+ All Categories
Home > Documents > Combustion Team Supersonic Combustion

Combustion Team Supersonic Combustion

Date post: 19-Jan-2016
Category:
Upload: astrid
View: 85 times
Download: 3 times
Share this document with a friend
Description:
Sara Esparza Cesar Olmedo Alonzo Perez. Combustion Team Supersonic Combustion. Faculty Advisors:. Student Researchers:. Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad. Purpose. To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration. - PowerPoint PPT Presentation
Popular Tags:
22
Combustion Team Supersonic Combustion 06/10/22 1 NASA Grant URC NCC NNX08BA44A Faculty Advisors: Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad Sara Esparza Cesar Olmedo Alonzo Perez Student Researchers:
Transcript
Page 1: Combustion Team Supersonic Combustion

Combustion TeamSupersonic Combustion

04/21/23 1NASA Grant URC NCC NNX08BA44A

Faculty Advisors:

Dr. GuillaumeDr. Wu Dr. BoussalisDr. LiuDr. Rad

Sara Esparza

Cesar Olmedo

Alonzo Perez

Student Researchers:

Page 2: Combustion Team Supersonic Combustion

Purpose

To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration

04/21/23 NASA Grant URC NCC NNX08BA44A 2

Page 3: Combustion Team Supersonic Combustion

Final Design

04/21/23 NASA Grant URC NCC NNX08BA44A 3

Page 4: Combustion Team Supersonic Combustion

Intake Manifold

04/21/23 NASA Grant URC NCC NNX08BA44A 4

Page 5: Combustion Team Supersonic Combustion

Purpose of Intake Manifold

• Will assist in premixing concept

• Determine if injection of hydrogen will effect nozzle performance

• If no effect is determine we will introduce – Hydrogen

– Silane

04/21/23 NASA Grant URC NCC NNX08BA44A 5

Page 6: Combustion Team Supersonic Combustion

Intake ManifoldProgress

04/21/23 NASA Grant URC NCC NNX08BA44A 6

Side View FrontView

Page 7: Combustion Team Supersonic Combustion

Converging Diverging Nozzle

04/21/23 NASA Grant URC NCC NNX08BA44A 7

SectionView FrontView

Page 8: Combustion Team Supersonic Combustion

Intake and Nozzle

04/21/23 NASA Grant URC NCC NNX08BA44A 8

Page 9: Combustion Team Supersonic Combustion

Intake and Nozzle

04/21/23 NASA Grant URC NCC NNX08BA44A 9

Page 10: Combustion Team Supersonic Combustion

Combustion Chamber

04/21/23 NASA Grant URC NCC NNX08BA44A 10

Page 11: Combustion Team Supersonic Combustion

Combustion ChamberProgress

04/21/23 NASA Grant URC NCC NNX08BA44A 11

Page 12: Combustion Team Supersonic Combustion

Dr. Wu Pressure Adaptor

04/21/23 NASA Grant URC NCC NNX08BA44A 12

Page 13: Combustion Team Supersonic Combustion

Pressure Testing

• Will use Dr Wu pressure adaptor to determine if hydrogen gas will effect nozzle performance.

• Comparing past nozzle value with intake manifold and hydrogen gas set up

04/21/23 NASA Grant URC NCC NNX08BA44A 13

Page 14: Combustion Team Supersonic Combustion

Pressure Reading at Nozzle Exit

• Pressure gage reading

• Anderson’s text: Mach 2.6

• Area ratio: 2.89

05.0134

73.6

psi

psi

inlet

exhaust

P

p

Page 15: Combustion Team Supersonic Combustion

New ignition System

• Three telsa coils ( one for each spark plug)

• 13 V DC 1 Amp power source that is button operated

• All wire will be insulated and routed away from any flammable sources

04/21/23 NASA Grant URC NCC NNX08BA44A 15

Page 16: Combustion Team Supersonic Combustion

New Ignition Source:Tesla Coil

• Allows for continuous spark

• Strong spark across air flow

• Resonant transformer circuit

04/21/23 NASA Grant URC NCC NNX08BA44A 16

Page 17: Combustion Team Supersonic Combustion

Tesla Coil

04/21/23 NASA Grant URC NCC NNX08BA44A 17

• Resonant transformer circuit

• High voltage

• Low current

• High frequency alternating current electricity

• Loosely coupled coil winding

Page 18: Combustion Team Supersonic Combustion

Final Design

04/21/23 NASA Grant URC NCC NNX08BA44A 18

Page 19: Combustion Team Supersonic Combustion

Future Work

• Test new Intake manifold with hydrogen

• Determine premixing option

• Incorporate telsa coil

• Develop new ignition system

• Acquire silane

• Finish combustion chamber

04/21/23 NASA Grant URC NCC NNX08BA44A 19

Page 20: Combustion Team Supersonic Combustion

Timeline2009 - 2010

Hypersonic Combustion Team Timeline: February 2011 - March 2011

2011

Student Name FEB FEB FEB Mar

Sara Esparza

Finish fabrication of combustion chamber Built Telsa Coil

Test Intake with Hydrogen

Find machine Shop toPolish intake surface

Fluent analysis of hydrogen and air inside intake mixture

Determine the possibility of premixing hydrogen

Cesar Olmedo

Finish fabrication of combustion chamber

Purchase Third Telsa Coil

Fabrication of new Dr Wu

Pressure Adapter

Test Intake with Hydrogen

Fabricate new intake test holder

Fluent analysis of combustion chamber

10//2009 NASA Grant URC NCC NNX08BA44A

Page 21: Combustion Team Supersonic Combustion

04/21/23 NASA Grant URC NCC NNX08BA44A

Textbook References

Anderson, J. “Compressible Flow.”

Anderson, J. “Hypersonic & High Temperature Gas Dynamics”

Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion”

AIAA Educational Series,

Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3rd ed. 1999.

Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion”

AIAA Educational Series.

Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer”

Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook”

McGraw-Hill

Turns, S.R. “An Introduction to Combustion”

White, E.B. “Fluid Mechanics”.

21

Page 22: Combustion Team Supersonic Combustion

04/21/23 NASA Grant URC NCC NNX08BA44A

Journal References

Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41st AIAA Joint Propulsal. 2005-4105.

Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988

Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4 th Congress, Paris, France, 64-579, Aug 1964

Esparza, S. “Supersonic Combustion” CSULA Symposium, May 2008.

Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation. 1988.

Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs. 1113-1126. 2005.

Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, 2009.

Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP-2006-271. Nov 2001

McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008

Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example”

Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame-Holder Scramjet. AIAA 2005-3358, 2005.

Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr 2007.

22


Recommended