+ All Categories
Home > Documents > Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

Date post: 07-Aug-2018
Category:
Upload: a-villa
View: 220 times
Download: 0 times
Share this document with a friend

of 20

Transcript
  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    1/52

    ““Comparison and Status of Low Comparison and Status of Low --

    noise Xnoise X--band Oscillator andband Oscillator and Amplifier Technologies Amplifier Technologies””

    D. A. Howe and A.D. A. Howe and A. HatiHatiNational Institute of Standards & Technology (NIST), Boulder, CONational Institute of Standards & Technology (NIST), Boulder, CO, USA , USA 

    Collaborations with Army Research Lab, Office of NavalCollaborations with Army Research Lab, Office of NavalResearch, Optical Frequency Measurements and Ion StorageResearch, Optical Frequency Measurements and Ion Storage

    (NIST), Mayo Foundation, MIT(NIST), Mayo Foundation, MIT--LLLL

     Acknowledgements of Acknowledgements of OEWavesOEWaves, Inc., Poseidon, Inc., PoseidonScientific, QScientific, Q--Dot, Corp.Dot, Corp.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    2/52

    Best-in-class PM noise results and descriptions of X-band amplifiers andoscillators based on recent measurements at NIST. Results are at an

    operating frequency of 10 GHz.

     Amplifier PM-noise measurements of:

    SiGe with feedback noise suppression (FBA) Commercial amplifiers with feedforward noise suppression (FFA)

     Array of commercial amplifiers with uncorrelated noise

     Typical commercially available amplifiers

    Impact of amplifier feedback noise on oscillator, review of Leeson’s model

    Oscillator PM-noise measurements of:

     Typical low-noise quartz oscillator, multiplied to 10 GHz

    Optical Electronic Oscillator using fiber-delay-line resonator Sapphire-loaded CSO using interferometric carrier suppression

    High-power air-dielectric CSO using 2W drive and impedance controlled carrier

    suppression

    DRO feedback oscillator

    Optical femtosecond-comb divider with calcium-stabilized reference oscillator

    OUTLINE OF TALK

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    3/52

    Origins of oscillator phase noise motivates

    low-noise amplifier development

    resonator 

    at f o, with

    Q L

    noise-free amp

    (unity gain)

    +S a( f m)

    S ο( f m)

    S  b( f m)

    Phase stabilization of anoscillator with noise

    sources and a resonator

    with loaded Q, Q L.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    4/52

    GENERAL STRATEGY TO ACHIEVELOW RESIDUAL PHASE NOISE IN AMPLIFIERS

    Use low 1/f noise devices

    1/f noise multiplies up into near carrier noise due to amplifier non-linearities

    • Generally HBTs have smaller low-frequency noise than all classes ofFETs

    Use a design technique that achieves highly linear amplifier operationPossibilities include:

    • Feedback (requires high f t)

    • Feedforward (best over a narrow band with careful phase match)

    Parallel HBTs that are graded for low 1/f noise (power/size cost)• Predistortion (adds to device noise)

    • LINC -linear amplification using non-linear components (sampling-rate limited)

    Low-noise Microwave Amplifier Measurements

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    5/52

    19833 APROPOS_SPAWAR_04

    Courtesy of Mayo Foundation

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    6/52

    19057 APROPOS_2003

    Courtesy of Poseidon Scientific

    Low-noise Microwave Amplifier Measurements

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    7/52

    19059 APROPOS_2003

    Courtesy of Poseidon Scientific

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    8/52

    Feedback in Common-Base Amplifier 

    f t of 350 GHz attained in SiGe HBT

    Series-shunt feedback configuration

    V S 

    in R

    V  BB L R

    “SIGe HBTs with cut-off frequency of 350 GHz,” by Rieh, J.S., et al., International Electron Devices Meeting, pp.

    771-774, December 2002.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    9/52

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    10/52

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    11/52

    2

    2 2

    4

    ( )

    ( )( )

     o

    OSC 

    v S f 

    S f  Q f S f 

    φ

    φ

    φ

    ⎧⎪

    = ⎨⎪⎩

    2

    2

     o

     o

    v f 

    Q

    v f 

    Q

    <

    >

     o f v v= −Fourier frequency (offset frequency)

    Leeson’s Oscillator Noise Model

    D. B. Leeson, “A simple model of feedback

    oscillator noise spectrum,” Proc. IEEE Lett., 1966.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    12/52

    SLCO Interferometric Stabilized Cavity Loop Oscillator 

    Feedback oscillator in which the high-Q cavity serves both

    as the resonator and the discriminator. Carrier suppression and high Q increasediscriminator sensitivity.

    Univ. of Western Australia, Poseidon Scientific Instruments, Ivanov, et al., 1998

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    13/52

    Cavity stabilization of a DRO or YIG oscillator. Cavity serves as passive

    discriminator. Carrier suppression and high drive power increasediscriminator sensitivity.

    Impedance-controlled-coupling, Cavity-stabilized DRO/YIG

    J. Dick (JPL), A. SenGupta, F. Walls (NIST) and C. Nelson, B. Riddle (NIST)

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    14/52

    Single-fiber Opto Electronic Oscillator (OEO)

    Courtesy of OEWaves, Inc.

    Laser 

    Photodetector RF

    Amplifier 

    RF

    Coupler 

    RF

    Filter 

    Optical Fiber

    Optical

    Modulator 

    RF

    Output

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    15/52

    Single-fiber Opto Electronic Oscillator (OEO)

    Courtesy of OEWaves, Inc.

    RF Filter

    Fiber

    Single Loop OEO

    Ln

    c

    δν

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    16/52

    Multi-loop OEO reduces spurs, but:

    RF output

    Laser Optical

    Modulator 

    Photodetector 1

    RF

     Ampl if ier 

    RF

    filter 

    RF

    Coupler 

    Optical Fiber Fiber 

    splitter 

    Photodetector 2

    RF

    Combiner 

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    100 1000 10000 100000 1000000 10000000

    Offset Frequency (Hz)

       P   h  a  s  e

       N  o   i  s  e

       (   d   B  c   /   H  z   )

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    100 1000 10000 100000 1000000 10000000

    Offset Frequenc y (Hz)

       P   h  a  s  e

       N  o   i  s  e

       (   d   B  c   /   H  z   )

    - Single Optical Loop 4.4Km

    - Dual Optical Loop 8.4Km&2.2Km

    D. Eliyahu and L. Maleki Proceedings 2003 IEEE Int.

    Freq Control Symposium, pp405

    Long fiber 

    Short fiber 

    • Not enough spurious suppression for

    many RF system needs.•Worse phase noise performance.

    Opto-Electronic Oscillator 

    Q = 10 inoptical systems And Low g-sensitivity 

    Q = 10 inoptical systems And Low g-sensitivity 

    111111

    Optical Fiber Laser 

    Optical

    Modulator 

    Photodetector RF

     Ampl if ier 

    RF

    Filter 

    RFCoupler 

    RF output Single loopOEO

    JPL’s

    Dual loop

    OEO

    • OEO has very high Q and frequency agili tyover a wide range…

    • But long fiber OEO has spurs…

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    17/52

    ComparisonComparison

    • The Multi-loop OEO uses

    “ energy competition” between

    carrier mode and spur modes

    to suppress spurs.

    Long fiber 

    Short fiber 

    • For the Injection-Locked OEO:

    the spurs from the master OEO

    cannot be supported by the slave

    OEO’s.

    Master OEO Slave

    OEO

    In principle, spurs can be

    “eliminated” by destructive

    interference.

    Courtesy of Army Res. Lab.

    Spurs are suppressed.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    18/52

    Femtosecond Comb Optical Divider 

    10-5

    10-4

    10-3

    10-2

    10-1

    100

      o  r  m  a

      z  e

       o  w

      e  r

    120011001000900800700600

    Wavelength (nm)

    Broadband Femtosecond Mode-locked Laser Comb f r 

    •Broadband femtosecond lasersrequire more careful control of the

    intracavity dispersion and laser

    alignment.

    •In this particular case, the convexmirror provides enhanced self-

    amplitude modulation which

    generates shorter pulses and broader

    spectraCourtesy of Scott Diddams, NIST

    A. Bartels and H. Kurz, Opt. Lett. 27, 1839 (2002)

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    19/52

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    20/52

    Ultra-low PM Noise from Optical Sources

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    21/52

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    22/52

     The End The End

    D. A. Howe and A.D. A. Howe and A. HatiHatiNational Institute of Standards & Technology (NIST), Boulder, CONational Institute of Standards & Technology (NIST), Boulder, CO, USA , USA 

    Thanks to many contributors.Thanks to many contributors.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    23/52

    Comparison of different classes of microwave amplif iers and oscillators at X-band

    Conclusion

    K. Ko, K. Lee, “A Comparative Study on the Various Monolithic Low Noise Amplifier Circuit

    Topologies for RF and Microwave Applications”, IEEE Journal of Solid State Circuits, Vol. 31, no. 8,

    1996.

    H. Ainspan,M Soyuer, JO Plouchart, J. Burghartz, “A 6.25 GHz Low DC Power Low-Noise Amplifier

    in SiGe”, IEEE Custom Integrated Circuits Conference, 1997.

    M. Soyuer,“A 5.8GHz 1V Low-Noise Amplifier in SiGe Bipolar Technology”, IEEE Radio Frequency

    Integrated Circuits Symposium 1997.

    R. Gotzfried, F. Beisswanger, S. Gerlach, A. Schuppen, H. Dietrich, U. Seiler, K.-H. Bach and J.

     Albers, “RFIC’s for Mobile Communication Systems Using SiGe Bipolar Technology”, IEEE

    Transactions on Microwave Theory and Techniques, Vol. 46, no. 5, 1998.

    D.Y.C. Lie, X. Yuan, L.E. Larson, Y.H. Wang, A. Senior, J. Mecke, “RF-SoC: low-power single-chip

    radio design using Si/SiGe BiCMOS technology,” Proceedings of the 3rd International Microwave

    and Millimeter Wave Technology, pp. 30-37, August 2002.

    S. Muthukrishnan, “ESD protected SiGe HBT RFIC Power Amplifiers” Thesis: Virginia Polytechnic

    Institute and State University, Blacksburg, Va, March 2005.

    J.S. Rieh, B. Jagannathan, H. Chen, K.T. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey, F.Golan, D. Greenberg, S.J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker, K.K.

    Vaed, R. Volang, D. Ahlgren, G. Freeman, K. Stein, S. Subbanna, “SIGe HBTs with cut-off

    frequency of 350GHz,” International Electron Devices Meeting, pp. 771-774, December 2002.

    N. Shiramizu, T. Masuda, M. Tanabe, K. Washio, “A 3-10 GHz bandwidth low-noise and low-power

    amplifier for full-band UWB communications in 0.25- /spl mu/m SiGe BiCMOS technology,” CentralRes. Lab., Hitachi Ltd., Tokyo, Japan; This paper appears in: IEEE Radio Frequency integrated

    Circuits (RFIC) Symposium, 12-14 June, 2005.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    24/52

    Comparison of different classes of microwave amplif iers and oscillators at X-band

    Conclusion

    “A Comparative Study on the Various Monolithic Low Noise Amplifier Circuit Topologies for RF and

    Microwave Applications”, by Ko and Lee, IEEE Journal of Solid State Circuits, Vol. 31, no. 8, 1996.

    “A 6.25 GHz Low DC Power Low-Noise Amplifier in SiGe”, by Ainspan, et. al., IEEE Custom

    Integrated Circuits Conference, 1997.

    “A 5.8GHz 1V Low-Noise Amplifier in SiGe Bipolar Technology”, by Soyuer, IEEE Radio FrequencyIntegrated Circuits Symposium 1997.

    “RFIC’s for Mobile Communication Systems Using SiGe Bipolar Technology”, by Gotzfried et. al.,

    IEEE Transactions on Microwave Theory and Techniques, Vol. 46, no. 5, 1998.

    “RF-SoC: low-power single-chip radio design using Si/SiGe BiCMOS technology,” by Lie, D.Y.C.,

    Yuan, X., Larson, L.E., Wang, Y.H., Senior, A., Mecke, J., Proceedings of the 3rd International

    Microwave and Millimeter Wave Technology, pp. 30-37, August 2002.

    “ESD protected SiGe HBT RFIC Power Amplifiers” by Muthukrishnan, S., Thesis: Virginia

    Polytechnic Institute and State University, Blacksburg, Va, March 2005.

    “SIGe HBTs with cut-off frequency of 350GHz,” by Rieh, J.S., Jagannathan, B., Chen, H.,

    Schonenberg, K.T., Angell, D., Chinthakindi, A., Florkey, J., Golan, F., Greenberg, D., Jeng, S.J.,

    Khater, M., Pagette, F., Schnabel, C., Smith, P., Stricker, A., Vaed, K.k Volang, R., Ahlgren, D.,Freeman, G., Stein, K., and Subbanna, S., International Electron Devices Meeting, pp. 771-774,

    December 2002.

    “A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in

    0.25- /spl mu/m SiGe BiCMOS technology,” Shiramizu, N. Masuda, T. Tanabe, M. Washio,

    K. Central Res. Lab., Hitachi Ltd., Tokyo, Japan; This paper appears in: IEEE Radio Frequencyintegrated Circuits (RFIC) Symposium, 12-14 June, 2005.

    http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20masuda%20%20t.%3cIN%3eau)&valnm=++Masuda%2C+T.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20tanabe%20%20m.%3cIN%3eau)&valnm=++Tanabe%2C+M.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20washio%20%20k.%3cIN%3eau)&valnm=++Washio%2C+K.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20washio%20%20k.%3cIN%3eau)&valnm=++Washio%2C+K.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20washio%20%20k.%3cIN%3eau)&valnm=++Washio%2C+K.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20washio%20%20k.%3cIN%3eau)&valnm=++Washio%2C+K.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20washio%20%20k.%3cIN%3eau)&valnm=++Washio%2C+K.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20washio%20%20k.%3cIN%3eau)&valnm=++Washio%2C+K.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20tanabe%20%20m.%3cIN%3eau)&valnm=++Tanabe%2C+M.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20%20masuda%20%20t.%3cIN%3eau)&valnm=++Masuda%2C+T.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yes

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    25/52

    Low-noise Microwave Oscillator Measurements

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c

       /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DROFemtosecond Comb

    Calcium Optical (projected)

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    26/52

    SLCOSLCO Interferometric Interferometric Stabilized Cavity Loop Oscillator Stabilized Cavity Loop Oscillator 

     Active oscillator in which the high-Q cavity serves both

    as the resonator and the discriminator. Carrier suppression and high Q increasediscriminator sensitivity.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    27/52

    Impedance Impedance - - controlled controlled - - coupling, Cavity coupling, Cavity - - stabilized DRO/YIG stabilized DRO/YIG 

    Cavity stabilization of a DRO or YIG oscillator. Cavity serves as passivediscriminator. Carrier suppression and high drive power increase

    discriminator sensitivity.

    O S C

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    28/52

    1 GHz Ring Laser 

    Ti:Sapphire

    Gain

    532 nm

    Pump

    ⇒ GigaOptics laser, OFS fiber 

    -50

    -40

    -30

    -20

    -10

    0

       d   B   b  e   l  o  w  m

      a  x   i  m  u  m

    12001000800600

    wavelength (nm)

    MicrostructureOptical Fiber 

     An Octave-Spanning Comb using Microstructure Fiber 

    With typical microstructured fibers, one needs

    about 150 pJ of pulse energy in ~30 fs to generate

    an octave of spectrum. This corresponds to 200

    mW average power at a 1 GHz rep rate or 15 mW

    average power at a 100 MHz rep rate.

     f r 

    Femtosecond Comb Optical Divider 

    Courtesy of Scott Diddams, NIST

    O ill t ’ i

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    29/52

    Oscillators’ noise

    2

    2 24

    ( )

    ( )

    ( )

     o

    OSC 

    v S f 

    S f  Q f 

    S f 

    φ

    φ

    φ

    ⎧⎪

    = ⎨⎪⎩

    2

    2

     o

     o

    v f 

    Q

    v f Q

    <

    >

     o f v v= −

    Leeson’s model*

    Fourier frequency (offset frequency)

    oscillation condition:

    *D. B. Leeson, “A simple model of feedback

    oscillator noise spectrum,” Proc. IEEE Lett., 1966.

     A

    0

    0

    2 f  j

    Q

     H H e   ν−

    0 A A e φ=

    1 H   =

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    30/52

    -15

    -14

    -13

    -12

    -11

    -10

    -9

    -8

    0.1 1 10 100 1000 10000 100000

    τ[sec]

    σ y(  τ)

    τ

    -1

    τ-1/2

    τ0

    τ1/2

    0

    v y

    v

    Δ=

    10

    10

    10

    10

    10

    10

    10

    10

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    31/52

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    0

    1 10 100 1000 10000 100000 1000000

    Fourier frequency [Hz]

    0

    4

     h f  

    =−∑ 0  h f f ≤ ≤4− Sx(f ) =

    3 f   −

    2 f −

    1 f   −

    0 f 

    ( )

    New calculation

    S f φ

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    32/52

    Noise type 

    y(τ)

    0 White phase

    1 Flicker phase

    2 Random walk phase

    3 Flicker frequency

    4 Random walk frequency

    Frequency Domain

    Power Spectral Density

    of phase fluctuations

    2 = −

     Allan Deviation of fractional frequency fluctuations

    Time Domain

    −∝

    −∝

    1 2 / τ

    −∝

    0τ∝

    1

    τ∝

    R f f Ad d D i T h i

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    33/52

    References for Advanced Design Techniques “A Comparative Study on the Various Monolithic Low Noise Amplifier Circuit

    Topologies for RF and Microwave Applications”, by Ko and Lee, IEEE Journal

    of Solid State Circuits, Vol. 31, no. 8, 1996.

    “A 6.25 GHz Low DC Power Low-Noise Amplifier in SiGe”, by Ainspan, et. al.,

    IEEE Custom Integrated Circuits Conference, 1997.

    “A 5.8GHz 1V Low-Noise Amplifier in SiGe Bipolar Technology”, by Soyuer,

    IEEE Radio Frequency Integrated Circuits Symposium 1997.

    R f f Ad d D i T h i

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    34/52

    References for Advanced Design Techniques “RFIC’s for Mobile Communication Systems Using SiGe Bipolar Technology”,

    by Gotzfried et. al., IEEE Transactions on Microwave Theory and Techniques,

    Vol. 46, no. 5, 1998.

    “RF-SoC: low-power single-chip radio design using Si/SiGe BiCMOS

    technology,” by Lie, D.Y.C., Yuan, X., Larson, L.E., Wang, Y.H., Senior, A.,

    Mecke, J., Proceedings of the 3rd International Microwave and MillimeterWave Technology, pp. 30-37, August 2002.

    “ESD protected SiGe HBT RFIC Power Amplifiers” by Muthukrishnan, S.,

    Thesis: Virginia Polytechnic Institute and State University, Blacksburg, Va,

    March 2005. “SIGe HBTs with cut-off frequency of 350GHz,” by Rieh, J.S., Jagannathan,

    B., Chen, H., Schonenberg, K.T., Angell, D., Chinthakindi, A., Florkey, J.,

    Golan, F., Greenberg, D., Jeng, S.J., Khater, M., Pagette, F., Schnabel, C.,

    Smith, P., Stricker, A., Vaed, K.k Volang, R., Ahlgren, D., Freeman, G., Stein,K., and Subbanna, S., International Electron Devices Meeting, pp. 771-774,

    December 2002.

    “A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB

    communications in 0.25- /spl mu/m SiGe BiCMOS technology,” Shiramizu,N. Masuda, T. Tanabe, M. Washio, K. Central Res. Lab., Hitachi Ltd.,

    Tokyo, Japan; This paper appears in: IEEE Radio Frequency integrated

    C B LNA R I l ti

    http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yeshttp://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shiramizu%20%20n.%3cIN%3eau)&valnm=+Shiramizu%2C+N.&reqloc%20=others&history=yes

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    35/52

    C-B LNA: Reverse Isolation

    Examining the circuit it is clear that virtually none of the signal at the output

    port appears at the input port. C-B amplifier therefore offers excellent reverse

    isolation.

    C

    E

    r π 

    g V m   π 

    C  jc

     RbB

    C π 

     Re RS 

     _ rev availP

     _ rev delvP

     L R

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    36/52

    IV. LEESON’S EQUATION

    1. Origins of Phase Noise

    A simple feedback loop (phase servo) predicts phasenoise from device noise figure, baseband noise sourcesand resonator Q.

    2. Leeson’s Equation

    Predicts Spectral Density (PSD) of Phase Fluctuationsfrom 1/f noise, noise figure, carrier power and loaded Q.

    S (f ) Addi i hi h l i f

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    37/52

    S a(f m): Additive white thermal noise power at f o.

    F : noise figure of the amplifier and resonator

    k : Boltzmann’s constant

    T : Temperature in Kelvin

    B : Set to 1 Hz to give S a(f m) as Power SpectralDensity (PSD). Then normalize to the oscillator output

     power, Pc, to give the normalized PSD.

    ( )cc

    maP

    FkT 

    P

    FkTB f S    == [Hz-1] (1)

    Sb(f ): Baseband noise sources upconverted by active

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    38/52

    S b(f m): Baseband noise sources upconverted by active

    device non-linearity.

    Flicker noise (1/f noise)

    Shot noise (white noise)

    Thermal (white noise)

    K 2

    K 1/ f 

    log( f ) (Hz)c’

    log[S b(f m)](W/Hz)

    Transform the phase servo loop to baseband and combine

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    39/52

    Transform the phase servo loop to baseband and combine

    normalized input noise sources:

    noise-free amp(unity gain)

    +S i(f m)

    LPF

    ( ) ( )mim Lo

    mo   f S  f Q

     f 

     f S  ⎥⎥⎦

    ⎢⎢⎣

    ⎟⎟ ⎠

     ⎞

    ⎜⎜⎝ 

    ⎛ 

    +=

    2

    21

    ( )cmcc

    miP

     f P

    P

    FkT  f S  21 ++= [Hz-1]

    (2) L

    or 

    Q

     f  f 

    2=

    Output PSD:

    Input PSD:

    Input Noise Power Spectral Density, Si(f )

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    40/52

    Input Noise Power Spectral Density, S i(f m)

    [Hz-1] (3)

    Log[

    K 2/ Pc

    K 1/Pc f m

    log( f m) (Hz)c c'

    FkT/Pc

    log[S i(f m)](Hz

    -1

    )

    The intersection of the K 1/ f m and FkT/Pc is the corner

    frequency,  f c.

    ( ) ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ +=

    m

    c

    c

    mi f 

     f 

    P

    FkT  f S  1

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    41/52

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    42/52

    2. Leeson’s Equation

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    43/52

    q

    Leeson’s equation for the Power Spectral Density of anoscillator:

    ( )⎥⎥

    ⎢⎢

    ⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ +⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ +=

    2

    211

    m L

    o

    m

    c

    c

    mo f Q

     f 

     f 

     f 

    P

    FkT  f S  [rad 2/Hz]

    Equal to Spectral Density of Phase Fluctuations, [rad 2/Hz],

    when AM noise is negligible.

    ( ) ( )mim L

    omo   f S 

     f Q

     f  f S 

    ⎥⎥

    ⎢⎢

    ⎡⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ +=

    2

    21

    [Hz-1]( ) ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ +=

    m

    c

    c

    mi f 

     f 

    P

    FkT  f S  1

    2. Leeson’s Equation, cont.

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    44/52

    q ,

    [rad 2/Hz]

    Single Sided Spectral Density of Phase Fluctuations,

    [rad 2

    /Hz], versus offset frequency, f m.

    ( ) ( )⎥⎥

    ⎤⎢⎢

    ⎡⎟⎟

     ⎠ ⎞

    ⎜⎜⎝ ⎛ +⎟⎟

     ⎠ ⎞

    ⎜⎜⎝ ⎛  +==

    2

    211

    m L

    o

    m

    c

    c

    mom f Q

     f 

     f 

     f 

    P

    FkT  f S  f S φ 

    0 Hz   f m

    S φ  [Hz-1

    ]

    S ο (f m)

    c

    FkT/2Pc

     f r 

    1/ f 3

    1/ f2

     f m[Hz]

    Using Leeson’s Equation to Predict Oscillator Phase Noise

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    45/52

    g q

    [rad 2/Hz]

    Consider two cases:1. High-Q oscillator:  f c > f r ,

    2. Low-Q oscillator:  f c

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    46/52

    c

     L(f m)

    [dBc/Hz

    FkT/2Pc

     f r 

    1/ f 

    1/ f 3

    c

     L(f m)

    [dBc/Hz

    FkT/2Pc

    1/ f3

    1/ f 2

    (a) High Q-Oscillator: f r   f c

     f m [Hz]   f m[Hz]

    ( )⎥⎥

    ⎤⎢⎢

    ⎡⎟⎟

     ⎠ ⎞

    ⎜⎜⎝ ⎛ +⎟⎟

     ⎠ ⎞

    ⎜⎜⎝ ⎛  +=

    2

    112 m

    m

    c

    c

    m f 

     f 

     f 

     f 

    P

    FkT  f  L   ( ) ( )mm   f  L f S  2=φ  [rad 2/Hz]

    C f C O

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    47/52

    Comparison of Candidate Oscillators

    OscillatorHigh Power Air

    CavitySLCO Poseidon OEO

    Output coupling  Very Low ModerateDirectionalcoupler and

    amplifier

    Resonator Q Moderate

    60,000

    High

    190,000

     Very High

    1e9

    Loop Power High

    1-10 Watts

     Moderate

    100's mW 

    Inherent Spurs  None None Many

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    48/52

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    49/52

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B

      c   /   H  z

    OEWave 16 Km Single Fiber 

    Low Noise QZ with Perfect Multiplier 

    SLCO Poseidon (Published data)

    NIST Cavity Stabilized DRO

    Femtosecond Comb

    Calcium Optical (projected)

    I t f ti C it St bili d DRO/YIG

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    50/52

    Interferometic Cavity Stabilized DRO/YIG

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    51/52

     Amplifier ComparisonaPROPOS PM noise, goal, and four existing amplifiers (@ 10 GHz)

    -200

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c   /   H  z

    Projected amp. spec, Pin=0 dBm

    MSH-6135501,Pin=+2.57 dBm

    MSH-6133401, Pin=+2.57 dBm

    HMMC-5618 #1, Pin=+3.7dBm

    HMMC-5618 #2, Pin=+3.7dBm

    Mayo FFA, Pin=0 dBm

    NIST Array, Pin=0 dBm

    Typical Microwave Amplifier 

    Noise Floor of Measurement System

  • 8/20/2019 Comparison and Status of Low-Noise X Band Oscillators and Amplifiers

    52/52

    MAYO First Feedfoward Amp Results12/ 17/04 aPROPOS amplifier PM noise, goal (@ 10 GHz)

    -200

    -190

    -180

    -170

    -160

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    1 10 100 1000 10000 100000 1000000 10000000

    Frequency (Hz)

       L   (   f   )   d   B  c   /   H  z

    Projected amp. spec,

    Pin=0 dBmMayo FFA, Pin=0 dBm

    NIST Array, Pin=0 dBm

    OE Waves Loop Amp,

    Pin=-20 & +10 dBmNoise Floor of 

    Measurement System


Recommended