+ All Categories
Home > Documents > Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

Date post: 01-Apr-2015
Category:
Upload: garett-manley
View: 262 times
Download: 2 times
Share this document with a friend
Popular Tags:
41
Complexometr ic Titrations 1 920220 http:\\ asadipour.kmu.ac.ir 41 slides
Transcript
Page 1: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 1

Complexometric

Titrations

920220

Page 2: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 2

Complex-Formation TitrationsGeneral Principles

• Most metal ions form coordination compounds with electron-pair donors (ligands)

• Mn+ + qLm- MLqn-mq Kf = [MLq

n-mq]/[Mn+][Lm-]q

• The number of covalent bonds formed is called the “coordination number” .

• e.g., Cu2+ has coordination number of 4• Cu2+ + 4 NH3 Cu(NH3)4

2+

• Cu2+ + 4 Cl- Cu(Cl)42-

920220

Page 3: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 3

Complex-Formation TitrationsGeneral Principles

• Ligands are classified regarding the number of donor groups available:

• e.g., NH3 = “unidentate” :NH3

• Glycine = “bidentate” : NH2CH2COO -

• (also, there are tridentate, tetradentate, pentadentate, and hexadentate chelating agents)

• Multidentate ligands (especially with 4 and 6 donors) are preferred for titrimetry.– react more completely with metal ion– usually react in a single step– provide sharper end-points

920220

Page 4: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 4920220

Page 5: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 5

Nitrilotriacetic acid (NTA)

920220

Page 6: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 6

Complex-Formation TitrationsGeneral Principles

• The most useful complex-formation reactions for titrimetry involve chelate formation

• A chelate is formed when a metal ion coordinates with two of more donor groups of a single ligand (forming a 5- or 6- membered heterocyclic ring)

920220

Page 7: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 7

Complex-Formation TitrationsGeneral Principles

• Aminopolycarboxylic acid ligands

• e.g., ethylenediaminetetraacetic acid (EDTA)

• EDTA is a hexadentate ligand• EDTA forms stable chelates with most metal ions

920220

Page 8: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 8920220

Page 9: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 9

Complex-Formation TitrationsSolution Chemistry of EDTA(H4Y)

• 5 forms of EDTA, (H4Y, H3Y-, H2Y2-, HY3-, Y4-)

• EDTA combines with all metal ions in 1:1 ratio• Ag+ + Y4- AgY3-

• Fe2+ + Y4- FeY2-

• Al3+ + Y4- AlY-

• KMY = [MYn-4]/[Mn+][Y4-]

920220

Page 10: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 10920220

Page 11: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

11

pKa1= 1.99

pKa2= 2.67

pKa3= 6,16

pKa4= 10.26

920220http:\\asadipour.kmu.ac.ir 41 slides

Page 12: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 12

• 5 forms of EDTA, (H4Y, H3Y-, H2Y2-, HY3-, Y4-)

Y4- complexes with metal ions, and so the complexation equilibria are very pH dependent.

Y4- complexes with metal ions, and so the complexation equilibria are very pH dependent.

920220

Page 13: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 13

Complex-Formation TitrationsEquilibrium Calculations with EDTA

• Mn+ + Y4- MYn-4 Ks = [MYn-4]/[Mn+][[Y4-]

• Need to know [Y4-], which is pH-dependent• pH dependence of Y4-:• CT = [Y4-] + [HY3-] + [H2Y2-] + [H3Y-] + [H4Y]

• Define: a4 = [Y4-]/CT …………… [Y4-] =a4 ×CT

• a4 = (K1K2K3K4) / ([H+]4 + K1[H+]3 + K1K2[H+]2 + K1K2K3[H+] + K1K2K3K4)

• Conditional Formation Constant, K’MY

• Ks = [MYn-4]/[Mn+][[Y4-]

• Ks =[MYn-4]/[Mn+][[a4CT]

• K’s = a4 KMY = [MYn-4]/[Mn+][[CT] 920220

Page 14: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 14

Fig. 9.2. Effect of pH on Kf’ values for EDTA chelates.

Kf’ = conditional formation constant = Kfa4.

It is used at a fixed pH for equilibrium calculations (but varies with pH since a4 does).

Kf’ = conditional formation constant = Kfa4.

It is used at a fixed pH for equilibrium calculations (but varies with pH since a4 does).

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

920220

Page 15: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 15920220

Page 16: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 16

pH=6

920220

Page 17: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 17920220

Page 18: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 18

Theoretical titration curves for the reaction of 50.0mL of

0.040 0M metal ion with 0.080 0 M EDTA at pH 10.00

Complex-Formation Titration curve

920220

Page 19: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 19

Titration curve• 50.0mL 0.020M Ca2+ with 0.050M EDTA, pH 10.0

• K’s for specific pH at pH 10.0,• K’s = (a4)(KCaY) = (0.35)(5.0 x 1010) = 1.75 x 1010

• (a) pCa values before the equivalence point (10.0ml)• Ca2+ + Y4- CaY2-

• [Ca2+] =((50.0 x 0.020) –(10.0 x 0.050))/(60.0) = 0.0083M• pCa = 2.08 at 10.0ml EDTA

920220

N1V1=N2V2 V2=20 ml

Page 20: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 20

Titration curve• (b) pCa value at the equivalence point (20.0ml)• Ca2+ + Y4- CaY2-

• [CaY2-] = ((20.0ml x 0.050M)/(70.0ml)) = 0.0142M

• K’MY = [CaY2-] / [Ca2+] [CT] = (0.0142)/ [Ca2+]2

• [Ca2+] = ((0.0142)/(1.75 x 1010))1/2 = 9.0 x 10-7M; • pCa = 6.05 at 20.0ml EDTA

920220

Page 21: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 21

Titration curve

• (c) pCa value after the equivalence point (25.0ml)

• CT = ((25.0 x 0.050)-(50.0 x 0.020))/(75.0) = 0.0033M

• [CaY2-] = ((50.0ml x 0.020M)/(75.0ml))= 0.0133M

• K’MY = [CaY2-] / [Ca2+] [CT]; [Ca2+] = (0.0133)/(0.0033) K’MY

• [Ca2+] = 2.30 x 10-10 • pCa = 9.64 at 25.0ml EDTA

920220

Page 22: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 22

Effect of complexing buffer : auxiliary complexing agent

At pH 10.00 Zn2+ + 2 OH– Zn(OH)2 Ksp = 3.0×10–16

Auxiliary complexing agent : ammonia (0.10~0.02M), NH3

tartrate, citrate, triethanolamineZn2+ + NH3 [Zn(NH3)]

2+ [Zn(NH3)2] 2+ [Zn(NH3)3]

2+ [Zn(NH3)4] 2+

920220

Page 23: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 23

Complexation with auxiliary complexing agent

The equivalent constants, βi, are called overall or cumulative formation constants.

= K1

= K1K2

M + nL MLn βn = [MLn] / [M][L]n = K1K2 ··· Kn

920220

Page 24: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 24

Effect of complexing buffer : auxiliary complexing agent

Zn2+ + Y4 – ZnY2–

complexing agent : ammonia (0.10~0.02M), tartrate, citrate,triethanolamine

920220

16-42

–2

102.3Y . Zn

ZnY fK

Zn2+ + NH3 Zn(NH3) 2+ Zn(NH3)2

2+ Zn(NH3)3 2+ Zn(NH3)4

2+

C

MMM

n ][ [Zn2+] =αM .C Zn

YZnYKKCZnMf

4

2

..' Y

ZnYKM

f CZn

4

2

..

At pH 10.00 Zn2+ + 2 OH– Zn(OH)2 Ksp = 3.0×10–16

Page 25: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 25

EDTA Titration with an Auxiliary Complexing Agent

K’’f is the effective formation constant at a fixed pH and fixed

concentration of auxiliary complexing agent.

Now consider a titration of Zn2+ by EDTA in the presence of NH3. • The EDTA is in the form Y4-

• The Zinc bound to EDTA is in the form Zn2+

920220

YZnYKKCZnM Mf

4

2

..'

]][C[M

[MYn] .K K'

Tn

-4

4fl

MK ..K'' 4f

Page 26: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 26

auxiliary complexing agent

920220

4

2

24

4 10 5.0 [NH3] Zn

Zn(NH3)

4

K

??? Y . Zn(NH3)

[NH3] ZnY-42

4

4–2

K

16-42

–2

102.3Y . Zn

ZnY fK

11

-424

4–2

2

24

-42

–2

4

16

4

104.6 Y . Zn(NH3)

[NH3] ZnY

[NH3] Zn

Zn(NH3)

Y . Zn ZnY

10 5.0

102.3

4

fK

K

Zn(NH3)42+ + Y4 – ZnY2– + 4 NH3

Zn2+ + 4 NH3 Zn(NH3)42+

Zn2+ + Y4- ZnY2-

Page 27: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 27

Influence of ammonia concentration on the end point for the titration of 50.0ml of 0.00500M Zn2+.

920220

Page 28: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides

Metal Ion Indicators

Metal ion indicators are compounds whose color changes when they bind to a

metal ion. Useful indicators must bind metal less strongly than EDTA does.

A typical titration is illustrated by the reaction of Mg2+ with EDTA, using

Eriochrome black T as the indicator.

H2I- HI2- I3-

pka=7 pKa=12 MgIn + EDTA MgEDTA + HI2-

(red) (colorless) (colorless) (blue)

Structure and molecular model of Eriochrome Black T(left) and Calmagite (right).

28920220

Page 29: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 29920220

Page 30: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 30

EDTA titration curves for 50.0 ml 0f 0.00500 M Ca2+ (K’CaY = 1.75 ×1010) and Mg2+ (K’MgY= 1.72 × 108) at pH 10.00.920220

Page 31: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 31

EDTA titration techniques

1) Direct titration

2) Back titration

3) Displacement titration

920220

Page 32: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 32

EDTA titration techniques

1) Direct titration A) There is suitable indicator Analyte Suitable indicator Buffer EDTA----------------------------------------------------------------------------------B) There isn’t suitable indicator Analyte Mg2+ Or Mg-EDTA Indicator Buffer EDTA

920220

Page 33: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 33920220

100 Ca2+

1 I99 Ca2+

1 Ca-I100 E

105 E

100 Ca2+

4 Mg2+

1 Mg-I 5 Mg2+

- =99 Ca2+

1 Ca-I

99 Ca2+

1 Ca-I

10 Mg-E

Ca-EMg-I Ca2+

Mg2+

90

10

9

1

Ca-E >Mg-E >Mg-I >Ca-I

Rplacement

Kf Ca-I100 E

100 E

Added Mg2+ or Mg-EDTA

Page 34: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 34

EDTA titration techniques

2) Back titration : Slow reaction Analyte Excess EDTA Time Standard Zn2+ or Mg2+

920220

Page 35: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 35

EDTA titration techniques

3) Displacement titration :: Suitable indicator????? Analyte Excess EDTA- Mg Indicator EDTA

• determine Fe3+:Fe3+ + MgY2- ⇌ FeY- + Mg2+

• liberated Mg2+ can be titrated with standard EDTA where:

Fe3+ ≡ Mg2+

920220

Page 36: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 36

Masking Agents• auxillary ligand that forms stable complex

with potential interferenceat pH=10,

CN- masks

Co2+ , Ni2+ , Cu2+ , Zn2+ , Cd2+ , Hg2+

Kf Co-CN>Kf Co-EDTA

920220

Page 37: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 37

EDTA Titration Techniques

Direct Titration In a direct titration, analyte is titrated with standard EDTA. Conditional formation constant for the metal-EDTA complex is large The color of the free indicator is distinctly different from that of

the metal-indicator complex.

Back Titration In a back titration, a known excess of EDTA is added to the analyte.

The excess EDTA is then titrated with a standard solution of a second metal ion.

Necessary if the analyte precipitates in the absence of EDTA, if it reacts too slowly with EDTA under titration conditions, or if it blocks the indicator.

The metal ion used in the back titration must not displace the analyte metal ion from its EDTA complex

920220

Page 38: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 38

Displacement Titration For metal ions that do not have a satisfactory indicator,

a displacement titration maybe feasible.Indirect Titration

Anions that precipitate with certain metal ions can be analyzed with EDTA by indirect titration.

Alternatively, an anion can be precipitated with excess metal ion. The precipitate is filtered and washed, and the excess metal ion in the filtrate is titrated with EDTA. Anions such as CO3

2-, CrO42-,

S2-, and SO42- can be determined by indirect titration with EDTA.

Masking• A masking agent is a reagent that protects some component of the analyte from reaction with EDTA.• Demasking release metal ion from a masking agent.

920220

Page 39: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 39

Titration Methods Employing EDTA

Direct Titration: Many of the metals in the periodic table can be determined by titration with standard EDTA solution. Some methods are based on indicators that respond to the analyte itself, whereas others are based on an added metal ion.

Methods Based on Indicators for an Added metal Ion: In case where a good, direct indicator for the analyte is unavailable, a small amount of a metal ion for which a good indicator is available can be added. The metal ion must form a complex that is less stable than the analyte complex.920220

Page 40: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 40

…continued…

Back-Titration Methods: Back-titrations are useful for the determination of cations that form stable EDTA complexes and for which a satisfactory indicator is not available; the determination of thallium is an extreme example. The method is also useful for cations such as Cr(III) and Co(III) that react only slowly with EDTA. A measured excess of standard EDTA solution is added to the analyte solution. After the reaction is judged complete, the excess EDTA is back-titrated with a standard magnesium or zinc ion solution to an Eriochrome Black T or Calmagite end point.920220

Page 41: Complexometric Titrations 1920220http:\\asadipour.kmu.ac.ir 41 slides.

http:\\asadipour.kmu.ac.ir 41 slides 41

…continued…

Displacement methods: In displacement titrations, an unmeasured excess of a solution containing the magnesium or zinc complex of EDTA is introduced into the analyte solution. If the analyte forms a more stable complex than that of magnesium or zinc, the following displacement reaction occurs:

MgY2- + M2+ MY2- + Mg2+

where M2+ represents the analyte cation. The liberated Mg2+ or, in some cases Zn2+ is then titrated with a standard EDTA solution. Displacement titrations are used when no indicator for an analyte is available.920220


Recommended