+ All Categories
Home > Documents > Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene!...

Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene!...

Date post: 22-Mar-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
21
Compara’ve Life Cycle Analysis of Fossil based and Biomassbased PET Bo<les Luyi Chen, Rylie Pelton and Tim Smith Jun 7 – Jun 15, 2015 NorthStar Ini5a5ve for Sustainable Enterprise Ins5tute on the Environment
Transcript
Page 1: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Compara've  Life  Cycle  Analysis  of  Fossil-­‐based  and  Biomass-­‐based  PET  Bo<les  

Luyi  Chen,  Rylie  Pelton  and  Tim  Smith  

Jun  7  –  Jun  15,  2015  

NorthStar  Ini5a5ve  for  Sustainable  Enterprise  Ins5tute  on  the  Environment  

Page 2: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Biorefinery  •  Biorefining  -­‐  sustainable  processing  of  biomass  into  a  

spectrum  of  marketable  products  and  energy[1]  

[1]  Cherubini,  F.  (2010).  Energy  Conversion  and  Management,  51(7),  1412-­‐1421.    [2]  Hawkins,  A.  C.  (2013).  ‘Preprocessing  and  Conver5ng  Forest  Residual  Sugars  into  Advanced  Biofuels’.  [3]  Kamm,  B.  et  al.  (2007).  Ullmann's  Encyclopedia  of  Industrial  Chemistry.  [4]  Kelloway,  A.,  &  Daou5dis,  P.  (2013).  Industrial  &  Engineering  Chemistry  Research  53,  (13),  5261-­‐5273.    [5]  Pelton,  R.  E.  O.  et  al.  (2014).  Co-­‐Product  Implica5ons  on  the  Environmental  Preference  of  Bio-­‐jet  Fuel  [6]  Stuart  and  El-­‐Halwagi  (2012).  CRC  Press:  2012.  [7]  Lynd  et  al.  (2005).  NaConal  Renewable  Energy  Laboratory,  Golden,  CO,  Technical  Report  No.  NREL/SR-­‐510-­‐35578.    

[6][7]  

[5]  

[2]  

Forest'Residues'

Ac.vated'Carbon,'Cement'

Dispersant,'Biofuels,'...'

Iso=Paraffinic'Kerosene'(IPK)''

Isobutanol'(IBA)'

Excess'Energy'(Electricity)'

Paraxylene'(PX)'

Polyethylene'Terephthalate'

(PET)'

Page 3: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Polyethylene  Terephthalate  (PET)  •  Precursors:  Terephthalic  Acid  &  Ethylene  Glycol[1]  

•  Isobutanol  –  Paraxylene  –  Terephthalic  Acid[2]    

 

[1]  Köpnick  et  al.  (2000).  Polyesters.  Ullmann's  encyclopedia  of  industrial  chemistry.  [2]  Adapted  from  Terephthalsäure,  In  Wikipedia  (DE).  Retrieved  Feb  15,  2015.  

Terephthalic  Acid   Ethylene  Glycol   Polyethylene  Terephthalate  

Terephthalic  Acid  

Isobutanol   Isobutene   Isooctene  

Paraxylene  

Water  

Page 4: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Polyethylene  Terephthalate  (PET)  

[1]  European  Bioplas5cs  |  Ins5tute  for  Bioplas5cs  and  Biocomposites  (2012)  [2]  Imre  and  Pukanszky.  Eur  Polym  J  Vol  49,  pp.  1215–1233,2013.  [3]  Hawkins  (2013).  ‘Preprocessing  and  Conver5ng  Forest  Residual  Sugars  into  Advanced  Biofuels’.  [4]  P&G  Inc.  ‘Coca-­‐Cola,  Ford,  Heinz,  Nike,  and  Procter  &  Gamble  Form  Collabora5ve  to  Accelerate  Development  of  Products  Made  En5rely  from  Plants’.  Retrieved  April  8,  2015  

[1]  

Page 5: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Life  Cycle  Assessment  

[1]  Eco-­‐profiles  and  Life  Cycle  Analysis.  Retrieved  Feb  15,  2015  from:  hkp://www.trinseo.com/sustainability/opera5ons/eco-­‐profiles.htm  [2]  ISO  14040.  Interna5onal  Organiza5on  for  Standardiza5on.  (206).  Environmental  management  LCA  Principles  and  Framework.    

Page 6: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

System  Boundary  

Petroleum  Refinery  

Xylene  

PET  Bokles  

Terephthalic  Acid  

Natural  Gas  Refinery  

Ethylene  

Ethylene  Glycol  

Fossil-­‐based  PET  Bokle  

Bio-­‐PTA  

Isobutanol  

Paraxylene  

Terephthalic  Acid  

Biomass  

Ethanol  

Ethylene  

Ethylene  Glycol  

Biomass  

Bio-­‐EG  

TA                            EG   Fossil   Corn   Switchgrass   Wheat  Straw  

Fossil   1   2   3   4  

Wood   5   6   7   8  

Corn  Stover   9   10   11   12  [1]  Na5onal  Associa5on  for  PET  Container  Resources.  (2011).  PET  Basics.  Retrieved  September  15,  2014.  

Electricity  

Page 7: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Life  Cycle  Inventory  Analysis  (LCI)  

•  Data  Sources  –  Ecoinvent  v2.2  –  PE  Interna5onal  –  ASPEN  Model  –  Designer’s  Diagram  –  Literature  –  NREL  USLCI  

•  Sooware:  GaBi  

Page 8: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

•  Impact  Categories[1]    –  Translate  emissions  to  consequences  –  Easier  for  non-­‐expert  to  understand  

 

   

3.52  kg  CO2      0.0016  kg  CH4  0.0005  kg    N2O  ……  

3.96  kg  CO2  eq.    released  to  the  atmosphere  

Nega5ve  impacts  on  temperature,  precipita5on  and  sea  level    

Life  Cycle  Impact  Analysis  (LCIA)  

[1]  Bare  (2012).  Tool  for  the  Reduc5on  and  Assessment  of  Chemical  and  other  Environmental  Impacts  (TRACI).    

•  Global  Warming  Poten5al    •  Human  Health  Par5culate  (Air)    •  Fossil  Fuel  Deple5on  

Page 9: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Alloca'on  •  AVOID  alloca5on  with  System  Expansion[1][2]  

(Displacement  Method/Avoided  Impacts)    

[1]  EPA,  U.  (2010).  Renewable  fuel  standard  program  (RFS2)  regulatory  impact  analysis.    [2]  ISO  14040.  Interna5onal  Organiza5on  for  Standardiza5on.  (206).  Environmental  management  LCA  Principles  and  Framework.  [3]  Adapated  from  hkp://lca-­‐net.com/blog/iso-­‐system-­‐expansion-­‐subs5tu5on/  

Bio-­‐PET  System  

Electricity  System  

Credited  Bio-­‐PET  System  

Bio-­‐PET   Electricity  (from  biomass)  

X  MJ  

Electricity  (from  fossil)  

X  MJ  

Bio-­‐PET  

Page 10: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Global  Warming  Poten'al  

[1]  Ganguly  et  al.  (2014).  CINTRAFOR.      [2]  Goedkoop  et  al.  (2009).  ReCiPe  2008.  A  life  cycle  impact  assessment  method  which  comprises  harmonised  category  indicators  at  the  midpoint  and  the  endpoint  level,  1.    

Figure  1.  Life  Cycle  Impact  Analysis  results  for  Global  Warming  

0

4

8

12G

loba

l War

min

g kg

CO

2 eq

Fossil TA Wood TA Corn Stover TAFossil EG Corn EG Switchgrass EG Wheat Straw EGSlash Pile Burning Excess Energy Coproducts

Page 11: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Unit  Process  Global  Warming  

[1]  PE  Interna5onal.  (2014).  Process  data  set:  Biopolyethylene  terephthalate  granulate  (PET)  via  terepht.  acid  +  EG  (corn);  par5ally  biobased  via  terephthalic  acid  and  ethylene  glycol  from  bioethylene  based  on  US  corn;  single  route,  at  plant.          [2]  Schut.  (2012)  The  Race  to  100%  Bio-­‐PET.  PlasCcs  Engineering.  [3]  Sims,  et  al.  (2010),  Bioresource  technology  101,  (6),  1570-­‐1580.  

Figure  4.  Life  Cycle  Impact  Analysis  results  for  unit  processes  (Global  Warming)  

0% 20% 40% 60% 80% 100%

Fossil_FossilFossil_Corn

Fossil_SwitchFossil_WheatWood_FossilWood_Corn

Wood_SwitchWood_WheatStover_FossilStover_Corn

Stover_SwitchStover_Wheat

Page 12: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Unit  Process  Global  Warming  

[1]  PE  Interna5onal.  (2014).  Process  data  set:  Biopolyethylene  terephthalate  granulate  (PET)  via  terepht.  acid  +  EG  (corn);  par5ally  biobased  via  terephthalic  acid  and  ethylene  glycol  from  bioethylene  based  on  US  corn;  single  route,  at  plant.          [2]  Schut.  (2012)  The  Race  to  100%  Bio-­‐PET.  PlasCcs  Engineering.  [3]  Sims,  et  al.  (2010),  Bioresource  technology  101,  (6),  1570-­‐1580.  

Figure  4.  Life  Cycle  Impact  Analysis  results  for  unit  processes  (Global  Warming)  

0% 20% 40% 60% 80% 100%

Fossil_FossilFossil_Corn

Fossil_SwitchFossil_WheatWood_FossilWood_Corn

Wood_SwitchWood_WheatStover_FossilStover_Corn

Stover_SwitchStover_Wheat

| Baseline Threshold

Page 13: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Unit  Process  Global  Warming  

[1]  PE  Interna5onal.  (2014).  Process  data  set:  Biopolyethylene  terephthalate  granulate  (PET)  via  terepht.  acid  +  EG  (corn);  par5ally  biobased  via  terephthalic  acid  and  ethylene  glycol  from  bioethylene  based  on  US  corn;  single  route,  at  plant.          [2]  Schut.  (2012)  The  Race  to  100%  Bio-­‐PET.  PlasCcs  Engineering.  [3]  Sims,  et  al.  (2010),  Bioresource  technology  101,  (6),  1570-­‐1580.  

Figure  4.  Life  Cycle  Impact  Analysis  results  for  unit  processes  (Global  Warming)  

0% 20% 40% 60% 80% 100%

Fossil_FossilFossil_Corn

Fossil_SwitchFossil_WheatWood_FossilWood_Corn

Wood_SwitchWood_WheatStover_FossilStover_Corn

Stover_SwitchStover_Wheat

| Baseline Threshold

Page 14: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

-0.03-0.025-0.02

-0.015-0.01

-0.0050

0.0050.01

0.015

Hum

an H

ealth

Par

ticul

ate

kg P

M2.

5 eq

Human  Health  Par'culate  

[1]  Ganguly  et  al.  (2014).  CINTRAFOR.      [2]  Bare  (2012).  Tool  for  the  Reduc5on  and  Assessment  of  Chemical  and  other  Environmental  Impacts  (TRACI).    

Figure  2.  Life  Cycle  Impact  Analysis  results  for  Acidifica5on  

Fossil TA Wood TA Corn Stover TA

Fossil EG Corn EG Switchgrass EG Wheat Straw EGSlash Pile Burning Excess Energy Coproducts

Page 15: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Unit  Process  Human  Health  Par'culate  

[1]  PE  Interna5onal.  (2014).  Process  data  set:  Biopolyethylene  terephthalate  granulate  (PET)  via  terepht.  acid  +  EG  (corn);  par5ally  biobased  via  terephthalic  acid  and  ethylene  glycol  from  bioethylene  based  on  US  corn;  single  route,  at  plant.          [2]  Schut.  (2012)  The  Race  to  100%  Bio-­‐PET.  PlasCcs  Engineering.  [3]  Sims,  et  al.  (2010),  Bioresource  technology  101,  (6),  1570-­‐1580.  

Figure  5.  Life  Cycle  Impact  Analysis  results  for  unit  processes  (Acidifica5on)  

0% 20% 40% 60% 80% 100%

Fossil_FossilFossil_Corn

Fossil_SwitchFossil_WheatWood_FossilWood_Corn

Wood_SwitchWood_WheatStover_FossilStover_Corn

Stover_SwitchStover_Wheat

Page 16: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

0

4

8

12

16

Foss

il Fu

els D

eple

tion

MJ

surp

lus e

nerg

yFossil  Fuel  Deple'on  

Figure  3.  Life  Cycle  Impact  Analysis  results  for  Fossil  Fuel  Deple5on  

Fossil TA Wood TA Corn Stover TA

Fossil EG Corn EG Switchgrass EG Wheat Straw EGSlash Pile Burning Excess Energy Coproducts

[1]  Ganguly  et  al.  (2014).  CINTRAFOR.      [2]  Bare  (2012).  Tool  for  the  Reduc5on  and  Assessment  of  Chemical  and  other  Environmental  Impacts  (TRACI).    

Page 17: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Unit  Process  Fossil  Fuel  Deple'on  

[1]  PE  Interna5onal.  (2014).  Process  data  set:  Biopolyethylene  terephthalate  granulate  (PET)  via  terepht.  acid  +  EG  (corn);  par5ally  biobased  via  terephthalic  acid  and  ethylene  glycol  from  bioethylene  based  on  US  corn;  single  route,  at  plant.          [2]  Schut.  (2012)  The  Race  to  100%  Bio-­‐PET.  PlasCcs  Engineering.  [3]  Sims,  et  al.  (2010),  Bioresource  technology  101,  (6),  1570-­‐1580.  

Figure  6.  Life  Cycle  Impact  Analysis  results  for  unit  processes  (Fossil  Fuel  Deple5on)  

0% 20% 40% 60% 80% 100%

Fossil_FossilFossil_Corn

Fossil_SwitchFossil_WheatWood_FossilWood_Corn

Wood_SwitchWood_WheatStover_FossilStover_Corn

Stover_SwitchStover_Wheat

Page 18: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Sensi'vity  Analysis  Weak%Point%%of%Estimated%Value 45% 70% 110% 45% 70% 110% 45% 70% 110%

Global%Warming%Potential '43% '23% +8% +23% +12% '4% +171% +93% '31%

Human%Health%Particulate '0.33% '0.18% +0.06% +74% +41% '14% +6% +3% '1%

Fossil%Fuel%Depletion '19% '10% +3% NA NA NA +20% +11% '4%

*Percentage:change:were:calculated:based:on:Wood:TA_Fossil:EG:scenario.

Paraxylene%Process Slash%Pile%Burning Excess%Electricity

Page 19: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Conclusion  

•  100%  bio-­‐based  PET  bokle  (Forest  Residue  TA)  –  Favorable  based  on  specific  displacement  method  –  Vulnerable  to  uncertainty  in  process  and  avoided  impacts  (slash  pile  burning  and  excess  electricity)  

•  Bio-­‐based  PET  bokles  in  general  (30%/100%)  –  Techniques  are  not  yet  op5mized  for  bio-­‐based  PET  bokles  to  compete  with  fossil  bokles  from  an  environmental  perspec5ve  

Page 20: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Future  Work  

•  For  Bio-­‐PET  Bokles  – Data  verifica5on  and  evalua5on  – More  robust  sensi5vity  analysis  

•  For  NARA  Project  – Merge  into  integrated  co-­‐product  LCA  –  IPK  &  co-­‐products  system  op5miza5on  

•  Maximize  profits  (Life  Cycle  Cost  Analysis)  •  Minimize  impacts  

Page 21: Compara’ve*Life*Cycle*Analysis*of*Fossil5 ... · SystemBoundary Petroleum! Refinery! Xylene! PET!Bokles! Terephthalic! Acid! Natural!Gas! Refinery! Ethylene! Ethylene!Glycol!

Thanks!    

•  Ques5ons  &  Comments?  •  Luyi  Chen  [email protected]  •  Research  Assistant  |  NorthStar  Ini5a5ve  of  Sustainable  Enterprises  |  Ins5tute  on  the  Environment  |  northstar.environment.umn.edu  

•  PhD  Student  |  Bioproducts  and  Biosystems  Engineering  |  bbe.umn.edu  


Recommended