such that M |= φ(a, b)

If φ is ∀(vj |: ψ(v , vj) ), if∀(b | b ∈ M : M |= φ(a, b) )

If M |= φ(a) we say that M satisfies φ(a) or φ(a) is true inM.

Page 24: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories L-terms,Interpretation, L-formulas, and Satisfiability

Proposition

Suppose that M is a substructure of N , a ∈ M, and φ(v) isa quantifier-free formula. Then, M |= φ(a) if and only ifN |= φ(a).

Proof.

Claim:If t(v) is a term and b ∈ M, then tM(b) = tN (b). This isproved by induction on terms.Then, we prove the proposition by induction on formulas(atomic ones and then for composite ones)

Page 25: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL-Substructure (revisited)

Definition

Let M and N be L-structures with M ⊆ N. Then M is a

(L-)substructure of N , noted by M⊆ N , if

∀(f ,R | f ∈ F ∧ R ∈ R :

f M = (f N ∩Mnf +1)

∧ RM = (RN ∩MnR ))

Page 26: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL–Quotient Structure

Consider an L-structure M and an equivalence relation θ.

Definition (Compatibility with a structure)

We say that θ is compatible with M if, given f ∈ F , andboth a and b in Mnf such that∀(i | 1 ≤ i ≤ nf : (ai , bi ) ∈ θ ), THEN(f M(a), f M(b)

)∈ θ.

A compatible equivalence relation on M is also calledcongruence on M and sometimes said to be congruentto M

NOTE: The compatibitity condition for a congruencepertains only to the algebraic part of the structure M

Page 27: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL–Quotient Structure

Theorem

Let θ be an equivalence relation on a monoid G def= (G , ·, e)

such that (a1, a2) ∈ θ and (b1, b2) ∈ θ implies(a1 · b1, a2 · b2) ∈ θ for all ai , bi ∈ G. Then the structureG/θ = (G/θ, ·/θ, e) is a monoid, where

G/θ is is the set of all equivalence classes of G over θ

·/θ is the binary operation defined by a ·/θ bdef= a · b,

where x denotes the equivalence class of x ∈ G.

e is the equivalence class of the identity element e

Page 28: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL–Quotient Structure

Definition

Given an L-structure M and an equivalence relation θ onM compatible with M, then we define the quotientstructure M/θ of M by θ as follows:

The support set of M/θ is M/θ. The equivalenceequivalence class x = {y | (x , y) ∈ θ}.For every f ∈ F , the corresponding L-operation f M/θ

on M/θ, which we denote f θ, is defined by

f θ(a1, · · · , anf

) def= f M

(a1, · · · , anf

)For every relation R ∈ R,

(a1, · · · , anR

)∈ Rθ if the

following holds:

∀(i | 1 ≤ i ≤ nR : ∃(bi | bi ∈ ai : (b1, · · · , bmR) ∈ RM ) )

Page 29: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL–Quotient Structure

The compatibility of θ with M insures that theoperation F θ is well-defined on equivalence classes

The properties of equivalence relations (transitivity inparticular) assure that Rθ is well-defined relation onM/θ

Thus, the quotient structure is an L-structure

Page 30: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL–Quotient Structure

Associated with the construction, from M and θ, ofM/θ is the quotient morphism (or, quotient map)

qθ : M −→ M/θ

which puts every element x ∈ M in its equivalence

class modulo θ (i.e., qθ(x)def= xθ)

Exercise

Show that qθ is surjective morphism.

Page 31: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ConstructionsL–Quotient Structure

Definition (Kernel)

Let η : M−→ N be a homorphism of the L-structures Mand N .By the kernel of η, noted ker(η), we mean the equivalencerelation θη on M defined by

(x , y) ∈ θη ⇐⇒ η(x) = η(y)

Page 32: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Constructions DirectProduct Structure

Definition (Direct Product)

Let {Mi}I ={(

Mi , {f i}f ∈F , {R i}R∈R)

| i ∈ I}, be an

I -indexed family of L-structures. The direct product ΠIMi

of the family is defined as follows:

The support set if ΠIMi (i.e., the Cartesian Product ofMi )

Operations on the product are defined componentwise

Given R ∈ R, the relation RΠ on ΠIMi is defined as

follows:

(x1, · · · , xm) ∈ RΠ

⇐⇒ ∀(i | i ∈ I : (x1(i), · · · , xm(i)) ∈ R i ),

where m is the arity m(R) of R and(x1, · · · , xm) ∈ (ΠIAi )

m.

Page 33: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Constructions DirectProduct Structure

Clearly, ΠIMi =(ΠIMi , {f Π}f ∈F , {RΠ}R∈R

)as it is

defined has the same language as L as each of thestructures in the family {Mi}I .

The set I can be empty: the empty product Π∅ has asupport with one element e.

R∅ = {(e, · · · , e)}

If ∀(i , j | i , j ∈ I : Mi = N = Mj ), thenΠIMi = N |I | denoted N I .

N I def= ΠIMi is called I -direct power of the

L-structure N .

Page 34: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

L-Substructure

L-Quotient Structure

Direct ProductStructure

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories Constructions DirectProduct Structure

Exercise

Show that the projections

Πi : ΠIMi −→ Mi

are surjective homomorphisms.

Note: ∀(x , i | x ∈ ΠIMi ∧ i ∈ I : Πi (x) = xi )

Πi is said to the ith-projection of ΠIMi onto Mi

Page 35: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ElementaryEquivalence and Isomorphism

We next consider structures that satisfy the same sentences

Definition

We say that two L-structures M and N are elementarilyequivalent and write M≡ N if

∀(φ | φ is an L-sentence : M |= φ ⇐⇒ N |= φ ).

We let Th(M), the full theory of M, be the set ofL-sentences φ such that M |= φ

It is easy to see that M≡ N if and only ifTh(M) = Th(N)

Our next result shows that Th(M) is an isomorphisminvariant of M

Page 36: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Structures and Theories ElementaryEquivalence and Isomorphism

Theorem

Suppose that j : M−→ N is an isomorphism. Then,M≡ N .

Proof highlights.

We show by induction on formulas thatM |= φ(a1, · · · , an) if and only ifN |= φ

(j(a1), · · · , j(an)

)for all formulas φ.

We first must show that terms behave well

Suppose that t is a term and the free variables in t arefrom v = (v1, · · · , vn). For a = (a1, · · · , an) ∈ M, welet j(a) denote (j(a1), · · · , j(an)). Thenj(tM(a)) = tN (j(a))We prove this by induction on terms.

Then, we proceed by induction on formulas.

Page 37: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Definition (Theory)

Let L be a language. An L-theory T is simply a set ofL-sentences. We say that M is a model of T and writeM |= T if

∀(φ | φ ∈ T : M |= φ )

Example

The set T = { ∀(x |: x = 0 ), ∃(x |: x 6= 0 )} is a theory.

Definition (Satisfiable Theory)

We say that a theory is satisfiable if it has a model.

Page 38: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Definition (Elementary class)

We say that a class of L-structures K is an elementary classif there is an L-theory T such that K = {M | M |= T}.

One way to get a theory is to take Th(M), the fulltheory of an L-structure MIn this case, the elementary class of models of Th(M)is exactly the class of L-structures elementarilyequivalent to MMore typically, we have a class of structures in mindand try to write a set of properties T describing thesestructures

We call these sentences axioms for the elementary class

Page 39: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Example (Infinite Sets)

Let L = ∅Consider the L-theory where we have, for each n, thesentence φn given by∃(x1 |: ∃(x2 |: · · · ∃(xn |:∧(i , j | i < j ≤ n : xi 6= xj ) ) ) · · · )

The sentence φn asserts that there are at least ndistinct elements

An L-structure M with universe M is a model of T ifand only if M is infinite

Page 40: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Example (Linear Orders)

Let L = {<} where < is a binary relation symbol

The class of linear orders is axiomatized by theL-sentences

1 ∀(x |: ¬(x < x) )2 ∀(x , y , z |: (x < y ∧ y < z) =⇒ x < z )3 ∀(x , y |: x < y ∨ x = y ∨ y < x )

To get the theory of dense linear orders, we could add:

∀(x , y | x < y : ∃(z |: x < z ∧ z < y ) )

To get the theory of linear orders where every elementhas a unique successor, we could add:

∀(x |: ∃(y |: x < y ∧ ∀(z | x < z : z = y ∨ y < z ) ) )

Page 41: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Example (Equivalence Relations)

Let L = {θ} where θ is a binary relation symbol

The theory of equivalence relations is given by thesentences

1 ∀(x |: (x , x) ∈ θ )2 ∀(x , y | (x , y) ∈ θ : (y , x) ∈ θ )3 ∀(x , y , z | (x , y) ∈ θ ∧ (y , z) ∈ θ : (x , z) ∈ θ )

To get the theory of equivalence relations where every

equivalence class has exactly two elements, we add

∀(x |: ∃

(y | x 6= y ∧ (x , y) ∈ θ

: ∀(z | (x , y) ∈ θ : z = x ∨ z = y )) )

Page 42: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Example (Graphs)

Let L = {R} where R is a binary relation symbol

The theory of irreflexive graphs is axiomatized by1 ∀(x |: (x , x) 6∈ R )2 ∀(x , y | (x , y) ∈ R : (y , x) ∈ R )

Example (Groups)

Let L = {·, e}The class of groups is axiomatized by

1 ∀(x |: e · x = x · e = x )2 ∀(x , y , z |: x · (y · z) = (x · y) · z )3 ∀(x |: ∃(y |: x · y = y · x = e ) )

Page 43: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories

Example (Ordered Abelian Groups)

Let L = {+, <, 0}The axioms for ordered groups are:

1 The axioms for additive groups

2 The axioms for linear orders

3 ∀(x , y , z | x < y : x + z < y + z )

The literature is full of theories given by their axioms: Rings,Semi-modules, Modules, Fields, Peano Arithmetic, etc.

Page 44: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence

Structures and Theories Theories LogicalConsequence

Definition (Logical Consequence)

Let T be an L-theory and φ an L-sentence. We say that φis a logical consequence of T and write T |= φ if M |= φwhenever M |= T .

Example

Let L = {+, <, 0} and let T be the theory of OrderedAbelian Groups

∀(x | x 6= 0 : x + x 6= 0 ) is a logical consequence ofT

To show that T |= φ1 we find a model of T (i.e., M |= T )2 we show that M |= φ

To show that T 6|= φwe usually construct a couterexample

Page 45: COM SFWR 707: Formal Specification Techniques€¦ · COM SFWR 707: Formal Specification Techniques Dr. R. Khedri Outline Introduction Basic Definitions Maps L-terms, Interpretation,

COM SFWR 707:Formal

SpecificationTechniques

Dr. R. Khedri

Outline

Introduction

Basic Definitions

L-terms,Interpretation,L-formulas, andSatisfiability

Constructions

ElementaryEquivalence andIsomorphism

Theories

Logical Consequence


Recommended