+ All Categories
Home > Documents > Conceptual design of superconducting correctors for Hi- Lumi Project (v2)

Conceptual design of superconducting correctors for Hi- Lumi Project (v2)

Date post: 04-Jan-2016
Category:
Upload: asher-wells
View: 27 times
Download: 1 times
Share this document with a friend
Description:
Conceptual design of superconducting correctors for Hi- Lumi Project (v2). F. Toral - CIEMAT. CIEMAT, March 7th, 2013. Outline. Last magnetic calculations Cross section of the magnets Superferric dipole design Conclusions. 2. Last magnetic calculations. - PowerPoint PPT Presentation
Popular Tags:
16
Conceptual design of Conceptual design of superconducting correctors for superconducting correctors for Hi-Lumi Project (v2) Hi-Lumi Project (v2) F. Toral - CIEMAT CIEMAT, March 7th, 2013
Transcript
Page 1: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

Conceptual design of superconducting Conceptual design of superconducting correctors for Hi-Lumi Project (v2)correctors for Hi-Lumi Project (v2)

F. Toral - CIEMAT

CIEMAT, March 7th, 2013

Page 2: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

2

Outline

• Last magnetic calculations• Cross section of the magnets• Superferric dipole design• Conclusions

Page 3: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

3

Last magnetic calculations

• New calculations have been done assuming a higher nonlinearity of the transfer function: 20% of saturation at nominal current. That is, the actual field at nominal current is 80% of the computed value by extrapolation of the transfer function at low currents.

• The requirement on integrated strength of the decapole and dodecapole, normal and skew in both cases, has been reduced by 25%.

• The cross talk between two identical consecutive magnets is negligible. Next model will include different magnets, to define the minimum distance between them.

Page 4: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

4

Last magnetic calculationsRoxie simulation

Total length

(m) 2,958

          Superferric option    WP2

requirements

    Order ApertureInt Strenght at 50

mmInt

strength Mech length StrengthPole field 2-

D Saturation Coil lengthCoil straight

length Block currentNumber of

turns CurrentWire bare diameter L

Int Strenght at 50 mm

required/given

    (mm) (T m)

(T/m^(n-

2)) (m)

(T/m^(n-

1)) (T) (adim) (m) (m) (A) (A) (mm) (H) (T m)  MCQSX Skew 2 150 1,014   0,914   1,75 1,04 0,896 0,864 53000 346 153,2 0,7 1,99 1,00 1,01MCSX Normal 3 150 0,060   0,136   1,25 1,04 0,116 0,092 24000 228 105,3 0,5 0,167 0,06 1,00

MCSSX Skew 3 150 0,060   0,136   1,25 1,04 0,116 0,092 24000 228 105,3 0,5 0,167 0,06 1,00MCOX Normal 4 150 0,040   0,140   1,25 1,02 0,120 0,096 17400 165 105,5 0,5 0,093 0,04 1,00

MCOSX Skew 4 150 0,040   0,140   1,25 1,02 0,120 0,096 17400 165 105,5 0,5 0,093 0,04 1,00MCDX Normal 5 150 0,040   0,170   1,40 1,05 0,150 0,126 17400 165 105,5 0,5 0,138 0,04 1,00

MCDSX Skew 5 150 0,040   0,170   1,40 1,05 0,150 0,126 17400 165 105,5 0,5 0,138 0,02 2,00MCTX Normal 6 150 0,119   0,608   1,65 1,05 0,588 0,564 16600 165 100,6 0,5 0,6 0,12 1,00

MCTSX Skew 6 150 0,020   0,144   1,40 1,04 0,124 0,100 14000 165 84,8 0,5 0,111 0,02 1,02

Roxie simulation

Total length

(m) 2,416

          Superferric option     WP2 requirements

    Order ApertureInt Strenght at 50

mmInt

strength Mech length StrengthPole field 2-

D Saturation Coil lengthCoil straight

length Block currentNumber of

turns CurrentWire bare diameter L

Int Strenght at 50 mm

required/given

    (adim) (mm) (T m)(T/m^(n-

2)) (m)(T/m^(n-

1)) (T) (adim) (m) (m) (A) (A) (mm) (H) (T m)  

MCQSX Skew 2 150 0,997   0,746   2,20 0,81 0,726 0,694 76000 738 103,0 0,7 5,86 1,00 1,00

MCSX Normal 3 150 0,060   0,136   1,25 0,96 0,116 0,092 24000 228 105,3 0,5 0,167 0,06 1,00

MCSSX Skew 3 150 0,060   0,136   1,25 0,96 0,116 0,092 24000 228 105,3 0,5 0,167 0,06 1,00

MCOX Normal 4 150 0,040   0,140   1,25 0,98 0,120 0,096 17400 165 105,5 0,5 0,093 0,04 1,00

MCOSX Skew 4 150 0,040   0,140   1,25 0,98 0,120 0,096 17400 165 105,5 0,5 0,093 0,04 1,00

MCDX Normal 5 150 0,031   0,116   2,00 0,80 0,096 0,072 25000 198 126,3 0,5 0,131 0,03 1,03

MCDSX Skew 5 150 0,031   0,116   2,00 0,80 0,096 0,072 25000 198 126,3 0,5 0,131 0,02 2,06

MCTX Normal 6 150 0,092   0,382   2,10 0,80 0,362 0,338 25000 185 135,1 0,5 0,403 0,09 1,02

MCTSX Skew 6 150 0,016   0,104   2,10 0,81 0,084 0,060 20000 185 108,1 0,5 0,093 0,015 1,08

Page 5: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

5

Outline

• Last magnetic calculations• Cross section of the magnets• Superferric dipole design• Conclusions

Page 6: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

6

Cross section: quadrupole

Page 7: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

7

Transfer function: quadrupole

GradientT/m

Normalized current Normalized current

Units (1E-4)

Page 8: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

8

Cross section: sextupole

Page 9: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

9

Cross section: octupole

Page 10: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

10

Cross section: decapole

Page 11: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

11

Cross section: dodecapole

Page 12: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

12

Cross section: dodecapole

Page 13: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

13

Outline

• Last magnetic calculations• Cross section of the magnets• Superferric dipole design• Conclusions

Page 14: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

14

Superferric dipole design (I)

Page 15: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

15

Superferric dipole design (II)

The maximum allowed outer diameter is 620 mm. The present design has not included iron holes: there are

holes for the cryogenic lines, but others can be used for the field shaping due to the iron saturation.

The present optimization has been done only by iron pole morphing. The main field is about 1.5 T, which is too low to be competitive with a cos-theta design.

What is the request for the field quality? 10 units (1E-3) is good enough?

Optimization is still ongoing.

Page 16: Conceptual design of superconducting correctors for Hi- Lumi  Project (v2)

Conclusions

16

A new design with higher saturation has been performed (20% of non-linearity of the transfer function).

The cross talk between consecutive magnets is being computed.

The cross section of the different magnets have been shown.

A superferric dipole design is being analysed to provide 2.5 or 4 Tm. The optimization is still ongoing.

The framework for this Collaboration needs to be defined.


Recommended