+ All Categories
Home > Documents > Coprime Arrays and Samplers for Space-Time Adaptive...

Coprime Arrays and Samplers for Space-Time Adaptive...

Date post: 23-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
21
Coprime Arrays and Samplers for Space-Time Adaptive Processing Chun-Lin Liu [email protected] P. P. Vaidyanathan [email protected] Digital Signal Processing Group Electrical Engineering California Institute of Technology Apr. 22, 2015 C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 1 / 21
Transcript
Page 1: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime Arrays and Samplers for Space-Time AdaptiveProcessing

Chun-Lin [email protected]

P. P. [email protected]

Digital Signal Processing GroupElectrical Engineering

California Institute of Technology

Apr. 22, 2015

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 1 / 21

Page 2: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Outline

1 Introduction

2 Joint Angle-Doppler Estimation using Coprime Arrays and CoprimeSamplers (Coprime JADE)

3 Numerical Results

4 Conclusion

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 2 / 21

Page 3: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Introduction

Outline

1 Introduction

2 Joint Angle-Doppler Estimation using Coprime Arrays and CoprimeSamplers (Coprime JADE)

3 Numerical Results

4 Conclusion

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 3 / 21

Page 4: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Introduction

Space-Time Adaptive Processing1

..

T

.. . .

.

T

.

. . .

.

. . .

.

y = wHx

.

T

.. . .

.

T

.

. . .

.

. . .

.

y = wHx

.

T

.. . .

.

T

.

. . .

.

. . .

.

y = wHx

spatial arrays + time sampling.STAP resolves the direction-of-arrival (DOA) information and theDoppler frequency jointly.Distinguish at most O(# of sensors × # of taps) sources

1J. R. Guerci, Space-Time Adaptive Processing for Radar. Artech House, 2003.C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 4 / 21

Page 5: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Introduction

Different Estimators

Power spectrum density (PSD)2,Minimum variance distortionless response (MVDR)3,MUSIC4,ESPRIT5,compressive joint angular-frequency power spectrum estimation6,etc...Question: Can we estimate more sources than the existing methods?

2R. Klemm, Space-Time Adaptive Processing: Principles and Applications. IEEE Press, 1998.3J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.4R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3,

pp. 276–280, 1986.5R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 37, no. 7, pp. 984–995, 1989.6D. D. Ariananda and G. Leus, “Compressive joint angular-frequency power spectrum estimation,” in Proc. the 21st

European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 2013.C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 5 / 21

Page 6: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Introduction

Coprime Arrays7

Physical array:

..Md

. Nd

Difference coarray (non-negative part):

.. d

M and N are a coprime pair of integers.Union of two uniform linear arrays with interelement spacing Md andNd, respectively.Coprime arrays identify up to O(MN) sources using O(M +N)sensors.

7P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Trans. Signal Process., vol. 59,no. 2, pp. 573–586, 2011.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 6 / 21

Page 7: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Introduction

Coprime Samplers in Time8

..xc(t) .

x0(n)

.

MT

.x1(n)

.NT

.t

.

xc(t)

.

t

.MT

.

t

.

NT

Non-uniform samples of xc(t) (x0(n) and x1(n)) suffice to computeuniform samples Rc(nT ), which is the autocorrelation function ofxc(t).Reduced sample rate: from 1

T to 1MT + 1

NT

8P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Trans. Signal Process., vol. 59,no. 2, pp. 573–586, 2011.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 7 / 21

Page 8: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

Outline

1 Introduction

2 Joint Angle-Doppler Estimation using Coprime Arrays and CoprimeSamplers (Coprime JADE)

3 Numerical Results

4 Conclusion

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 8 / 21

Page 9: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

Coprime JADE

..

M2T

.

N2T

.

M2T

.

N2T

.

M2T

.

N2T

.

M2T

.

N2T

.

M2T

.

N2T

.

M2T

.

N2T

.

v

.

Source

. M1d.

N1d

.

Construct data matrix X = [X(n,m)]

Coprime arrays with parameter M1, N1: located at nd, where

n ∈ Ss = {0,M1, . . . , (N1 − 1)M1, N1, 2N1, . . . , (2M1 − 1)N1} .

Coprime samplers with parameter M2, N2: samples at t = mT , where

m ∈ St = {0,M2, . . . , (N2 − 1)M2, N2, 2N2, . . . , (2M2 − 1)N2} .

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 9 / 21

Page 10: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

The Data Model (Matrix forms)

The data matrix X can be modeled as

X =

D∑i=1

Aivs

(θ̄i)vTt

(f̄i)+ N, (1)

whereAi: The complex amplitude of the ith source.vs

(θ̄i)=

[ej2πθ̄in

]n∈Ss

: Spatial steering vectors.

vt

(f̄i)=

[ej2πf̄im

]m∈St

: Temporal steering vectors.

θ̄i =dλ sin θi: Normalized DOA. θi: DOA.

f̄i =Tλ vi: Normalized Doppler frequency. vi: radial velocity.

N: Additive noise.C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 10 / 21

Page 11: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

The Data Model (Vector forms)

Vectorizing X gives

x = vec (X) =

D∑i=1

Aivs,t

(θ̄i, f̄i

)+ n. (2)

vs,t

(θ̄i, f̄i

)= vt

(f̄i)⊗ vs

(θ̄i): Space-time steering vectors.

⊗: Kronecker products.Convert (2) to the coarray-lag domain.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 11 / 21

Page 12: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

Representation in the Coarray-Lag DomainStatistical assumptions:

A1, . . . , AD,n are zero mean, uncorrelated random variables/vectors.For i = 1, . . . , D, E

[|Ai|2

]= σ2

i , E[nnH

]= σ2I.

The covariance matrix of x:

Rx = E[xxH

]=

D∑i=1

σ2i vs,t

(θ̄i, f̄i

)vHs,t

(θ̄i, f̄i

)︸ ︷︷ ︸(vt(f̄i)vH

t (f̄i))⊗(vs(θ̄i)vHs (θ̄i))

+ σ2I.

Rx can be reshaped into another matrix Z:

Z =

D∑i=1

σ2i ws

(θ̄i)wT

t

(f̄i)+ σ2e1eT

2 . (3)

ws(θ̄i): Spatial steering vector over the different set of Ss (Coarrays).wt(f̄i): Temporal steering vector over the difference set of St (Lags).

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 12 / 21

Page 13: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

Spatial Smoothing

Establish a full-rank matrix Rss from Z and then apply the MUSICalgorithm.How to perform spatial smoothing over the matrix Z?

1D Spatial Smoothing

..

−M1N1

.

...

.0 .

...

.

M1N1

.

y

.

y0

.yp

.p

Rss ∝∑p ypyH

p

2D Spatial Smoothing

..

−M1N1

.

...

.0 .

...

.

M1N1

.

M2N2

.

. . .

.

0

.

. . .

.

−M2N2

.

Z

. Z0,0

.Zp,q.

p

.q

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 13 / 21

Page 14: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

Remarks

Coprime JADE is similar to 2D coprime arrays.(DOA, Doppler) ≡ (Azimuth, Elevation).Coprime JADE: Fixed sensor locations and the same sampling patternis applied to each sensor.2D coprime arrays: Design over a nonseparable lattice.

Let Rss =[Us Un

]Λ[Us Un

]H as the eigen-decomposition,where Un represents the noise subspace. The MUSIC spectrum is

PMUSIC

(θ̄, f̄

)=

1∥∥UHn w̃s,t

(θ̄, f̄

)∥∥22

,

where θ̄, f̄ ∈ [−1/2, 1/2) and ∥· ∥2 denotes Euclidean norms ofvectors.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 14 / 21

Page 15: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Coprime JADE

The Number of Identifiable Sources9

TheoremConsider distinct sources S =

{(θ̄i, f̄i

)}D

i=1where D ≤ M1N1M2N2.

Assume thatthe set

{θ̄i}D

i=1takes at most M1N1 distinct values and{

f̄i}D

i=1contains at most M2N2 distinct values.

Then, PMUSIC

(θ̄, f̄

)has a singularity if and only if

(θ̄, f̄

)∈ S.

Intuition:Coprime arrays identify up to M1N1 DOAs.Coprime samplers identify up to M2N2 frequencies.

9P. Pal and P. P. Vaidyanathan, “Nested arrays: a novel approach to array processing with enhanced degrees of freedom,”IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4167–4181, 2010.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 15 / 21

Page 16: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Numerical Results

Outline

1 Introduction

2 Joint Angle-Doppler Estimation using Coprime Arrays and CoprimeSamplers (Coprime JADE)

3 Numerical Results

4 Conclusion

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 16 / 21

Page 17: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Numerical Results

Angle-Doppler patterns: 121 Sources

Ideal PSD MVDR ULAMUSIC

coprimeJADE

.. .. .. .. ..

11× 11 uniformly-placed sources, 1000 snapshots and 0dB SNR.M1 = M2 = 4 and N1 = N2 = 5 so that the number of sensors andthe number of samples per sensor are 12 in all methods.Performance limit of ULA + uniform sampling.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 17 / 21

Page 18: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Numerical Results

Angle-Doppler patterns: 400 Sources

Ideal PSD MVDR ULAMUSIC

coprimeJADE

.. .. .. .. ..

20× 20 uniformly-placed sources, 1000 snapshots and 0dB SNR.M1 = M2 = 4 and N1 = N2 = 5 so that the number of sensors andthe number of samples per sensor are 12 in all methods.Performance limit of coprime array + coprime sampling.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 18 / 21

Page 19: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Numerical Results

Angle-Doppler patterns: 20 Sources

Ideal PSD MVDR ULAMUSIC

coprimeJADE

.. .. .. .. ..

20 randomly-placed sources, 1000 snapshots and 0dB SNR.M1 = M2 = 4 and N1 = N2 = 5 so that the number of sensors andthe number of samples per sensor are 12 in all methods.Coprime JADE has the best performance in terms of spread-out.

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 19 / 21

Page 20: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Conclusion

Outline

1 Introduction

2 Joint Angle-Doppler Estimation using Coprime Arrays and CoprimeSamplers (Coprime JADE)

3 Numerical Results

4 Conclusion

C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 20 / 21

Page 21: Coprime Arrays and Samplers for Space-Time Adaptive Processinghomepage.ntu.edu.tw/~chunlinliu/Files/Coprime_JADE_ICASSP_2015… · Introduction Coprime Arrays7 Physical array:. Md

Conclusion

Conclusion

Coprime JADE = Coprime arrays + Coprime samplers.Coprime JADE identifies up to O(M1N1M2N2) sources.

STAP only achieves O((M1 +N1)(M2 +N2)) degrees of freedom.Future work:

Connection between coprime JADE and coprime arrays in highdimensions10.Different coprime sampling schemes at different sensors.

Thank you for your attention!10P. P. Vaidyanathan and P. Pal, “Theory of sparse coprime sensing in multiple dimensions,” IEEE Trans. Signal Process.,

vol. 59, no. 8, pp. 3592–3608, 2011.C.-L. Liu & P. P. Vaidyanathan (Caltech) Coprime JADE Apr. 22, 2015 21 / 21


Recommended