+ All Categories
Home > Documents > Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated...

Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated...

Date post: 20-Jul-2020
Category:
Upload: others
View: 17 times
Download: 2 times
Share this document with a friend
155
SIN BEA TECHNIC Corrugated Web Ste STEELCON Fabrication Inc. 62 Progress Crt, Brampton, On 416-798-3343 - steelcon.ca AM CAL GUIDE eel Beam ntario
Transcript
Page 1: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

SIN BEAM

TECHNICAL

Corrugated Web Steel Beam

STEELCON Fabrication Inc.

62 Progress Crt, Brampton, Ontario

416-798-3343 - steelcon.ca

EAM

ECHNICAL GUIDE Corrugated Web Steel Beam

62 Progress Crt, Brampton, Ontario

Page 2: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

Table of Contents1 GENERAL

1.1 General Description

1.2 Basis for Calculation

1.3 Product Range and Designation

1.4 Material

1.5 Tolerances

1.6 Corrosion Protection / Painting

1.7 Quality Monitoring

1.8 List of Symbols / Abbreviations

2 TECHNICAL SECTION 2.1 Bending Capacity

2.2 Shear Capacity

2.3 Axial Capacity

2.4 Web Crippling

2.5 Fatigue

2.6 Web Openings

2.7 Sectional Properties Calculation

2.8 Sample Calculation

3 TABLES 3.1 Common SIN Beam Sizes

3.2 Bending Capacity –

3.3 Bending Capacity –

3.4 Shear Capacity

3.5 Axial Capacity

3.6 Concentrated Load / Web Crippling Capacity

3.7 M/D and W/D ratios for ULC Calculation

4 SAMPLE DETAILS 4.1 Shear Connections

4.2 Moment Connections

4.3 Miscellaneous Details

5 REFERENCES / CERTIFICATION5.1 CWB Certification for Steelcon

5.2 European Code 1993

5.3 Annex D – Commentary

5.4 Flange Buckling Behavior of H

5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and

Management – 2010

5.6 Pages from CAN S136

Steel Members

5.7 Shear Load Testing Results

TECHNICAL GUIDE

Table of Contents

General Description

sis for Calculation

Product Range and Designation

Corrosion Protection / Painting

List of Symbols / Abbreviations

Sectional Properties Calculation

Sample Calculation

Common SIN Beam Sizes

– Laterally Supported

– Laterally Unsupported

Concentrated Load / Web Crippling Capacity

M/D and W/D ratios for ULC Calculation

Moment Connections

Miscellaneous Details

CATION CWB Certification for Steelcon - SIN Beam Welding

European Code 1993-1-5:2005 Annex D Plate Girders with Corrugated Webs

Commentary

Flange Buckling Behavior of H-Shaped Member with Sinusoidal Webs

Plate Girders with Corrugated Webs from the Journal for Civil Engineering and

2010

Pages from CAN S136 – North American Specification for Design of Cold Formed

Shear Load Testing Results - Professor R.M. Schuster - Nov 2016

PAGE I

1-1

1-1

1-1

1-2

1-5

1-5

1-5

1-5

1-5

2-1

2-1

2-2

2-5

2-5

2-5

2-5

2-6

2-6

3-1

3-1

3-1

3-1

3-1

3-1

3-1

3-1

4-1

4-1

4-1

4-1

5-1

5-1

5:2005 Annex D Plate Girders with Corrugated Webs 5-1

5-1

Shaped Member with Sinusoidal Webs - 2008 5-1

Plate Girders with Corrugated Webs from the Journal for Civil Engineering and

5-1

r Design of Cold Formed

5-1

5-1

Page 3: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

1 GENERAL

1.1 General Description

The SIN beam is a corrugated web

welded to flat steel flanges.

SIN Beams may be used as flexural members such as

subjected to axial loads such as columns, or as combined bending and

moment frames or wind columns. The optimal application for the SIN beam is as an

to a rolled or welded wide flange shape or a joist or joist girder section with a depth between

300mm and 1800mm.

Traditionally the shear capacity of a thin web steel beam has always been governed by the loss

of stability and buckling of the web. Web stiffeners can be used to avoid web bucking but are

costly to install. The sinusoidal shape of the SIN beam web prevents buckling, eliminatin

need for web stiffeners, and allowing the web steel material to reach is full shear capacity.

Figure 1: Corrugated Web Steel Beam

1.2 Basis for Calculation

The resistance of the SIN beam to bending, axial and shear forces

Section 2 of this guide. The bending and axial capacity of the SIN beam

formula provided in CSA S16 “Design of Steel Structures

formed steel therefore the shear

Specification for the Design of Cold

Due to the sinusoidal shape, the web has a negligible contribution to the axial capacity of the

SIN beam flanges. The axial forces in the beam (due to axial load or

TECHNICAL GUIDE

General Description

corrugated web welded wide flange steel beam with a corrugated steel web

as flexural members such as roof or floor beams, as components

subjected to axial loads such as columns, or as combined bending and axial members such as in

moment frames or wind columns. The optimal application for the SIN beam is as an

flange shape or a joist or joist girder section with a depth between

capacity of a thin web steel beam has always been governed by the loss

of stability and buckling of the web. Web stiffeners can be used to avoid web bucking but are

costly to install. The sinusoidal shape of the SIN beam web prevents buckling, eliminatin

need for web stiffeners, and allowing the web steel material to reach is full shear capacity.

Figure 1: Corrugated Web Steel Beam

alculation

The resistance of the SIN beam to bending, axial and shear forces is described

ction 2 of this guide. The bending and axial capacity of the SIN beam is based

“Design of Steel Structures”. The web of the SIN beam is cold

the shear capacity is calculated based on CSA S136 “Nort

Specification for the Design of Cold-Formed Steel Structural Members” (2007).

Due to the sinusoidal shape, the web has a negligible contribution to the axial capacity of the

SIN beam flanges. The axial forces in the beam (due to axial load or a bending moment

PAGE 1-1

steel beam with a corrugated steel web

or floor beams, as components

axial members such as in

moment frames or wind columns. The optimal application for the SIN beam is as an alternate

flange shape or a joist or joist girder section with a depth between

capacity of a thin web steel beam has always been governed by the loss

of stability and buckling of the web. Web stiffeners can be used to avoid web bucking but are

costly to install. The sinusoidal shape of the SIN beam web prevents buckling, eliminating the

need for web stiffeners, and allowing the web steel material to reach is full shear capacity.

in detail in

is based on the

he web of the SIN beam is cold

“North American

.

Due to the sinusoidal shape, the web has a negligible contribution to the axial capacity of the

a bending moment

Page 4: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

couple) are carried solely by the SIN beam flanges. The corrugated web resists the beam shear

forces and stabilizes the flanges. In this

where the axial and bending forces

carried by the web diagonals (corrugated web).

The SIN beam capacity has been confirmed

opinions, some of which are included

1.3 Product Range and

Standard SIN beam members are composed of a uniform

flat steel flanges of equal size. Other configurations

or tapered webs, are also available. Th

described in this section.

1.3.1 Beam Components

1.3.1.1 Web:

The SIN beam web is manufactured from steel coil material which is cold formed into the

corrugated shape. The standard coil widths

13” (333mm) and 59” (1500mm)

16ga (1.52mm) to 3ga (6.07mm).

The standard coils can be used to create the following standard web heights:

• 13” (333mm)

• 17.32” (440mm)

• 19.7” (500mm)

• 24” (610mm)

• 29.5” (750mm)

• 35.4” (900mm)

• 39.4” (1000mm)

• 48” (1219mm)

• 59” (1500mm)

The web thickness and associated designations are as follows:

• 0 : 16ga (1.52mm) –

involves additional time and qua

• A : 14ga (1.90mm)

• B : 12ga (2.66mm)

• C : 11ga (3.04mm)

• F : 8ga (4.17mm)

• H : 6ga (4.93mm)

• K : 3ga (6.07mm)

TECHNICAL GUIDE

couple) are carried solely by the SIN beam flanges. The corrugated web resists the beam shear

forces and stabilizes the flanges. In this way the SIN beam behaves similar to a truss or joist,

where the axial and bending forces are carried by the chords (flanges) and the shear forces are

carried by the web diagonals (corrugated web).

been confirmed by a number of experimental results and expert

are included in part 6 of this document.

ange and Designation

Standard SIN beam members are composed of a uniform height corrugated steel web and two

anges of equal size. Other configurations, including different top and bottom flanges

available. The standard configurations and designations

The SIN beam web is manufactured from steel coil material which is cold formed into the

The standard coil widths used to manufacture SIN beam webs

13” (333mm) and 59” (1500mm). Each of these coils is available in thickness ranging from

3ga (6.07mm).

to create the following standard web heights:

The web thickness and associated designations are as follows:

Note 16ga is not commonly used because the welding process

involves additional time and quality control requirements.

PAGE 1-2

couple) are carried solely by the SIN beam flanges. The corrugated web resists the beam shear

to a truss or joist,

by the chords (flanges) and the shear forces are

experimental results and expert

corrugated steel web and two

, including different top and bottom flanges

e standard configurations and designations are

The SIN beam web is manufactured from steel coil material which is cold formed into the

webs are between

. Each of these coils is available in thickness ranging from

Note 16ga is not commonly used because the welding process

Page 5: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

The corrugated web follows a sinusoidal shape with a wave length of 155mm and an amplitude

of 40mm (43mm for the 3mm web)

beam flanges by robotic welding equipment, on one side of the web.

1.3.1.2 Flange:

The flanges are fabricated of flat stock material or d

ranging from ¼” (6.4mm) to 1 ½” (

(450mm). For all standard size SIN beams the ratio of the flange width to thickness

established to ensure that the beam flange is considered Class

standard sizes is included in Part 3 of this document.

Due to the availability of materials flanges

will be spliced with full penetration welds.

1.3.2 Parallel Flange Beam:

The standard SIN beam member is a parallel

constant along the length of the member.

manufactured in lengths anywhere between

(15m) members must be fabricated in

transportation limitations, once on site members can be connected using b

to achieve spans over 50’ (15m).

1.3.2.1 Designation:

The standard designation for a parallel flange SIN beam is:

WT [web_thickness] [web_

SIN beam sizes are always shown in metric units.

1.3.2.2 Differing Top and Bottom flanges

Parallel flange beams can be manufactured with d

manufacturing reasons either the fl

may vary or the flange thickness

50mm.

The designation for parallel flange SIN beams with differing upper and

Example:

WTA 610 / 203x16

Top & Bottom Flange Thickness = 16mm [5/8”]

Top & Bottom Flange Width = 203mm [8”]

Web Height = 610mm [24”]

Web thickness A = 14ga (1.90mm)

TECHNICAL GUIDE

The corrugated web follows a sinusoidal shape with a wave length of 155mm and an amplitude

of 40mm (43mm for the 3mm web), see figure 1. The web is continuously fillet welded to both

beam flanges by robotic welding equipment, on one side of the web.

The flanges are fabricated of flat stock material or de-stressed coil material with thickness

1 ½” (38mm) and in widths between 5” (127mm)

. For all standard size SIN beams the ratio of the flange width to thickness

the beam flange is considered Class 3 or better by CSA S16.

dard sizes is included in Part 3 of this document.

Due to the availability of materials flanges thicker than 1” (25.4mm) and longer than 20’ (6m)

spliced with full penetration welds.

Beam:

The standard SIN beam member is a parallel flange configuration where the web height is

constant along the length of the member. Parallel flange SIN beam sections can be

manufactured in lengths anywhere between 13’ (4m) and 50’ (15m). For spans

members must be fabricated in multiple pieces to suit both manufacturing and

, once on site members can be connected using bolted moment splices

.

The standard designation for a parallel flange SIN beam is:

web_height] / [flange_width] x [flange_thickness]

SIN beam sizes are always shown in metric units.

Differing Top and Bottom flanges

Parallel flange beams can be manufactured with different upper and lower flanges.

the flange widths should be the same while the flange

thicknesses should be the same and the flange width may vary by

The designation for parallel flange SIN beams with differing upper and lower flanges is:

Top & Bottom Flange Thickness = 16mm [5/8”]

Top & Bottom Flange Width = 203mm [8”]

Web Height = 610mm [24”]

Web thickness A = 14ga (1.90mm)

PAGE 1-3

The corrugated web follows a sinusoidal shape with a wave length of 155mm and an amplitude

, see figure 1. The web is continuously fillet welded to both

material with thickness

) and 17.7”

. For all standard size SIN beams the ratio of the flange width to thickness has been

by CSA S16. A list of

) and longer than 20’ (6m)

flange configuration where the web height is

SIN beam sections can be

spans longer than 50’

multiple pieces to suit both manufacturing and

olted moment splices

thickness] – [weight]

and lower flanges. For

while the flange thickness

width may vary by +/-

lower flanges is:

Top & Bottom Flange Thickness = 16mm [5/8”]

Page 6: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

WT [web_thickness] [web_height] /

[upper_flange_width] x [

[lower_flange_width] x [

1.3.3 Trapezoidal Corrugated

SIN beams can be manufactured with a

height varies linearly from one end to the other. To avoid sc

manufactured from a standards height beam. Using a cutting torch the beam web is cut at an

angle to the flanges and then new flanges are welded in to create two identical trapezoidal

beams.

Due to manufacturing limits the maximum length of a trapezoidal beam is 12,000mm

web height must be between 250mm and 1250mm

1.3.3.1 Designation:

The designation for a trapezoidal web SIN beam follows the same convention as the parallel

flange beams (the upper flange designates the flange which is orthogonal to the web

WT [web_thickenss] [web_height_max

/ [upper_flange_width

/ [lower_flange_width,LF] x [

Different upper and lower flanges are possible. For manufacturing reasons, the flange widths

should be the same, while the thicknesses may vary

size can be listed only once.

Example:

WTB 1000 – 500 / 300x15 / 320x12

Web Height = 1000mm at one end 500mm at other

Web thickness B = 12ga (2.66mm)

Example:

WTB 1000 / 229x16 / 229

Web Height = 1000mm [39 3/8”]

Web thickness B = 12ga (2.66mm)

TECHNICAL GUIDE

WT [web_thickness] [web_height] /

flange_width] x [upper_flange_thickness] /

flange_width] x [lower_flange_thickness]

orrugated Web Beam

SIN beams can be manufactured with a trapezoidal / tapered configuration, where the web

end to the other. To avoid scrap two trapezoidal beams

manufactured from a standards height beam. Using a cutting torch the beam web is cut at an

and then new flanges are welded in to create two identical trapezoidal

Due to manufacturing limits the maximum length of a trapezoidal beam is 12,000mm

must be between 250mm and 1250mm.

dal web SIN beam follows the same convention as the parallel

the upper flange designates the flange which is orthogonal to the web

[web_thickenss] [web_height_max – web_height_min]

upper_flange_width] x [upper_flange_thickness]

width,LF] x [lower_flange_thickness]

Different upper and lower flanges are possible. For manufacturing reasons, the flange widths

, while the thicknesses may vary. If equal size flanges are used the flange

500 / 300x15 / 320x12

Flange along sloped side of web 300 x 1

Flange Orthogonal to web = 300 x 15

Web Height = 1000mm at one end 500mm at other

Web thickness B = 12ga (2.66mm)

229x10

Bottom Flange = 229x10 [9” x 3/8”]

Top Flange Width = 229x16 [8” x 5/8”]

Web Height = 1000mm [39 3/8”]

Web thickness B = 12ga (2.66mm)

PAGE 1-4

trapezoidal / tapered configuration, where the web

wo trapezoidal beams are

manufactured from a standards height beam. Using a cutting torch the beam web is cut at an

and then new flanges are welded in to create two identical trapezoidal

Due to manufacturing limits the maximum length of a trapezoidal beam is 12,000mm and the

dal web SIN beam follows the same convention as the parallel

the upper flange designates the flange which is orthogonal to the web):

Different upper and lower flanges are possible. For manufacturing reasons, the flange widths

used the flange

Flange along sloped side of web 300 x 12

Web Height = 1000mm at one end 500mm at other

Page 7: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

1.4 Material

The standard material for both flange and web

Other steel grades can also be used but would be considered a special order and would require

longer procurement times, minimum order quantities and premium pricing.

1.5 Tolerances

SIN beam members are fabricated to the tolerances given in CSA G40.21 for rolled or welded

wide flange steel shapes.

All welding is W47.1 & W59 compliant and done by procedures approve

Welding Bureau (CWB). Welding procedures are included in part 5 of this document.

1.6 Corrosion Protection /

SIN beam members are available in any of the following conditions

1.6.1 Raw Steel

If further fabrication will be required or a s

beam member can be shipped as raw steel without any coating.

The corrugated web is welded to the flanges using a continuous fillet weld on one side of the

web. It is recommended that a zinc rich primer be

the area where the web contacts the flanges

corrosion control measures used to protect this area of the beam

1.6.2 Standard Shop Paint

The standard SIN beam is coated with a shop primer

available as a special order.

1.6.3 Hot Dip Galvanized

SIN beam members can easily be Hot Dip Galvanized.

1.7 Quality Monitoring

The manufacturing process is subject to constant and

welding is W47.1 & W59 compliant and done by procedures approved by the Canadian Welding

Bureau (CWB).

The quality of the original materials is verified through mill test certificates which are available

upon request.

All SIN Beam members are manufactured to meet the same or stricter tolerances than those

given for either welded or rolled

1.8 List of Symbols / Abbreviations

� a3 – the amplitude of the SIN beam web corrugation

� Aw – web area

TECHNICAL GUIDE

The standard material for both flange and web steel is W350 in accordance with

Other steel grades can also be used but would be considered a special order and would require

urement times, minimum order quantities and premium pricing.

SIN beam members are fabricated to the tolerances given in CSA G40.21 for rolled or welded

compliant and done by procedures approved by the

Welding procedures are included in part 5 of this document.

Corrosion Protection / Painting

members are available in any of the following conditions:

If further fabrication will be required or a special coating will be applied elsewhere the SIN

beam member can be shipped as raw steel without any coating.

he corrugated web is welded to the flanges using a continuous fillet weld on one side of the

web. It is recommended that a zinc rich primer be applied to the non-welded side of the web in

the area where the web contacts the flanges (i.e. opposite the throat of the fillet weld

corrosion control measures used to protect this area of the beam.

aint

coated with a shop primer. Other primers, colors or coatings may be

easily be Hot Dip Galvanized.

is subject to constant and documented internal monitoring. All

compliant and done by procedures approved by the Canadian Welding

The quality of the original materials is verified through mill test certificates which are available

members are manufactured to meet the same or stricter tolerances than those

given for either welded or rolled wide flange steel shapes in CAN / CSA G40.20.

List of Symbols / Abbreviations

the amplitude of the SIN beam web corrugation (see 1.1)

PAGE 1-5

is W350 in accordance with G40.20/G40.21.

Other steel grades can also be used but would be considered a special order and would require

SIN beam members are fabricated to the tolerances given in CSA G40.21 for rolled or welded

d by the Canadian

Welding procedures are included in part 5 of this document.

pecial coating will be applied elsewhere the SIN

he corrugated web is welded to the flanges using a continuous fillet weld on one side of the

welded side of the web in

opposite the throat of the fillet weld) or other

. Other primers, colors or coatings may be

nternal monitoring. All

compliant and done by procedures approved by the Canadian Welding

The quality of the original materials is verified through mill test certificates which are available

members are manufactured to meet the same or stricter tolerances than those

flange steel shapes in CAN / CSA G40.20.

Page 8: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

� bel – width of compression element (see 2.1.1)

� bf (U) or (L) – width of the SIN beam flange (Upper or Lower)

� Cr – Factored compressive resistance

� Cw – warping torsional constant

� CWB – Canadian Welding Bureau

� d – overall depth of a SIN beam member

� E – Steel elastic modulus, Young’s Modulus (200,000 MPa)

� EN 1993-1-5 – European code for plated steel elements

� Fy – specified minimum steel yield strength

� G40.20/G40.21 – CSA Standard for the requirements for rolled or welded structural steel

� hw – height of the SIN beam web (

� Ix, Iy – Moment of inertial

� J – St. Venant torsional constant

� Lu – longest unbraced length where the beam will reach its full moment resistance

� M/D – mass over heated

� Mr – factored moment resistance

� N – length of bearing for an applied load

� rx – radius of gyration with respect to

� ry – radius of gyration with respect to

� s – unfolded length of half of a single wave of the

� S16 – CSA Standard for Structural Steel

� S136 – CSA Standard for

� Sx – elastic section modulus

� tf (U) or (L) – thickness of the SIN beam flange (Upper or Lower)

� tw – SIN beam web thickness

� ULC – Underwriters Laboratory

� Vr – factored shear resistance

� w – length of half of a single wave of

� W/D – weight over heated

� W47.1 – CSA Standard for fusion welding

� WTA, WTB, WTC – SIN Beam web thickness

� Zx – plastic section modulus

� � – poisson’s ratio

� ��,�/�,� – reduction factor for local and global buckling

TECHNICAL GUIDE

width of compression element (see 2.1.1)

width of the SIN beam flange (Upper or Lower)

Factored compressive resistance

warping torsional constant

Canadian Welding Bureau

overall depth of a SIN beam member

Steel elastic modulus, Young’s Modulus (200,000 MPa)

European code for plated steel elements

specified minimum steel yield strength

CSA Standard for the requirements for rolled or welded structural steel

the SIN beam web (i.e. between the flanges)

inertial about the strong axis / weak axis

St. Venant torsional constant

longest unbraced length where the beam will reach its full moment resistance

perimeter (kg / m / m) per ULC

factored moment resistance

of bearing for an applied load

with respect to the strong axis

with respect to the weak axis

unfolded length of half of a single wave of the SIN beam corrugation

CSA Standard for Structural Steel

CSA Standard for Cold Formed Steel

elastic section modulus

of the SIN beam flange (Upper or Lower)

SIN beam web thickness

Underwriters Laboratory of Canada

factored shear resistance

single wave of the SIN beam corrugation

over heated perimeter (lb / ft / ft) per ULC

CSA Standard for fusion welding

SIN Beam web thickness designation (see 1.3.1.1)

plastic section modulus

reduction factor for local and global buckling

PAGE 1-6

CSA Standard for the requirements for rolled or welded structural steel

longest unbraced length where the beam will reach its full moment resistance

SIN beam corrugation

Page 9: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

2 TECHNICAL SECTION

2.1 Bending Capacity

2.1.1 Laterally Supported Members

The SIN beam bending moment capacity can be calculated base

S16, Clause 13.5. Due to the nature of the corrugated beam web the web material has an

insignificant contribution to the bending capacity of the member and should be ignored.

Because only the beam flanges contribute to the b

difference between the elastic (Sx) and plastic (Zx) section modulus

section modulus (Sx) is used for all bending capacity calculations.

S16 requires that for flanges of flexural members

be maintained �� ���

��� (Cl 11.2)

conservative to determine the effective flange width for a SIN beam member

��� � �� ���� . All standard SIN beam sections

determined to ensure that the flanges meet this criteria and are therefore considered

Class 1, 2, or 3 in bending.

Standard SIN beam sectional properties

Section 3.1 of this document in both Metric and Imperial units

2.1.2 Laterally Unsupported Members

The capacity of laterally unsupported flexural members can also be calculated based on the

formula given in CSA S16, Clause 13.6

based on the flanges only, neglecting any contribution of the web.

sections all of the member properties

13.6 are given in Section 3.1 of this document, and the moment capacity for various

unsupported lengths is given in Section 3.2

There is research that suggests that the nature of the corrugated web provides enhanced

resistance to lateral torsional buckling (over a standard

no proposed design formula that takes

can be used knowing that they will be conservative.

TECHNICAL GUIDE

ECTION

Laterally Supported Members

The SIN beam bending moment capacity can be calculated based on the formula given in CSA

. Due to the nature of the corrugated beam web the web material has an

insignificant contribution to the bending capacity of the member and should be ignored.

Because only the beam flanges contribute to the bending section modulus there is little

difference between the elastic (Sx) and plastic (Zx) section modulus therefore the elastic

section modulus (Sx) is used for all bending capacity calculations.

S16 requires that for flanges of flexural members the following ratio of flange width to thickness

(Cl 11.2). Based on testing and published research it is considered

he effective flange width for a SIN beam member as

All standard SIN beam sections (published in Part 3 of this document)

determined to ensure that the flanges meet this criteria and are therefore considered

Standard SIN beam sectional properties and Laterally Supported Moment capacity are g

in both Metric and Imperial units.

Laterally Unsupported Members

The capacity of laterally unsupported flexural members can also be calculated based on the

, Clause 13.6. Again the bending sectional properties are calculated

based on the flanges only, neglecting any contribution of the web. For standard SIN beam

sections all of the member properties (�� , �� , �, � ) required to use the formula given in Clause

Section 3.1 of this document, and the moment capacity for various

unsupported lengths is given in Section 3.2, in both metric and imperial units.

that the nature of the corrugated web provides enhanced

resistance to lateral torsional buckling (over a standard wide flange shape). There

roposed design formula that takes this enhanced stability into effect so the formul

can be used knowing that they will be conservative.

PAGE 2-1

d on the formula given in CSA

. Due to the nature of the corrugated beam web the web material has an

insignificant contribution to the bending capacity of the member and should be ignored.

ending section modulus there is little

the elastic

llowing ratio of flange width to thickness

Based on testing and published research it is considered

as

(published in Part 3 of this document) have been

determined to ensure that the flanges meet this criteria and are therefore considered by S16 as

and Laterally Supported Moment capacity are given

The capacity of laterally unsupported flexural members can also be calculated based on the

properties are calculated

For standard SIN beam

to use the formula given in Clause

Section 3.1 of this document, and the moment capacity for various

that the nature of the corrugated web provides enhanced

flange shape). There are currently

this enhanced stability into effect so the formula of S16

Page 10: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

2.1.3 Deflection Calculations

Because of the thin and deep web of the SIN beam m

than for conventional rolled wide

deflection calculations. The beam shear area for each web height and thickness

Section 3.3, and can be used to calculate the shear deformation of the SIN beam.

The Shear Deflection calculation has been included in the sample MathCAD c

in section 2.7 of this report. For common beam sizes i.e. less than 36in (914mm) in depth and

typical beam spans the shear deflections typical increase the deflection by 5 to 15%. However

for deep sections i.e. over 36in (914mm) in d

ratio will increase.

2.2 Shear Capacity

The SIN beam web material is cold formed steel

governed by CSA S136.

There are two clauses in CSA S136 for the shear design

design of flat web beams, while clause C3.7 applies to stiffened beams. T

of the SIN beam will stiffen the web of the beam

in C3.7 are directly applicable to

conforming stiffeners and indicates that the capacity of such beams shall be determined by

either tests in accordance with Chapter F or rational engineering analysis in accordance with

Section A1.2b.

2.2.1 Shear Capacity – Rational Engineering Analysis

CSA S136 allows for the calculation of shear capacity for a beam with non

such as the SIN beam, to be carried out by rational engineering analysis in accordance with

S136 Section A1.2b. For the calculation of the SIN beam shear capacity we

formula developed by research and testing in Europe in the 1990’s which has been adopted into

the European code EN1993-1-5:2005 Annex D (This Annex applies specifically to the design of

corrugated web steel beams). The calculated shear capacity is

resistance factor of 0.75 per S136.

The following is a brief look at the Canadian Codes (S136 and S16) and their approach to shear

design, followed by a comparison to the Eur

of the shear capacity of the SIN beam members

approaches, neither S136 nor S16 account for the stiffening effect of the corrugated web

shear capacity of a steel beam web is governed by either material yielding or by buckling of the

beam web.

2.2.1.1 CSA S136 Approach

CSA S136, clause C3.2 contains formula for the analysis of flat web steel beams. The formula

for the shear capacity is given as:

TECHNICAL GUIDE

Deflection Calculations

Because of the thin and deep web of the SIN beam member, shear deformations

wide flange shapes and should be considered for acc

he beam shear area for each web height and thickness

can be used to calculate the shear deformation of the SIN beam.

The Shear Deflection calculation has been included in the sample MathCAD calculations included

in section 2.7 of this report. For common beam sizes i.e. less than 36in (914mm) in depth and

typical beam spans the shear deflections typical increase the deflection by 5 to 15%. However

for deep sections i.e. over 36in (914mm) in depth particularly with low span to depth ratios this

he SIN beam web material is cold formed steel therefore the shear design of the beam is

There are two clauses in CSA S136 for the shear design of beams, clause C3.2 covers the

beams, while clause C3.7 applies to stiffened beams. The corrugated shape

of the SIN beam will stiffen the web of the beam however none of the stiffened

are directly applicable to the SIN beam configuration. Clause C3.7.4 covers non

conforming stiffeners and indicates that the capacity of such beams shall be determined by

tests in accordance with Chapter F or rational engineering analysis in accordance with

Rational Engineering Analysis

CSA S136 allows for the calculation of shear capacity for a beam with non-conforming stiffeners,

such as the SIN beam, to be carried out by rational engineering analysis in accordance with

or the calculation of the SIN beam shear capacity we have used a

research and testing in Europe in the 1990’s which has been adopted into

5:2005 Annex D (This Annex applies specifically to the design of

The calculated shear capacity is multiplied by a material

resistance factor of 0.75 per S136.

he following is a brief look at the Canadian Codes (S136 and S16) and their approach to shear

comparison to the European Code and the formula use for the calculation

of the shear capacity of the SIN beam members. All of these codes follow similar design

approaches, neither S136 nor S16 account for the stiffening effect of the corrugated web

teel beam web is governed by either material yielding or by buckling of the

CSA S136, clause C3.2 contains formula for the analysis of flat web steel beams. The formula

for the shear capacity is given as:

PAGE 2-2

shear deformations will be larger

for accurate

he beam shear area for each web height and thickness is included in

can be used to calculate the shear deformation of the SIN beam.

alculations included

in section 2.7 of this report. For common beam sizes i.e. less than 36in (914mm) in depth and

typical beam spans the shear deflections typical increase the deflection by 5 to 15%. However

epth particularly with low span to depth ratios this

the shear design of the beam is

covers the

he corrugated shape

stiffened cases covered

the SIN beam configuration. Clause C3.7.4 covers non-

conforming stiffeners and indicates that the capacity of such beams shall be determined by

tests in accordance with Chapter F or rational engineering analysis in accordance with

conforming stiffeners,

such as the SIN beam, to be carried out by rational engineering analysis in accordance with

have used a

research and testing in Europe in the 1990’s which has been adopted into

5:2005 Annex D (This Annex applies specifically to the design of

multiplied by a material

he following is a brief look at the Canadian Codes (S136 and S16) and their approach to shear

and the formula use for the calculation

codes follow similar design

approaches, neither S136 nor S16 account for the stiffening effect of the corrugated web. The

teel beam web is governed by either material yielding or by buckling of the

CSA S136, clause C3.2 contains formula for the analysis of flat web steel beams. The formula

Page 11: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

!" � #$ %& , where F( �2.2.1.2 CSA S16 Approach

CSA S16, clause 13.4 contains formula for the analysis of flat web steel beams. The formula for

the shear capacity is given as:

!" � #$ %), where %) � 02.2.1.3 EN 1993-1-5:2005 Annex D Approach

The European steel design code EN 1993

Corrugated Webs” which has been

Annex D provides formula for the shear design of corrugated web beams which

yielding, local buckling, or global buckling of a corrugated web. The basic

European Code and Annex D is:

!" � �� +�,-�√30 1

�� is a reduction factor to account for local or global buckling

,-� is the partial factor equal to 1.0 (we are using a material resistance factor below)��√2 � .577+� is similar and slightly more conservative than

F( � 0.60F7 used in S136

0 1 � $ is the area of the web

In the European code material resistance factors are left up to each country

included in the code formula.

For the calculation of the factored SIN beam shear cap

multiplied by a limit states material resistance factor of

CSA S136 Clause A1.2b. Therefore the factored shear capacit

with CSA S136 is given by:

!" � #)�� ��√2 0 1

Where:

#) � 0.75 - Material resistance factor based on CSA S136

�� - is the lesser of the local or global buckling coefficient

Local Buckling

��,� � �.�8�.9:;<=,� 1.

?̅�,� �A ��B=C,�∙√2

TECHNICAL GUIDE

� 0.60F7 or a reduced value to allow for web buckling

CSA S16, clause 13.4 contains formula for the analysis of flat web steel beams. The formula for

0.66%� or a reduced value to allow for web buckling

5:2005 Annex D Approach

code EN 1993-1-5:2005 includes Annex D entitled “Plate Girders with

which has been developed specifically to design corrugated web steel beams

he shear design of corrugated web beams which

yielding, local buckling, or global buckling of a corrugated web. The basic shear

is a reduction factor to account for local or global buckling

equal to 1.0 (we are using a material resistance factor below)

r and slightly more conservative than %) � 0.66%� used in S16

used in S136

is the area of the web

In the European code material resistance factors are left up to each country

formula.

of the factored SIN beam shear capacity the above formula has been

a limit states material resistance factor of #) � 0.75 as per the requirements of

Therefore the factored shear capacity for the SIN beam

Material resistance factor based on CSA S136

is the lesser of the local or global buckling coefficient ��,� or ��,�

.0

PAGE 2-3

or a reduced value to allow for web buckling

CSA S16, clause 13.4 contains formula for the analysis of flat web steel beams. The formula for

or a reduced value to allow for web buckling

Annex D entitled “Plate Girders with

to design corrugated web steel beams.

he shear design of corrugated web beams which accounts for the

shear formula of the

equal to 1.0 (we are using a material resistance factor below)

used in S16 or

In the European code material resistance factors are left up to each country and not

the above formula has been

as per the requirements of

y for the SIN beam in compliance

Page 12: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

E�",� � F5.34 H IJKL

M2 - Web amplitude

� - unfolded length of one half wave

N – Young’s modulus

� – Poisson’s Ratio

Global Buckling

��,� � �.8�.8:;<=,OP

?̅�,� � A ��B=C,O∙√2

E�",� � 2�.Q�LKLP AR�

S

R� � T�J����UVP�

)

RW �TXY

Z - length of one half wave

�W - second moment of area of one corrugation of length w

%� – Web steel yield strength

0 1 - The height and thickness of the corrugated steel web

2.2.2 Shear Capacity – Load Testing

S136, Chapter F provides an outline of the testing regime required to determine member

capacities based on load testing alone. This process would require a minimum of 3 load tests

for every possible web thickness and depth, whic

SIN beam members can be produced in a range of sizes and web thicknesses.

Steelcon has conducted shear load testing

beam members to ensure that the shear formula

the shear load testing is included i

that the formula are conservative, but not overly conservative

beam shear capacity.

2.2.3 Combined Shear and Moment

Both CSA S16 and S136 include

required for the SIN beam design as any contribution of the web material to the flexural

capacity is ignored.

TECHNICAL GUIDE

J[�L\

]PT����UVP� F�L) \

Web amplitude

th of one half wave

Young’s modulus

Poisson’s Ratio

1.0

AR�RW2

of one half wave

second moment of area of one corrugation of length w

Web steel yield strength

The height and thickness of the corrugated steel web

Load Testing

provides an outline of the testing regime required to determine member

capacities based on load testing alone. This process would require a minimum of 3 load tests

for every possible web thickness and depth, which would be a long and restrictive process as

SIN beam members can be produced in a range of sizes and web thicknesses.

Steelcon has conducted shear load testing, based on S136 Chapter F, of a selection of SIN

beam members to ensure that the shear formula outlined above is conservative. A report of

the shear load testing is included in section 6 of this guide. The shear load testing has shown

conservative, but not overly conservative for the calculation of the SIN

Combined Shear and Moment

Both CSA S16 and S136 include clauses to limit combined bending and shear. This is not

required for the SIN beam design as any contribution of the web material to the flexural

PAGE 2-4

provides an outline of the testing regime required to determine member

capacities based on load testing alone. This process would require a minimum of 3 load tests

h would be a long and restrictive process as

of a selection of SIN

is conservative. A report of

he shear load testing has shown

for the calculation of the SIN

clauses to limit combined bending and shear. This is not

required for the SIN beam design as any contribution of the web material to the flexural

Page 13: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

2.3 Axial Capacity

The axial capacity of a SIN beam section can be determined by formula contained in S16 clause

13.3, or 13.8 for combined compression and bending. Similar to the flexural resistance the

axial resistance is provided solely by the steel area of the flanges (neglecting any co

of the web). All of the parameters required to calculate the axial capacity of the SIN beam

members are indicated in the table

beam members for various unsupported lengths

2.4 Web Crippling

Testing has been done in Europe that

in EN1993-1-8:2005 clause 6.2.6.2

the calculation of the bearing resistance

where ����,�, � � 1� H 2√2M Heliminated because they are equal to unity or zero

common S16 variable names to read

than the S16 formula in 14.3.2 for interior loads

beam web crippling calculation. Table 3.5 summarizes the web crippling capacity for common

SIN beam sizes using this formula and applying a material resistance factor of

When the bearing resistance of the web is exceeded, or for any concentrated loads loc

the end of a SIN beam member bearing stiffeners shall be used.

2.5 Fatigue

The SIN beam is a welded wide flange section with a corrugated steel web. It is not

recommended to use the SIN beam for sections such as crane girders which will be subject to

significant cyclic / fatigue loads and as well as high point loads.

2.6 Web Openings

Openings can be cut into the web of the SIN beam members during the manufacturing process.

The equipment used to manufacture the SIN beam member is equipped with a plasma

device to cut holes in the web of the members. The following rules are to

openings:

• No holes within 200mm of the top or bottom flange of the member. (the equipment

cannot cut close to the flange and the web material is require

compression flange of the beam)

• Holes only where the shear utilization ratio is less than 67%

• Holes should be located as near to mid depth of the beam as possible.

TECHNICAL GUIDE

y of a SIN beam section can be determined by formula contained in S16 clause

13.3, or 13.8 for combined compression and bending. Similar to the flexural resistance the

axial resistance is provided solely by the steel area of the flanges (neglecting any co

of the web). All of the parameters required to calculate the axial capacity of the SIN beam

members are indicated in the table 3.1. Table 3.4 includes the compressive resistance

for various unsupported lengths calculated based on S16 clause 13.3

Testing has been done in Europe that indicates that the standard European code formula given

8:2005 clause 6.2.6.2 for web crippling of wide flange shapes is conservative for

resistance for SIN beam members, %�, �,_` � a∙bL=

5�1�� H c�. A number of the variables in these formulas can be

eliminated because they are equal to unity or zero and the formula rearranged using the

read d" � 1 ef H 51�g%�. This formula is more conservative

than the S16 formula in 14.3.2 for interior loads and therefore used in the calculation of the SIN

. Table 3.5 summarizes the web crippling capacity for common

SIN beam sizes using this formula and applying a material resistance factor of #When the bearing resistance of the web is exceeded, or for any concentrated loads loc

the end of a SIN beam member bearing stiffeners shall be used.

The SIN beam is a welded wide flange section with a corrugated steel web. It is not

recommended to use the SIN beam for sections such as crane girders which will be subject to

significant cyclic / fatigue loads and as well as high point loads.

Openings can be cut into the web of the SIN beam members during the manufacturing process.

The equipment used to manufacture the SIN beam member is equipped with a plasma

device to cut holes in the web of the members. The following rules are to be followed

No holes within 200mm of the top or bottom flange of the member. (the equipment

cannot cut close to the flange and the web material is required to stabilize the

compression flange of the beam)

Holes only where the shear utilization ratio is less than 67%

Holes should be located as near to mid depth of the beam as possible.

PAGE 2-5

y of a SIN beam section can be determined by formula contained in S16 clause

13.3, or 13.8 for combined compression and bending. Similar to the flexural resistance the

axial resistance is provided solely by the steel area of the flanges (neglecting any contribution

of the web). All of the parameters required to calculate the axial capacity of the SIN beam

compressive resistance of SIN

sed on S16 clause 13.3.

European code formula given

is conservative for

L=∙hh,=,L=∙�L=∙��,L=ijk

. A number of the variables in these formulas can be

the formula rearranged using the

more conservative

and therefore used in the calculation of the SIN

. Table 3.5 summarizes the web crippling capacity for common

#l � 0.80. When the bearing resistance of the web is exceeded, or for any concentrated loads located at

The SIN beam is a welded wide flange section with a corrugated steel web. It is not

recommended to use the SIN beam for sections such as crane girders which will be subject to

Openings can be cut into the web of the SIN beam members during the manufacturing process.

The equipment used to manufacture the SIN beam member is equipped with a plasma cutting

be followed for web

No holes within 200mm of the top or bottom flange of the member. (the equipment

d to stabilize the

Page 14: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

2.6.1 Hole Reinforcing

The following reinforcing is generally recommended for

listed in the table below:

Hole diameter

<1/10 Web Depth

1/10 to ¼ web depth

¼ to ½ web depth

2.7 Sectional Properties

Part 3 of this document contains

of these sections are based on constant depth beams with equal top and bottom flanges.

following formula were used to calculate the SIN beam properties:

• $noM � 2 ∙ �� ∙ 1� (Area of Flanges for Axial load or bending)

• �0oMn$noM � 0 1 ) (Area to be used for shear distortion calculations)

• pqonMrrRos10t � 0 H 2• �� � 2 u ��� ∙ �� ∙ 1�2 H �� ∙ 1�• �� � Xvw

P`

• �� � ��� ∙ 2 ∙ 1� ∙ ��2 • �� � X�

wPh

• � � �∙h∙�hJ2 (Galambos 1968

• � � �`U�h�P∙hJ∙�h�Q (Galambos 1968, Picard and Beaulieu 1991

• x" � ∅ ∙ ��%� (CSA S16 Cl 13.5)

2.8 Sample Calculation

Attached is a sample calculation for the bending,

deformations) of a typical SIN beam

copy of this calculation is available on request

for free from www.ptc.com.

TECHNICAL GUIDE

The following reinforcing is generally recommended for web openings and follows the approach

Reinforcing Required

No Reinforcing

1/10 to ¼ web depth Weld pipe into hole

Full height vertical stiffeners and horizontal stiffeners above and below the opening

Sectional Properties Calculation

s member sectional properties for standard size SIN beams. All

of these sections are based on constant depth beams with equal top and bottom flanges.

ula were used to calculate the SIN beam properties:

(Area of Flanges for Axial load or bending)

(Area to be used for shear distortion calculations)

2 ∗ 1� � ∙ ���0 H �

� 1���{ or �� � ��� ∙ �� ∙ t2 | ��� ∙ �� ∙ 0

(Galambos 1968 based on Flange only)

(Galambos 1968, Picard and Beaulieu 1991 based on Flange only

(CSA S16 Cl 13.5)

ulation for the bending, shear capacity and deflection (including shear

typical SIN beam flexural member using PTC Mathcad. A digital (editable)

copy of this calculation is available on request, and PTC Mathcad Express can be

PAGE 2-6

follows the approach

Full height vertical stiffeners and horizontal nd below the opening

member sectional properties for standard size SIN beams. All

of these sections are based on constant depth beams with equal top and bottom flanges. The

2

based on Flange only)

and deflection (including shear

member using PTC Mathcad. A digital (editable)

, and PTC Mathcad Express can be downloaded

Page 15: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Project:Description:

Sample CalculationSIN Beam Capacity

Date: Sept 16, 2016

Sample Calculation for a SIN Beam WTA 750/230x9.5

Beam Properties

≔hw 762 mmmmmmmm ≔bflange 203 mmmmmmmm Web ThicknessWT0 = 1.519 mmWTA = 1.897 mmWTB = 2.657 mmWTC = 3.038 mm

≔tweb 1.897 mmmmmmmm ≔tflange 9.5 mmmmmmmm

≔aweb 40 mmmmmmmm

Material Properties

≔Fy_Flange 350 MPaMPaMPaMPa ≔Fy_Web 350 MPaMPaMPaMPa ≔ϕs 0.9

≔ν 0.3 Poissons Ratio ≔E 200 GPaGPaGPaGPa ≔G 77 GPaGPaGPaGPa ≔ϕs.shear 0.75

Calculated Section Properties

≔A =⋅⋅2 bflange tflange 3857 mmmmmmmm2

≔d =+hw ⋅2 tflange 781 mmmmmmmm

≔Ix =−⋅⋅―1

12bflange d

3 ⋅⋅―1

12bflange hw

3 ⎛⎝ ⋅573.962 106 ⎞⎠ mmmmmmmm4

≔Sx =――Ix

⋅―1

2d

⎛⎝ ⋅1.47 106 ⎞⎠ mmmmmmmm3 ≔Zx =――――――Ix

+⋅―1

2hw ―

1

2tflange

⎛⎝ ⋅1.488 106 ⎞⎠ mmmmmmmm3

≔Iy =−⋅⋅―1

12bflange

3d ⋅⋅―

1

12bflange

3hw

⎛⎝ ⋅13.245 106 ⎞⎠ mmmmmmmm4

≔Sy =―――Iy

⋅―1

2bflange

⎛⎝ ⋅130.495 103 ⎞⎠ mmmmmmmm3

≔J =――――――⋅⋅2 bflange tflange

3

3⎛⎝ ⋅116.031 103 ⎞⎠ mmmmmmmm4

≔Cw =―――――――――⋅⋅⎛⎝ −d tflange⎞⎠

2

bflange3tflange

24⎛⎝ ⋅1.971 1012⎞⎠ mmmmmmmm6

Page 16: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Project:Description:

Sample CalculationSIN Beam Capacity

Date: Sept 16, 2016

CSA S16-09 - Moment Calculation

Flange Classification per Clause 11.2

< 145 = Class 1< 170 = Class 2< 200 = Class 3

=⋅―――

―1

2bflange

tflange

‾‾‾‾‾‾‾2

―――Fy_Flange

1 MPaMPaMPaMPa199.883

Moment Capacty per 13.5 - Laterally Supported

≔Mr =⋅⋅ϕs Fy_Flange Sx 462.991 ⋅kNkNkNkN mmmm Elastic Capacity is generally used because it is very close to the plastic capacity≔Mr =⋅⋅ϕs Fy_Flange Zx 468.693 ⋅kNkNkNkN mmmm

Moment Capacity 13.6 - Laterally UnSupported

full unsupported for 6m

≔My ⋅Fy_Flange Sx

≔ω2 1.0 this is to match what is shown in S16 design tables actual value could be calculated based on S16 if requried

=Cw⎛⎝ ⋅1.971 1012⎞⎠ mmmmmmmm6

=J ⎛⎝ ⋅116.031 103 ⎞⎠ mmmmmmmm4

≔L 6000 mmmmmmmm

≔Mu =⋅――⋅ω2 ππππ

L

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

+⋅⋅⋅E Iy G J ⋅⋅⎛⎜⎝――⋅ππππ E

L

⎞⎟⎠

2

Iy Cw 291.503 ⋅kNkNkNkN mmmm

=<Mu ⋅0.67 My 1 ≔Mr =⋅ϕs Mu 262.352 ⋅kNkNkNkN mmmm

Page 17: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Project:Description:

Sample CalculationSIN Beam Capacity

Date: Sept 16, 2016

Shear Capacity - Per CSA S136 / EN 1993-1-5:2006 Annex D clause 2.2

≔tw tweb ≔a3 aweb ≔fyw Fy_Web ≔w ――155

2mmmmmmmm

≔γm1 1.0 Partial Factor EN1993-1-1:2005 cl 6.1

≔s =―1

2

⌠⎮⎮⎮⌡

d

0

2 w

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

+1⎛⎜⎝

⋅――⋅a3 ππππ

2 wsin

⎛⎜⎝―――

⋅⋅2 ππππ x

2 w

⎞⎟⎠

⎞⎟⎠

2

x 88.985 mmmmmmmm =2 s 177.97 mmmmmmmm

≔Iz =―1

2

⌠⎮⎮⌡

d

0

2 w

⎛⎜⎜⎝

+⋅―1

12tw

3 ⋅tw⎛⎜⎝

⋅―a3

2sin

⎛⎜⎝―――

⋅⋅2 ππππ x

2 w

⎞⎟⎠

⎞⎟⎠

2 ⎞⎟⎟⎠x 2.945 cmcmcmcm4

≔τcr.l =⋅⋅⎛⎜⎝

+5.34 ―――⋅aweb s

⋅hw tw

⎞⎟⎠――――

⋅ππππ2 E

⋅12 ⎛⎝ −1 ν2 ⎞⎠

⎛⎜⎝―tw

s

⎞⎟⎠

2

⎛⎝ ⋅640.964 103 ⎞⎠ kPakPakPakPa

≔λc.l =‾‾‾‾‾‾‾―――fyw

⋅τcr.l ‾‾3⋅561.483 10−3

≔χc.l =min⎛⎜⎝,1 ―――

1.15

+0.9 λc.l

⎞⎟⎠

⋅786.872 10−3

≔Dz =――⋅E Iz

w75.994 ⋅kNkNkNkN mmmm

≔Dx =⋅――――⋅E tw

3

⋅12 ⎛⎝ −1 ν2 ⎞⎠

―w

s⎛⎝ ⋅108.891 10−3⎞⎠ ⋅kNkNkNkN mmmm

≔τcr.g =⋅―――32.4

⋅tw hw2

‾‾‾‾‾‾4⋅Dx Dz

3 ⎛⎝ ⋅434.91 103 ⎞⎠ kPakPakPakPa

≔λc.g =‾‾‾‾‾‾‾‾―――fyw

⋅τcr.g ‾‾3⋅681.638 10−3

≔χc.g =min⎛⎜⎝

,――――1.5

+0.5 λc.g2

1⎞⎟⎠

1

≔χc =min ⎛⎝ ,χc.l χc.g⎞⎠ ⋅786.872 10−3

≔V =⋅⋅⋅χc ―――fyw

⋅γm1 ‾‾3hw tw 229.844 kNkNkNkN

≔Vr =⋅ϕs.shear V 172.383 kNkNkNkN

Page 18: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Project:Description:

Sample CalculationSIN Beam Capacity

Date: Sept 16, 2016

Deflection Calculation - Including Shear Deformations

≔wload ⋅4.8 kPakPakPakPa 6 mmmm ≔l 12000 mmmmmmmm

≔∆flexure =⋅――5

384―――

⋅wload l4

⋅E Ix67.74 mmmmmmmm

≔G 77 GPaGPaGPaGPa ≔b =bflange 203 mmmmmmmm

≔d1 =hw 762 mmmmmmmm ≔t =⋅tweb ―w

s1.652 mmmmmmmm

≔α ⋅A ―――――――+−⋅b d2 ⋅b d1

2 ⋅t d12

⋅⋅8 Ix t

≔∆shear =――――⋅⋅wload l

⋅⋅8 A G6.133 mmmmmmmm

≔∆total =+∆flexure ∆shear 73.873 mmmmmmmm =――∆shear

∆total⋅83.021 10−3

For A Point Load

≔P 200 kNkNkNkN ≔L 10000 mmmmmmmm

≔∆flexure =―――⋅P L3

⋅⋅48 E Ix36.297 mmmmmmmm

≔∆shear =―――⋅⋅P L α

⋅⋅4 A G5.915 mmmmmmmm

≔∆total =+∆flexure ∆shear 42.213 mmmmmmmm =――∆shear

∆total⋅140.13 10−3

Page 19: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

3 TABLES

3.1 Common SIN Beam Sizes

1 Page – Combined Metric and Imperial

3.2 Bending Capacity –

10 Pages – Metric

10 Pages - Imperial

3.3 Bending Capacity –

9 Pages – Metric

9 Pages – Imperial

3.4 Shear Capacity

2 Pages – Metric

2 Pages – Imperial

3.5 Axial Capacity

9 Pages – Metric

9 Pages – Imperial

3.6 Concentrated Load / Web Crippling

2 Pages – Metric

2 Pages – Imperial

3.7 M/D and W/D ratios for ULC Calculation

9 pages – Combined Metric and Imperial

TECHNICAL GUIDE

Common SIN Beam Sizes

Combined Metric and Imperial

Laterally Supported

Laterally Unsupported

Concentrated Load / Web Crippling Capacity

M/D and W/D ratios for ULC Calculation

Combined Metric and Imperial

PAGE 3-1

Page 20: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Common SIN Beam Sizes

ga mm in mm in t (mm) W (mm) t (in) W (in) A (sq in)WT0 16 1.519 0.060 333 13.11 6 127 1/4 5 1.25WTA 14 1.897 0.075 440 17.32 6 152 1/4 6 1.50WTB 12 2.657 0.105 500 19.69 8 152 5/16 6 1.88WTC 11 3.038 0.120 610 24.02 10 152 3/8 6 2.25WTF 8 4.176 0.164 750 29.53 10 178 3/8 7 2.63WTH 6 4.935 0.194 900 35.43 13 152 1/2 6 3.00WTK 3 6.073 0.239 1000 39.37 13 178 1/2 7 3.50

1219 47.99 13 203 1/2 8 4.001500 59.06 16 203 5/8 8 5.00

Designation is WebThickness WebHeight / FlangeW x FlangeT 19 152 3/4 6 4.50i.e.WTA610/178x10 19 203 3/4 8 6.00 - 1.89mm thick web 19 254 3/4 10 7.50 - 610mm tall web 25 203 1 8 8.00 - 178 x 10 mm flanges 25 254 1 10 10.00

25 279 1 11 11.0025 305 1 12 12.0025 330 1 13 13.0025 356 1 14 14.0025 406 1 16 16.0032 254 1 1/4 10 12.5032 305 1 1/4 12 15.0032 356 1 1/4 14 17.5032 406 1 1/4 16 20.0032 450 1 1/4 17.71654 22.15

Greyed out sizes are not as commonly used

actual mm inWT0 1.519 1.847 0.073WTA 1.897 2.307 0.091WTB 2.657 3.231 0.127WTC 3.038 3.694 0.145WTF 4.176 5.078 0.200WTH 4.935 6.001 0.236WTK 6.073 7.385 0.291

The magnitude of the sin wave is 40mm for the WTA, and WTB but 43mm for the WTC and higher

Web Thicknesses (for weight calculation)

For Tekla Modeling with a flat web beam use an increased web thickness to achive the proper beam weigth

2019-05-13

Web Thicknesses Web Height Flange Size

Each SIN beam can be any combination of Web Thickness, WebHeight and FlangeSizeThe length of the sin wave is constantly 155mm

Page 21: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

333 127 x 6 1612.9 346 46.44 268.7 2.17 34.1 21.7 62.4 84.6 1910 18.7 21.1 22.3 25.9 28.3 32.0152 x 1736.1 346 49.99 289.2 2.70 39.6 23.3 77.8 91.1 2060 21.2 23.6 24.8 28.5 30.9 34.5152 x 8 2419.4 349 70.32 403.1 4.68 61.5 50.8 136.1 127.0 2320 25.0 27.4 28.6 32.3 34.7 38.3152 x 10 2903.2 352 85.18 483.9 5.62 73.7 87.8 164.8 152.4 2340 28.8 31.2 32.4 36.1 38.5 42.1178 x 3387.1 352 99.37 564.5 8.92 100.4 102.4 261.7 177.8 2740 32.6 35.0 36.2 39.9 42.3 45.9152 x 13 3871 358 115.71 645.7 7.49 98.3 208.1 223.8 203.4 2400 36.4 38.8 40.0 43.7 46.1 49.7178 x 4516.1 358 134.99 753.3 11.90 133.8 242.8 355.5 237.3 2800 41.5 43.9 45.1 48.7 51.1 54.8203 x 5161.3 358 154.27 860.9 17.76 174.8 277.5 530.6 271.2 3210 46.5 49.0 50.2 53.8 56.2 59.8152 x 19 5806.4 371 180.09 970.6 11.24 147.5 702.4 348.2 305.7 2560 51.6 54.0 55.2 58.9 61.3 64.9203 x 16 6451.6 365 196.45 1077.2 22.20 218.5 542.0 675.5 339.3 3300 56.7 59.1 60.3 63.9 66.3 69.9203 x 19 7741.9 371 240.12 1294.1 26.64 262.2 936.5 825.4 407.6 3420 66.8 69.2 70.4 74.0 76.5 80.1254 x 9677.4 371 300.14 1617.6 52.03 409.7 1170.7 1612.1 509.5 4280 82.0 84.4 85.6 89.2 91.7 95.3203 x 25 10323 384 332.04 1730.3 35.52 349.6 2219.9 1140.6 545.0 3720 87.1 89.5 90.7 94.3 96.7 100.3254 x 12903 384 415.05 2162.8 69.37 546.2 2774.9 2227.7 681.3 4650 107.3 109.7 110.9 114.6 117.0 120.6279 x 14194 384 456.55 2379.1 92.33 660.9 3052.4 2965.1 749.4 5110 117.5 119.9 121.1 124.7 127.1 130.7305 x 15484 384 498.06 2595.4 119.87 786.6 3329.9 3849.5 817.6 5580 127.6 130.0 131.2 134.8 137.2 140.9254 x 32 16129 397 537.82 2712.8 86.71 682.8 5419.7 2884.2 854.5 5110 132.6 135.1 136.3 139.9 142.3 145.9330 x 25 16774 384 539.56 2811.7 152.41 923.1 3607.3 4894.3 885.7 6040 137.7 140.1 141.3 145.0 147.4 151.0356 x 18064 384 581.07 3028.0 190.36 1070.6 3884.8 6112.8 953.8 6510 147.8 150.3 151.5 155.1 157.5 161.1305 x 32 19355 397 645.38 3255.4 149.84 983.2 6503.6 4983.9 1025.4 6130 158.0 160.4 161.6 165.2 167.6 171.2406 x 25 20645 384 664.08 3460.5 284.15 1398.4 4439.8 9124.7 1090.1 7440 168.1 170.5 171.7 175.3 177.8 181.4356 x 32 22581 397 752.94 3797.9 237.95 1338.3 7587.6 7914.2 1196.4 7160 183.3 185.7 186.9 190.5 192.9 196.6406 x 25806 397 860.51 4340.5 355.18 1748.0 8671.5 11813.7 1367.3 8180 208.6 211.0 212.2 215.9 218.3 221.9450 x 28575 397 952.82 4806.2 482.20 2143.1 9601.8 16038.4 1513.9 9060 230.3 232.8 234.0 237.6 240.0 243.6

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

333 80.2 121.8 143.5 210.0 249.1 306.5

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 22: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

440 127 x 6 1612.9 453 80.34 354.9 2.17 34.1 21.7 108.0 111.8 1900 20.6 23.8 25.4 30.2 33.4 38.2152 x 1736.1 453 86.48 382.0 2.70 39.6 23.3 134.7 120.3 2050 23.2 26.4 28.0 32.7 35.9 40.7152 x 8 2419.4 456 121.37 532.5 4.68 61.5 50.8 234.9 167.7 2290 27.0 30.2 31.8 36.5 39.7 44.5152 x 10 2903.2 459 146.69 639.1 5.62 73.7 87.8 283.9 201.3 2310 30.8 33.9 35.5 40.3 43.5 48.3178 x 3387.1 459 171.14 745.6 8.92 100.4 102.4 450.8 234.9 2700 34.6 37.7 39.3 44.1 47.3 52.1152 x 13 3871 465 198.38 852.5 7.49 98.3 208.1 383.9 268.5 2350 38.4 41.5 43.1 47.9 51.1 55.9178 x 4516.1 465 231.44 994.6 11.90 133.8 242.8 609.5 313.3 2740 43.4 46.6 48.2 53.0 56.2 61.0203 x 5161.3 465 264.50 1136.7 17.76 174.8 277.5 909.9 358.1 3130 48.5 51.7 53.3 58.1 61.2 66.0152 x 19 5806.4 478 306.07 1280.4 11.24 147.5 702.4 592.1 403.3 2440 53.5 56.7 58.3 63.1 66.3 71.1203 x 16 6451.6 472 335.33 1421.6 22.20 218.5 542.0 1153.4 447.8 3190 58.6 61.8 63.4 68.2 71.4 76.2203 x 19 7741.9 478 408.09 1707.1 26.64 262.2 936.5 1403.4 537.7 3260 68.7 71.9 73.5 78.3 81.5 86.3254 x 9677.4 478 510.11 2133.9 52.03 409.7 1170.7 2741.0 672.2 4070 83.9 87.1 88.7 93.5 96.7 101.5203 x 25 10323 491 559.51 2280.0 35.52 349.6 2219.9 1923.3 718.2 3430 89.0 92.2 93.8 98.6 101.8 106.5254 x 12903 491 699.39 2850.0 69.37 546.2 2774.9 3756.4 897.8 4290 109.3 112.4 114.0 118.8 122.0 126.8279 x 14194 491 769.33 3135.0 92.33 660.9 3052.4 4999.8 987.5 4710 119.4 122.6 124.2 129.0 132.1 136.9305 x 15484 491 839.27 3420.0 119.87 786.6 3329.9 6491.1 1077.3 5140 129.5 132.7 134.3 139.1 142.3 147.1254 x 32 16129 504 898.72 3569.9 86.71 682.8 5419.7 4824.6 1124.5 4560 134.6 137.8 139.4 144.2 147.3 152.1330 x 25 16774 491 909.21 3705.0 152.41 923.1 3607.3 8252.9 1167.1 5570 139.6 142.8 144.4 149.2 152.4 157.2356 x 18064 491 979.15 3990.0 190.36 1070.6 3884.8 10307.7 1256.9 6000 149.8 153.0 154.6 159.3 162.5 167.3305 x 32 19355 504 1078.47 4283.9 149.84 983.2 6503.6 8336.8 1349.4 5470 159.9 163.1 164.7 169.5 172.7 177.4406 x 25 20645 491 1119.03 4560.0 284.15 1398.4 4439.8 15386.4 1436.4 6860 170.0 173.2 174.8 179.6 182.8 187.6356 x 32 22581 504 1258.21 4997.9 237.95 1338.3 7587.6 13238.6 1574.3 6380 185.2 188.4 190.0 194.8 198.0 202.8406 x 25806 504 1437.96 5711.9 355.18 1748.0 8671.5 19761.4 1799.2 7290 210.5 213.7 215.3 220.1 223.3 228.1450 x 28575 504 1592.23 6324.6 482.20 2143.1 9601.8 26828.3 1992.3 8080 232.3 235.5 237.1 241.9 245.0 249.8

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

440 103.5 158.3 186.8 274.7 329.1 405.0

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 23: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

500 127 x 6 1612.9 513 103.39 403.3 2.17 34.1 21.7 139.0 127.0 1900 21.7 25.3 27.2 32.6 36.2 41.6152 x 1736.1 513 111.29 434.1 2.70 39.6 23.3 173.3 136.7 2040 24.2 27.9 29.7 35.1 38.7 44.2152 x 8 2419.4 516 156.06 605.0 4.68 61.5 50.8 302.0 190.6 2290 28.0 31.7 33.5 38.9 42.5 48.0152 x 10 2903.2 519 188.45 726.1 5.62 73.7 87.8 364.7 228.7 2300 31.8 35.5 37.3 42.7 46.3 51.8178 x 3387.1 519 219.86 847.2 8.92 100.4 102.4 579.1 266.9 2680 35.6 39.3 41.1 46.5 50.1 55.6152 x 13 3871 525 254.43 968.5 7.49 98.3 208.1 492.4 305.1 2330 39.4 43.1 44.9 50.3 53.9 59.4178 x 4516.1 525 296.84 1130.0 11.90 133.8 242.8 781.8 355.9 2720 44.5 48.1 50.0 55.4 59.0 64.4203 x 5161.3 525 339.24 1291.4 17.76 174.8 277.5 1167.1 406.8 3100 49.6 53.2 55.0 60.4 64.1 69.5152 x 19 5806.4 538 391.26 1454.2 11.24 147.5 702.4 756.9 458.1 2400 54.6 58.3 60.1 65.5 69.1 74.6203 x 16 6451.6 532 429.37 1614.9 22.20 218.5 542.0 1476.9 508.7 3150 59.7 63.3 65.1 70.6 74.2 79.6203 x 19 7741.9 538 521.68 1939.0 26.64 262.2 936.5 1794.2 610.8 3200 69.8 73.5 75.3 80.7 84.3 89.8254 x 9677.4 538 652.10 2423.7 52.03 409.7 1170.7 3504.3 763.5 4010 85.0 88.6 90.5 95.9 99.5 105.0203 x 25 10323 551 712.93 2588.7 35.52 349.6 2219.9 2451.2 815.4 3340 90.1 93.7 95.5 101.0 104.6 110.0254 x 12903 551 891.16 3235.9 69.37 546.2 2774.9 4787.4 1019.3 4180 110.3 114.0 115.8 121.2 124.8 130.3279 x 14194 551 980.28 3559.5 92.33 660.9 3052.4 6372.1 1121.2 4590 120.5 124.1 125.9 131.3 135.0 140.4305 x 15484 551 1069.39 3883.1 119.87 786.6 3329.9 8272.7 1223.2 5010 130.6 134.2 136.0 141.5 145.1 150.5254 x 32 16129 564 1141.51 4051.5 86.71 682.8 5419.7 6129.8 1276.2 4390 135.7 139.3 141.1 146.5 150.2 155.6330 x 25 16774 551 1158.51 4206.6 152.41 923.1 3607.3 10518.0 1325.1 5430 140.7 144.4 146.2 151.6 155.2 160.7356 x 18064 551 1247.62 4530.2 190.36 1070.6 3884.8 13136.7 1427.0 5850 150.9 154.5 156.3 161.7 165.4 170.8305 x 32 19355 564 1369.81 4861.8 149.84 983.2 6503.6 10592.4 1531.5 5270 161.0 164.6 166.4 171.9 175.5 180.9406 x 25 20645 551 1425.86 5177.4 284.15 1398.4 4439.8 19609.4 1630.9 6680 171.1 174.7 176.6 182.0 185.6 191.1356 x 32 22581 564 1598.11 5672.1 237.95 1338.3 7587.6 16820.3 1786.7 6140 186.3 189.9 191.8 197.2 200.8 206.2406 x 25806 564 1826.41 6482.4 355.18 1748.0 8671.5 25107.8 2041.9 7020 211.6 215.3 217.1 222.5 226.1 231.6450 x 28575 564 2022.35 7177.8 482.20 2143.1 9601.8 34086.7 2261.0 7780 233.4 237.0 238.8 244.2 247.9 253.3

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

500 116.4 178.7 211.0 311.0 374.0 460.2

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 24: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

610 127 x 6 1612.9 622 152.99 491.7 2.17 34.1 21.7 205.6 154.9 1890 23.7 28.1 30.3 37.0 41.4 48.0152 x 1736.1 622 164.67 529.2 2.70 39.6 23.3 256.4 166.7 2040 26.2 30.7 32.9 39.5 43.9 50.5152 x 8 2419.4 625 230.67 737.6 4.68 61.5 50.8 446.4 232.3 2280 30.0 34.5 36.7 43.3 47.7 54.3152 x 10 2903.2 629 278.23 885.2 5.62 73.7 87.8 538.5 278.8 2290 33.8 38.3 40.5 47.1 51.5 58.1178 x 3387.1 629 324.61 1032.7 8.92 100.4 102.4 855.1 325.3 2670 37.6 42.0 44.3 50.9 55.3 61.9152 x 13 3871 635 374.82 1180.5 7.49 98.3 208.1 725.3 371.9 2310 41.4 45.8 48.1 54.7 59.1 65.7178 x 4516.1 635 437.29 1377.3 11.90 133.8 242.8 1151.8 433.8 2690 46.5 50.9 53.1 59.8 64.2 70.8203 x 5161.3 635 499.76 1574.0 17.76 174.8 277.5 1719.3 495.8 3080 51.6 56.0 58.2 64.8 69.2 75.9152 x 19 5806.4 648 573.85 1772.0 11.24 147.5 702.4 1110.3 558.2 2360 56.6 61.0 63.3 69.9 74.3 80.9203 x 16 6451.6 641 631.13 1968.1 22.20 218.5 542.0 2171.2 620.0 3110 61.7 66.1 68.3 74.9 79.4 86.0203 x 19 7741.9 648 765.14 2362.6 26.64 262.2 936.5 2631.9 744.2 3150 71.8 76.2 78.5 85.1 89.5 96.1254 x 9677.4 648 956.42 2953.3 52.03 409.7 1170.7 5140.5 930.3 3930 87.0 91.4 93.6 100.3 104.7 111.3203 x 25 10323 660 1041.13 3153.0 35.52 349.6 2219.9 3580.5 993.2 3240 92.1 96.5 98.7 105.3 109.8 116.4254 x 12903 660 1301.42 3941.3 69.37 546.2 2774.9 6993.1 1241.5 4050 112.3 116.8 119.0 125.6 130.0 136.6279 x 14194 660 1431.56 4335.4 92.33 660.9 3052.4 9307.8 1365.7 4460 122.5 126.9 129.1 135.7 140.1 146.8305 x 15484 660 1561.70 4729.6 119.87 786.6 3329.9 12084.1 1489.8 4860 132.6 137.0 139.2 145.8 150.3 156.9254 x 32 16129 673 1659.94 4932.2 86.71 682.8 5419.7 8917.1 1553.7 4190 137.7 142.1 144.3 150.9 155.3 162.0330 x 25 16774 660 1691.84 5123.7 152.41 923.1 3607.3 15363.9 1614.0 5270 142.7 147.1 149.4 156.0 160.4 167.0356 x 18064 660 1821.98 5517.8 190.36 1070.6 3884.8 19189.1 1738.1 5670 152.8 157.3 159.5 166.1 170.5 177.1305 x 32 19355 673 1991.93 5918.7 149.84 983.2 6503.6 15408.8 1864.4 5030 163.0 167.4 169.6 176.2 180.7 187.3406 x 25 20645 660 2082.27 6306.1 284.15 1398.4 4439.8 28643.8 1986.4 6480 173.1 177.5 179.7 186.4 190.8 197.4356 x 32 22581 673 2323.92 6905.1 237.95 1338.3 7587.6 24468.5 2175.1 5870 188.3 192.7 194.9 201.6 206.0 212.6406 x 25806 673 2655.90 7891.6 355.18 1748.0 8671.5 36524.5 2485.8 6710 213.6 218.0 220.3 226.9 231.3 237.9450 x 28575 673 2940.84 8738.2 482.20 2143.1 9601.8 49586.1 2752.5 7440 235.4 239.8 242.0 248.6 253.0 259.7

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

610 139.9 215.8 255.0 377.0 456.0 561.1

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 25: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

750 127 x 6 1612.9 763 230.68 604.9 2.17 34.1 21.7 310.0 190.5 1890 26.2 31.7 34.4 42.6 48.0 56.1152 x 1736.1 763 248.30 651.1 2.70 39.6 23.3 386.6 205.1 2030 28.8 34.2 36.9 45.1 50.5 58.7152 x 8 2419.4 766 347.47 907.4 4.68 61.5 50.8 672.5 285.8 2270 32.6 38.0 40.7 48.9 54.3 62.5152 x 10 2903.2 769 418.72 1088.9 5.62 73.7 87.8 810.4 343.0 2280 36.4 41.8 44.5 52.7 58.1 66.3178 x 3387.1 769 488.51 1270.4 8.92 100.4 102.4 1286.9 400.2 2660 40.2 45.6 48.3 56.5 61.9 70.1152 x 13 3871 775 563.00 1452.1 7.49 98.3 208.1 1089.6 457.4 2290 44.0 49.4 52.1 60.3 65.7 73.9178 x 4516.1 775 656.83 1694.2 11.90 133.8 242.8 1730.2 533.7 2670 49.0 54.5 57.2 65.3 70.8 78.9203 x 5161.3 775 750.66 1936.2 17.76 174.8 277.5 2582.7 609.9 3060 54.1 59.5 62.3 70.4 75.8 84.0152 x 19 5806.4 788 858.71 2179.2 11.24 147.5 702.4 1661.7 686.4 2330 59.2 64.6 67.3 75.5 80.9 89.1203 x 16 6451.6 782 946.21 2420.7 22.20 218.5 542.0 3255.3 762.5 3080 64.2 69.7 72.4 80.5 86.0 94.1203 x 19 7741.9 788 1144.95 2905.6 26.64 262.2 936.5 3938.8 915.3 3100 74.4 79.8 82.5 90.7 96.1 104.3254 x 9677.4 788 1431.19 3632.0 52.03 409.7 1170.7 7693.0 1144.1 3880 89.6 95.0 97.7 105.9 111.3 119.4203 x 25 10323 801 1552.15 3876.5 35.52 349.6 2219.9 5338.8 1221.1 3170 94.6 100.1 102.8 110.9 116.4 124.5254 x 12903 801 1940.19 4845.6 69.37 546.2 2774.9 10427.4 1526.4 3960 114.9 120.3 123.0 131.2 136.6 144.8279 x 14194 801 2134.21 5330.2 92.33 660.9 3052.4 13878.8 1679.0 4360 125.0 130.4 133.2 141.3 146.8 154.9305 x 15484 801 2328.23 5814.8 119.87 786.6 3329.9 18018.5 1831.6 4750 135.1 140.6 143.3 151.4 156.9 165.0254 x 32 16129 814 2465.60 6061.7 86.71 682.8 5419.7 13248.6 1909.4 4060 140.2 145.6 148.4 156.5 161.9 170.1330 x 25 16774 801 2522.25 6299.3 152.41 923.1 3607.3 22909.0 1984.3 5150 145.3 150.7 153.4 161.6 167.0 175.2356 x 18064 801 2716.27 6783.9 190.36 1070.6 3884.8 28612.7 2136.9 5550 155.4 160.8 163.6 171.7 177.1 185.3305 x 32 19355 814 2958.72 7274.0 149.84 983.2 6503.6 22893.6 2291.3 4870 165.5 171.0 173.7 181.8 187.3 195.4406 x 25 20645 801 3104.30 7753.0 284.15 1398.4 4439.8 42710.6 2442.2 6340 175.6 181.1 183.8 192.0 197.4 205.5356 x 32 22581 814 3451.83 8486.4 237.95 1338.3 7587.6 36354.1 2673.2 5680 190.8 196.3 199.0 207.2 212.6 220.7406 x 25806 814 3944.95 9698.7 355.18 1748.0 8671.5 54266.2 3055.1 6500 216.2 221.6 224.3 232.5 237.9 246.1450 x 28575 814 4368.18 10739.2 482.20 2143.1 9601.8 73672.6 3382.9 7190 237.9 243.3 246.1 254.2 259.6 267.8

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

750 169.9 263.2 311.3 461.5 561.0 690.3

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 26: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

900 127 x 6 1612.9 913 331.24 725.9 2.17 34.1 21.7 445.2 228.6 1880 29.0 35.5 38.8 48.5 55.1 64.8152 x 1736.1 913 356.54 781.3 2.70 39.6 23.3 555.2 246.1 2030 31.5 38.0 41.3 51.1 57.6 67.4152 x 8 2419.4 916 498.61 1088.8 4.68 61.5 50.8 965.0 343.0 2270 35.3 41.8 45.1 54.9 61.4 71.2152 x 10 2903.2 919 600.43 1306.6 5.62 73.7 87.8 1162.1 411.6 2270 39.1 45.6 48.9 58.7 65.2 75.0178 x 3387.1 919 700.51 1524.4 8.92 100.4 102.4 1845.3 480.2 2650 42.9 49.4 52.7 62.5 69.0 78.8152 x 13 3871 925 806.20 1742.4 7.49 98.3 208.1 1560.3 548.9 2280 46.7 53.2 56.5 66.3 72.8 82.6178 x 4516.1 925 940.57 2032.8 11.90 133.8 242.8 2477.7 640.3 2660 51.8 58.3 61.5 71.3 77.9 87.6203 x 5161.3 925 1074.93 2323.2 17.76 174.8 277.5 3698.4 731.8 3040 56.8 63.3 66.6 76.4 82.9 92.7152 x 19 5806.4 938 1226.28 2614.4 11.24 147.5 702.4 2373.1 823.5 2310 61.9 68.4 71.7 81.5 88.0 97.8203 x 16 6451.6 932 1353.08 2904.4 22.20 218.5 542.0 4655.3 914.9 3060 66.9 73.5 76.7 86.5 93.0 102.8203 x 19 7741.9 938 1635.04 3485.9 26.64 262.2 936.5 5625.1 1098.0 3080 77.1 83.6 86.9 96.6 103.2 112.9254 x 9677.4 938 2043.80 4357.3 52.03 409.7 1170.7 10986.6 1372.6 3850 92.3 98.8 102.1 111.8 118.4 128.1203 x 25 10323 951 2210.53 4649.8 35.52 349.6 2219.9 7604.2 1464.7 3120 97.3 103.9 107.1 116.9 123.4 133.2254 x 12903 951 2763.16 5812.3 69.37 546.2 2774.9 14851.9 1830.9 3910 117.6 124.1 127.4 137.2 143.7 153.5279 x 14194 951 3039.47 6393.5 92.33 660.9 3052.4 19767.9 2014.0 4300 127.7 134.2 137.5 147.3 153.8 163.6305 x 15484 951 3315.79 6974.7 119.87 786.6 3329.9 25664.1 2197.0 4690 137.8 144.4 147.6 157.4 163.9 173.7254 x 32 16129 964 3501.99 7269.3 86.71 682.8 5419.7 18820.6 2289.8 3980 142.9 149.4 152.7 162.5 169.0 178.8330 x 25 16774 951 3592.10 7556.0 152.41 923.1 3607.3 32629.7 2380.1 5080 148.0 154.5 157.8 167.6 174.1 183.9356 x 18064 951 3868.42 8137.2 190.36 1070.6 3884.8 40753.7 2563.2 5470 158.1 164.6 167.9 177.7 184.2 194.0305 x 32 19355 964 4202.38 8723.2 149.84 983.2 6503.6 32521.9 2747.8 4770 168.2 174.8 178.0 187.8 194.3 204.1406 x 25 20645 951 4421.05 9299.6 284.15 1398.4 4439.8 60833.5 2929.4 6250 178.4 184.9 188.2 197.9 204.5 214.2356 x 32 22581 964 4902.78 10177.0 237.95 1338.3 7587.6 51643.6 3205.8 5570 193.6 200.1 203.4 213.1 219.7 229.4406 x 25806 964 5603.18 11630.9 355.18 1748.0 8671.5 77089.0 3663.7 6360 218.9 225.4 228.7 238.5 245.0 254.8450 x 28575 964 6204.30 12878.7 482.20 2143.1 9601.8 104657.1 4056.8 7050 240.6 247.1 250.4 260.2 266.7 276.5

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

900 201.7 313.7 371.3 551.7 673.2 828.4

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 27: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

1000 127 x 6 1612.9 1013 408.37 806.5 2.17 34.1 21.7 548.9 254.0 1880 30.8 38.0 41.7 52.5 59.8 70.6152 x 1736.1 1013 439.56 868.1 2.70 39.6 23.3 684.5 273.4 2030 33.3 40.6 44.2 55.1 62.3 73.2152 x 8 2419.4 1016 614.49 1209.8 4.68 61.5 50.8 1189.3 381.1 2260 37.1 44.4 48.0 58.9 66.1 77.0152 x 10 2903.2 1019 739.72 1451.8 5.62 73.7 87.8 1431.7 457.3 2270 40.9 48.2 51.8 62.7 69.9 80.8178 x 3387.1 1019 863.01 1693.7 8.92 100.4 102.4 2273.4 533.5 2650 44.7 51.9 55.6 66.4 73.7 84.6152 x 13 3871 1025 992.53 1935.9 7.49 98.3 208.1 1920.9 609.8 2280 48.5 55.7 59.4 70.2 77.5 88.4178 x 4516.1 1025 1157.95 2258.5 11.90 133.8 242.8 3050.3 711.4 2660 53.6 60.8 64.4 75.3 82.6 93.4203 x 5161.3 1025 1323.37 2581.2 17.76 174.8 277.5 4553.3 813.1 3040 58.6 65.9 69.5 80.4 87.6 98.5152 x 19 5806.4 1038 1507.62 2904.6 11.24 147.5 702.4 2917.6 914.9 2300 63.7 70.9 74.6 85.4 92.7 103.6203 x 16 6451.6 1032 1664.65 3226.9 22.20 218.5 542.0 5727.4 1016.5 3050 68.8 76.0 79.6 90.5 97.8 108.6203 x 19 7741.9 1038 2010.16 3872.8 26.64 262.2 936.5 6915.9 1219.9 3070 78.9 86.1 89.8 100.6 107.9 118.7254 x 9677.4 1038 2512.70 4841.0 52.03 409.7 1170.7 13507.5 1524.9 3830 94.1 101.3 105.0 115.8 123.1 133.9203 x 25 10323 1051 2713.96 5165.5 35.52 349.6 2219.9 9336.4 1627.1 3100 99.1 106.4 110.0 120.9 128.1 139.0254 x 12903 1051 3392.45 6456.9 69.37 546.2 2774.9 18235.2 2033.9 3880 119.4 126.7 130.3 141.2 148.4 159.3279 x 14194 1051 3731.69 7102.6 92.33 660.9 3052.4 24271.0 2237.3 4270 129.5 136.8 140.4 151.3 158.5 169.4305 x 15484 1051 4070.93 7748.3 119.87 786.6 3329.9 31510.4 2440.7 4660 139.7 146.9 150.5 161.4 168.7 179.5254 x 32 16129 1064 4293.72 8074.7 86.71 682.8 5419.7 23077.2 2543.5 3940 144.7 152.0 155.6 166.5 173.7 184.6330 x 25 16774 1051 4410.18 8393.9 152.41 923.1 3607.3 40062.7 2644.1 5050 149.8 157.0 160.7 171.5 178.8 189.6356 x 18064 1051 4749.42 9039.6 190.36 1070.6 3884.8 50037.4 2847.5 5440 159.9 167.2 170.8 181.7 188.9 199.8305 x 32 19355 1064 5152.46 9689.6 149.84 983.2 6503.6 39877.4 3052.2 4730 170.0 177.3 180.9 191.8 199.0 209.9406 x 25 20645 1051 5427.91 10331.0 284.15 1398.4 4439.8 74691.3 3254.3 6210 180.2 187.4 191.1 201.9 209.2 220.0356 x 32 22581 1064 6011.20 11304.6 237.95 1338.3 7587.6 63323.8 3560.9 5520 195.4 202.6 206.3 217.1 224.4 235.2406 x 25806 1064 6869.95 12919.5 355.18 1748.0 8671.5 94524.1 4069.6 6310 220.7 227.9 231.6 242.4 249.7 260.6450 x 28575 1064 7606.98 14305.6 482.20 2143.1 9601.8 128327.3 4506.3 6980 242.4 249.7 253.3 264.2 271.4 282.3

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

1000 222.9 347.3 411.2 611.8 748.0 920.4

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 28: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

1219 127 x 6 1612.9 1232 605.64 983.3 2.17 34.1 21.7 814.0 309.7 1880 34.7 43.6 48.0 61.3 70.1 83.3152 x 1736.1 1232 651.90 1058.4 2.70 39.6 23.3 1015.1 333.4 2020 37.3 46.1 50.5 63.8 72.6 85.9152 x 8 2419.4 1235 910.82 1474.9 4.68 61.5 50.8 1762.8 464.6 2260 41.1 49.9 54.3 67.6 76.4 89.7152 x 10 2903.2 1238 1095.82 1769.9 5.62 73.7 87.8 2120.9 557.5 2260 44.9 53.7 58.1 71.4 80.2 93.5178 x 3387.1 1238 1278.45 2064.9 8.92 100.4 102.4 3367.9 650.5 2640 48.7 57.5 61.9 75.2 84.0 97.3152 x 13 3871 1245 1468.67 2360.1 7.49 98.3 208.1 2842.5 743.4 2270 52.5 61.3 65.7 79.0 87.8 101.1178 x 4516.1 1245 1713.45 2753.4 11.90 133.8 242.8 4513.8 867.3 2650 57.5 66.4 70.8 84.0 92.9 106.1203 x 5161.3 1245 1958.23 3146.8 17.76 174.8 277.5 6737.7 991.2 3030 62.6 71.4 75.9 89.1 98.0 111.2152 x 19 5806.4 1257 2225.88 3540.7 11.24 147.5 702.4 4307.8 1115.3 2290 67.7 76.5 80.9 94.2 103.0 116.3203 x 16 6451.6 1251 2460.47 3933.8 22.20 218.5 542.0 8465.6 1239.1 3040 72.7 81.6 86.0 99.2 108.1 121.3203 x 19 7741.9 1257 2967.83 4721.0 26.64 262.2 936.5 10211.1 1487.1 3050 82.9 91.7 96.1 109.4 118.2 131.5254 x 9677.4 1257 3709.79 5901.2 52.03 409.7 1170.7 19943.5 1858.9 3810 98.0 106.9 111.3 124.6 133.4 146.6203 x 25 10323 1270 3998.04 6296.1 35.52 349.6 2219.9 13754.8 1983.3 3080 103.1 112.0 116.4 129.6 138.5 151.7254 x 12903 1270 4997.55 7870.2 69.37 546.2 2774.9 26864.8 2479.1 3850 123.4 132.2 136.6 149.9 158.7 172.0279 x 14194 1270 5497.31 8657.2 92.33 660.9 3052.4 35757.0 2727.0 4230 133.5 142.3 146.8 160.0 168.9 182.1305 x 15484 1270 5997.06 9444.2 119.87 786.6 3329.9 46422.3 2974.9 4620 143.6 152.5 156.9 170.1 179.0 192.2254 x 32 16129 1283 6311.33 9840.7 86.71 682.8 5419.7 33924.5 3099.8 3890 148.7 157.5 162.0 175.2 184.0 197.3330 x 25 16774 1270 6496.82 10231.2 152.41 923.1 3607.3 59021.9 3222.8 5000 153.8 162.6 167.0 180.3 189.1 202.4356 x 18064 1270 6996.57 11018.2 190.36 1070.6 3884.8 73716.9 3470.7 5390 163.9 172.7 177.2 190.4 199.2 212.5305 x 32 19355 1283 7573.59 11808.8 149.84 983.2 6503.6 58621.5 3719.8 4670 174.0 182.9 187.3 200.5 209.4 222.6406 x 25 20645 1270 7996.08 12592.3 284.15 1398.4 4439.8 110038.1 3966.6 6160 184.1 193.0 197.4 210.7 219.5 232.7356 x 32 22581 1283 8835.86 13777.0 237.95 1338.3 7587.6 93088.8 4339.7 5440 199.3 208.2 212.6 225.9 234.7 247.9406 x 25806 1283 10098.12 15745.1 355.18 1748.0 8671.5 138954.8 4959.7 6220 224.7 233.5 237.9 251.2 260.0 273.3450 x 28575 1283 11181.48 17434.3 482.20 2143.1 9601.8 188647.0 5491.8 6890 246.4 255.2 259.7 272.9 281.7 295.0

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

1219 269.1 420.9 498.7 743.4 911.2 1110.6

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 29: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

1500 127 x 6 1612.9 1513 914.96 1209.7 2.17 34.1 21.7 1229.8 381.1 1880 39.8 50.7 56.2 72.5 83.3 99.6152 x 1736.1 1513 984.84 1302.1 2.70 39.6 23.3 1533.6 410.2 2020 42.4 53.2 58.7 75.0 85.9 102.2152 x 8 2419.4 1516 1375.34 1814.6 4.68 61.5 50.8 2661.9 571.6 2260 46.2 57.0 62.5 78.8 89.7 105.9152 x 10 2903.2 1519 1653.89 2177.5 5.62 73.7 87.8 3201.0 685.9 2260 50.0 60.8 66.3 82.6 93.5 109.7178 x 3387.1 1519 1929.54 2540.5 8.92 100.4 102.4 5083.1 800.2 2640 53.8 64.6 70.1 86.4 97.3 113.5152 x 13 3871 1525 2214.49 2903.5 7.49 98.3 208.1 4286.0 914.6 2260 57.6 68.4 73.9 90.2 101.1 117.3178 x 4516.1 1525 2583.58 3387.4 11.90 133.8 242.8 6806.0 1067.0 2640 62.6 73.5 78.9 95.2 106.1 122.4203 x 5161.3 1525 2952.66 3871.3 17.76 174.8 277.5 10159.4 1219.5 3020 67.7 78.6 84.0 100.3 111.2 127.5152 x 19 5806.4 1538 3349.78 4355.7 11.24 147.5 702.4 6483.1 1372.1 2280 72.7 83.6 89.1 105.4 116.2 132.5203 x 16 6451.6 1532 3706.38 4839.4 22.20 218.5 542.0 12752.6 1524.4 3030 77.8 88.7 94.1 110.4 121.3 137.6203 x 19 7741.9 1538 4466.38 5807.7 26.64 262.2 936.5 15367.4 1829.4 3040 87.9 98.8 104.3 120.6 131.4 147.7254 x 9677.4 1538 5582.97 7259.6 52.03 409.7 1170.7 30014.4 2286.8 3800 103.1 114.0 119.5 135.8 146.6 162.9203 x 25 10323 1551 6005.30 7744.8 35.52 349.6 2219.9 20661.5 2439.6 3060 108.2 119.1 124.5 140.8 151.7 168.0254 x 12903 1551 7506.63 9681.0 69.37 546.2 2774.9 40354.4 3049.5 3820 128.5 139.3 144.8 161.1 172.0 188.2279 x 14194 1551 8257.29 10649.1 92.33 660.9 3052.4 53711.7 3354.5 4200 138.6 149.5 154.9 171.2 182.1 198.4305 x 15484 1551 9007.96 11617.2 119.87 786.6 3329.9 69732.4 3659.4 4590 148.7 159.6 165.0 181.3 192.2 208.5254 x 32 16129 1564 9462.05 12103.7 86.71 682.8 5419.7 50863.9 3812.7 3850 153.8 164.7 170.1 186.4 197.3 213.6330 x 25 16774 1551 9758.62 12585.3 152.41 923.1 3607.3 88658.7 3964.4 4970 158.8 169.7 175.2 191.5 202.3 218.6356 x 18064 1551 10509.28 13553.4 190.36 1070.6 3884.8 110732.5 4269.3 5350 169.0 179.8 185.3 201.6 212.5 228.8305 x 32 19355 1564 11354.46 14524.4 149.84 983.2 6503.6 87892.8 4575.2 4620 179.1 190.0 195.4 211.7 222.6 238.9406 x 25 20645 1551 12010.61 15489.6 284.15 1398.4 4439.8 165291.7 4879.2 6120 189.2 200.1 205.6 221.9 232.7 249.0356 x 32 22581 1564 13246.88 16945.2 237.95 1338.3 7587.6 139570.5 5337.7 5390 204.4 215.3 220.8 237.0 247.9 264.2406 x 25806 1564 15139.29 19365.9 355.18 1748.0 8671.5 208338.4 6100.3 6160 229.7 240.6 246.1 262.4 273.2 289.5450 x 28575 1564 16763.48 21443.5 482.20 2143.1 9601.8 282843.2 6754.7 6820 251.5 262.4 267.8 284.1 295.0 311.3

Depth WTA WTB WTC WTF WTH WTKaa cc dd ee ff gg hh

1500 290.1 433.2 577.8 749.5 858.8 1016.5

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 30: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2a (metric)

SIN Beam Bending PropertiesDepth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WTA WTB WTC WTF WTH WTK

(mm) (mm) (mm) (mm2) (mm) 106 mm4 103 mm3 106 mm4 103 mm3 103 mm4 109 mm6 kN m mm kg / m kg / m kg / m kg / m kg / m kg / ma b c d e f g h i j k l m n p q r s t u

MetricFlange

Strong Axis Weak AxisSection Properties Moment

Resistance

Notes

- SIN Beam sizes are indicated as WT[WEB THICKNESS] [WEB DEPTH] / [FLANGE WIDTH] x [FLANGE THICKNESS] - [WEIGHT]i.e. For a 914mm x 2.5mm web with 254mm x 16mm Flanges and a Weight of 86.5 kg/m the designation is WTB915 / 254x16 - 86.5

- Flanges and Webs are all fabricated from W350 Material (Fy = 350MPa)- Flanges of over 16mm in thickness will include a premium due to the required splicing of the flat bar** 152x6 Section Properties and Moment resistance based on a flange width of 136mm to be Class 3

a Depth of the Beam web, i.e. Inside of flangesb Width of top and bottom flanged Thickess of top and bottom flangee Cross sectionional area of flanges only (web is neglected)f Overall depth of sectiong Strong Axis Moment of Inertia computed using flange properties onlyh Strong Axis Section Modulas computed using flange properties onlyi Weak Axis Moment of Inertia computed using flange properties onlyj Weak Axis Section Modulas computed using flange properties onlyk Torsional Constant J computed using flange properties onlyl Warping Constant Cw - computed using flange properties only

m Strong Axis Factored Moment Restance assuming compression flange is fully braced based on CSA S16-09n Maximum unbraced lenght for which Mr is applicable

o - u Mass of member per unit length with a web thickess of 16ga (1.519mm); 14ga (1.897mm); 12ga; 11ga; 8ga; 6ga; 3ga

aa Depth of Beam webbb - hh Shear Capacity for a 16 ga (1.519mm); 14ga; 12ga; 11ga; 8ga; 6ga; 3ga web

SIN Properties - v13 | 2019-08-27

Page 31: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

WT_ 333/127x6 13.1 5.0 x 0.250 2.50 13.61 129 16.4 6.0 2.1 0.052 289 62.4 75 11.7 12.5 14.2 15.0 17.4 19.0 21.4WT_ 333/152x6 6.0 x 2.69 13.61 139 17.6 7.5 2.4 0.056 360 67.2 81 13.4 14.2 15.9 16.7 19.1 20.7 23.1WT_ 333/152x8 6.0 x 0.313 3.75 13.74 195 24.6 13.0 3.8 0.122 629 93.7 91 16.0 16.8 18.4 19.2 21.6 23.3 25.7

WT_ 333/152x10 6.0 x 0.375 4.50 13.86 236 29.5 15.6 4.5 0.211 762 112.4 92 18.5 19.3 20.9 21.8 24.2 25.8 28.2WT_ 333/178x10 7.0 x 5.25 13.86 276 34.4 24.8 6.1 0.246 1210 131.2 107 21.1 21.9 23.5 24.3 26.7 28.3 30.8WT_ 333/152x13 6.0 x 0.500 6.00 14.11 321 39.4 20.8 6.0 0.500 1035 150.0 94 23.6 24.4 26.0 26.9 29.3 30.9 33.3WT_ 333/178x13 7.0 x 7.00 14.11 375 46.0 33.0 8.2 0.583 1644 175.0 110 27.0 27.8 29.4 30.2 32.7 34.3 36.7WT_ 333/203x13 8.0 x 8.00 14.11 428 52.5 49.3 10.7 0.667 2453 200.0 126 30.4 31.2 32.8 33.6 36.1 37.7 40.1WT_ 333/152x19 6.0 x 0.750 9.00 14.61 500 59.2 31.2 9.0 1.688 1610 225.5 101 33.8 34.6 36.2 37.0 39.5 41.1 43.5WT_ 333/203x16 8.0 x 0.625 10.00 14.36 545 65.7 61.6 13.3 1.302 3123 250.3 130 37.2 38.0 39.6 40.4 42.9 44.5 46.9WT_ 333/203x19 8.0 x 0.750 12.00 14.61 666 79.0 73.9 16.0 2.250 3817 300.7 134 44.0 44.8 46.4 47.2 49.7 51.3 53.7WT_ 333/254x19 10.0 x 15.00 14.61 833 98.7 144.4 25.0 2.813 7454 375.8 168 54.2 55.0 56.6 57.4 59.8 61.5 63.9WT_ 333/203x25 8.0 x 1.000 16.00 15.11 922 105.6 98.6 21.3 5.333 5274 402.0 146 57.6 58.4 60.0 60.8 63.2 64.9 67.3WT_ 333/254x25 10.0 x 20.00 15.11 1152 132.0 192.5 33.3 6.667 10301 502.5 183 71.2 72.0 73.6 74.4 76.8 78.4 80.9WT_ 333/279x25 11.0 x 22.00 15.11 1267 145.2 256.3 40.3 7.333 13710 552.7 201 78.0 78.8 80.4 81.2 83.6 85.2 87.7WT_ 333/305x25 12.0 x 24.00 15.11 1382 158.4 332.7 48.0 8.000 17799 603.0 219 84.7 85.5 87.2 88.0 90.4 92.0 94.5WT_ 333/254x32 10.0 x 1.250 25.00 15.61 1493 165.5 240.7 41.7 13.021 13336 630.3 201 88.1 88.9 90.6 91.4 93.8 95.4 97.8WT_ 333/330x25 13.0 x 1.000 26.00 15.11 1498 171.6 423.0 56.3 8.667 22630 653.2 238 91.5 92.3 94.0 94.8 97.2 98.8 101.2WT_ 333/356x25 14.0 x 28.00 15.11 1613 184.8 528.3 65.3 9.333 28265 703.5 256 98.3 99.1 100.8 101.6 104.0 105.6 108.0WT_ 333/305x32 12.0 x 1.250 30.00 15.61 1791 198.7 415.9 60.0 15.625 23045 756.3 241 105.1 105.9 107.5 108.4 110.8 112.4 114.8WT_ 333/406x25 16.0 x 1.000 32.00 15.11 1843 211.2 788.6 85.3 10.667 42191 804.0 292 111.9 112.7 114.3 115.1 117.6 119.2 121.6WT_ 333/356x32 14.0 x 1.250 35.00 15.61 2090 231.8 660.4 81.7 18.229 36594 882.4 281 122.1 122.9 124.5 125.3 127.8 129.4 131.8WT_ 333/406x32 16.0 x 40.00 15.61 2388 264.9 985.8 106.7 20.833 54625 1008.4 322 139.1 139.9 141.5 142.3 144.7 146.4 148.8WT_ 333/450x32 17.7 x 44.29 15.61 2645 293.3 1338.3 130.8 23.068 74159 1116.6 356 153.7 154.5 156.1 156.9 159.3 160.9 163.4

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

13 13.6 18.0 27.4 32.3 47.2 56.0 68.9

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 32: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 440/127x6 17.3 5.0 x 0.250 2.50 17.82 223 21.7 6.0 2.1 0.052 499 82.5 75 12.8 13.8 16.0 17.0 20.3 22.4 25.6WT_ 440/152x6 6.0 x 2.69 17.82 240 23.3 7.5 2.4 0.056 623 88.8 80 14.5 15.5 17.7 18.7 21.9 24.1 27.3WT_ 440/152x8 6.0 x 0.313 3.75 17.95 337 32.5 13.0 3.8 0.122 1086 123.7 90 17.0 18.1 20.2 21.3 24.5 26.6 29.8

WT_ 440/152x10 6.0 x 0.375 4.50 18.07 407 39.0 15.6 4.5 0.211 1313 148.5 91 19.6 20.6 22.8 23.8 27.0 29.2 32.4WT_ 440/178x10 7.0 x 5.25 18.07 475 45.5 24.8 6.1 0.246 2084 173.2 106 22.1 23.2 25.3 26.4 29.6 31.7 34.9WT_ 440/152x13 6.0 x 0.500 6.00 18.32 551 52.0 20.8 6.0 0.500 1775 198.1 92 24.7 25.7 27.9 28.9 32.1 34.3 37.5WT_ 440/178x13 7.0 x 7.00 18.32 642 60.7 33.0 8.2 0.583 2818 231.1 107 28.1 29.1 31.3 32.3 35.5 37.7 40.9WT_ 440/203x13 8.0 x 8.00 18.32 734 69.4 49.3 10.7 0.667 4207 264.1 123 31.4 32.5 34.7 35.7 38.9 41.1 44.3WT_ 440/152x19 6.0 x 0.750 9.00 18.82 849 78.1 31.2 9.0 1.688 2738 297.5 96 34.8 35.9 38.0 39.1 42.3 44.5 47.7WT_ 440/203x16 8.0 x 0.625 10.00 18.57 931 86.8 61.6 13.3 1.302 5333 330.3 125 38.2 39.3 41.4 42.5 45.7 47.9 51.1WT_ 440/203x19 8.0 x 0.750 12.00 18.82 1133 104.2 73.9 16.0 2.250 6489 396.6 128 45.0 46.1 48.2 49.3 52.5 54.7 57.9WT_ 440/254x19 10.0 x 15.00 18.82 1416 130.2 144.4 25.0 2.813 12674 495.8 160 55.2 56.3 58.4 59.5 62.7 64.8 68.0WT_ 440/203x25 8.0 x 1.000 16.00 19.32 1553 139.1 98.6 21.3 5.333 8893 529.7 135 58.6 59.7 61.8 62.9 66.1 68.2 71.4WT_ 440/254x25 10.0 x 20.00 19.32 1941 173.9 192.5 33.3 6.667 17369 662.1 168 72.2 73.3 75.4 76.5 79.7 81.8 85.0WT_ 440/279x25 11.0 x 22.00 19.32 2135 191.3 256.3 40.3 7.333 23118 728.4 185 79.0 80.1 82.2 83.3 86.5 88.6 91.8WT_ 440/305x25 12.0 x 24.00 19.32 2329 208.7 332.7 48.0 8.000 30014 794.6 202 85.8 86.8 89.0 90.1 93.3 95.4 98.6WT_ 440/254x32 10.0 x 1.250 25.00 19.82 2494 217.8 240.7 41.7 13.021 22308 829.4 179 89.2 90.2 92.4 93.5 96.7 98.8 102.0WT_ 440/330x25 13.0 x 1.000 26.00 19.32 2523 226.1 423.0 56.3 8.667 38160 860.8 219 92.6 93.6 95.8 96.9 100.1 102.2 105.4WT_ 440/356x25 14.0 x 28.00 19.32 2718 243.5 528.3 65.3 9.333 47661 927.0 236 99.4 100.4 102.6 103.6 106.9 109.0 112.2WT_ 440/305x32 12.0 x 1.250 30.00 19.82 2993 261.4 415.9 60.0 15.625 38548 995.3 215 106.2 107.2 109.4 110.4 113.6 115.8 119.0WT_ 440/406x25 16.0 x 1.000 32.00 19.32 3106 278.3 788.6 85.3 10.667 71144 1059.4 270 113.0 114.0 116.2 117.2 120.4 122.6 125.8WT_ 440/356x32 14.0 x 1.250 35.00 19.82 3492 305.0 660.4 81.7 18.229 61213 1161.2 251 123.1 124.2 126.3 127.4 130.6 132.8 136.0WT_ 440/406x32 16.0 x 40.00 19.82 3991 348.6 985.8 106.7 20.833 91374 1327.0 287 140.1 141.2 143.3 144.4 147.6 149.7 152.9WT_ 440/450x32 17.7 x 44.29 19.82 4419 386.0 1338.3 130.8 23.068 124050 1469.4 318 154.7 155.8 157.9 159.0 162.2 164.3 167.5

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

17 17.5 23.3 35.6 42.0 61.8 74.0 91.0

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 33: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 500/127x6 19.7 5.0 x 0.250 2.50 20.19 287 24.6 6.0 2.1 0.052 643 93.7 74 13.4 14.6 17.0 18.2 21.9 24.3 27.9WT_ 500/152x6 6.0 x 2.69 20.19 309 26.5 7.5 2.4 0.056 801 100.9 80 15.0 16.3 18.7 19.9 23.6 26.0 29.6WT_ 500/152x8 6.0 x 0.313 3.75 20.31 433 36.9 13.0 3.8 0.122 1397 140.6 90 17.6 18.8 21.2 22.5 26.1 28.5 32.2

WT_ 500/152x10 6.0 x 0.375 4.50 20.44 523 44.3 15.6 4.5 0.211 1686 168.7 90 20.1 21.4 23.8 25.0 28.6 31.1 34.7WT_ 500/178x10 7.0 x 5.25 20.44 610 51.7 24.8 6.1 0.246 2678 196.8 105 22.7 23.9 26.3 27.6 31.2 33.6 37.3WT_ 500/152x13 6.0 x 0.500 6.00 20.69 706 59.1 20.8 6.0 0.500 2277 225.0 91 25.2 26.4 28.9 30.1 33.7 36.2 39.8WT_ 500/178x13 7.0 x 7.00 20.69 824 69.0 33.0 8.2 0.583 3615 262.5 107 28.6 29.8 32.3 33.5 37.1 39.6 43.2WT_ 500/203x13 8.0 x 8.00 20.69 942 78.8 49.3 10.7 0.667 5396 300.0 122 32.0 33.2 35.7 36.9 40.5 43.0 46.6WT_ 500/152x19 6.0 x 0.750 9.00 21.19 1086 88.7 31.2 9.0 1.688 3500 337.9 94 35.4 36.6 39.1 40.3 43.9 46.4 50.0WT_ 500/203x16 8.0 x 0.625 10.00 20.94 1192 98.5 61.6 13.3 1.302 6829 375.2 124 38.8 40.0 42.5 43.7 47.3 49.8 53.4WT_ 500/203x19 8.0 x 0.750 12.00 21.19 1448 118.3 73.9 16.0 2.250 8296 450.5 126 45.6 46.8 49.3 50.5 54.1 56.5 60.2WT_ 500/254x19 10.0 x 15.00 21.19 1810 147.9 144.4 25.0 2.813 16203 563.1 157 55.8 57.0 59.4 60.7 64.3 66.7 70.4WT_ 500/203x25 8.0 x 1.000 16.00 21.69 1979 158.0 98.6 21.3 5.333 11334 601.4 131 59.2 60.4 62.8 64.1 67.7 70.1 73.8WT_ 500/254x25 10.0 x 20.00 21.69 2473 197.5 192.5 33.3 6.667 22136 751.8 164 72.8 74.0 76.4 77.6 81.3 83.7 87.4WT_ 500/279x25 11.0 x 22.00 21.69 2721 217.2 256.3 40.3 7.333 29464 827.0 181 79.6 80.8 83.2 84.4 88.1 90.5 94.1WT_ 500/305x25 12.0 x 24.00 21.69 2968 237.0 332.7 48.0 8.000 38252 902.2 197 86.4 87.6 90.0 91.2 94.9 97.3 100.9WT_ 500/254x32 10.0 x 1.250 25.00 22.19 3168 247.2 240.7 41.7 13.021 28343 941.3 172 89.8 91.0 93.4 94.6 98.3 100.7 104.3WT_ 500/330x25 13.0 x 1.000 26.00 21.69 3215 256.7 423.0 56.3 8.667 48634 977.3 213 93.2 94.4 96.8 98.0 101.7 104.1 107.7WT_ 500/356x25 14.0 x 28.00 21.69 3463 276.5 528.3 65.3 9.333 60742 1052.5 230 100.0 101.2 103.6 104.8 108.5 110.9 114.5WT_ 500/305x32 12.0 x 1.250 30.00 22.19 3802 296.7 415.9 60.0 15.625 48977 1129.5 207 106.7 108.0 110.4 111.6 115.2 117.7 121.3WT_ 500/406x25 16.0 x 1.000 32.00 21.69 3957 315.9 788.6 85.3 10.667 90671 1202.9 263 113.5 114.7 117.2 118.4 122.0 124.5 128.1WT_ 500/356x32 14.0 x 1.250 35.00 22.19 4435 346.1 660.4 81.7 18.229 77774 1317.8 242 123.7 124.9 127.4 128.6 132.2 134.7 138.3WT_ 500/406x32 16.0 x 40.00 22.19 5069 395.6 985.8 106.7 20.833 116095 1506.1 276 140.7 141.9 144.3 145.6 149.2 151.6 155.3WT_ 500/450x32 17.7 x 44.29 22.19 5613 438.0 1338.3 130.8 23.068 157612 1667.6 306 155.3 156.5 158.9 160.1 163.8 166.2 169.9

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

20 19.6 26.2 40.2 47.4 69.9 84.1 103.5

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 34: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 610/127x6 24.0 5.0 x 0.250 2.50 24.50 425 30.0 6.0 2.1 0.052 951 114.2 74 14.4 15.9 18.9 20.3 24.8 27.7 32.2WT_ 610/152x6 6.0 x 2.69 24.50 457 32.3 7.5 2.4 0.056 1186 123.0 80 16.1 17.6 20.6 22.0 26.5 29.4 33.9WT_ 610/152x8 6.0 x 0.313 3.75 24.63 640 45.0 13.0 3.8 0.122 2064 171.4 89 18.7 20.1 23.1 24.6 29.0 32.0 36.4

WT_ 610/152x10 6.0 x 0.375 4.50 24.75 772 54.0 15.6 4.5 0.211 2490 205.7 90 21.2 22.7 25.6 27.1 31.6 34.5 39.0WT_ 610/178x10 7.0 x 5.25 24.75 901 63.0 24.8 6.1 0.246 3954 239.9 105 23.8 25.2 28.2 29.7 34.1 37.1 41.5WT_ 610/152x13 6.0 x 0.500 6.00 25.00 1040 72.0 20.8 6.0 0.500 3354 274.3 90 26.3 27.8 30.7 32.2 36.7 39.6 44.1WT_ 610/178x13 7.0 x 7.00 25.00 1214 84.0 33.0 8.2 0.583 5326 320.0 106 29.7 31.2 34.1 35.6 40.1 43.0 47.5WT_ 610/203x13 8.0 x 8.00 25.00 1387 96.1 49.3 10.7 0.667 7950 365.7 121 33.1 34.6 37.5 39.0 43.5 46.4 50.9WT_ 610/152x19 6.0 x 0.750 9.00 25.50 1593 108.1 31.2 9.0 1.688 5134 411.7 93 36.5 38.0 40.9 42.4 46.9 49.8 54.3WT_ 610/203x16 8.0 x 0.625 10.00 25.25 1752 120.1 61.6 13.3 1.302 10039 457.3 122 39.9 41.4 44.3 45.8 50.3 53.2 57.7WT_ 610/203x19 8.0 x 0.750 12.00 25.50 2124 144.2 73.9 16.0 2.250 12170 548.9 124 46.7 48.2 51.1 52.6 57.0 60.0 64.4WT_ 610/254x19 10.0 x 15.00 25.50 2655 180.2 144.4 25.0 2.813 23769 686.1 155 56.9 58.3 61.3 62.8 67.2 70.2 74.6WT_ 610/203x25 8.0 x 1.000 16.00 26.00 2890 192.4 98.6 21.3 5.333 16556 732.6 127 60.3 61.7 64.7 66.2 70.6 73.6 78.0WT_ 610/254x25 10.0 x 20.00 26.00 3612 240.5 192.5 33.3 6.667 32335 915.7 159 73.8 75.3 78.3 79.8 84.2 87.2 91.6WT_ 610/279x25 11.0 x 22.00 26.00 3973 264.6 256.3 40.3 7.333 43038 1007.3 175 80.6 82.1 85.1 86.6 91.0 94.0 98.4WT_ 610/305x25 12.0 x 24.00 26.00 4334 288.6 332.7 48.0 8.000 55875 1098.8 191 87.4 88.9 91.9 93.4 97.8 100.8 105.2WT_ 610/254x32 10.0 x 1.250 25.00 26.50 4607 301.0 240.7 41.7 13.021 41231 1145.9 165 90.8 92.3 95.3 96.8 101.2 104.2 108.6WT_ 610/330x25 13.0 x 1.000 26.00 26.00 4696 312.7 423.0 56.3 8.667 71040 1190.4 207 94.2 95.7 98.7 100.2 104.6 107.6 112.0WT_ 610/356x25 14.0 x 28.00 26.00 5057 336.7 528.3 65.3 9.333 88728 1282.0 223 101.0 102.5 105.5 106.9 111.4 114.3 118.8WT_ 610/305x32 12.0 x 1.250 30.00 26.50 5529 361.2 415.9 60.0 15.625 71248 1375.1 198 107.8 109.3 112.2 113.7 118.2 121.1 125.6WT_ 610/406x25 16.0 x 1.000 32.00 26.00 5779 384.8 788.6 85.3 10.667 132445 1465.1 255 114.6 116.1 119.0 120.5 125.0 127.9 132.4WT_ 610/356x32 14.0 x 1.250 35.00 26.50 6450 421.4 660.4 81.7 18.229 113139 1604.3 231 124.8 126.3 129.2 130.7 135.2 138.1 142.6WT_ 610/406x32 16.0 x 40.00 26.50 7371 481.6 985.8 106.7 20.833 168884 1833.5 264 141.8 143.2 146.2 147.7 152.1 155.1 159.5WT_ 610/450x32 17.7 x 44.29 26.50 8162 533.2 1338.3 130.8 23.068 229279 2030.2 292 156.3 157.8 160.8 162.3 166.7 169.7 174.1

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

24 23.5 31.5 48.5 57.3 84.8 102.5 126.1

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 35: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 750/127x6 29.5 5.0 x 0.250 2.50 30.03 640 36.9 6.0 2.1 0.052 1434 140.5 74 15.8 17.6 21.2 23.1 28.5 32.2 37.6WT_ 750/152x6 6.0 x 2.69 30.03 689 39.7 7.5 2.4 0.056 1788 151.3 80 17.5 19.3 22.9 24.8 30.2 33.9 39.3WT_ 750/152x8 6.0 x 0.313 3.75 30.15 964 55.4 13.0 3.8 0.122 3110 210.8 89 20.0 21.8 25.5 27.3 32.8 36.4 41.9

WT_ 750/152x10 6.0 x 0.375 4.50 30.28 1162 66.5 15.6 4.5 0.211 3747 253.0 89 22.6 24.4 28.0 29.9 35.3 39.0 44.4WT_ 750/178x10 7.0 x 5.25 30.28 1356 77.5 24.8 6.1 0.246 5950 295.2 104 25.1 26.9 30.6 32.4 37.9 41.5 47.0WT_ 750/152x13 6.0 x 0.500 6.00 30.53 1563 88.6 20.8 6.0 0.500 5038 337.4 90 27.7 29.5 33.1 35.0 40.4 44.1 49.5WT_ 750/178x13 7.0 x 7.00 30.53 1823 103.4 33.0 8.2 0.583 8000 393.6 105 31.1 32.9 36.5 38.4 43.8 47.5 52.9WT_ 750/203x13 8.0 x 8.00 30.53 2083 118.2 49.3 10.7 0.667 11942 449.8 120 34.5 36.3 39.9 41.8 47.2 50.9 56.3WT_ 750/152x19 6.0 x 0.750 9.00 31.03 2383 133.0 31.2 9.0 1.688 7683 506.3 91 37.9 39.7 43.3 45.1 50.6 54.3 59.7WT_ 750/203x16 8.0 x 0.625 10.00 30.78 2626 147.7 61.6 13.3 1.302 15052 562.4 121 41.3 43.1 46.7 48.5 54.0 57.7 63.1WT_ 750/203x19 8.0 x 0.750 12.00 31.03 3178 177.3 73.9 16.0 2.250 18212 675.1 122 48.0 49.9 53.5 55.3 60.8 64.4 69.9WT_ 750/254x19 10.0 x 15.00 31.03 3972 221.6 144.4 25.0 2.813 35571 843.8 153 58.2 60.0 63.7 65.5 71.0 74.6 80.1WT_ 750/203x25 8.0 x 1.000 16.00 31.53 4308 236.6 98.6 21.3 5.333 24686 900.6 124 61.6 63.4 67.1 68.9 74.4 78.0 83.5WT_ 750/254x25 10.0 x 20.00 31.53 5385 295.7 192.5 33.3 6.667 48215 1125.8 156 75.2 77.0 80.7 82.5 88.0 91.6 97.1WT_ 750/279x25 11.0 x 22.00 31.53 5923 325.3 256.3 40.3 7.333 64174 1238.4 171 82.0 83.8 87.5 89.3 94.8 98.4 103.9WT_ 750/305x25 12.0 x 24.00 31.53 6462 354.8 332.7 48.0 8.000 83315 1351.0 187 88.8 90.6 94.3 96.1 101.6 105.2 110.7WT_ 750/254x32 10.0 x 1.250 25.00 32.03 6843 369.9 240.7 41.7 13.021 61259 1408.3 159 92.2 94.0 97.7 99.5 104.9 108.6 114.1WT_ 750/330x25 13.0 x 1.000 26.00 31.53 7000 384.4 423.0 56.3 8.667 105928 1463.5 202 95.6 97.4 101.1 102.9 108.3 112.0 117.5WT_ 750/356x25 14.0 x 28.00 31.53 7539 414.0 528.3 65.3 9.333 132301 1576.1 218 102.4 104.2 107.8 109.7 115.1 118.8 124.2WT_ 750/305x32 12.0 x 1.250 30.00 32.03 8212 443.9 415.9 60.0 15.625 105856 1690.0 191 109.2 111.0 114.6 116.5 121.9 125.6 131.0WT_ 750/406x25 16.0 x 1.000 32.00 31.53 8616 473.1 788.6 85.3 10.667 197487 1801.3 249 116.0 117.8 121.4 123.3 128.7 132.4 137.8WT_ 750/356x32 14.0 x 1.250 35.00 32.03 9580 517.9 660.4 81.7 18.229 168096 1971.7 223 126.2 128.0 131.6 133.4 138.9 142.6 148.0WT_ 750/406x32 16.0 x 40.00 32.03 10949 591.9 985.8 106.7 20.833 250919 2253.3 255 143.1 145.0 148.6 150.4 155.9 159.5 165.0WT_ 750/450x32 17.7 x 44.29 32.03 12124 655.3 1338.3 130.8 23.068 340651 2495.1 283 157.7 159.5 163.2 165.0 170.5 174.1 179.6

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

30 28.4 38.2 59.2 70.0 103.8 126.1 155.2

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 36: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 900/127x6 35.4 5.0 x 0.250 2.50 35.93 919 44.3 6.0 2.1 0.052 2059 168.6 74 17.2 19.4 23.8 26.0 32.5 36.9 43.5WT_ 900/152x6 6.0 x 2.69 35.93 990 47.7 7.5 2.4 0.056 2567 181.5 80 18.9 21.1 25.5 27.7 34.2 38.6 45.2WT_ 900/152x8 6.0 x 0.313 3.75 36.06 1384 66.4 13.0 3.8 0.122 4462 253.0 89 21.5 23.7 28.0 30.2 36.8 41.2 47.7

WT_ 900/152x10 6.0 x 0.375 4.50 36.18 1666 79.7 15.6 4.5 0.211 5373 303.6 89 24.0 26.2 30.6 32.8 39.3 43.7 50.3WT_ 900/178x10 7.0 x 5.25 36.18 1944 93.0 24.8 6.1 0.246 8533 354.2 104 26.6 28.8 33.1 35.3 41.9 46.3 52.8WT_ 900/152x13 6.0 x 0.500 6.00 36.43 2238 106.3 20.8 6.0 0.500 7215 404.8 89 29.1 31.3 35.7 37.9 44.4 48.8 55.4WT_ 900/178x13 7.0 x 7.00 36.43 2611 124.0 33.0 8.2 0.583 11456 472.3 104 32.5 34.7 39.1 41.3 47.8 52.2 58.8WT_ 900/203x13 8.0 x 8.00 36.43 2983 141.8 49.3 10.7 0.667 17101 539.7 119 35.9 38.1 42.5 44.7 51.2 55.6 62.2WT_ 900/152x19 6.0 x 0.750 9.00 36.93 3404 159.5 31.2 9.0 1.688 10973 607.4 91 39.3 41.5 45.9 48.1 54.6 59.0 65.6WT_ 900/203x16 8.0 x 0.625 10.00 36.68 3755 177.2 61.6 13.3 1.302 21525 674.8 120 42.7 44.9 49.3 51.5 58.0 62.4 68.9WT_ 900/203x19 8.0 x 0.750 12.00 36.93 4538 212.7 73.9 16.0 2.250 26010 809.9 121 49.5 51.7 56.1 58.3 64.8 69.2 75.7WT_ 900/254x19 10.0 x 15.00 36.93 5673 265.9 144.4 25.0 2.813 50800 1012.3 151 59.7 61.9 66.2 68.4 75.0 79.4 85.9WT_ 900/203x25 8.0 x 1.000 16.00 37.43 6135 283.7 98.6 21.3 5.333 35161 1080.3 123 63.1 65.3 69.6 71.8 78.4 82.8 89.3WT_ 900/254x25 10.0 x 20.00 37.43 7669 354.7 192.5 33.3 6.667 68673 1350.4 153 76.7 78.9 83.2 85.4 92.0 96.4 102.9WT_ 900/279x25 11.0 x 22.00 37.43 8436 390.2 256.3 40.3 7.333 91404 1485.4 169 83.5 85.6 90.0 92.2 98.8 103.1 109.7WT_ 900/305x25 12.0 x 24.00 37.43 9203 425.6 332.7 48.0 8.000 118667 1620.5 184 90.3 92.4 96.8 99.0 105.6 109.9 116.5WT_ 900/254x32 10.0 x 1.250 25.00 37.93 9720 443.6 240.7 41.7 13.021 87023 1688.9 156 93.7 95.8 100.2 102.4 109.0 113.3 119.9WT_ 900/330x25 13.0 x 1.000 26.00 37.43 9970 461.1 423.0 56.3 8.667 150875 1755.5 200 97.0 99.2 103.6 105.8 112.4 116.7 123.3WT_ 900/356x25 14.0 x 28.00 37.43 10737 496.6 528.3 65.3 9.333 188439 1890.5 215 103.8 106.0 110.4 112.6 119.1 123.5 130.1WT_ 900/305x32 12.0 x 1.250 30.00 37.93 11664 532.3 415.9 60.0 15.625 150376 2026.7 188 110.6 112.8 117.2 119.4 125.9 130.3 136.9WT_ 900/406x25 16.0 x 1.000 32.00 37.43 12270 567.5 788.6 85.3 10.667 281285 2160.6 246 117.4 119.6 124.0 126.2 132.7 137.1 143.7WT_ 900/356x32 14.0 x 1.250 35.00 37.93 13607 621.0 660.4 81.7 18.229 238792 2364.4 219 127.6 129.8 134.2 136.4 142.9 147.3 153.8WT_ 900/406x32 16.0 x 40.00 37.93 15551 709.8 985.8 106.7 20.833 356448 2702.2 250 144.6 146.8 151.1 153.3 159.9 164.3 170.8WT_ 900/450x32 17.7 x 44.29 37.93 17220 785.9 1338.3 130.8 23.068 483919 2992.1 277 159.2 161.3 165.7 167.9 174.5 178.8 185.4

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

35 33.6 45.3 70.5 83.5 124.0 151.3 186.2

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 37: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 1000/127x6 39.4 5.0 x 0.250 2.50 39.87 1133 49.2 6.0 2.1 0.052 2538 187.4 74 18.2 20.6 25.5 27.9 35.2 40.1 47.4WT_ 1000/152x6 6.0 x 2.69 39.87 1220 53.0 7.5 2.4 0.056 3165 201.7 79 19.9 22.3 27.2 29.6 36.9 41.8 49.1WT_ 1000/152x8 6.0 x 0.313 3.75 40.00 1705 73.8 13.0 3.8 0.122 5499 281.1 89 22.5 24.9 29.7 32.2 39.5 44.3 51.6

WT_ 1000/152x10 6.0 x 0.375 4.50 40.12 2053 88.6 15.6 4.5 0.211 6620 337.3 89 25.0 27.4 32.3 34.7 42.0 46.9 54.2WT_ 1000/178x10 7.0 x 5.25 40.12 2395 103.4 24.8 6.1 0.246 10512 393.5 104 27.6 30.0 34.8 37.3 44.6 49.4 56.7WT_ 1000/152x13 6.0 x 0.500 6.00 40.37 2755 118.1 20.8 6.0 0.500 8882 449.8 89 30.1 32.5 37.4 39.8 47.1 52.0 59.2WT_ 1000/178x13 7.0 x 7.00 40.37 3214 137.8 33.0 8.2 0.583 14104 524.7 104 33.5 35.9 40.8 43.2 50.5 55.4 62.6WT_ 1000/203x13 8.0 x 8.00 40.37 3673 157.5 49.3 10.7 0.667 21054 599.7 119 36.9 39.3 44.2 46.6 53.9 58.8 66.0WT_ 1000/152x19 6.0 x 0.750 9.00 40.87 4184 177.2 31.2 9.0 1.688 13491 674.8 90 40.3 42.7 47.6 50.0 57.3 62.2 69.4WT_ 1000/203x16 8.0 x 0.625 10.00 40.62 4620 196.9 61.6 13.3 1.302 26482 749.7 120 43.7 46.1 51.0 53.4 60.7 65.6 72.8WT_ 1000/203x19 8.0 x 0.750 12.00 40.87 5579 236.3 73.9 16.0 2.250 31978 899.8 120 50.5 52.9 57.8 60.2 67.5 72.3 79.6WT_ 1000/254x19 10.0 x 15.00 40.87 6974 295.4 144.4 25.0 2.813 62457 1124.7 151 60.7 63.1 67.9 70.4 77.7 82.5 89.8WT_ 1000/203x25 8.0 x 1.000 16.00 41.37 7532 315.2 98.6 21.3 5.333 43170 1200.1 122 64.1 66.5 71.3 73.8 81.1 85.9 93.2WT_ 1000/254x25 10.0 x 20.00 41.37 9416 394.0 192.5 33.3 6.667 84317 1500.1 153 77.6 80.1 84.9 87.4 94.6 99.5 106.8WT_ 1000/279x25 11.0 x 22.00 41.37 10357 433.4 256.3 40.3 7.333 112226 1650.2 168 84.4 86.9 91.7 94.2 101.4 106.3 113.6WT_ 1000/305x25 12.0 x 24.00 41.37 11299 472.8 332.7 48.0 8.000 145699 1800.2 183 91.2 93.7 98.5 101.0 108.2 113.1 120.4WT_ 1000/254x32 10.0 x 1.250 25.00 41.87 11917 492.7 240.7 41.7 13.021 106705 1876.0 155 94.6 97.0 101.9 104.3 111.6 116.5 123.8WT_ 1000/330x25 13.0 x 1.000 26.00 41.37 12240 512.2 423.0 56.3 8.667 185244 1950.2 198 98.0 100.4 105.3 107.7 115.0 119.9 127.2WT_ 1000/356x25 14.0 x 28.00 41.37 13182 551.6 528.3 65.3 9.333 231365 2100.2 214 104.8 107.2 112.1 114.5 121.8 126.7 134.0WT_ 1000/305x32 12.0 x 1.250 30.00 41.87 14300 591.3 415.9 60.0 15.625 184387 2251.2 186 111.6 114.0 118.9 121.3 128.6 133.5 140.8WT_ 1000/406x25 16.0 x 1.000 32.00 41.37 15065 630.4 788.6 85.3 10.667 345361 2400.2 244 118.4 120.8 125.7 128.1 135.4 140.3 147.5WT_ 1000/356x32 14.0 x 1.250 35.00 41.87 16684 689.8 660.4 81.7 18.229 292799 2626.4 217 128.6 131.0 135.9 138.3 145.6 150.5 157.7WT_ 1000/406x32 16.0 x 40.00 41.87 19067 788.4 985.8 106.7 20.833 437065 3001.6 248 145.6 148.0 152.8 155.3 162.6 167.4 174.7WT_ 1000/450x32 17.7 x 44.29 41.87 21113 873.0 1338.3 130.8 23.068 593366 3323.6 275 160.1 162.6 167.4 169.9 177.1 182.0 189.3

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

39 37.0 50.1 78.1 92.4 137.5 168.1 206.9

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 38: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 1219/127x6 48.0 5.0 x 0.250 2.50 48.50 1681 60.0 6.0 2.1 0.052 3764 228.4 74 20.3 23.3 29.2 32.2 41.1 47.0 55.9WT_ 1219/152x6 6.0 x 2.69 48.50 1809 64.6 7.5 2.4 0.056 4694 245.9 79 22.0 25.0 30.9 33.9 42.8 48.7 57.6WT_ 1219/152x8 6.0 x 0.313 3.75 48.63 2528 90.0 13.0 3.8 0.122 8151 342.7 89 24.6 27.5 33.5 36.4 45.3 51.2 60.1

WT_ 1219/152x10 6.0 x 0.375 4.50 48.75 3041 108.0 15.6 4.5 0.211 9807 411.2 89 27.1 30.1 36.0 39.0 47.9 53.8 62.7WT_ 1219/178x10 7.0 x 5.25 48.75 3548 126.0 24.8 6.1 0.246 15573 479.8 104 29.7 32.6 38.6 41.5 50.4 56.3 65.2WT_ 1219/152x13 6.0 x 0.500 6.00 49.00 4076 144.0 20.8 6.0 0.500 13143 548.3 89 32.2 35.2 41.1 44.1 53.0 58.9 67.8WT_ 1219/178x13 7.0 x 7.00 49.00 4756 168.0 33.0 8.2 0.583 20871 639.7 104 35.6 38.6 44.5 47.5 56.4 62.3 71.2WT_ 1219/203x13 8.0 x 8.00 49.00 5435 192.0 49.3 10.7 0.667 31154 731.1 119 39.0 42.0 47.9 50.9 59.8 65.7 74.6WT_ 1219/152x19 6.0 x 0.750 9.00 49.50 6178 216.1 31.2 9.0 1.688 19919 822.6 90 42.4 45.4 51.3 54.3 63.2 69.1 78.0WT_ 1219/203x16 8.0 x 0.625 10.00 49.25 6829 240.1 61.6 13.3 1.302 39144 913.9 119 45.8 48.8 54.7 57.7 66.5 72.5 81.4WT_ 1219/203x19 8.0 x 0.750 12.00 49.50 8237 288.1 73.9 16.0 2.250 47214 1096.8 120 52.6 55.6 61.5 64.5 73.3 79.3 88.1WT_ 1219/254x19 10.0 x 15.00 49.50 10296 360.1 144.4 25.0 2.813 92216 1371.0 150 62.8 65.7 71.7 74.6 83.5 89.5 98.3WT_ 1219/203x25 8.0 x 1.000 16.00 50.00 11096 384.2 98.6 21.3 5.333 63600 1462.8 121 66.2 69.1 75.1 78.0 86.9 92.9 101.7WT_ 1219/254x25 10.0 x 20.00 50.00 13871 480.3 192.5 33.3 6.667 124219 1828.5 151 79.8 82.7 88.7 91.6 100.5 106.4 115.3WT_ 1219/279x25 11.0 x 22.00 50.00 15258 528.3 256.3 40.3 7.333 165335 2011.3 166 86.6 89.5 95.4 98.4 107.3 113.2 122.1WT_ 1219/305x25 12.0 x 24.00 50.00 16645 576.3 332.7 48.0 8.000 214650 2194.2 181 93.4 96.3 102.2 105.2 114.1 120.0 128.9WT_ 1219/254x32 10.0 x 1.250 25.00 50.50 17517 600.5 240.7 41.7 13.021 156862 2286.3 153 96.8 99.7 105.6 108.6 117.5 123.4 132.3WT_ 1219/330x25 13.0 x 1.000 26.00 50.00 18032 624.3 423.0 56.3 8.667 272908 2377.0 197 100.2 103.1 109.0 112.0 120.9 126.8 135.7WT_ 1219/356x25 14.0 x 28.00 50.00 19419 672.4 528.3 65.3 9.333 340856 2559.9 212 106.9 109.9 115.8 118.8 127.7 133.6 142.5WT_ 1219/305x32 12.0 x 1.250 30.00 50.50 21020 720.6 415.9 60.0 15.625 271057 2743.6 183 113.7 116.7 122.6 125.6 134.5 140.4 149.3WT_ 1219/406x25 16.0 x 1.000 32.00 50.00 22193 768.4 788.6 85.3 10.667 508799 2925.6 242 120.5 123.5 129.4 132.4 141.3 147.2 156.1WT_ 1219/356x32 14.0 x 1.250 35.00 50.50 24524 840.7 660.4 81.7 18.229 430429 3200.8 214 130.7 133.7 139.6 142.6 151.4 157.4 166.3WT_ 1219/406x32 16.0 x 40.00 50.50 28027 960.8 985.8 106.7 20.833 642506 3658.1 245 147.7 150.6 156.6 159.5 168.4 174.4 183.2WT_ 1219/450x32 17.7 x 44.29 50.50 31034 1063.9 1338.3 130.8 23.068 872275 4050.5 271 162.3 165.2 171.1 174.1 183.0 188.9 197.8

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

48 44.6 60.5 94.6 112.1 167.1 204.9 249.7

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 39: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

WT_ 1500/127x6 59.1 5.0 x 0.250 2.50 59.56 2539 73.8 6.0 2.1 0.052 5686 281.1 74 23.1 26.7 34.0 37.7 48.6 55.9 66.8WT_ 1500/152x6 6.0 x 2.69 59.56 2733 79.5 7.5 2.4 0.056 7091 302.5 79 24.8 28.4 35.7 39.4 50.3 57.6 68.5WT_ 1500/152x8 6.0 x 0.313 3.75 59.68 3817 110.7 13.0 3.8 0.122 12308 421.6 89 27.3 31.0 38.2 41.9 52.8 60.1 71.0

WT_ 1500/152x10 6.0 x 0.375 4.50 59.81 4590 132.9 15.6 4.5 0.211 14801 505.9 89 29.9 33.5 40.8 44.4 55.4 62.7 73.6WT_ 1500/178x10 7.0 x 5.25 59.81 5355 155.0 24.8 6.1 0.246 23504 590.2 104 32.4 36.0 43.3 47.0 57.9 65.2 76.1WT_ 1500/152x13 6.0 x 0.500 6.00 60.06 6146 177.2 20.8 6.0 0.500 19818 674.6 89 35.0 38.6 45.9 49.5 60.5 67.8 78.7WT_ 1500/178x13 7.0 x 7.00 60.06 7171 206.7 33.0 8.2 0.583 31470 787.0 104 38.4 42.0 49.3 52.9 63.9 71.2 82.1WT_ 1500/203x13 8.0 x 8.00 60.06 8195 236.2 49.3 10.7 0.667 46976 899.4 119 41.8 45.4 52.7 56.3 67.3 74.6 85.5WT_ 1500/152x19 6.0 x 0.750 9.00 60.56 9297 265.8 31.2 9.0 1.688 29977 1012.0 89 45.1 48.8 56.1 59.7 70.7 77.9 88.9WT_ 1500/203x16 8.0 x 0.625 10.00 60.31 10287 295.3 61.6 13.3 1.302 58966 1124.4 119 48.5 52.2 59.5 63.1 74.1 81.3 92.3WT_ 1500/203x19 8.0 x 0.750 12.00 60.56 12396 354.4 73.9 16.0 2.250 71056 1349.3 119 55.3 59.0 66.3 69.9 80.8 88.1 99.1WT_ 1500/254x19 10.0 x 15.00 60.56 15495 443.0 144.4 25.0 2.813 138782 1686.6 149 65.5 69.2 76.5 80.1 91.0 98.3 109.3WT_ 1500/203x25 8.0 x 1.000 16.00 61.06 16668 472.6 98.6 21.3 5.333 95535 1799.4 120 68.9 72.6 79.8 83.5 94.4 101.7 112.6WT_ 1500/254x25 10.0 x 20.00 61.06 20834 590.8 192.5 33.3 6.667 186593 2249.2 150 82.5 86.1 93.4 97.1 108.0 115.3 126.2WT_ 1500/279x25 11.0 x 22.00 61.06 22918 649.8 256.3 40.3 7.333 248355 2474.1 165 89.3 92.9 100.2 103.9 114.8 122.1 133.0WT_ 1500/305x25 12.0 x 24.00 61.06 25001 708.9 332.7 48.0 8.000 322432 2699.0 180 96.1 99.7 107.0 110.7 121.6 128.9 139.8WT_ 1500/254x32 10.0 x 1.250 25.00 61.56 26262 738.6 240.7 41.7 13.021 235187 2812.1 151 99.5 103.1 110.4 114.1 125.0 132.3 143.2WT_ 1500/330x25 13.0 x 1.000 26.00 61.06 27085 768.0 423.0 56.3 8.667 409944 2924.0 195 102.9 106.5 113.8 117.5 128.4 135.7 146.6WT_ 1500/356x25 14.0 x 28.00 61.06 29168 827.1 528.3 65.3 9.333 512010 3148.9 210 109.7 113.3 120.6 124.3 135.2 142.5 153.4WT_ 1500/305x32 12.0 x 1.250 30.00 61.56 31514 886.3 415.9 60.0 15.625 406403 3374.5 182 116.5 120.1 127.4 131.0 142.0 149.3 160.2WT_ 1500/406x25 16.0 x 1.000 32.00 61.06 33335 945.2 788.6 85.3 10.667 764284 3598.7 241 123.3 126.9 134.2 137.8 148.8 156.1 167.0WT_ 1500/356x32 14.0 x 1.250 35.00 61.56 36766 1034.1 660.4 81.7 18.229 645353 3936.9 212 133.4 137.1 144.4 148.0 159.0 166.2 177.2WT_ 1500/406x32 16.0 x 40.00 61.56 42019 1181.8 985.8 106.7 20.833 963325 4499.3 242 150.4 154.1 161.4 165.0 175.9 183.2 194.2WT_ 1500/450x32 17.7 x 44.29 61.56 46526 1308.6 1338.3 130.8 23.068 1307824 4982.0 268 165.0 168.6 175.9 179.6 190.5 197.8 208.7

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

59 46.0 65.2 97.4 129.9 168.5 193.1 228.5

Factored Shear Resistance Vr (kip)

SIN Properties - v13 | 2019-08-27

Page 40: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.2b (imperial)

SIN Beam Bending PropertiesSIN Size Depth Overall

of Web Width Thickness Area Depth Torsion Warpinghw bf tf d Ix Sx Iy Sy J Cw Mr Lu WT0 WTA WTB WTC WTF WTH WTKin in in in2 in in4 in3 in4 in3 in4 in6 kip ft in lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft lb / ft

- a b c d e f g h i j k l m n o p q r s t u

Strong Axis Weak Axis ResistanceFlange Section Properties Moment

ImperialMass

Notes

- SIN Beam sizes are indicated as WT[WEB THICKNESS] [WEB DEPTH] / [FLANGE WIDTH] x [FLANGE THICKNESS] - [WEIGHT]SIN Beam sizes are always indicated in Metric unitsi.e. For a 36in x 12ga web with 10in x 5/8in Flanges and a Weight of 58 lb/ft the designation is WTB915 / 254x16 - 86.5

- Flanges and Webs are all fabricated from W350 Material (Fy = 350MPa)- Flanges of over 5/8in (16mm) in thickness will include a premium due to the required splicing of the flat bar** 152x6 Section Properties and Moment resistance based on a flange width of 136mm to be Class 3

a Depth of the Beam web, i.e. Inside of flangesb Width of top and bottom flanged Thickess of top and bottom flangee Cross sectionional area of flanges only (web is neglected)f Overall depth of sectiong Strong Axis Moment of Inertia computed using flange properties onlyh Strong Axis Section Modulas computed using flange properties onlyi Weak Axis Moment of Inertia computed using flange properties onlyj Weak Axis Section Modulas computed using flange properties onlyk Torsional Constant J computed using flange properties onlyl Warping Constant Cw - computed using flange properties only

m Strong Axis Factored Moment Restance assuming compression flange is fully braced based on CSA S16-09n Maximum unbraced lenght for which Mr is applicable

o - u Mass of member per unit length with a web thickess of 16ga (1.519mm); 14ga (1.897mm); 12ga; 11ga; 8ga; 6ga; 3ga

aa Depth of Beam webbb - hh Shear Capacity for a 16 ga (1.519mm); 14ga; 12ga; 11ga; 8ga; 6ga; 3ga web

SIN Properties - v13 | 2019-08-27

Page 41: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

333 127 x 6 - 83.6 76.1 67.3 57.3 45.1 30.2 22.1 17.2 14.0 11.7 10.0 8.8 7.8 6.4152 x - - 85.0 76.7 67.2 55.5 37.1 27.0 20.9 16.8 14.0 12.0 10.5 9.3 7.5152 x 8 - - 124.1 115.0 104.7 93.3 66.3 48.6 37.9 30.8 25.8 22.2 19.5 17.3 14.2152 x 10 - - 149.6 139.1 127.4 114.6 84.3 62.8 49.6 40.8 34.6 30.0 26.5 23.7 19.6178 x - - - 172.9 162.3 150.7 124.7 93.9 73.3 59.6 50.1 43.2 37.9 33.7 27.7152 x 13 - - 201.2 188.7 174.9 160.2 127.1 97.0 78.2 65.5 56.4 49.5 44.1 39.9 33.4178 x - - - 232.8 220.1 206.4 176.8 142.0 113.2 93.9 80.2 69.9 62.1 55.8 46.5203 x - - - - 264.3 251.5 223.5 193.2 157.4 129.4 109.6 95.1 83.9 75.1 62.2152 x 19 - - - 292.6 276.7 260.4 227.3 191.1 158.0 134.9 117.8 104.7 94.2 85.7 72.7203 x 16 - - - - 334.1 319.8 289.3 257.2 223.5 186.3 159.7 139.8 124.4 112.1 93.7203 x 19 - - - - 405.4 390.1 358.1 325.2 292.0 254.8 220.2 194.0 173.6 157.1 132.2254 x - - - - - - 487.7 455.8 423.0 389.9 356.7 318.5 282.9 254.6 212.5203 x 25 - - - - - 535.8 502.6 469.2 436.0 403.1 370.5 331.4 298.3 271.3 229.9254 x - - - - - - 669.8 636.6 603.1 569.8 536.7 503.9 471.3 433.7 365.5279 x - - - - - - - 720.2 686.8 653.4 620.2 587.1 554.3 521.7 446.7305 x - - - - - - - 803.8 770.5 737.1 703.8 670.5 637.5 604.7 537.3254 x 32 - - - - - - - 824.8 791.3 758.2 725.3 692.7 660.4 628.2 561.9330 x 25 - - - - - - - - 854.2 820.8 787.4 754.1 720.9 687.9 622.4356 x - - - - - - - - 937.7 904.5 871.1 837.7 804.4 771.3 705.5305 x 32 - - - - - - - - 996.4 962.9 929.7 896.7 863.9 831.3 766.7406 x 25 - - - - - - - - - 1071.7 1038.5 1005.1 971.7 938.3 872.0356 x 32 - - - - - - - - - 1168.1 1134.6 1101.2 1068.1 1035.1 969.8406 x - - - - - - - - - - 1339.8 1306.2 1272.8 1239.6 1173.6450 x - - - - - - - - - - - 1482.4 1448.8 1415.4 1349.0

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

333 60.5 80.2 121.8 143.5 210.0 249.1 306.5

Factored Shear Resistance Vr (kN)

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

SIN Properties - v13 | 2019-08-27

Page 42: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

440 127 x 6 - 110.1 100.0 87.8 73.5 57.0 37.6 27.0 20.6 16.5 13.6 11.5 9.9 8.7 7.0152 x - - 111.8 100.4 87.2 70.5 46.4 33.2 25.2 20.0 16.5 13.9 11.9 10.5 8.3152 x 8 - - 163.3 150.7 136.2 119.9 82.0 59.1 45.2 36.1 29.8 25.3 21.9 19.3 15.5152 x 10 - - 196.5 181.8 165.0 146.3 102.4 74.6 57.8 46.7 39.0 33.3 29.1 25.8 21.0178 x - - - 226.9 212.1 195.4 157.3 113.7 87.1 69.7 57.7 48.9 42.4 37.3 30.1152 x 13 - - 263.5 245.2 224.7 202.2 149.0 111.1 87.7 72.2 61.3 53.2 47.0 42.1 34.9178 x - - - 304.6 286.1 265.7 220.1 165.9 129.6 105.6 88.8 76.5 67.1 59.8 49.1203 x - - - - 345.6 327.0 284.9 237.1 183.4 148.1 123.5 105.7 92.2 81.7 66.5152 x 19 - - 400.9 377.4 352.0 325.2 269.2 207.8 169.1 142.5 123.3 108.7 97.3 88.1 74.2203 x 16 - - - - 435.5 413.9 366.3 314.3 252.8 207.1 174.9 151.3 133.3 119.1 98.3203 x 19 - - - - 527.0 503.2 451.6 396.7 334.4 277.1 236.4 206.2 182.9 164.4 136.9254 x - - - - - - 629.0 577.8 523.7 467.7 401.5 346.4 304.5 271.6 223.5203 x 25 - - - - 714.7 687.9 632.0 574.4 516.4 452.0 390.8 344.4 308.1 278.9 234.8254 x - - - - - - 859.9 804.2 746.9 689.0 631.0 565.0 502.0 451.9 377.3279 x - - - - - - 972.8 918.3 861.8 804.3 746.3 688.3 621.5 557.9 463.6305 x - - - - - - - 1031.9 976.3 919.3 861.6 803.6 745.6 678.0 560.9254 x 32 - - - - - - 1099.7 1041.9 983.7 925.5 867.7 810.2 753.1 682.3 574.1330 x 25 - - - - - - - 1144.9 1090.4 1034.1 976.7 918.9 860.9 802.9 669.8356 x - - - - - - - - 1203.9 1148.4 1091.7 1034.1 976.2 918.2 791.0305 x 32 - - - - - - - 1319.6 1261.9 1203.7 1145.5 1087.4 1029.7 972.2 845.4406 x 25 - - - - - - - - 1429.4 1375.9 1320.5 1263.9 1206.6 1148.8 1032.8356 x 32 - - - - - - - - 1539.5 1481.9 1423.8 1365.5 1307.3 1249.4 1134.2406 x - - - - - - - - - 1759.5 1701.9 1643.8 1585.6 1527.3 1411.3450 x - - - - - - - - - - 1940.1 1882.5 1824.4 1766.2 1649.8

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

440 77.7 103.5 158.3 186.8 274.7 329.1 405.0

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 43: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

500 127 x 6 - 125.0 113.4 99.4 82.5 63.8 41.9 29.9 22.7 18.0 14.7 12.4 10.6 9.3 7.4152 x - - 126.8 113.7 98.5 79.1 51.7 36.8 27.8 22.0 17.9 15.0 12.9 11.2 8.8152 x 8 - - 185.3 170.8 153.9 134.9 91.2 65.3 49.6 39.3 32.3 27.2 23.4 20.5 16.3152 x 10 - - 222.8 205.8 186.2 164.2 113.0 81.7 62.7 50.3 41.7 35.4 30.7 27.1 21.9178 x - - - 257.3 240.1 220.7 174.9 125.3 95.3 75.8 62.2 52.5 45.2 39.6 31.6152 x 13 - - 298.6 277.1 252.7 225.8 162.2 119.6 93.6 76.4 64.4 55.5 48.8 43.5 35.8178 x - - - 345.0 323.3 299.1 244.4 180.4 139.6 112.8 94.2 80.6 70.3 62.3 50.8203 x - - - - 391.3 369.4 319.4 259.5 199.1 159.5 132.1 112.3 97.4 85.8 69.3152 x 19 - - 453.2 424.9 393.8 360.8 286.1 218.4 176.1 147.4 126.8 111.4 99.3 89.7 75.2203 x 16 - - - - 492.5 466.8 409.3 345.4 270.8 220.0 184.5 158.6 139.0 123.6 101.2203 x 19 - - - - 595.2 566.5 503.3 434.9 354.3 291.2 246.8 214.0 188.9 169.1 140.0254 x - - - - - - 708.1 645.6 578.5 507.6 424.6 364.0 318.2 282.5 230.7203 x 25 - - - - 805.6 772.6 702.4 629.2 554.8 467.7 402.1 352.9 314.6 284.0 238.1254 x - - - - - - 965.7 896.0 823.4 749.4 672.6 584.6 517.2 463.8 385.0279 x - - - - - - 1095.5 1027.9 956.8 883.7 809.5 729.8 643.1 574.9 474.7305 x - - - - - - - 1158.9 1089.4 1017.4 943.9 869.5 787.3 701.6 576.4254 x 32 - - - - - - 1233.1 1159.8 1085.1 1010.1 935.2 860.6 769.9 694.8 582.1330 x 25 - - - - - - - 1288.8 1221.1 1150.5 1077.8 1004.0 929.5 845.0 690.7356 x - - - - - - - 1417.7 1352.0 1282.8 1211.2 1138.1 1064.1 989.5 818.5305 x 32 - - - - - - - 1479.7 1406.5 1332.1 1257.1 1182.1 1107.2 1032.7 861.7406 x 25 - - - - - - - - 1611.1 1545.1 1476.1 1404.9 1332.2 1258.5 1109.5356 x 32 - - - - - - - - 1726.3 1653.3 1579.0 1504.1 1429.1 1354.1 1204.8406 x - - - - - - - - - 1972.9 1900.0 1825.9 1751.2 1676.1 1526.2450 x - - - - - - - - - 2245.7 2174.3 2101.3 2027.2 1952.5 1802.5

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

500 87.2 116.4 178.7 211.0 311.0 374.0 460.2

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 44: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

610 127 x 6 - 152.3 137.9 120.6 99.2 76.5 49.8 35.3 26.5 20.8 16.9 14.1 12.0 10.4 8.1152 x - - 154.3 138.1 119.2 95.0 61.7 43.6 32.7 25.6 20.7 17.2 14.6 12.6 9.8152 x 8 - - 225.5 207.5 186.5 162.6 108.3 76.8 57.8 45.5 37.0 30.9 26.3 22.8 17.9152 x 10 - - 271.0 249.7 225.1 197.2 133.1 95.2 72.2 57.3 47.0 39.5 34.0 29.7 23.6178 x - - - 312.9 291.4 266.9 207.4 147.3 111.0 87.4 71.1 59.4 50.7 44.1 34.7152 x 13 - - 362.7 335.4 304.1 269.2 187.4 136.3 105.2 84.8 70.6 60.3 52.5 46.5 37.8178 x - - - 418.9 391.3 360.3 288.8 208.0 159.0 126.9 104.8 88.8 76.8 67.5 54.2203 x - - - - 475.0 447.2 382.8 302.0 229.2 181.7 148.9 125.3 107.7 94.1 74.9152 x 19 - - 548.9 511.8 470.3 425.3 319.2 239.5 190.4 157.5 134.2 116.9 103.5 93.0 77.4203 x 16 - - - - 596.8 563.6 488.0 398.1 305.9 245.5 203.6 173.3 150.4 132.7 107.3203 x 19 - - - - 720.1 682.3 597.6 503.4 393.5 319.4 267.7 229.9 201.2 178.9 146.4254 x - - - - - 926.2 852.9 769.3 677.5 568.5 470.3 399.2 345.9 304.6 245.4203 x 25 - - - - 971.6 926.8 829.3 724.9 604.4 499.7 425.5 370.4 328.1 294.6 244.9254 x - - - - - - 1158.5 1061.8 959.0 852.4 725.2 624.6 548.1 488.3 401.0279 x - - - - - - 1319.6 1227.0 1127.5 1023.3 916.0 786.3 687.0 609.7 497.6305 x - - - - - - 1478.7 1390.2 1294.1 1192.6 1087.3 974.0 847.6 749.5 608.1254 x 32 - - - - - - 1475.0 1370.7 1262.3 1152.0 1040.9 907.0 803.0 720.8 598.9330 x 25 - - - - - - - 1551.5 1458.9 1360.2 1257.2 1151.2 1031.6 909.1 733.3356 x - - - - - - - 1711.0 1621.9 1526.2 1425.7 1321.6 1214.9 1090.0 874.4305 x 32 - - - - - - - 1770.0 1666.1 1558.5 1448.8 1338.1 1220.4 1088.4 895.4406 x 25 - - - - - - - - 1943.2 1853.6 1758.3 1658.6 1555.4 1449.7 1208.8356 x 32 - - - - - - - 2163.7 2065.0 1961.4 1854.4 1745.3 1635.0 1524.0 1269.8406 x - - - - - - - - 2459.1 2360.0 2256.6 2150.2 2041.6 1931.8 1710.0450 x - - - - - - - - - 2698.8 2598.8 2495.1 2388.7 2280.3 2060.2

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

610 104.4 139.9 215.8 255.0 377.0 456.0 561.1

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 45: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

750 127 x 6 - 187.2 169.4 147.8 120.9 93.0 60.2 42.4 31.6 24.7 19.9 16.4 13.9 11.9 9.2152 x - - 189.6 169.4 145.8 115.6 74.8 52.5 39.1 30.4 24.5 20.2 17.0 14.6 11.2152 x 8 - - 277.0 254.6 228.3 198.2 130.7 92.1 68.8 53.7 43.3 35.9 30.3 26.1 20.2152 x 10 - - 332.8 306.2 275.1 239.7 159.4 113.0 85.0 66.8 54.2 45.2 38.5 33.4 26.2178 x - - - 384.2 357.2 326.4 250.0 176.3 131.9 103.0 83.1 68.9 58.4 50.3 39.0152 x 13 - - 444.9 410.4 370.4 325.3 221.1 158.8 121.0 96.4 79.4 67.1 57.8 50.7 40.6178 x - - - 513.7 478.8 439.2 343.8 245.0 185.2 146.3 119.6 100.3 85.9 74.9 59.2203 x - - - - 582.4 547.2 464.6 358.5 269.6 211.7 171.9 143.3 122.1 105.8 82.8152 x 19 - - 671.8 623.4 568.6 508.1 364.9 269.2 210.7 172.0 144.8 124.9 109.8 97.9 80.6203 x 16 - - - - 730.7 688.1 589.4 466.0 353.9 280.8 230.3 194.0 166.8 145.9 116.2203 x 19 - - - - 880.5 831.2 718.7 583.8 447.9 358.9 297.3 252.6 219.1 193.1 155.9254 x - - - - - 1134.4 1039.0 928.2 804.3 652.4 534.0 448.7 385.0 336.1 266.7203 x 25 - - - - 1184.7 1124.5 990.4 842.9 668.9 545.7 459.4 396.1 348.0 310.3 255.2254 x - - - - - 1522.7 1405.6 1273.1 1129.0 963.2 800.3 682.1 593.1 524.1 424.7279 x - - - - - - 1607.1 1481.7 1344.0 1196.9 1022.2 866.8 750.3 660.3 531.3305 x - - - - - - 1805.3 1686.7 1555.3 1413.7 1264.3 1083.1 933.7 818.5 654.4254 x 32 - - - - - - 1783.8 1636.5 1480.2 1318.2 1125.6 970.1 852.0 759.4 624.2330 x 25 - - - - - - - 1888.5 1763.1 1627.0 1482.5 1331.3 1145.4 1000.7 795.1356 x - - - - - - - 2087.5 1967.8 1837.2 1697.5 1550.7 1388.0 1208.8 955.0305 x 32 - - - - - - 2275.6 2140.5 1994.1 1839.7 1679.7 1510.8 1315.7 1164.2 945.5406 x 25 - - - - - - - - 2369.3 2248.9 2118.9 1980.8 1836.0 1685.7 1337.7356 x 32 - - - - - - - 2633.3 2497.3 2351.5 2198.5 2040.2 1878.2 1691.2 1358.2406 x - - - - - - - - 2990.8 2854.0 2708.8 2557.0 2400.1 2239.6 1875.7450 x - - - - - - - - - 3278.5 3140.1 2994.3 2842.5 2686.2 2363.7

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

750 126.2 169.9 263.2 311.3 461.5 561.0 690.3

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 46: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

900 127 x 6 - 224.5 203.0 176.9 144.1 110.7 71.5 50.1 37.2 28.9 23.1 19.0 16.0 13.7 10.4152 x - - 227.3 203.0 174.3 137.8 88.8 62.2 46.2 35.7 28.6 23.5 19.7 16.8 12.8152 x 8 - - 332.1 305.0 273.1 236.5 154.9 108.7 80.9 62.8 50.4 41.5 34.9 29.9 22.8152 x 10 - - 398.9 366.6 328.7 285.5 188.2 132.6 99.1 77.3 62.4 51.7 43.7 37.6 29.1178 x - - - 460.4 427.7 390.2 296.1 207.9 154.7 120.2 96.5 79.5 66.9 57.3 43.9152 x 13 - - 533.0 490.7 441.5 385.7 258.3 183.8 138.9 109.6 89.4 74.9 64.1 55.8 44.0178 x - - - 615.2 572.5 523.8 403.8 285.8 214.5 168.1 136.3 113.4 96.4 83.4 65.1203 x - - - - 697.4 654.3 552.5 420.5 314.2 245.1 197.7 163.7 138.5 119.2 92.1152 x 19 - - 803.4 743.2 674.1 597.2 416.6 303.2 234.3 189.0 157.6 134.7 117.4 104.0 84.6203 x 16 - - - - 874.2 821.6 698.6 541.1 407.5 320.6 260.8 217.8 185.8 161.3 126.7203 x 19 - - - - 1052.3 990.9 848.8 671.0 509.6 404.3 331.7 279.3 240.2 210.1 167.3254 x - - - - - 1357.2 1238.6 1098.9 940.6 746.7 606.3 505.4 430.3 372.9 291.9203 x 25 - - - - 1412.9 1336.2 1162.5 963.0 743.7 599.8 499.8 427.0 372.1 329.4 267.8254 x - - - - - 1818.9 1670.3 1499.0 1309.3 1079.0 887.8 749.8 646.5 566.9 453.4279 x - - - - - - 1915.0 1754.5 1575.1 1380.4 1143.0 960.7 824.8 720.3 571.8305 x - - - - - - 2155.1 2004.3 1834.7 1649.2 1444.5 1209.3 1034.1 899.7 709.6254 x 32 - - - - - 2286.8 2113.6 1918.7 1707.5 1470.2 1224.5 1045.8 911.0 806.3 655.2330 x 25 - - - - - - - 2249.5 2088.9 1912.2 1721.8 1498.8 1277.3 1107.7 868.3356 x - - - - - - - 2490.6 2338.4 2170.0 1987.6 1793.4 1557.1 1346.5 1049.7305 x 32 - - - - - - 2711.6 2536.4 2342.9 2135.3 1916.9 1654.6 1429.0 1254.9 1006.2406 x 25 - - - - - - - - 2825.8 2672.4 2505.0 2325.1 2134.3 1926.0 1487.5356 x 32 - - - - - - - 3135.9 2959.1 2766.8 2561.8 2346.9 2118.0 1847.7 1464.1406 x - - - - - - - - 3559.7 3381.8 3190.3 2987.5 2775.4 2555.9 2045.5450 x - - - - - - - - - 3898.7 3718.3 3525.8 3323.1 3112.0 2656.0

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

900 149.4 201.7 313.7 371.3 551.7 673.2 828.4

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 47: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

1000 127 x 6 - 249.4 225.4 196.3 159.7 122.6 79.0 55.3 41.0 31.7 25.4 20.8 17.4 14.9 11.3152 x - - 252.5 225.3 193.4 152.6 98.3 68.7 50.9 39.3 31.4 25.7 21.5 18.3 13.8152 x 8 - - 368.9 338.6 303.0 262.1 171.2 119.9 89.0 68.9 55.1 45.3 38.0 32.4 24.6152 x 10 - - 443.0 406.9 364.5 316.1 207.5 145.9 108.7 84.5 68.0 56.1 47.3 40.6 31.2178 x - - - 511.3 474.7 432.8 327.0 229.2 170.2 131.9 105.6 86.8 72.8 62.2 47.3152 x 13 - - 591.7 544.3 489.1 426.2 283.5 200.9 151.1 118.7 96.4 80.4 68.5 59.4 46.5178 x - - - 683.0 635.1 580.3 444.4 313.5 234.4 183.1 147.8 122.5 103.7 89.4 69.3203 x - - - - 774.1 725.8 611.4 462.4 344.5 267.9 215.4 177.7 149.8 128.5 98.7152 x 19 - - 891.2 823.2 744.8 656.9 452.2 326.9 250.9 201.1 166.6 141.7 122.9 108.3 87.5203 x 16 - - - - 969.9 910.7 771.7 592.3 444.2 348.0 281.9 234.4 199.1 172.2 134.2203 x 19 - - - - 1167.0 1097.6 936.0 730.7 552.1 435.8 355.7 298.1 255.1 222.2 175.5254 x - - - - - 1505.9 1372.0 1213.2 1032.1 811.6 656.2 544.8 462.0 398.8 309.8203 x 25 - - - - 1565.3 1477.8 1277.6 1037.9 796.2 638.1 528.5 449.1 389.5 343.3 277.1254 x - - - - - 2016.7 1847.2 1650.1 1429.8 1159.7 949.3 797.6 684.5 597.6 474.2279 x - - - - - - 2120.7 1936.8 1729.7 1502.9 1227.3 1026.8 877.4 762.9 601.0305 x - - - - - - 2388.6 2216.6 2021.6 1806.7 1556.8 1297.5 1104.7 957.2 749.0254 x 32 - - - - - 2533.4 2333.9 2106.7 1858.0 1564.0 1295.0 1100.1 953.7 840.5 677.9330 x 25 - - - - - - - 2490.7 2306.7 2102.9 1881.7 1613.7 1369.5 1183.0 920.3356 x - - - - - - - 2759.8 2586.1 2392.6 2181.6 1955.4 1675.0 1442.9 1116.7305 x 32 - - - - - - 3002.8 2800.7 2575.5 2331.5 2072.7 1756.6 1509.8 1320.1 1050.3406 x 25 - - - - - - - - 3130.6 2955.5 2763.2 2555.3 2333.6 2075.8 1592.5356 x 32 - - - - - - - 3471.5 3267.5 3043.7 2803.4 2549.4 2255.0 1958.8 1540.1406 x - - - - - - - - 3939.6 3734.3 3511.6 3274.1 3024.1 2763.6 2166.3450 x - - - - - - - - 4504.1 4313.0 4104.4 3880.4 3643.1 3394.4 2827.0

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

1000 164.8 222.9 347.3 411.2 611.8 748.0 920.4

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 48: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

1219 127 x 6 - 303.9 274.6 238.9 193.9 148.7 95.6 66.8 49.4 38.1 30.3 24.8 20.7 17.6 13.2152 x - - 307.6 274.4 235.2 185.3 119.0 83.1 61.4 47.3 37.6 30.7 25.6 21.7 16.3152 x 8 - - 449.5 412.3 368.6 318.3 207.0 144.6 107.0 82.6 65.8 53.8 45.0 38.2 28.8152 x 10 - - 539.7 495.3 443.2 383.3 250.2 175.2 130.0 100.7 80.5 66.1 55.4 47.3 35.9178 x - - - 622.8 577.9 526.3 395.3 276.2 204.4 157.8 125.9 103.0 86.1 73.2 55.2152 x 13 - - 720.5 662.0 593.6 515.3 339.4 239.2 178.6 139.3 112.3 93.0 78.6 67.6 52.2178 x - - - 831.5 772.4 704.6 534.2 375.0 279.0 216.6 173.8 143.2 120.5 103.2 78.9203 x - - - - 942.4 882.7 740.8 555.2 411.9 318.9 255.0 209.4 175.5 149.8 113.7152 x 19 - - 1084.0 999.0 900.3 788.7 532.3 380.6 288.9 229.1 187.8 158.1 135.9 118.8 94.5203 x 16 - - - - 1180.0 1106.5 932.6 706.3 526.6 409.8 329.7 272.3 229.7 197.2 151.6203 x 19 - - - - 1418.8 1332.0 1128.1 864.7 648.3 507.5 410.8 341.4 289.9 250.5 195.0254 x - - - - - 1832.2 1665.0 1464.9 1231.7 957.4 769.2 634.4 534.5 458.3 351.4203 x 25 - - - - 1900.1 1788.9 1531.2 1208.0 916.7 726.7 595.7 501.3 430.7 376.5 299.4254 x - - - - - 2450.8 2236.1 1982.8 1695.5 1344.0 1090.4 908.4 773.0 669.5 523.5279 x - - - - - - 2572.6 2338.0 2070.3 1756.7 1420.0 1178.5 999.2 862.2 669.5305 x - - - - - - 2901.4 2683.3 2433.1 2153.8 1812.1 1499.2 1267.2 1090.1 841.4254 x 32 - - - - - 3074.9 2818.1 2520.1 2187.6 1780.7 1459.2 1227.6 1054.7 921.7 732.7330 x 25 - - - - - - - 3020.5 2785.9 2523.0 2234.3 1875.1 1580.7 1356.2 1041.3356 x - - - - - - - 3351.1 3130.5 2882.4 2609.1 2310.7 1943.5 1663.7 1271.7305 x 32 - - - - - - 3642.3 3381.7 3086.8 2762.2 2388.9 1993.0 1698.5 1473.1 1154.9406 x 25 - - - - - - - - 3800.1 3577.7 3331.3 3062.5 2773.0 2416.1 1833.3356 x 32 - - - - - - - 4208.5 3945.3 3652.6 3334.0 2992.8 2571.3 2216.9 1718.7406 x - - - - - - - - 4774.1 4508.9 4217.9 3903.9 3569.4 3185.1 2447.3450 x - - - - - - - - 5467.7 5222.9 4953.0 4660.0 4346.3 4014.0 3222.0

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

1219 198.4 269.1 420.9 498.7 743.4 911.2 1110.6

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 49: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3a(metric)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of

Web Width Thicknesshw bf tf

(mm) (mm) (mm) 1500 2000 2500 3000 3500 4000 5000 6000 7000 8000 9000 10000 11000 12000 14000a b c d e f g h i j k l m n o p q r s

Metric

Unbraced Length (mm)

Flange Factored Moment Resistance Mr' (kN m)

1500 127 x 6 - 373.8 337.7 293.6 237.8 182.3 117.0 81.6 60.2 46.3 36.8 30.0 25.0 21.1 15.8152 x - - 378.3 337.3 288.9 227.2 145.8 101.6 74.9 57.6 45.7 37.2 31.0 26.2 19.5152 x 8 - - 552.7 506.9 452.8 390.5 253.2 176.5 130.3 100.3 79.7 65.0 54.1 45.8 34.3152 x 10 - - 663.6 608.7 544.1 469.8 305.4 213.3 157.7 121.7 97.0 79.3 66.2 56.2 42.3178 x - - - 765.7 710.2 646.2 483.3 337.0 248.8 191.6 152.3 124.3 103.5 87.7 65.6152 x 13 - - 885.5 813.0 727.8 630.0 412.1 289.0 214.8 166.6 133.5 109.8 92.2 78.9 60.1178 x - - - 1022.0 948.5 864.2 650.5 455.0 337.2 260.7 208.2 170.6 142.8 121.6 92.0203 x - - - - 1158.2 1084.0 907.3 675.4 499.5 385.4 307.0 251.0 209.5 178.0 133.9152 x 19 - - 1331.3 1224.7 1100.4 958.9 637.8 452.1 340.0 267.1 216.9 180.9 154.1 133.6 104.6203 x 16 - - - - 1449.5 1357.7 1139.8 854.7 634.3 491.2 393.0 322.7 270.7 231.0 175.5203 x 19 - - - - 1741.8 1633.0 1375.6 1040.3 775.1 602.8 484.6 399.9 337.1 289.2 222.0254 x - - - - - 2250.6 2041.2 1789.0 1485.2 1149.1 918.6 753.6 631.3 538.3 408.1203 x 25 - - - - 2329.8 2188.8 1858.4 1434.1 1078.3 846.8 687.6 573.3 488.3 423.2 331.4254 x - - - - - 3007.8 2735.9 2411.7 2040.5 1589.8 1280.3 1058.5 894.0 768.5 592.4279 x - - - - - - 3152.9 2854.3 2509.9 2088.9 1677.5 1382.8 1164.4 997.9 764.5305 x - - - - - - 3559.6 3283.1 2963.1 2602.3 2151.2 1769.1 1486.0 1270.3 968.2254 x 32 - - - - - 3769.9 3440.6 3052.5 2612.7 2074.3 1684.0 1403.8 1195.4 1035.9 810.9330 x 25 - - - - - - 3958.2 3701.0 3402.4 3064.7 2690.6 2222.9 1863.4 1589.6 1206.4356 x - - - - - - - 4110.0 3830.3 3513.3 3160.9 2750.1 2301.3 1959.7 1482.0305 x 32 - - - - - - 4463.3 4128.7 3745.2 3317.6 2795.8 2314.4 1957.2 1684.5 1301.6406 x 25 - - - - - - - - 4659.6 4377.5 4062.7 3716.8 3341.5 2868.3 2156.6356 x 32 - - - - - - - 5155.1 4816.8 4436.6 4018.0 3564.3 2999.3 2568.7 1965.3406 x - - - - - - - - 5846.0 5504.9 5127.2 4715.5 4272.4 3727.7 2830.9450 x - - - - - - - - 6704.6 6391.9 6044.2 5663.6 5252.4 4812.8 3756.7

Depth WT0 WTA WTB WTC WTF WTH WTKaa bb cc dd ee ff gg hh

1500 204.4 290.1 433.2 577.8 749.5 858.8 1016.5

Factored Shear Resistance Vr (kN)

SIN Properties - v13 | 2019-08-27

Page 50: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

WT_ 333/127x6 13.1 5.0 x 0.250 - - 56.9 49.0 39.2 29.6 23.3 15.9 11.1 8.4 6.8 5.6 4.8 4.2WT_ 333/152x6 6.0 x - - 63.4 55.9 47.2 36.4 28.6 19.4 13.4 10.1 8.1 6.7 5.7 5.0WT_ 333/152x8 6.0 x 0.313 - - 92.3 84.2 74.7 64.0 51.0 34.9 24.5 18.6 15.0 12.5 10.8 9.4

WT_ 333/152x10 6.0 x 0.375 - - 111.2 101.8 91.1 79.2 64.8 45.2 32.3 25.0 20.3 17.2 14.9 13.1WT_ 333/178x10 7.0 x - - - 126.8 117.1 106.3 94.5 67.5 47.4 36.1 29.1 24.4 20.9 18.4WT_ 333/152x13 6.0 x 0.500 - - 149.5 138.2 125.6 112.2 97.4 70.0 51.5 40.8 33.8 28.9 25.2 22.4WT_ 333/178x13 7.0 x - - - 170.8 159.2 146.6 133.2 102.3 74.1 57.9 47.5 40.4 35.1 31.1WT_ 333/203x13 8.0 x - - - - 192.0 180.2 167.5 140.3 102.4 79.1 64.4 54.3 47.0 41.5WT_ 333/152x19 6.0 x 0.750 - - - 214.7 200.3 185.6 170.7 138.2 105.3 85.3 71.9 62.1 54.8 49.0WT_ 333/203x16 8.0 x 0.625 - - - - 243.2 230.0 216.2 187.4 146.7 115.4 95.2 81.2 70.8 62.8WT_ 333/203x19 8.0 x 0.750 - - - - 295.5 281.6 267.1 237.5 199.9 159.3 132.7 113.8 99.7 88.8WT_ 333/254x19 10.0 x - - - - - - 362.5 333.9 296.9 259.5 216.7 184.3 160.5 142.2WT_ 333/203x25 8.0 x 1.000 - - - - - 388.7 373.7 343.7 306.5 269.8 227.5 196.7 173.3 155.0WT_ 333/254x25 10.0 x - - - - - - 497.0 467.1 429.6 392.4 355.6 314.2 275.7 245.8WT_ 333/279x25 11.0 x - - - - - - - 528.8 491.3 453.9 416.8 380.2 337.1 300.0WT_ 333/305x25 12.0 x - - - - - - - 590.5 553.0 515.5 478.3 441.4 404.8 360.3WT_ 333/254x32 10.0 x 1.250 - - - - - - - 605.9 568.5 531.5 495.0 458.8 422.9 378.8WT_ 333/330x25 13.0 x 1.000 - - - - - - - 652.0 614.8 577.2 539.8 502.7 465.9 426.9WT_ 333/356x25 14.0 x - - - - - - - - 676.5 639.0 601.5 564.2 527.2 490.5WT_ 333/305x32 12.0 x 1.250 - - - - - - - - 719.6 682.2 645.2 608.5 572.2 536.1WT_ 333/406x25 16.0 x 1.000 - - - - - - - - 799.7 762.4 724.9 687.4 650.1 613.0WT_ 333/356x32 14.0 x 1.250 - - - - - - - - 871.0 833.3 795.9 758.8 722.1 685.7WT_ 333/406x32 16.0 x - - - - - - - - - 984.6 946.9 909.6 872.5 835.7WT_ 333/450x32 17.7 x - - - - - - - - - 1114.6 1076.8 1039.2 1001.9 964.8

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

SIN Properties - v13 | 2019-08-27

Page 51: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 440/127x6 17.3 5.0 x 0.250 - - 74.8 63.9 49.8 37.2 29.0 19.4 13.2 9.8 7.7 6.3 5.3 4.6WT_ 440/152x6 6.0 x - - 83.4 73.2 61.0 46.0 35.8 23.8 16.1 11.8 9.2 7.5 6.3 5.5WT_ 440/152x8 6.0 x 0.313 - - 121.5 110.2 96.8 81.1 63.3 42.4 28.9 21.5 16.9 13.9 11.7 10.2

WT_ 440/152x10 6.0 x 0.375 - - 146.1 133.0 117.5 100.0 78.9 53.6 37.2 28.1 22.4 18.6 15.9 13.9WT_ 440/178x10 7.0 x - - - 166.4 152.7 137.1 119.7 81.5 55.7 41.5 32.7 26.9 22.8 19.8WT_ 440/152x13 6.0 x 0.500 - - 195.9 179.5 160.6 139.8 114.5 79.9 57.1 44.2 36.0 30.4 26.4 23.3WT_ 440/178x13 7.0 x - - - 223.4 206.4 187.4 166.7 119.3 83.8 64.0 51.6 43.2 37.2 32.6WT_ 440/203x13 8.0 x - - - - 250.7 233.3 214.2 170.2 118.0 89.0 71.0 59.0 50.4 44.0WT_ 440/152x19 6.0 x 0.750 - - - 276.6 253.5 229.0 203.8 150.0 111.8 89.2 74.3 63.8 56.0 49.9WT_ 440/203x16 8.0 x 0.625 - - - - 316.3 296.3 274.7 228.0 164.1 126.2 102.3 86.1 74.3 65.5WT_ 440/203x19 8.0 x 0.750 - - - - 383.3 361.3 337.9 288.6 218.7 170.8 140.1 118.9 103.4 91.6WT_ 440/254x19 10.0 x - - - - - 489.5 468.3 422.4 360.8 289.5 234.0 196.3 169.1 148.7WT_ 440/203x25 8.0 x 1.000 - - - - 521.0 496.6 471.3 419.5 354.6 282.7 235.5 202.1 177.2 157.8WT_ 440/254x25 10.0 x - - - - - - 639.2 589.1 524.4 459.2 384.5 327.1 284.9 252.6WT_ 440/279x25 11.0 x - - - - - - 722.3 673.4 609.4 544.3 476.5 403.6 350.3 309.8WT_ 440/305x25 12.0 x - - - - - - - 757.2 694.1 629.3 564.1 490.2 424.1 374.0WT_ 440/254x32 10.0 x 1.250 - - - - - - 816.3 764.4 698.9 633.8 569.4 494.2 433.1 385.8WT_ 440/330x25 13.0 x 1.000 - - - - - - - 840.6 778.6 714.3 649.2 584.0 506.7 445.6WT_ 440/356x25 14.0 x - - - - - - - 923.6 862.7 799.1 734.2 669.0 598.7 525.1WT_ 440/305x32 12.0 x 1.250 - - - - - - - 969.2 904.2 838.7 773.6 709.0 638.4 566.4WT_ 440/406x25 16.0 x 1.000 - - - - - - - - 1030.0 968.0 904.0 839.1 773.9 709.2WT_ 440/356x32 14.0 x 1.250 - - - - - - - - 1109.2 1043.9 978.5 913.3 848.6 784.3WT_ 440/406x32 16.0 x - - - - - - - - 1313.7 1249.1 1183.7 1118.3 1053.1 988.2WT_ 440/450x32 17.7 x - - - - - - - - - 1424.9 1359.9 1294.4 1229.0 1163.8

SIN Properties - v13 | 2019-08-27

Page 52: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 500/127x6 19.7 5.0 x 0.250 - - 84.8 72.2 55.9 41.6 32.4 21.4 14.4 10.6 8.2 6.7 5.6 4.8WT_ 500/152x6 6.0 x - - 94.6 82.9 68.8 51.6 40.0 26.4 17.6 12.9 10.0 8.1 6.7 5.8WT_ 500/152x8 6.0 x 0.313 - - 137.8 124.8 109.3 90.5 70.4 46.8 31.5 23.2 18.1 14.7 12.4 10.7

WT_ 500/152x10 6.0 x 0.375 - - 165.7 150.5 132.4 111.5 87.2 58.6 40.2 30.0 23.7 19.5 16.6 14.4WT_ 500/178x10 7.0 x - - - 188.6 172.7 154.5 134.0 89.8 60.7 44.7 35.0 28.5 24.0 20.7WT_ 500/152x13 6.0 x 0.500 - - 222.0 202.7 180.3 155.3 124.8 86.0 60.6 46.4 37.5 31.5 27.1 23.8WT_ 500/178x13 7.0 x - - - 253.0 233.0 210.4 185.5 129.5 89.8 67.8 54.2 45.0 38.5 33.6WT_ 500/203x13 8.0 x - - - - 283.7 263.2 240.4 186.1 127.4 95.1 75.1 61.9 52.5 45.6WT_ 500/152x19 6.0 x 0.750 - - 336.7 311.2 282.9 252.6 219.2 157.5 115.9 91.7 76.0 64.9 56.8 50.5WT_ 500/203x16 8.0 x 0.625 - - - - 357.4 333.5 307.4 249.9 174.9 133.0 106.9 89.3 76.6 67.2WT_ 500/203x19 8.0 x 0.750 - - - - 432.5 405.9 377.2 315.8 230.5 178.1 145.0 122.3 105.8 93.4WT_ 500/254x19 10.0 x - - - - - 553.1 527.7 471.5 394.8 305.9 245.0 204.0 174.7 152.9WT_ 500/203x25 8.0 x 1.000 - - - - 586.6 556.3 524.6 458.9 367.8 290.8 240.7 205.6 179.7 159.7WT_ 500/254x25 10.0 x - - - - - 747.8 718.4 655.8 573.6 485.5 396.6 335.5 290.9 257.1WT_ 500/279x25 11.0 x - - - - - - 813.9 753.2 672.4 589.1 493.8 415.6 359.0 316.2WT_ 500/305x25 12.0 x - - - - - - - 849.9 770.8 688.3 604.5 506.9 436.1 383.0WT_ 500/254x32 10.0 x 1.250 - - - - - - 916.0 850.1 766.0 681.8 589.1 503.0 439.4 390.4WT_ 500/330x25 13.0 x 1.000 - - - - - - - 945.9 868.6 787.2 703.8 610.1 523.0 457.8WT_ 500/356x25 14.0 x - - - - - - - 1041.1 965.8 885.6 803.0 719.3 620.1 541.1WT_ 500/305x32 12.0 x 1.250 - - - - - - - 1086.2 1003.4 919.2 835.0 749.9 651.1 575.8WT_ 500/406x25 16.0 x 1.000 - - - - - - - - 1158.4 1081.2 1000.5 917.7 834.0 735.6WT_ 500/356x32 14.0 x 1.250 - - - - - - - - 1240.0 1156.7 1072.4 988.1 904.2 805.0WT_ 500/406x32 16.0 x - - - - - - - - 1475.3 1393.5 1309.9 1225.6 1141.3 1057.3WT_ 500/450x32 17.7 x - - - - - - - - - 1596.0 1513.4 1429.5 1345.2 1260.9

SIN Properties - v13 | 2019-08-27

Page 53: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 610/127x6 24.0 5.0 x 0.250 - - 103.2 87.6 67.2 49.8 38.5 25.3 16.8 12.1 9.3 7.5 6.2 5.3WT_ 610/152x6 6.0 x - - 115.1 100.6 83.1 61.8 47.8 31.2 20.6 14.9 11.4 9.1 7.5 6.3WT_ 610/152x8 6.0 x 0.313 - - 167.8 151.6 132.2 108.2 83.8 55.0 36.6 26.5 20.4 16.4 13.6 11.6

WT_ 610/152x10 6.0 x 0.375 - - 201.6 182.6 159.8 132.2 102.8 68.2 45.9 33.7 26.3 21.4 18.0 15.4WT_ 610/178x10 7.0 x - - - 229.3 209.5 186.4 160.4 105.5 70.3 51.0 39.4 31.7 26.4 22.5WT_ 610/152x13 6.0 x 0.500 - - 269.8 245.3 216.5 183.8 144.5 97.8 67.6 50.8 40.5 33.5 28.6 25.0WT_ 610/178x13 7.0 x - - - 307.1 281.7 252.6 220.1 149.1 101.5 75.4 59.3 48.6 41.1 35.6WT_ 610/203x13 8.0 x - - - - 344.1 318.0 288.6 216.4 145.7 107.0 83.4 67.8 56.9 48.9WT_ 610/152x19 6.0 x 0.750 - - 408.0 374.6 336.7 295.1 245.2 172.5 124.3 96.9 79.4 67.3 58.4 51.7WT_ 610/203x16 8.0 x 0.625 - - - - 432.7 401.6 367.2 285.7 196.0 146.5 116.1 95.7 81.4 70.7WT_ 610/203x19 8.0 x 0.750 - - - - 522.6 487.4 448.9 363.5 253.9 192.9 154.8 129.2 110.8 97.1WT_ 610/254x19 10.0 x - - - - - 669.6 636.2 561.1 454.4 338.3 267.0 219.6 186.2 161.5WT_ 610/203x25 8.0 x 1.000 - - - - 706.5 665.0 620.8 527.1 394.6 307.2 251.5 213.1 185.0 163.7WT_ 610/254x25 10.0 x - - - - - 902.6 862.8 776.0 658.8 522.8 421.4 352.7 303.4 266.4WT_ 610/279x25 11.0 x - - - - - - 981.2 898.2 784.3 660.9 528.9 440.2 376.9 329.6WT_ 610/305x25 12.0 x - - - - - - 1098.2 1018.8 908.5 790.6 653.4 540.7 460.8 401.5WT_ 610/254x32 10.0 x 1.250 - - - - - 1141.2 1097.1 1003.4 880.7 752.6 615.7 521.4 452.6 400.2WT_ 610/330x25 13.0 x 1.000 - - - - - - - 1138.0 1031.3 916.2 796.2 655.5 556.2 482.8WT_ 610/356x25 14.0 x - - - - - - - 1255.9 1153.0 1040.6 922.4 785.5 663.7 574.0WT_ 610/305x32 12.0 x 1.250 - - - - - - - 1298.3 1179.9 1056.9 932.1 786.4 677.4 595.4WT_ 610/406x25 16.0 x 1.000 - - - - - - - - 1392.8 1286.4 1172.7 1054.1 918.7 789.2WT_ 610/356x32 14.0 x 1.250 - - - - - - - 1589.1 1476.0 1356.2 1233.0 1108.3 961.9 840.2WT_ 610/406x32 16.0 x - - - - - - - - 1768.9 1653.2 1532.5 1409.2 1284.5 1140.6WT_ 610/450x32 17.7 x - - - - - - - - 2017.6 1905.9 1788.0 1666.4 1542.7 1418.0

SIN Properties - v13 | 2019-08-27

Page 54: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 750/127x6 29.5 5.0 x 0.250 - - 126.7 107.3 81.7 60.4 46.6 30.3 19.9 14.2 10.8 8.6 7.0 5.9WT_ 750/152x6 6.0 x - - 141.5 123.4 101.5 75.1 57.9 37.6 24.6 17.5 13.3 10.5 8.6 7.2WT_ 750/152x8 6.0 x 0.313 - - 206.2 186.0 161.7 131.1 101.1 65.9 43.3 31.0 23.6 18.8 15.4 13.0

WT_ 750/152x10 6.0 x 0.375 - - 247.7 223.8 195.0 159.4 123.3 80.9 53.7 38.9 29.9 24.0 19.9 16.9WT_ 750/178x10 7.0 x - - - 281.6 256.6 227.5 193.5 126.2 83.1 59.6 45.4 36.1 29.7 25.1WT_ 750/152x13 6.0 x 0.500 - - 331.0 300.0 263.1 219.1 170.8 113.8 77.2 57.0 44.7 36.6 30.8 26.6WT_ 750/178x13 7.0 x - - - 376.6 344.3 306.9 264.9 175.5 117.5 85.8 66.5 53.9 45.0 38.6WT_ 750/203x13 8.0 x - - - - 421.7 388.4 350.8 256.7 170.4 123.3 94.8 76.1 63.1 53.7WT_ 750/152x19 6.0 x 0.750 - - 499.5 456.1 405.7 349.5 280.9 193.5 136.4 104.4 84.4 70.8 61.0 53.6WT_ 750/203x16 8.0 x 0.625 - - - - 529.4 489.3 444.4 334.0 225.1 165.5 129.1 105.1 88.3 76.0WT_ 750/203x19 8.0 x 0.750 - - - - 638.4 592.2 541.0 418.8 286.7 213.9 169.1 139.3 118.2 102.6WT_ 750/254x19 10.0 x - - - - - 819.1 775.7 676.2 523.5 383.5 298.2 242.0 202.7 174.1WT_ 750/203x25 8.0 x 1.000 - - - - 860.2 804.1 743.3 610.8 433.0 331.2 267.5 224.2 193.1 169.6WT_ 750/254x25 10.0 x - - - - - 1101.3 1048.0 929.1 763.5 576.1 457.4 378.1 321.9 280.2WT_ 750/279x25 11.0 x - - - - - - 1195.9 1083.5 924.7 735.2 579.4 476.0 403.1 349.4WT_ 750/305x25 12.0 x - - - - - - 1341.5 1235.1 1083.1 916.2 722.0 589.6 496.9 428.8WT_ 750/254x32 10.0 x 1.250 - - - - - 1389.1 1328.4 1196.2 1018.0 811.5 654.9 548.7 472.3 414.8WT_ 750/330x25 13.0 x 1.000 - - - - - - - 1384.4 1239.0 1077.7 886.8 720.4 604.2 519.3WT_ 750/356x25 14.0 x - - - - - - - 1531.6 1392.5 1236.7 1068.9 869.7 726.3 621.8WT_ 750/305x32 12.0 x 1.250 - - - - - - 1689.9 1568.7 1400.7 1221.6 1014.0 840.0 716.5 624.7WT_ 750/406x25 16.0 x 1.000 - - - - - - - - 1693.4 1548.5 1390.1 1221.7 1018.7 866.0WT_ 750/356x32 14.0 x 1.250 - - - - - - - 1933.0 1776.0 1605.0 1425.2 1218.9 1030.7 892.1WT_ 750/406x32 16.0 x - - - - - - - - 2144.2 1982.0 1809.0 1628.8 1425.3 1225.4WT_ 750/450x32 17.7 x - - - - - - - - 2455.2 2300.8 2134.1 1958.8 1777.6 1570.3

SIN Properties - v13 | 2019-08-27

Page 55: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 900/127x6 35.4 5.0 x 0.250 - - 151.9 128.4 97.4 71.9 55.3 35.8 23.4 16.6 12.5 9.8 8.0 6.7WT_ 900/152x6 6.0 x - - 169.6 147.8 121.3 89.5 68.8 44.5 28.9 20.5 15.4 12.0 9.8 8.1WT_ 900/152x8 6.0 x 0.313 - - 247.2 222.8 193.3 155.8 119.9 77.8 50.8 36.1 27.2 21.4 17.4 14.6

WT_ 900/152x10 6.0 x 0.375 - - 296.9 267.9 232.8 188.8 145.6 94.9 62.4 44.7 34.0 27.0 22.2 18.7WT_ 900/178x10 7.0 x - - - 337.4 307.1 271.6 229.2 148.7 97.2 69.1 52.2 41.1 33.5 28.1WT_ 900/152x13 6.0 x 0.500 - - 396.6 358.7 313.2 257.4 199.7 131.7 88.0 64.2 49.7 40.1 33.5 28.7WT_ 900/178x13 7.0 x - - - 451.0 411.4 365.4 312.4 204.6 135.4 97.7 74.9 59.9 49.6 42.1WT_ 900/203x13 8.0 x - - - 539.7 504.8 464.0 417.6 300.9 197.8 141.7 107.7 85.6 70.3 59.3WT_ 900/152x19 6.0 x 0.750 - - 597.5 543.5 479.9 407.9 321.2 217.7 150.6 113.5 90.4 75.0 64.1 55.9WT_ 900/203x16 8.0 x 0.625 - - - - 633.0 583.4 527.3 387.5 257.9 187.1 144.1 116.0 96.4 82.2WT_ 900/203x19 8.0 x 0.750 - - - - 762.4 704.6 639.9 480.9 324.2 238.3 185.9 151.3 127.1 109.4WT_ 900/254x19 10.0 x - - - - - 979.3 925.2 799.9 601.1 434.9 334.1 268.1 222.3 189.1WT_ 900/203x25 8.0 x 1.000 - - - - 1024.9 953.2 874.2 691.3 478.0 359.8 286.7 237.7 202.9 177.0WT_ 900/254x25 10.0 x - - - - - 1314.1 1246.4 1092.7 864.1 638.1 499.9 408.4 344.3 297.2WT_ 900/279x25 11.0 x - - - - - - 1425.9 1281.9 1073.9 821.0 638.6 518.5 434.6 373.3WT_ 900/305x25 12.0 x - - - - - - 1602.1 1466.9 1269.6 1036.9 801.7 647.2 539.8 461.5WT_ 900/254x32 10.0 x 1.250 - - - - - 1654.4 1575.6 1400.6 1158.4 881.6 702.1 581.9 496.5 433.0WT_ 900/330x25 13.0 x 1.000 - - - - - - - 1648.3 1461.2 1249.0 991.4 796.3 661.0 562.9WT_ 900/356x25 14.0 x - - - - - - - 1826.8 1649.0 1445.9 1209.8 967.5 799.7 678.3WT_ 900/305x32 12.0 x 1.250 - - - - - - 2014.8 1857.6 1634.2 1390.1 1104.3 904.3 763.8 660.4WT_ 900/406x25 16.0 x 1.000 - - - - - - - - 2015.4 1829.0 1621.7 1382.6 1134.7 956.0WT_ 900/356x32 14.0 x 1.250 - - - - - - - 2300.9 2095.8 1867.1 1621.8 1329.8 1113.0 954.8WT_ 900/406x32 16.0 x - - - - - - - - 2545.4 2332.0 2099.7 1853.5 1557.1 1326.5WT_ 900/450x32 17.7 x - - - - - - - - 2923.5 2722.5 2501.4 2264.8 2016.6 1715.0

SIN Properties - v13 | 2019-08-27

Page 56: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 1000/127x6 39.4 5.0 x 0.250 - - 168.7 142.5 107.9 79.6 61.2 39.5 25.7 18.2 13.6 10.7 8.6 7.2WT_ 1000/152x6 6.0 x - - 188.4 164.1 134.4 99.1 76.1 49.1 31.9 22.5 16.8 13.1 10.6 8.8WT_ 1000/152x8 6.0 x 0.313 - - 274.6 247.4 214.4 172.4 132.6 85.7 55.8 39.5 29.6 23.2 18.8 15.7

WT_ 1000/152x10 6.0 x 0.375 - - 329.7 297.3 258.1 208.5 160.6 104.4 68.3 48.7 36.8 29.1 23.8 20.0WT_ 1000/178x10 7.0 x - - - 374.7 340.8 301.1 253.3 163.9 106.7 75.6 56.8 44.6 36.2 30.2WT_ 1000/152x13 6.0 x 0.500 - - 440.3 397.8 346.7 283.3 219.3 143.9 95.5 69.2 53.2 42.7 35.4 30.1WT_ 1000/178x13 7.0 x - - - 500.6 456.2 404.5 343.9 224.3 147.7 106.0 80.7 64.2 52.8 44.6WT_ 1000/203x13 8.0 x - - - 599.3 560.2 514.4 462.2 330.8 216.5 154.3 116.7 92.2 75.3 63.2WT_ 1000/152x19 6.0 x 0.750 - - 663.0 601.9 529.6 445.9 348.9 234.5 160.6 119.9 94.8 78.1 66.3 57.6WT_ 1000/203x16 8.0 x 0.625 - - - - 702.2 646.2 582.8 424.0 280.4 202.1 154.7 123.7 102.2 86.7WT_ 1000/203x19 8.0 x 0.750 - - - - 845.2 779.8 706.2 523.5 350.1 255.4 197.7 159.9 133.5 114.3WT_ 1000/254x19 10.0 x - - - - - 1086.2 1025.1 882.7 654.3 470.5 359.2 286.4 236.2 199.8WT_ 1000/203x25 8.0 x 1.000 - - - - 1134.9 1052.8 961.7 744.6 509.7 380.3 300.6 247.6 210.1 182.5WT_ 1000/254x25 10.0 x - - - - - 1456.2 1379.0 1202.2 930.7 681.8 530.1 430.1 360.4 309.5WT_ 1000/279x25 11.0 x - - - - - - 1579.5 1414.6 1173.6 881.0 680.4 548.7 457.2 390.6WT_ 1000/305x25 12.0 x - - - - - - 1776.1 1621.8 1394.4 1116.9 857.7 688.0 570.4 485.1WT_ 1000/254x32 10.0 x 1.250 - - - - - 1831.5 1740.7 1536.9 1249.5 931.6 736.1 606.0 514.2 446.3WT_ 1000/330x25 13.0 x 1.000 - - - - - - - 1824.7 1609.8 1363.5 1064.4 849.8 701.4 594.0WT_ 1000/356x25 14.0 x - - - - - - - 2023.9 1820.5 1585.7 1303.0 1036.0 851.7 718.6WT_ 1000/305x32 12.0 x 1.250 - - - - - - 2231.8 2050.4 1789.5 1499.3 1168.6 950.5 798.0 686.4WT_ 1000/406x25 16.0 x 1.000 - - - - - - - - 2230.5 2016.6 1776.5 1489.1 1216.0 1019.4WT_ 1000/356x32 14.0 x 1.250 - - - - - - - 2546.7 2309.2 2041.3 1749.2 1408.6 1172.0 1000.1WT_ 1000/406x32 16.0 x - - - - - - - - 2813.4 2565.5 2292.6 1999.1 1650.8 1398.8WT_ 1000/450x32 17.7 x - - - - - - - - 3236.2 3004.1 2746.2 2467.5 2156.4 1817.9

SIN Properties - v13 | 2019-08-27

Page 57: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 1219/127x6 48.0 5.0 x 0.250 - - 205.5 173.5 131.0 96.5 74.1 47.7 30.9 21.7 16.2 12.6 10.1 8.3WT_ 1219/152x6 6.0 x - - 229.6 199.8 163.2 120.2 92.2 59.4 38.3 26.9 20.0 15.5 12.5 10.3WT_ 1219/152x8 6.0 x 0.313 - - 334.6 301.2 260.7 208.9 160.4 103.4 66.9 47.1 35.1 27.4 22.0 18.2

WT_ 1219/152x10 6.0 x 0.375 - - 401.7 361.9 313.6 252.0 193.8 125.3 81.5 57.6 43.2 33.9 27.5 22.8WT_ 1219/178x10 7.0 x - - - 456.4 414.8 365.8 306.3 197.5 127.9 90.1 67.2 52.4 42.2 34.9WT_ 1219/152x13 6.0 x 0.500 - - 536.2 483.8 420.4 340.6 262.7 171.1 112.4 80.5 61.2 48.6 39.9 33.6WT_ 1219/178x13 7.0 x - - - 609.4 554.6 490.4 413.7 268.3 175.2 124.5 93.9 74.0 60.3 50.4WT_ 1219/203x13 8.0 x - - - 730.0 681.8 625.2 560.5 397.0 258.1 182.6 137.0 107.3 86.9 72.3WT_ 1219/152x19 6.0 x 0.750 - - 806.5 730.3 639.1 528.9 411.3 272.8 183.7 135.0 105.2 85.5 71.8 61.8WT_ 1219/203x16 8.0 x 0.625 - - - 913.5 854.0 784.4 705.0 505.3 331.0 236.2 178.9 141.5 115.8 97.2WT_ 1219/203x19 8.0 x 0.750 - - - - 1027.1 945.1 852.1 619.0 409.0 294.6 225.3 179.9 148.6 125.9WT_ 1219/254x19 10.0 x - - - - - 1320.9 1244.6 1065.1 773.7 551.0 416.4 328.7 268.4 224.9WT_ 1219/203x25 8.0 x 1.000 - - - - 1376.6 1271.9 1154.5 865.7 582.9 427.9 333.4 271.1 227.5 195.7WT_ 1219/254x25 10.0 x - - - - - 1768.3 1670.4 1443.2 1082.2 782.2 600.3 481.2 398.7 338.9WT_ 1219/279x25 11.0 x - - - - - 2007.1 1916.9 1706.5 1393.4 1018.1 776.9 619.3 510.4 431.7WT_ 1219/305x25 12.0 x - - - - - - 2158.1 1962.4 1669.2 1298.6 986.2 782.5 641.9 540.6WT_ 1219/254x32 10.0 x 1.250 - - - - - 2220.6 2103.6 1836.2 1428.3 1048.3 816.4 663.6 556.8 478.7WT_ 1219/330x25 13.0 x 1.000 - - - - - - - 2212.2 1936.9 1615.8 1231.3 973.0 795.0 667.0WT_ 1219/356x25 14.0 x - - - - - - - 2456.9 2197.8 1893.9 1515.0 1193.1 971.6 812.3WT_ 1219/305x32 12.0 x 1.250 - - - - - - 2708.1 2474.4 2130.6 1714.0 1318.3 1059.1 879.2 748.7WT_ 1219/406x25 16.0 x 1.000 - - - - - - - - 2703.3 2429.5 2117.7 1731.5 1402.1 1165.7WT_ 1219/356x32 14.0 x 1.250 - - - - - - - 3086.4 2778.5 2423.8 1999.7 1592.0 1310.4 1107.1WT_ 1219/406x32 16.0 x - - - - - - - - 3402.3 3078.6 2716.1 2285.3 1868.3 1568.1WT_ 1219/450x32 17.7 x - - - - - - - - 3923.1 3623.0 3284.1 2912.0 2461.9 2056.8

SIN Properties - v13 | 2019-08-27

Page 58: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.3b(imperial)

SIN Beam Bending Capacity - Laterally UnsupportedDepth of Depth

Web of Web Width Thicknesshw bf tf

in in in 5 6 8 10 12 14 16 20 25 30 35 40 45 50- a b c d e f g h i j k l m n o p q r

ImperialFlange Factored Moment Resistance Mr' (kip ft)

Unbraced Length (ft)

WT_ 1500/127x6 59.1 5.0 x 0.250 - - 252.7 213.1 160.7 118.2 90.7 58.3 37.6 26.3 19.5 15.1 12.1 9.9WT_ 1500/152x6 6.0 x - - 282.3 245.6 200.2 147.3 113.0 72.6 46.7 32.7 24.2 18.7 15.0 12.3WT_ 1500/152x8 6.0 x 0.313 - - 411.4 370.3 320.1 255.8 196.2 126.2 81.4 57.0 42.3 32.8 26.3 21.6

WT_ 1500/152x10 6.0 x 0.375 - - 493.9 444.7 384.8 308.1 236.6 152.5 98.6 69.4 51.7 40.2 32.4 26.7WT_ 1500/178x10 7.0 x - - - 561.1 509.6 448.9 374.5 240.9 155.4 109.0 80.9 62.7 50.3 41.3WT_ 1500/152x13 6.0 x 0.500 - - 659.1 594.0 515.0 414.7 319.2 206.7 134.7 95.6 71.9 56.5 46.0 38.4WT_ 1500/178x13 7.0 x - - - 748.9 680.8 600.9 503.9 325.4 211.1 149.0 111.5 87.1 70.4 58.4WT_ 1500/203x13 8.0 x - - - 897.5 837.7 767.4 686.7 482.9 312.4 219.7 163.8 127.4 102.5 84.6WT_ 1500/152x19 6.0 x 0.750 - - 990.6 895.1 780.0 637.4 493.3 323.7 215.0 155.6 119.6 96.0 79.7 67.8WT_ 1500/203x16 8.0 x 0.625 - - - 1122.8 1048.7 961.8 862.3 611.3 397.5 281.4 211.2 165.6 134.2 111.7WT_ 1500/203x19 8.0 x 0.750 - - - 1348.5 1260.5 1157.5 1040.0 744.3 487.1 347.2 262.6 207.5 169.5 142.2WT_ 1500/254x19 10.0 x - - - - - 1621.9 1526.3 1300.1 930.3 657.5 492.8 385.7 312.1 259.4WT_ 1500/203x25 8.0 x 1.000 - - - - 1686.9 1553.8 1403.1 1026.9 681.7 493.3 379.1 304.2 252.3 214.7WT_ 1500/254x25 10.0 x - - - - - 2168.8 2044.8 1753.9 1283.6 917.4 696.0 551.6 452.0 380.3WT_ 1500/279x25 11.0 x - - - - - 2463.9 2350.1 2082.3 1677.8 1201.5 907.3 715.8 583.9 489.0WT_ 1500/305x25 12.0 x - - - - - - 2648.2 2400.2 2023.9 1540.3 1158.9 910.7 740.0 617.4WT_ 1500/254x32 10.0 x 1.250 - - - - - 2720.2 2570.0 2221.9 1669.8 1208.1 928.0 744.6 617.5 525.3WT_ 1500/330x25 13.0 x 1.000 - - - - - - - 2709.9 2358.3 1938.8 1454.2 1139.2 922.6 767.2WT_ 1500/356x25 14.0 x - - - - - - - 3012.8 2683.3 2291.9 1797.0 1404.0 1133.9 940.3WT_ 1500/305x32 12.0 x 1.250 - - - - - - 3319.7 3019.5 2570.4 2003.7 1522.9 1209.3 992.9 836.8WT_ 1500/406x25 16.0 x 1.000 - - - - - - - - 3310.6 2961.1 2558.8 2053.8 1651.5 1363.3WT_ 1500/356x32 14.0 x 1.250 - - - - - - - 3779.7 3382.3 2916.8 2337.7 1842.3 1501.3 1256.0WT_ 1500/406x32 16.0 x - - - - - - - - 4159.1 3739.4 3262.1 2671.6 2164.7 1800.9WT_ 1500/450x32 17.7 x - - - - - - - - 4805.2 4419.0 3977.1 3485.2 2874.8 2382.4

SIN Properties - v13 | 2019-08-27

Page 59: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.4

Constantsν 0.3 Poissons RatioE 200 GPa Youngs ModulasFy web 350 MPa Web Material Yield Strengthφs 0.75 Material Resistance Factor (Per CSA S136)

Shear CapacityDesignation Web tw Shear Shear

Depth Distortion τcr.l λcr.l χcr.l τcr.g λcr.g χcr.g ResistanceArea Vr

mm mm mm2 MPa MPa kNa b c d e f g h i j k

WTA333 333 1.90 550 901.6 0.473 0.84 2369.4 0.292 1.00 80.2WTB333 333 2.66 770 1508.4 0.366 0.91 2576.8 0.280 1.00 121.8WTC333 333 3.04 857 1867.9 0.329 0.94 3171.4 0.252 1.00 143.5WTF333 333 4.18 1178 3126.3 0.254 1.00 2928.9 0.263 1.00 210.0WTH333 333 4.94 1392 4135.7 0.221 1.00 2809.1 0.268 1.00 249.1WTK333 333 6.07 1713 5901.9 0.185 1.00 2667.1 0.275 1.00 306.5WTA440 440 1.90 727 789.0 0.506 0.82 1357.1 0.386 1.00 103.5WTB440 440 2.66 1018 1350.8 0.387 0.89 1475.9 0.370 1.00 158.3WTC440 440 3.04 1132 1677.6 0.347 0.92 1816.5 0.334 1.00 186.8WTF440 440 4.18 1556 2864.7 0.266 0.99 1677.6 0.347 1.00 274.7WTH440 440 4.94 1839 3826.5 0.230 1.00 1609.0 0.354 1.00 329.1WTK440 440 6.07 2263 5521.4 0.191 1.00 1527.6 0.364 1.00 405.0WTA500 500 1.90 826 747.0 0.520 0.81 1051.0 0.438 1.00 116.4WTB500 500 2.66 1157 1291.9 0.395 0.89 1143.0 0.420 1.00 178.7WTC500 500 3.04 1287 1606.5 0.355 0.92 1406.7 0.379 1.00 211.0WTF500 500 4.18 1768 2767.0 0.270 0.98 1299.1 0.394 1.00 311.0WTH500 500 4.94 2090 3711.0 0.233 1.00 1246.0 0.403 1.00 374.0WTK500 500 6.07 2572 5379.3 0.194 1.00 1183.0 0.413 1.00 460.2WTA610 610 1.90 1007 691.6 0.541 0.80 707.0 0.535 1.00 139.9WTB610 610 2.66 1410 1214.3 0.408 0.88 768.9 0.513 1.00 215.8WTC610 610 3.04 1569 1512.8 0.365 0.91 946.3 0.462 1.00 255.0WTF610 610 4.18 2156 2638.2 0.277 0.98 874.0 0.481 1.00 377.0WTH610 610 4.94 2548 3558.8 0.238 1.00 838.2 0.491 1.00 456.0WTK610 610 6.07 3136 5192.0 0.197 1.00 795.9 0.504 1.00 561.1WTA750 750 1.90 1239 644.2 0.560 0.79 467.1 0.658 1.00 169.9WTB750 750 2.66 1735 1148.0 0.420 0.87 508.0 0.631 1.00 263.2WTC750 750 3.04 1930 1432.7 0.376 0.90 625.2 0.569 1.00 311.3WTF750 750 4.18 2653 2528.2 0.283 0.97 577.4 0.592 1.00 461.5WTH750 750 4.94 3135 3428.7 0.243 1.00 553.8 0.604 1.00 561.0WTK750 750 6.07 3858 5032.0 0.200 1.00 525.8 0.620 1.00 690.3WTA900 900 1.90 1487 610.0 0.576 0.78 324.4 0.789 1.00 201.7WTB900 900 2.66 2082 1100.0 0.429 0.87 352.8 0.757 1.00 313.7WTC900 900 3.04 2316 1374.8 0.383 0.90 434.2 0.682 1.00 371.3WTF900 900 4.18 3183 2448.6 0.287 0.97 401.0 0.710 1.00 551.7WTH900 900 4.94 3762 3334.7 0.246 1.00 384.6 0.725 1.00 673.2WTK900 900 6.07 4630 4916.2 0.203 1.00 365.1 0.744 1.00 828.4

Local Buckling (EN) Global Buckling

SIN Beam ShearMetric

SIN Properties - v13 | 2019-08-27

Page 60: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.4

Constantsν 0.3 Poissons RatioE 200 GPa Youngs ModulasFy web 350 MPa Web Material Yield Strengthφs 0.75 Material Resistance Factor (Per CSA S136)

Shear CapacityDesignation Web tw Shear Shear

Depth Distortion τcr.l λcr.l χcr.l τcr.g λcr.g χcr.g ResistanceArea Vr

mm mm mm2 MPa MPa kNa b c d e f g h i j k

Local Buckling (EN) Global Buckling

SIN Beam ShearMetric

WTA1000 1000 1.90 1652 592.9 0.584 0.78 262.7 0.877 1.00 222.9WTB1000 1000 2.66 2314 1076.0 0.433 0.86 285.7 0.841 1.00 347.3WTC1000 1000 3.04 2573 1345.9 0.387 0.89 351.7 0.758 1.00 411.2WTF1000 1000 4.18 3537 2408.8 0.290 0.97 324.8 0.789 1.00 611.8WTH1000 1000 4.94 4180 3287.6 0.248 1.00 311.5 0.805 1.00 748.0WTK1000 1000 6.07 5144 4858.3 0.204 1.00 295.7 0.827 1.00 920.4WTA1219 1219 1.90 2014 565.1 0.598 0.77 176.8 1.069 0.91 269.1WTB1219 1219 2.66 2821 1037.2 0.441 0.86 192.2 1.025 0.97 420.9WTC1219 1219 3.04 3137 1299.0 0.394 0.89 236.6 0.924 1.00 498.7WTF1219 1219 4.18 4312 2344.4 0.294 0.96 218.5 0.962 1.00 743.4WTH1219 1219 4.94 5096 3211.5 0.251 1.00 209.6 0.982 1.00 911.2WTK1219 1219 6.07 6271 4764.6 0.206 1.00 199.0 1.008 0.99 1110.6WTA1500 1500 1.90 2478 541.5 0.611 0.76 116.8 1.315 0.67 290.1WTB1500 1500 2.66 3470 1004.1 0.449 0.85 127.0 1.261 0.72 433.2WTC1500 1500 3.04 3860 1259.0 0.401 0.88 156.3 1.137 0.84 577.8WTF1500 1500 4.18 5305 2289.3 0.297 0.96 144.3 1.183 0.79 749.5WTH1500 1500 4.94 6270 3146.5 0.253 1.00 138.4 1.208 0.77 858.8WTK1500 1500 6.07 7716 4684.6 0.208 1.00 131.4 1.240 0.74 1016.5

Physical PropertiesDesignation tw tw a3 w s Iz Dx Dz

ga mm mm mm mm mm4 kN m kN m

WT0 16 1.52 40 77.5 89 23250 0.056 60.0WTA 14 1.90 40 77.5 89 31050 0.109 80.1WTB 12 2.66 40 77.5 89 38850 0.299 100.3WTC 11 3.04 43 77.5 91.5 53900 0.439 139.1WTF 8 4.18 43 77.5 91.5 53900 1.141 139.1WTH 6 4.94 43 77.5 91.5 53900 1.883 139.1WTK 3 6.07 43 77.5 91.5 53900 3.509 139.1

SIN Properties - v13 | 2019-08-27

Page 61: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.4

Constantsν 0.3 Poissons RatioE 29008 ksi Youngs ModulasFy web 51 ksi Web Material Yield Strengthφs 0.75 Material Resistance Factor (Per CSA S136)

Shear CapacityDesignation Web t web Shear Shear

Depth Distortion τcr.l λcr.l χcr.l τcr.g λcr.g χcr.g ResistanceArea Vr

in in in2 ksi ksi kipa b c d e f g h i j k

WTA333 13.11 0.075 0.853 130.8 0.473 0.84 343.7 0.292 1.00 18.0WTB333 13.11 0.105 1.194 218.8 0.366 0.91 373.7 0.280 1.00 27.4WTC333 13.11 0.120 1.328 270.9 0.329 0.94 460.0 0.252 1.00 32.3WTF333 13.11 0.164 1.826 453.4 0.254 1.00 424.8 0.263 1.00 47.2WTH333 13.11 0.194 2.158 599.8 0.221 1.00 407.4 0.268 1.00 56.0WTK333 13.11 0.239 2.655 856.0 0.185 1.00 386.8 0.275 1.00 68.9WTA440 17.32 0.075 1.127 114.4 0.506 0.82 196.8 0.386 1.00 23.3WTB440 17.32 0.105 1.578 195.9 0.387 0.89 214.1 0.370 1.00 35.6WTC440 17.32 0.120 1.755 243.3 0.347 0.92 263.5 0.334 1.00 42.0WTF440 17.32 0.164 2.412 415.5 0.266 0.99 243.3 0.347 1.00 61.8WTH440 17.32 0.194 2.851 555.0 0.230 1.00 233.4 0.354 1.00 74.0WTK440 17.32 0.239 3.508 800.8 0.191 1.00 221.6 0.364 1.00 91.0WTA500 19.69 0.075 1.280 108.3 0.520 0.81 152.4 0.438 1.00 26.2WTB500 19.69 0.105 1.793 187.4 0.395 0.89 165.8 0.420 1.00 40.2WTC500 19.69 0.120 1.994 233.0 0.355 0.92 204.0 0.379 1.00 47.4WTF500 19.69 0.164 2.741 401.3 0.270 0.98 188.4 0.394 1.00 69.9WTH500 19.69 0.194 3.240 538.2 0.233 1.00 180.7 0.403 1.00 84.1WTK500 19.69 0.239 3.987 780.2 0.194 1.00 171.6 0.413 1.00 103.5WTA610 24.00 0.075 1.561 100.3 0.541 0.80 102.5 0.535 1.00 31.5WTB610 24.00 0.105 2.186 176.1 0.408 0.88 111.5 0.513 1.00 48.5WTC610 24.00 0.120 2.431 219.4 0.365 0.91 137.3 0.462 1.00 57.3WTF610 24.00 0.164 3.342 382.6 0.277 0.98 126.8 0.481 1.00 84.8WTH610 24.00 0.194 3.950 516.2 0.238 1.00 121.6 0.491 1.00 102.5WTK610 24.00 0.239 4.860 753.0 0.197 1.00 115.4 0.504 1.00 126.1WTA750 29.53 0.075 1.921 93.4 0.560 0.79 67.7 0.658 1.00 38.2WTB750 29.53 0.105 2.689 166.5 0.420 0.87 73.7 0.631 1.00 59.2WTC750 29.53 0.120 2.991 207.8 0.376 0.90 90.7 0.569 1.00 70.0WTF750 29.53 0.164 4.112 366.7 0.283 0.97 83.7 0.592 1.00 103.8WTH750 29.53 0.194 4.859 497.3 0.243 1.00 80.3 0.604 1.00 126.1WTK750 29.53 0.239 5.980 729.8 0.200 1.00 76.3 0.620 1.00 155.2WTA900 35.43 0.075 2.305 88.5 0.576 0.78 47.0 0.789 1.00 45.3WTB900 35.43 0.105 3.227 159.5 0.429 0.87 51.2 0.757 1.00 70.5WTC900 35.43 0.120 3.589 199.4 0.383 0.90 63.0 0.682 1.00 83.5WTF900 35.43 0.164 4.934 355.1 0.287 0.97 58.2 0.710 1.00 124.0WTH900 35.43 0.194 5.831 483.7 0.246 1.00 55.8 0.725 1.00 151.3WTK900 35.43 0.239 7.176 713.0 0.203 1.00 53.0 0.744 1.00 186.2

SIN Beam Shear

Local Buckling (EN) Global Buckling

Imperial

SIN Properties - v13 | 2019-08-27

Page 62: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.4

Constantsν 0.3 Poissons RatioE 29008 ksi Youngs ModulasFy web 51 ksi Web Material Yield Strengthφs 0.75 Material Resistance Factor (Per CSA S136)

Shear CapacityDesignation Web t web Shear Shear

Depth Distortion τcr.l λcr.l χcr.l τcr.g λcr.g χcr.g ResistanceArea Vr

in in in2 ksi ksi kipa b c d e f g h i j k

SIN Beam Shear

Local Buckling (EN) Global Buckling

Imperial

WTA1000 39.37 0.075 2.561 86.0 0.584 0.78 38.1 0.877 1.00 50.1WTB1000 39.37 0.105 3.586 156.1 0.433 0.86 41.4 0.841 1.00 78.1WTC1000 39.37 0.120 3.988 195.2 0.387 0.89 51.0 0.758 1.00 92.4WTF1000 39.37 0.164 5.482 349.4 0.290 0.97 47.1 0.789 1.00 137.5WTH1000 39.37 0.194 6.479 476.8 0.248 1.00 45.2 0.805 1.00 168.1WTK1000 39.37 0.239 7.973 704.6 0.204 1.00 42.9 0.827 1.00 206.9WTA1219 48.00 0.075 3.122 82.0 0.598 0.77 25.6 1.069 0.91 60.5WTB1219 48.00 0.105 4.372 150.4 0.441 0.86 27.9 1.025 0.97 94.6WTC1219 48.00 0.120 4.862 188.4 0.394 0.89 34.3 0.924 1.00 112.1WTF1219 48.00 0.164 6.684 340.0 0.294 0.96 31.7 0.962 1.00 167.1WTH1219 48.00 0.194 7.899 465.8 0.251 1.00 30.4 0.982 1.00 204.9WTK1219 48.00 0.239 9.721 691.1 0.206 1.00 28.9 1.008 0.99 249.7WTA1500 59.06 0.075 3.841 78.5 0.611 0.76 16.9 1.315 0.67 65.2WTB1500 59.06 0.105 5.379 145.6 0.449 0.85 18.4 1.261 0.72 97.4WTC1500 59.06 0.120 5.982 182.6 0.401 0.88 22.7 1.137 0.84 129.9WTF1500 59.06 0.164 8.223 332.0 0.297 0.96 20.9 1.183 0.79 168.5WTH1500 59.06 0.194 9.719 456.4 0.253 1.00 20.1 1.208 0.77 193.1WTK1500 59.06 0.239 11.960 679.5 0.208 1.00 19.1 1.240 0.74 228.5

Physical PropertiesDesignation tw tw a3 w s Iz Dx Dz

ga in in in in in4 kip ft kip ft

WT0 16 0.060 1.57 3.05 3.50 0.0559 0.0038 4.11WTA 14 0.075 1.57 3.05 3.50 0.0746 0.0075 5.49WTB 12 0.105 1.57 3.05 3.50 0.0933 0.0205 6.87WTC 11 0.120 1.69 3.05 3.60 0.1295 0.0301 9.53WTF 8 0.164 1.69 3.05 3.60 0.1295 0.0782 9.53WTH 6 0.194 1.69 3.05 3.60 0.1295 0.1290 9.53WTK 3 0.239 1.69 3.05 3.60 0.1295 0.2405 9.53

SIN Properties - v13 | 2019-08-27

Page 63: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

333 127 x 6 1612.9 36.7 4.63 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 3.86 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 3.88 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 3.89 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 3.34 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 3.93 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 3.37 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 2.95 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 4.00 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 2.97 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 3.00 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 2.40 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 3.06 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 2.45 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 2.22 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 2.04 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 2.49 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 1.88 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 1.75 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 2.08 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 1.53 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 1.78 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 1.56 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 1.41 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

SIN Properties - v13 | 2019-08-27

Page 64: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

440 127 x 6 1612.9 36.7 6.09 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 5.07 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 5.09 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 5.11 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 4.38 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 5.15 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 4.41 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 3.86 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 5.22 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 3.89 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 3.91 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 3.13 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 3.97 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 3.18 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 2.89 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 2.65 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 3.22 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 2.44 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 2.27 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 2.68 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 1.98 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 2.30 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 2.01 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 1.82 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 65: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

500 127 x 6 1612.9 36.7 6.91 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 5.75 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 5.77 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 5.79 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 4.96 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 5.83 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 5.00 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 4.37 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 5.90 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 4.40 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 4.43 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 3.54 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 4.48 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 3.58 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 3.26 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 2.99 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 3.63 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 2.76 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 2.56 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 3.02 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 2.24 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 2.59 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 2.27 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 2.05 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 66: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

610 127 x 6 1612.9 36.7 8.40 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 7.00 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 7.02 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 7.04 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 6.03 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 7.07 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 6.06 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 5.30 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 7.15 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 5.33 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 5.36 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 4.29 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 5.41 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 4.33 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 3.94 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 3.61 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 4.38 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 3.33 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 3.09 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 3.65 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 2.71 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 3.13 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 2.73 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 2.47 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 67: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

750 127 x 6 1612.9 36.7 10.32 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 8.60 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 8.61 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 8.63 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 7.40 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 8.67 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 7.43 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 6.50 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 8.74 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 6.53 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 6.56 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 5.24 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 6.61 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 5.29 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 4.81 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 4.41 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 5.33 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 4.07 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 3.78 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 4.44 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 3.31 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 3.81 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 3.33 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 3.01 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 68: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

900 127 x 6 1612.9 36.7 12.36 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 10.30 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 10.32 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 10.34 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 8.86 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 10.37 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 8.89 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 7.78 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 10.45 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 7.81 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 7.83 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 6.27 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 7.89 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 6.31 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 5.74 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 5.26 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 6.35 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 4.85 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 4.51 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 5.30 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 3.94 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 4.54 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 3.97 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 3.59 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 69: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

1000 127 x 6 1612.9 36.7 13.72 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 11.44 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 11.46 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 11.47 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 9.83 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 11.51 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 9.87 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 8.63 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 11.58 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 8.66 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 8.69 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 6.95 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 8.74 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 6.99 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 6.36 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 5.83 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 7.04 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 5.38 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 5.00 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 5.86 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 4.37 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 5.03 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 4.40 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 3.97 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 70: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

1219 127 x 6 1612.9 36.7 16.71 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 13.93 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 13.95 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 13.96 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 11.97 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 14.00 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 12.00 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 10.50 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 14.07 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 10.53 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 10.56 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 8.44 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 10.61 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 8.49 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 7.72 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 7.07 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 8.53 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 6.53 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 6.06 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 7.11 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 5.30 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 6.09 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 5.33 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 4.82 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 71: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5a(metric)

Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 13000 15000 18000(mm) (mm) (mm) (mm2) (mm)

a b c d e f g h i j k l m n o p q r s t t2

Flange

SIN Beam Axial CapacityMetric

Factored Compressive Resistance Cr (kN)Effective length (mm) with respect to least radius of gyration (ry)

1500 127 x 6 1612.9 36.7 20.54 508.1 390.1 276.6 190.6 134.3 98.0 74.1 57.7 46.1 37.6 31.3 22.5 17.0 11.8152 x 1935.48 44.0 17.12 609.7 512.9 397.8 293.0 215.2 161.1 123.7 97.3 78.2 64.1 53.4 38.6 29.2 20.4152 x 8 2419.35 44.0 17.14 762.1 641.2 497.2 366.3 269.1 201.4 154.6 121.6 97.8 80.1 66.8 48.3 36.5 25.5152 x 10 2903.22 44.0 17.16 914.5 769.4 596.7 439.5 322.9 241.7 185.5 145.9 117.3 96.2 80.1 58.0 43.8 30.6178 x 3387.09 51.3 14.71 1066.9 947.6 784.1 612.4 469.0 360.9 282.0 224.4 181.9 149.9 125.4 91.2 69.1 48.3152 x 13 3870.96 44.0 17.19 1219.4 1025.9 795.6 586.0 430.5 322.3 247.4 194.6 156.4 128.2 106.8 77.3 58.4 40.8178 x 4516.12 51.3 14.74 1422.6 1263.4 1045.5 816.5 625.3 481.2 376.0 299.2 242.5 199.9 167.2 121.6 92.1 64.5203 x 5161.28 58.7 12.89 1625.8 1493.5 1294.5 1060.8 844.8 668.7 532.7 429.7 351.5 291.6 245.2 179.4 136.4 95.7152 x 19 5806.44 44.0 17.26 1829.0 1538.8 1193.4 879.1 645.7 483.4 371.0 291.8 234.6 192.3 160.3 115.9 87.6 61.1203 x 16 6451.6 58.7 12.92 2032.3 1866.8 1618.1 1326.0 1056.0 835.8 665.9 537.1 439.4 364.5 306.4 224.2 170.5 119.7203 x 19 7741.92 58.7 12.95 2438.7 2240.2 1941.7 1591.2 1267.2 1003.0 799.1 644.5 527.3 437.5 367.7 269.1 204.6 143.6254 x 9677.4 73.3 10.36 3048.4 2905.9 2666.6 2340.8 1988.9 1659.6 1376.3 1143.4 955.8 805.7 685.3 509.4 391.1 276.7203 x 25 10322.56 58.7 13.00 3251.6 2986.9 2588.9 2121.5 1689.7 1337.3 1065.5 859.4 703.0 583.3 490.3 358.7 272.8 191.5254 x 12903.2 73.3 10.40 4064.5 3874.5 3555.4 3121.1 2651.9 2212.8 1835.1 1524.5 1274.4 1074.2 913.8 679.2 521.4 368.9279 x 14193.52 80.7 9.46 4471.0 4307.1 4022.6 3616.1 3151.1 2690.5 2274.4 1918.3 1622.3 1379.7 1181.7 886.5 684.6 486.8305 x 15483.84 88.0 8.67 4877.4 4734.5 4480.4 4103.6 3651.9 3182.3 2738.6 2344.1 2006.0 1721.9 1485.4 1125.8 874.9 625.7254 x 32 16129 73.3 10.45 5080.6 4843.1 4444.3 3901.4 3314.9 2766.0 2293.9 1905.7 1593.0 1342.8 1142.2 848.9 651.8 461.1330 x 25 16774.16 95.3 8.00 5283.9 5158.1 4930.4 4582.7 4149.9 3681.2 3220.1 2795.4 2420.2 2097.2 1822.9 1396.5 1092.9 786.6356 x 18064.48 102.7 7.43 5690.3 5578.7 5373.8 5053.7 4642.8 4182.1 3712.7 3265.9 2859.7 2501.4 2191.0 1697.6 1338.5 970.1305 x 32 19354.8 88.0 8.70 6096.8 5918.2 5600.5 5129.5 4564.8 3977.9 3423.3 2930.2 2507.5 2152.4 1856.8 1407.2 1093.6 782.1406 x 25 20645.12 117.3 6.50 6503.2 6413.4 6245.3 5973.9 5609.4 5177.9 4712.1 4243.1 3794.0 3379.3 3005.7 2384.3 1910.5 1406.1356 x 32 22580.6 102.7 7.46 7112.9 6973.4 6717.2 6317.1 5803.6 5227.6 4640.9 4082.3 3574.6 3126.7 2738.7 2122.0 1673.2 1212.6406 x 25806.4 117.3 6.53 8129.0 8016.8 7806.6 7467.4 7011.8 6472.3 5890.2 5303.9 4742.5 4224.1 3757.2 2980.3 2388.1 1757.6450 x 28575 129.9 5.90 9001.1 8906.2 8726.4 8430.7 8022.6 7522.7 6962.2 6375.1 5791.2 5232.7 4713.4 3815.4 3102.4 2316.8

SIN Properties - v13 | 2019-08-27

Page 72: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

WT_ 333/127x6 13.1 5.0 x 1/4 2.50 1.44 4.63 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 333/152x6 6.0 x 3.00 1.73 3.86 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 333/152x8 6.0 x 5/16 3.75 1.73 3.88 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 333/152x10 6.0 x 3/8 4.50 1.73 3.89 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 333/178x10 7.0 x 5.25 2.02 3.34 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 333/152x13 6.0 x 1/2 6.00 1.73 3.93 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 333/178x13 7.0 x 7.00 2.02 3.37 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 333/203x13 8.0 x 8.00 2.31 2.95 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 333/152x19 6.0 x 3/4 9.00 1.73 4.00 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 333/203x16 8.0 x 5/8 10.00 2.31 2.97 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 333/203x19 8.0 x 3/4 12.00 2.31 3.00 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 333/254x19 10.0 x 15.00 2.89 2.40 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 333/203x25 8.0 x 1 16.00 2.31 3.06 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 333/254x25 10.0 x 20.00 2.89 2.45 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 333/279x25 11.0 x 22.00 3.18 2.22 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 333/305x25 12.0 x 24.00 3.46 2.04 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 333/254x32 10.0 x 1 1/4 25.00 2.89 2.49 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 333/330x25 13.0 x 1 26.00 3.75 1.88 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 333/356x25 14.0 x 28.00 4.04 1.75 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 333/305x32 12.0 x 1 1/4 30.00 3.46 2.08 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 333/406x25 16.0 x 1 32.00 4.62 1.53 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 333/356x32 14.0 x 1 1/4 35.00 4.04 1.78 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 333/406x32 16.0 x 40.00 4.62 1.56 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 333/450x32 17.7 x 44.29 5.11 1.41 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

SIN Properties - v13 | 2019-08-27

Page 73: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 440/127x6 17.3 5.0 x 1/4 2.50 1.44 6.09 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 440/152x6 6.0 x 3.00 1.73 5.07 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 440/152x8 6.0 x 5/16 3.75 1.73 5.09 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 440/152x10 6.0 x 3/8 4.50 1.73 5.11 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 440/178x10 7.0 x 5.25 2.02 4.38 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 440/152x13 6.0 x 1/2 6.00 1.73 5.15 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 440/178x13 7.0 x 7.00 2.02 4.41 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 440/203x13 8.0 x 8.00 2.31 3.86 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 440/152x19 6.0 x 3/4 9.00 1.73 5.22 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 440/203x16 8.0 x 5/8 10.00 2.31 3.89 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 440/203x19 8.0 x 3/4 12.00 2.31 3.91 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 440/254x19 10.0 x 15.00 2.89 3.13 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 440/203x25 8.0 x 1 16.00 2.31 3.97 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 440/254x25 10.0 x 20.00 2.89 3.18 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 440/279x25 11.0 x 22.00 3.18 2.89 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 440/305x25 12.0 x 24.00 3.46 2.65 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 440/254x32 10.0 x 1 1/4 25.00 2.89 3.22 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 440/330x25 13.0 x 1 26.00 3.75 2.44 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 440/356x25 14.0 x 28.00 4.04 2.27 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 440/305x32 12.0 x 1 1/4 30.00 3.46 2.68 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 440/406x25 16.0 x 1 32.00 4.62 1.98 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 440/356x32 14.0 x 1 1/4 35.00 4.04 2.30 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 440/406x32 16.0 x 40.00 4.62 2.01 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 440/450x32 17.7 x 44.29 5.11 1.82 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 74: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 500/127x6 19.7 5.0 x 1/4 2.50 1.44 6.91 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 500/152x6 6.0 x 3.00 1.73 5.75 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 500/152x8 6.0 x 5/16 3.75 1.73 5.77 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 500/152x10 6.0 x 3/8 4.50 1.73 5.79 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 500/178x10 7.0 x 5.25 2.02 4.96 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 500/152x13 6.0 x 1/2 6.00 1.73 5.83 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 500/178x13 7.0 x 7.00 2.02 5.00 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 500/203x13 8.0 x 8.00 2.31 4.37 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 500/152x19 6.0 x 3/4 9.00 1.73 5.90 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 500/203x16 8.0 x 5/8 10.00 2.31 4.40 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 500/203x19 8.0 x 3/4 12.00 2.31 4.43 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 500/254x19 10.0 x 15.00 2.89 3.54 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 500/203x25 8.0 x 1 16.00 2.31 4.48 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 500/254x25 10.0 x 20.00 2.89 3.58 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 500/279x25 11.0 x 22.00 3.18 3.26 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 500/305x25 12.0 x 24.00 3.46 2.99 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 500/254x32 10.0 x 1 1/4 25.00 2.89 3.63 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 500/330x25 13.0 x 1 26.00 3.75 2.76 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 500/356x25 14.0 x 28.00 4.04 2.56 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 500/305x32 12.0 x 1 1/4 30.00 3.46 3.02 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 500/406x25 16.0 x 1 32.00 4.62 2.24 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 500/356x32 14.0 x 1 1/4 35.00 4.04 2.59 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 500/406x32 16.0 x 40.00 4.62 2.27 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 500/450x32 17.7 x 44.29 5.11 2.05 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 75: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 610/127x6 24.0 5.0 x 1/4 2.50 1.44 8.40 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 610/152x6 6.0 x 3.00 1.73 7.00 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 610/152x8 6.0 x 5/16 3.75 1.73 7.02 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 610/152x10 6.0 x 3/8 4.50 1.73 7.04 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 610/178x10 7.0 x 5.25 2.02 6.03 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 610/152x13 6.0 x 1/2 6.00 1.73 7.07 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 610/178x13 7.0 x 7.00 2.02 6.06 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 610/203x13 8.0 x 8.00 2.31 5.30 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 610/152x19 6.0 x 3/4 9.00 1.73 7.15 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 610/203x16 8.0 x 5/8 10.00 2.31 5.33 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 610/203x19 8.0 x 3/4 12.00 2.31 5.36 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 610/254x19 10.0 x 15.00 2.89 4.29 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 610/203x25 8.0 x 1 16.00 2.31 5.41 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 610/254x25 10.0 x 20.00 2.89 4.33 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 610/279x25 11.0 x 22.00 3.18 3.94 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 610/305x25 12.0 x 24.00 3.46 3.61 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 610/254x32 10.0 x 1 1/4 25.00 2.89 4.38 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 610/330x25 13.0 x 1 26.00 3.75 3.33 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 610/356x25 14.0 x 28.00 4.04 3.09 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 610/305x32 12.0 x 1 1/4 30.00 3.46 3.65 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 610/406x25 16.0 x 1 32.00 4.62 2.71 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 610/356x32 14.0 x 1 1/4 35.00 4.04 3.13 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 610/406x32 16.0 x 40.00 4.62 2.73 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 610/450x32 17.7 x 44.29 5.11 2.47 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 76: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 750/127x6 29.5 5.0 x 1/4 2.50 1.44 10.32 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 750/152x6 6.0 x 3.00 1.73 8.60 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 750/152x8 6.0 x 5/16 3.75 1.73 8.61 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 750/152x10 6.0 x 3/8 4.50 1.73 8.63 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 750/178x10 7.0 x 5.25 2.02 7.40 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 750/152x13 6.0 x 1/2 6.00 1.73 8.67 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 750/178x13 7.0 x 7.00 2.02 7.43 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 750/203x13 8.0 x 8.00 2.31 6.50 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 750/152x19 6.0 x 3/4 9.00 1.73 8.74 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 750/203x16 8.0 x 5/8 10.00 2.31 6.53 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 750/203x19 8.0 x 3/4 12.00 2.31 6.56 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 750/254x19 10.0 x 15.00 2.89 5.24 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 750/203x25 8.0 x 1 16.00 2.31 6.61 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 750/254x25 10.0 x 20.00 2.89 5.29 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 750/279x25 11.0 x 22.00 3.18 4.81 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 750/305x25 12.0 x 24.00 3.46 4.41 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 750/254x32 10.0 x 1 1/4 25.00 2.89 5.33 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 750/330x25 13.0 x 1 26.00 3.75 4.07 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 750/356x25 14.0 x 28.00 4.04 3.78 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 750/305x32 12.0 x 1 1/4 30.00 3.46 4.44 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 750/406x25 16.0 x 1 32.00 4.62 3.31 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 750/356x32 14.0 x 1 1/4 35.00 4.04 3.81 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 750/406x32 16.0 x 40.00 4.62 3.33 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 750/450x32 17.7 x 44.29 5.11 3.01 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 77: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 900/127x6 35.4 5.0 x 1/4 2.50 1.44 12.36 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 900/152x6 6.0 x 3.00 1.73 10.30 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 900/152x8 6.0 x 5/16 3.75 1.73 10.32 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 900/152x10 6.0 x 3/8 4.50 1.73 10.34 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 900/178x10 7.0 x 5.25 2.02 8.86 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 900/152x13 6.0 x 1/2 6.00 1.73 10.37 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 900/178x13 7.0 x 7.00 2.02 8.89 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 900/203x13 8.0 x 8.00 2.31 7.78 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 900/152x19 6.0 x 3/4 9.00 1.73 10.45 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 900/203x16 8.0 x 5/8 10.00 2.31 7.81 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 900/203x19 8.0 x 3/4 12.00 2.31 7.83 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 900/254x19 10.0 x 15.00 2.89 6.27 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 900/203x25 8.0 x 1 16.00 2.31 7.89 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 900/254x25 10.0 x 20.00 2.89 6.31 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 900/279x25 11.0 x 22.00 3.18 5.74 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 900/305x25 12.0 x 24.00 3.46 5.26 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 900/254x32 10.0 x 1 1/4 25.00 2.89 6.35 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 900/330x25 13.0 x 1 26.00 3.75 4.85 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 900/356x25 14.0 x 28.00 4.04 4.51 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 900/305x32 12.0 x 1 1/4 30.00 3.46 5.30 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 900/406x25 16.0 x 1 32.00 4.62 3.94 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 900/356x32 14.0 x 1 1/4 35.00 4.04 4.54 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 900/406x32 16.0 x 40.00 4.62 3.97 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 900/450x32 17.7 x 44.29 5.11 3.59 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 78: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 1000/127x6 39.4 5.0 x 1/4 2.50 1.44 13.72 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 1000/152x6 6.0 x 3.00 1.73 11.44 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 1000/152x8 6.0 x 5/16 3.75 1.73 11.46 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 1000/152x10 6.0 x 3/8 4.50 1.73 11.47 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 1000/178x10 7.0 x 5.25 2.02 9.83 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 1000/152x13 6.0 x 1/2 6.00 1.73 11.51 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 1000/178x13 7.0 x 7.00 2.02 9.87 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 1000/203x13 8.0 x 8.00 2.31 8.63 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 1000/152x19 6.0 x 3/4 9.00 1.73 11.58 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 1000/203x16 8.0 x 5/8 10.00 2.31 8.66 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 1000/203x19 8.0 x 3/4 12.00 2.31 8.69 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 1000/254x19 10.0 x 15.00 2.89 6.95 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 1000/203x25 8.0 x 1 16.00 2.31 8.74 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 1000/254x25 10.0 x 20.00 2.89 6.99 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 1000/279x25 11.0 x 22.00 3.18 6.36 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 1000/305x25 12.0 x 24.00 3.46 5.83 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 1000/254x32 10.0 x 1 1/4 25.00 2.89 7.04 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 1000/330x25 13.0 x 1 26.00 3.75 5.38 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 1000/356x25 14.0 x 28.00 4.04 5.00 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 1000/305x32 12.0 x 1 1/4 30.00 3.46 5.86 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 1000/406x25 16.0 x 1 32.00 4.62 4.37 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 1000/356x32 14.0 x 1 1/4 35.00 4.04 5.03 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 1000/406x32 16.0 x 40.00 4.62 4.40 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 1000/450x32 17.7 x 44.29 5.11 3.97 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 79: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 1219/127x6 48.0 5.0 x 1/4 2.50 1.44 16.71 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 1219/152x6 6.0 x 3.00 1.73 13.93 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 1219/152x8 6.0 x 5/16 3.75 1.73 13.95 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 1219/152x10 6.0 x 3/8 4.50 1.73 13.96 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 1219/178x10 7.0 x 5.25 2.02 11.97 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 1219/152x13 6.0 x 1/2 6.00 1.73 14.00 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 1219/178x13 7.0 x 7.00 2.02 12.00 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 1219/203x13 8.0 x 8.00 2.31 10.50 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 1219/152x19 6.0 x 3/4 9.00 1.73 14.07 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 1219/203x16 8.0 x 5/8 10.00 2.31 10.53 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 1219/203x19 8.0 x 3/4 12.00 2.31 10.56 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 1219/254x19 10.0 x 15.00 2.89 8.44 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 1219/203x25 8.0 x 1 16.00 2.31 10.61 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 1219/254x25 10.0 x 20.00 2.89 8.49 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 1219/279x25 11.0 x 22.00 3.18 7.72 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 1219/305x25 12.0 x 24.00 3.46 7.07 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 1219/254x32 10.0 x 1 1/4 25.00 2.89 8.53 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 1219/330x25 13.0 x 1 26.00 3.75 6.53 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 1219/356x25 14.0 x 28.00 4.04 6.06 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 1219/305x32 12.0 x 1 1/4 30.00 3.46 7.11 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 1219/406x25 16.0 x 1 32.00 4.62 5.30 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 1219/356x32 14.0 x 1 1/4 35.00 4.04 6.09 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 1219/406x32 16.0 x 40.00 4.62 5.33 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 1219/450x32 17.7 x 44.29 5.11 4.82 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 80: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.5b(imperial)

Designation Depth ofWeb Width Thickness Area

hw bf tf ry rx/ry 0 5 10 15 20 25 30 35 40 45 50 55 60 65(in) (in) (in) (in2) (in)

size a b c d e f g h i j k l m n o p q r s t u

SIN Beam Axial CapacityImperial

Flange Factored Compressive Resistance Vr (kip)Effective length (ft) with respect to least radius of gyration (ry)

WT_ 1500/127x6 59.1 5.0 x 1/4 2.50 1.44 20.54 114.2 99.4 61.1 34.9 21.4 14.2 10.1 7.5 5.7 4.6 3.7 3.1 2.6 2.2WT_ 1500/152x6 6.0 x 3.00 1.73 17.12 137.1 125.5 88.2 55.1 35.3 23.9 17.1 12.7 9.8 7.8 6.4 5.3 4.4 3.8WT_ 1500/152x8 6.0 x 5/16 3.75 1.73 17.14 171.3 156.8 110.2 68.9 44.1 29.9 21.3 15.9 12.3 9.8 8.0 6.6 5.5 4.7

WT_ 1500/152x10 6.0 x 3/8 4.50 1.73 17.16 205.6 188.2 132.3 82.7 52.9 35.8 25.6 19.1 14.8 11.7 9.5 7.9 6.7 5.7WT_ 1500/178x10 7.0 x 5.25 2.02 14.71 239.9 226.0 174.4 118.2 79.2 54.9 39.7 29.9 23.2 18.5 15.1 12.5 10.5 9.0WT_ 1500/152x13 6.0 x 1/2 6.00 1.73 17.19 274.1 250.9 176.4 110.3 70.6 47.8 34.1 25.5 19.7 15.6 12.7 10.5 8.9 7.6WT_ 1500/178x13 7.0 x 7.00 2.02 14.74 319.8 301.3 232.5 157.7 105.6 73.2 53.0 39.8 30.9 24.6 20.1 16.7 14.0 12.0WT_ 1500/203x13 8.0 x 8.00 2.31 12.89 365.5 350.4 288.5 209.7 147.0 104.7 76.9 58.3 45.5 36.4 29.7 24.7 20.9 17.8WT_ 1500/152x19 6.0 x 3/4 9.00 1.73 17.26 411.2 376.4 264.6 165.4 105.8 71.7 51.2 38.2 29.5 23.5 19.1 15.8 13.3 11.4WT_ 1500/203x16 8.0 x 5/8 10.00 2.31 12.92 456.9 438.0 360.7 262.2 183.8 130.8 96.1 72.9 56.9 45.5 37.2 30.9 26.1 22.3WT_ 1500/203x19 8.0 x 3/4 12.00 2.31 12.95 548.2 525.6 432.8 314.6 220.5 157.0 115.3 87.5 68.3 54.6 44.6 37.1 31.3 26.8WT_ 1500/254x19 10.0 x 15.00 2.89 10.36 685.3 669.4 596.3 480.9 366.5 275.7 209.5 162.4 128.6 103.8 85.3 71.3 60.3 51.7WT_ 1500/203x25 8.0 x 1 16.00 2.31 13.00 731.0 700.8 577.1 419.5 294.0 209.3 153.7 116.6 91.0 72.8 59.5 49.5 41.7 35.7WT_ 1500/254x25 10.0 x 20.00 2.89 10.40 913.7 892.5 795.1 641.2 488.7 367.5 279.4 216.5 171.4 138.4 113.8 95.0 80.4 68.9WT_ 1500/279x25 11.0 x 22.00 3.18 9.46 1005.1 986.9 900.5 753.8 595.4 460.0 356.2 279.4 223.0 181.1 149.5 125.2 106.2 91.1WT_ 1500/305x25 12.0 x 24.00 3.46 8.67 1096.5 1080.7 1003.7 865.6 705.5 559.2 441.1 350.5 282.2 230.6 191.1 160.6 136.5 117.4WT_ 1500/254x32 10.0 x 1 1/4 25.00 2.89 10.45 1142.2 1115.7 993.8 801.5 610.8 459.4 349.2 270.7 214.3 173.0 142.2 118.8 100.6 86.2WT_ 1500/330x25 13.0 x 1 26.00 3.75 8.00 1187.9 1174.0 1105.2 976.2 817.4 663.5 532.9 429.1 348.8 286.9 238.9 201.4 171.7 147.9WT_ 1500/356x25 14.0 x 28.00 4.04 7.43 1279.2 1267.0 1205.2 1085.2 930.0 771.5 630.6 514.6 422.3 349.8 292.8 247.8 211.9 182.9WT_ 1500/305x32 12.0 x 1 1/4 30.00 3.46 8.70 1370.6 1350.9 1254.7 1082.1 881.8 699.0 551.3 438.1 352.8 288.2 238.9 200.7 170.7 146.7WT_ 1500/406x25 16.0 x 1 32.00 4.62 6.50 1462.0 1452.2 1401.6 1298.4 1154.2 993.7 839.0 702.5 588.1 494.4 418.6 357.3 307.5 266.7WT_ 1500/356x32 14.0 x 1 1/4 35.00 4.04 7.46 1599.0 1583.7 1506.5 1356.5 1162.5 964.3 788.3 643.2 527.8 437.2 366.0 309.8 264.9 228.6WT_ 1500/406x32 16.0 x 40.00 4.62 6.53 1827.5 1815.2 1752.0 1623.0 1442.7 1242.1 1048.7 878.2 735.1 618.0 523.3 446.6 384.3 333.4WT_ 1500/450x32 17.7 x 44.29 5.11 5.90 2023.5 2013.2 1959.2 1845.7 1679.5 1483.6 1283.4 1097.3 934.1 795.8 680.7 585.6 507.1 442.1

SIN Properties - v13 | 2019-08-27

Page 81: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.6

ConstantsFy 350 MPaφs 0.8

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 13.50 34.77 56.03 77.30 98.56 119.83 141.09 162.36 183.627.9 16.88 38.14 59.41 80.67 101.94 123.20 144.47 165.73 187.009.5 20.25 41.52 62.78 84.05 105.31 126.58 147.84 169.11 190.37

12.7 27.01 48.27 69.54 90.80 112.07 133.33 154.60 175.86 197.1315.9 33.76 55.02 76.29 97.55 118.82 140.08 161.35 182.61 203.8819.1 40.51 61.77 83.04 104.30 125.57 146.83 168.10 189.36 210.6325.4 54.01 75.28 96.54 117.81 139.07 160.34 181.60 202.87 224.13

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 16.87 43.43 69.99 96.56 123.12 149.68 176.25 202.81 229.377.9 21.08 47.65 74.21 100.77 127.34 153.90 180.46 207.03 233.599.5 25.30 51.86 78.43 104.99 131.55 158.12 184.68 211.24 237.81

12.7 33.74 60.30 86.86 113.43 139.99 166.55 193.12 219.68 246.2415.9 42.17 68.73 95.30 121.86 148.42 174.99 201.55 228.11 254.6819.1 50.60 77.17 103.73 130.29 156.86 183.42 209.98 236.55 263.1125.4 67.47 94.03 120.60 147.16 173.72 200.29 226.85 253.41 279.98

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 23.62 60.82 98.01 135.21 172.40 209.60 246.79 283.99 321.197.9 29.52 66.72 103.92 141.11 178.31 215.50 252.70 289.89 327.099.5 35.43 72.62 109.82 147.02 184.21 221.41 258.60 295.80 333.00

12.7 47.24 84.43 121.63 158.83 196.02 233.22 270.41 307.61 344.8015.9 59.05 96.24 133.44 170.64 207.83 245.03 282.22 319.42 356.6119.1 70.86 108.05 145.25 182.45 219.64 256.84 294.03 331.23 368.4225.4 94.48 131.67 168.87 206.06 243.26 280.46 317.65 354.85 392.04

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 27.01 69.54 112.07 154.60 197.13 239.66 282.18 324.71 367.247.9 33.76 76.29 118.82 161.35 203.88 246.41 288.94 331.47 374.009.5 40.51 83.04 125.57 168.10 210.63 253.16 295.69 338.22 380.75

12.7 54.01 96.54 139.07 181.60 224.13 266.66 309.19 351.72 394.2515.9 67.52 110.05 152.58 195.11 237.64 280.16 322.69 365.22 407.7519.1 81.02 123.55 166.08 208.61 251.14 293.67 336.20 378.73 421.2625.4 108.03 150.56 193.09 235.61 278.14 320.67 363.20 405.73 448.26

Concentrated Load Resistance (kN)

Bearing Length (mm)

MetricSIN Concentrated Load

3.04

Bearing Length (mm)

1.52WT0

WTA1.90

Bearing Length (mm)

WTB2.66

Bearing Length (mm)

WTC

SIN Properties - v13 | 2019-08-27

Page 82: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.6

ConstantsFy 350 MPaφs 0.8

Concentrated Load Resistance (kN)

MetricSIN Concentrated Load

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 37.12 95.58 154.04 212.50 270.97 329.43 387.89 446.35 504.817.9 46.40 104.86 163.32 221.79 280.25 338.71 397.17 455.63 514.099.5 55.68 114.14 172.61 231.07 289.53 347.99 406.45 464.91 523.37

12.7 74.25 132.71 191.17 249.63 308.09 366.55 425.01 483.47 541.9315.9 92.81 151.27 209.73 268.19 326.65 385.11 443.57 502.03 560.4919.1 111.37 169.83 228.29 286.75 345.21 403.67 462.13 520.59 579.0525.4 148.49 206.95 265.41 323.87 382.33 440.79 499.25 557.71 616.18

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 43.87 112.97 182.06 251.15 320.25 389.34 458.43 527.53 596.627.9 54.84 123.94 193.03 262.12 331.21 400.31 469.40 538.49 607.599.5 65.81 134.90 204.00 273.09 342.18 411.28 480.37 549.46 618.56

12.7 87.75 156.84 225.93 295.03 364.12 433.21 502.31 571.40 640.4915.9 109.69 178.78 247.87 316.96 386.06 455.15 524.24 593.34 662.4319.1 131.62 200.72 269.81 338.90 407.99 477.09 546.18 615.27 684.3725.4 175.50 244.59 313.68 382.78 451.87 520.96 590.05 659.15 728.24

Webtw (mm)

tf (mm) 0 50 100 150 200 250 300 350 4006.4 53.99 139.01 224.04 309.06 394.09 479.11 564.13 649.16 734.187.9 67.49 152.51 237.54 322.56 407.58 492.61 577.63 662.66 747.689.5 80.99 166.01 251.03 336.06 421.08 506.11 591.13 676.15 761.18

12.7 107.98 193.00 278.03 363.05 448.08 533.10 618.12 703.15 788.1715.9 134.98 220.00 305.02 390.05 475.07 560.10 645.12 730.14 815.1719.1 161.97 246.99 332.02 417.04 502.07 587.09 672.11 757.14 842.1625.4 215.96 300.98 386.01 471.03 556.06 641.08 726.10 811.13 896.15

WTK6.07

Bearing Length (mm)

WTH4.94

Bearing Length (mm)

WTF4.18

Bearing Length (mm)

SIN Properties - v13 | 2019-08-27

Page 83: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.6

ConstantsFy 50.8 ksiφs 0.8

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 3.04 7.89 12.75 17.61 22.46 27.32 32.18 37.03 41.895/16 3.79 8.65 13.51 18.37 23.22 28.08 32.94 37.79 42.653/8 4.55 9.41 14.27 19.12 23.98 28.84 33.70 38.55 43.411/2 6.07 10.93 15.79 20.64 25.50 30.36 35.21 40.07 44.935/8 7.59 12.45 17.30 22.16 27.02 31.87 36.73 41.59 46.453/4 9.11 13.96 18.82 23.68 28.54 33.39 38.25 43.11 47.96

1 12.14 17.00 21.86 26.71 31.57 36.43 41.28 46.14 51.00

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 3.79 9.86 15.93 21.99 28.06 34.13 40.20 46.26 52.335/16 4.74 10.81 16.87 22.94 29.01 35.08 41.14 47.21 53.283/8 5.69 11.76 17.82 23.89 29.96 36.02 42.09 48.16 54.231/2 7.58 13.65 19.72 25.79 31.85 37.92 43.99 50.05 56.125/8 9.48 15.55 21.61 27.68 33.75 39.82 45.88 51.95 58.023/4 11.38 17.44 23.51 29.58 35.64 41.71 47.78 53.85 59.91

1 15.17 21.24 27.30 33.37 39.44 45.50 51.57 57.64 63.71

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 5.31 13.81 22.30 30.80 39.29 47.79 56.28 64.78 73.285/16 6.64 15.13 23.63 32.12 40.62 49.12 57.61 66.11 74.603/8 7.96 16.46 24.96 33.45 41.95 50.44 58.94 67.43 75.931/2 10.62 19.12 27.61 36.11 44.60 53.10 61.59 70.09 78.595/8 13.27 21.77 30.27 38.76 47.26 55.75 64.25 72.74 81.243/4 15.93 24.43 32.92 41.42 49.91 58.41 66.90 75.40 83.90

1 21.24 29.74 38.23 46.73 55.22 63.72 72.21 80.71 89.21

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 6.07 15.79 25.50 35.21 44.93 54.64 64.36 74.07 83.785/16 7.59 17.30 27.02 36.73 46.45 56.16 65.87 75.59 85.303/8 9.11 18.82 28.54 38.25 47.96 57.68 67.39 77.11 86.821/2 12.14 21.86 31.57 41.28 51.00 60.71 70.43 80.14 89.855/8 15.18 24.89 34.61 44.32 54.03 63.75 73.46 83.18 92.893/4 18.21 27.93 37.64 47.36 57.07 66.78 76.50 86.21 95.93

1 24.29 34.00 43.71 53.43 63.14 72.86 82.57 92.28 102.00

Bearing Length (in)

Concentrated Load Resistance (kip)

Bearing Length (in)

WTB0.1046

Bearing Length (in)

WTC

WT00.0598

Bearing Length (in)

WTA0.0747

SIN Concentrated LoadImperial

0.1196

SIN Properties - v13 | 2019-08-27

Page 84: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.6

ConstantsFy 50.8 ksiφs 0.8

Concentrated Load Resistance (kip)

SIN Concentrated LoadImperial

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 8.35 21.70 35.05 48.40 61.76 75.11 88.46 101.81 115.175/16 10.43 23.78 37.14 50.49 63.84 77.20 90.55 103.90 117.253/8 12.52 25.87 39.22 52.58 65.93 79.28 92.63 105.99 119.341/2 16.69 30.04 43.40 56.75 70.10 83.45 96.81 110.16 123.515/8 20.86 34.22 47.57 60.92 74.27 87.63 100.98 114.33 127.693/4 25.04 38.39 51.74 65.09 78.45 91.80 105.15 118.51 131.86

1 33.38 46.73 60.09 73.44 86.79 100.15 113.50 126.85 140.20

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 9.86 25.64 41.43 57.21 72.99 88.77 104.55 120.33 136.115/16 12.33 28.11 43.89 59.67 75.45 91.24 107.02 122.80 138.583/8 14.79 30.58 46.36 62.14 77.92 93.70 109.48 125.26 141.051/2 19.73 35.51 51.29 67.07 82.85 98.63 114.41 130.20 145.985/8 24.66 40.44 56.22 72.00 87.78 103.56 119.35 135.13 150.913/4 29.59 45.37 61.15 76.93 92.71 108.50 124.28 140.06 155.84

1 39.45 55.23 71.02 86.80 102.58 118.36 134.14 149.92 165.70

Webtw (in)

tf (mm) 0 2 4 6 8 10 12 14 161/4 12.14 31.56 50.98 70.40 89.82 109.24 128.66 148.08 167.505/16 15.17 34.59 54.01 73.43 92.85 112.27 131.69 151.11 170.533/8 18.21 37.63 57.05 76.47 95.89 115.31 134.73 154.15 173.571/2 24.27 43.69 63.11 82.53 101.95 121.37 140.79 160.21 179.635/8 30.34 49.76 69.18 88.60 108.02 127.44 146.86 166.28 185.703/4 36.41 55.83 75.25 94.67 114.09 133.51 152.93 172.35 191.77

1 48.55 67.97 87.39 106.81 126.23 145.65 165.07 184.49 203.91

WTK0.2391

Bearing Length (in)

WTH0.1943

Bearing Length (in)

WTF0.1644

Bearing Length (in)

SIN Properties - v13 | 2019-08-27

Page 85: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

WT_ 333/127x6 1.21 1.21 1.21 1.21 1.21 1.21 1.20 14.4 15.4 17.4 18.4 21.5 23.5 26.5 0.25 0.26 0.30 0.31 0.37 0.40 0.45WT_ 333/152x6 1.29 1.29 1.29 1.29 1.28 1.28 1.28 15.5 16.5 18.4 19.3 22.2 24.1 26.9 0.26 0.28 0.31 0.33 0.38 0.41 0.46WT_ 333/152x8 1.30 1.30 1.29 1.29 1.29 1.29 1.29 18.4 19.3 21.2 22.2 25.0 26.9 29.8 0.31 0.33 0.36 0.38 0.43 0.46 0.51

WT_ 333/152x10 1.30 1.30 1.30 1.30 1.30 1.30 1.29 21.2 22.1 24.0 25.0 27.8 29.7 32.6 0.36 0.38 0.41 0.43 0.47 0.51 0.55WT_ 333/178x10 1.38 1.38 1.38 1.38 1.37 1.37 1.37 22.8 23.7 25.5 26.4 29.0 30.8 33.5 0.39 0.40 0.43 0.45 0.49 0.53 0.57WT_ 333/152x13 1.31 1.31 1.31 1.31 1.31 1.31 1.31 26.8 27.7 29.6 30.5 33.3 35.2 38.1 0.46 0.47 0.50 0.52 0.57 0.60 0.65WT_ 333/178x13 1.39 1.39 1.39 1.39 1.39 1.38 1.38 29.0 29.8 31.6 32.5 35.2 36.9 39.6 0.49 0.51 0.54 0.55 0.60 0.63 0.67WT_ 333/203x13 1.47 1.47 1.46 1.46 1.46 1.46 1.46 30.9 31.7 33.4 34.3 36.8 38.5 41.0 0.53 0.54 0.57 0.58 0.63 0.66 0.70WT_ 333/152x19 1.34 1.34 1.34 1.34 1.33 1.33 1.33 37.6 38.5 40.4 41.3 44.1 45.9 48.7 0.64 0.66 0.69 0.70 0.75 0.78 0.83WT_ 333/203x16 1.48 1.48 1.48 1.48 1.47 1.47 1.47 37.5 38.3 40.0 40.8 43.3 45.0 47.6 0.64 0.65 0.68 0.70 0.74 0.77 0.81WT_ 333/203x19 1.49 1.49 1.49 1.49 1.49 1.49 1.48 44.0 44.8 46.4 47.3 49.8 51.5 54.0 0.75 0.76 0.79 0.81 0.85 0.88 0.92WT_ 333/254x19 1.65 1.64 1.64 1.64 1.64 1.64 1.64 49.1 49.9 51.4 52.1 54.4 55.9 58.2 0.84 0.85 0.88 0.89 0.93 0.95 0.99WT_ 333/203x25 1.52 1.52 1.52 1.51 1.51 1.51 1.51 56.6 57.4 59.0 59.9 62.3 64.0 66.5 0.96 0.98 1.01 1.02 1.06 1.09 1.13WT_ 333/254x25 1.67 1.67 1.67 1.67 1.67 1.66 1.66 63.5 64.3 65.8 66.5 68.8 70.3 72.6 1.08 1.09 1.12 1.13 1.17 1.20 1.24WT_ 333/279x25 1.75 1.75 1.74 1.74 1.74 1.74 1.74 66.6 67.3 68.7 69.4 71.6 73.1 75.2 1.13 1.15 1.17 1.18 1.22 1.24 1.28WT_ 333/305x25 1.82 1.82 1.82 1.82 1.82 1.82 1.81 69.3 70.0 71.4 72.1 74.2 75.6 77.7 1.18 1.19 1.22 1.23 1.26 1.29 1.32WT_ 333/254x32 1.70 1.70 1.69 1.69 1.69 1.69 1.69 77.5 78.3 79.7 80.5 82.7 84.3 86.5 1.32 1.33 1.36 1.37 1.41 1.43 1.47WT_ 333/330x25 1.90 1.90 1.90 1.90 1.89 1.89 1.89 71.9 72.5 73.9 74.5 76.5 77.9 79.9 1.22 1.24 1.26 1.27 1.30 1.33 1.36WT_ 333/356x25 1.98 1.97 1.97 1.97 1.97 1.97 1.97 74.2 74.9 76.2 76.8 78.7 80.0 81.9 1.26 1.28 1.30 1.31 1.34 1.36 1.40WT_ 333/305x32 1.85 1.85 1.85 1.85 1.84 1.84 1.84 84.8 85.5 86.9 87.6 89.6 91.0 93.1 1.44 1.46 1.48 1.49 1.53 1.55 1.59WT_ 333/406x25 2.13 2.13 2.13 2.12 2.12 2.12 2.12 78.4 79.0 80.2 80.8 82.6 83.8 85.6 1.34 1.35 1.37 1.38 1.41 1.43 1.46WT_ 333/356x32 2.00 2.00 2.00 2.00 2.00 1.99 1.99 91.0 91.7 92.9 93.6 95.5 96.8 98.7 1.55 1.56 1.58 1.59 1.63 1.65 1.68WT_ 333/406x32 2.15 2.15 2.15 2.15 2.15 2.15 2.14 96.3 96.9 98.1 98.7 100.5 101.7 103.5 1.64 1.65 1.67 1.68 1.71 1.73 1.76WT_ 333/450x32 2.28 2.28 2.28 2.28 2.28 2.28 2.27 100.3 100.9 102.0 102.6 104.3 105.4 107.1 1.71 1.72 1.74 1.75 1.78 1.80 1.82

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

SIN Properties - v13 | 2019-08-27

Page 86: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 440/127x6 1.47 1.47 1.47 1.47 1.47 1.47 1.46 12.9 14.0 16.2 17.3 20.6 22.8 26.1 0.22 0.24 0.28 0.29 0.35 0.39 0.44WT_ 440/152x6 1.55 1.55 1.55 1.55 1.54 1.54 1.54 13.9 15.0 17.0 18.1 21.2 23.3 26.4 0.24 0.25 0.29 0.31 0.36 0.40 0.45WT_ 440/152x8 1.56 1.56 1.55 1.55 1.55 1.55 1.55 16.3 17.3 19.4 20.4 23.6 25.6 28.8 0.28 0.30 0.33 0.35 0.40 0.44 0.49

WT_ 440/152x10 1.56 1.56 1.56 1.56 1.56 1.56 1.55 18.7 19.7 21.8 22.8 25.9 28.0 31.1 0.32 0.34 0.37 0.39 0.44 0.48 0.53WT_ 440/178x10 1.64 1.64 1.64 1.64 1.63 1.63 1.63 20.1 21.1 23.1 24.1 27.0 29.0 32.0 0.34 0.36 0.39 0.41 0.46 0.49 0.54WT_ 440/152x13 1.58 1.57 1.57 1.57 1.57 1.57 1.57 23.3 24.4 26.4 27.4 30.5 32.6 35.7 0.40 0.41 0.45 0.47 0.52 0.56 0.61WT_ 440/178x13 1.65 1.65 1.65 1.65 1.65 1.64 1.64 25.3 26.3 28.3 29.3 32.2 34.2 37.1 0.43 0.45 0.48 0.50 0.55 0.58 0.63WT_ 440/203x13 1.73 1.73 1.73 1.72 1.72 1.72 1.72 27.1 28.1 30.0 30.9 33.7 35.6 38.4 0.46 0.48 0.51 0.53 0.57 0.61 0.65WT_ 440/152x19 1.60 1.60 1.60 1.60 1.60 1.59 1.59 32.5 33.5 35.5 36.5 39.6 41.6 44.7 0.55 0.57 0.60 0.62 0.67 0.71 0.76WT_ 440/203x16 1.74 1.74 1.74 1.74 1.73 1.73 1.73 32.8 33.7 35.6 36.5 39.3 41.2 44.0 0.56 0.57 0.61 0.62 0.67 0.70 0.75WT_ 440/203x19 1.75 1.75 1.75 1.75 1.75 1.75 1.74 38.3 39.2 41.1 42.0 44.8 46.7 49.5 0.65 0.67 0.70 0.72 0.76 0.80 0.84WT_ 440/254x19 1.91 1.90 1.90 1.90 1.90 1.90 1.90 43.2 44.1 45.8 46.6 49.2 50.9 53.5 0.74 0.75 0.78 0.79 0.84 0.87 0.91WT_ 440/203x25 1.78 1.78 1.78 1.78 1.77 1.77 1.77 49.2 50.1 51.9 52.8 55.6 57.4 60.2 0.84 0.85 0.88 0.90 0.95 0.98 1.03WT_ 440/254x25 1.93 1.93 1.93 1.93 1.93 1.92 1.92 55.8 56.6 58.3 59.2 61.7 63.4 66.0 0.95 0.96 0.99 1.01 1.05 1.08 1.12WT_ 440/279x25 2.01 2.01 2.00 2.00 2.00 2.00 2.00 58.7 59.5 61.1 62.0 64.4 66.1 68.5 1.00 1.01 1.04 1.06 1.10 1.13 1.17WT_ 440/305x25 2.08 2.08 2.08 2.08 2.08 2.08 2.07 61.4 62.2 63.8 64.6 66.9 68.5 70.9 1.05 1.06 1.09 1.10 1.14 1.17 1.21WT_ 440/254x32 1.96 1.96 1.95 1.95 1.95 1.95 1.95 68.0 68.8 70.5 71.4 73.9 75.6 78.1 1.16 1.17 1.20 1.22 1.26 1.29 1.33WT_ 440/330x25 2.16 2.16 2.16 2.16 2.15 2.15 2.15 63.9 64.7 66.2 67.0 69.3 70.8 73.1 1.09 1.10 1.13 1.14 1.18 1.21 1.25WT_ 440/356x25 2.24 2.23 2.23 2.23 2.23 2.23 2.23 66.3 67.0 68.5 69.2 71.5 72.9 75.2 1.13 1.14 1.17 1.18 1.22 1.24 1.28WT_ 440/305x32 2.11 2.11 2.11 2.11 2.10 2.10 2.10 75.1 75.9 77.4 78.2 80.6 82.2 84.5 1.28 1.29 1.32 1.33 1.37 1.40 1.44WT_ 440/406x25 2.39 2.39 2.39 2.38 2.38 2.38 2.38 70.5 71.2 72.6 73.3 75.4 76.8 78.9 1.20 1.21 1.24 1.25 1.28 1.31 1.34WT_ 440/356x32 2.26 2.26 2.26 2.26 2.26 2.25 2.25 81.2 82.0 83.4 84.2 86.4 87.8 90.0 1.38 1.40 1.42 1.43 1.47 1.50 1.53WT_ 440/406x32 2.41 2.41 2.41 2.41 2.41 2.41 2.40 86.6 87.3 88.7 89.3 91.4 92.8 94.9 1.47 1.49 1.51 1.52 1.56 1.58 1.62WT_ 440/450x32 2.54 2.54 2.54 2.54 2.54 2.54 2.53 90.7 91.3 92.6 93.3 95.3 96.6 98.6 1.54 1.56 1.58 1.59 1.62 1.64 1.68

SIN Properties - v13 | 2019-08-27

Page 87: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 500/127x6 1.62 1.62 1.62 1.62 1.61 1.61 1.61 12.3 13.4 15.7 16.8 20.2 22.5 25.9 0.21 0.23 0.27 0.29 0.34 0.38 0.44WT_ 500/152x6 1.70 1.69 1.69 1.69 1.69 1.69 1.69 13.2 14.3 16.5 17.5 20.8 22.9 26.2 0.23 0.24 0.28 0.30 0.35 0.39 0.45WT_ 500/152x8 1.70 1.70 1.70 1.70 1.70 1.70 1.69 15.4 16.5 18.6 19.7 22.9 25.1 28.3 0.26 0.28 0.32 0.34 0.39 0.43 0.48

WT_ 500/152x10 1.71 1.71 1.71 1.71 1.70 1.70 1.70 17.6 18.7 20.8 21.9 25.1 27.2 30.5 0.30 0.32 0.35 0.37 0.43 0.46 0.52WT_ 500/178x10 1.78 1.78 1.78 1.78 1.78 1.78 1.78 19.0 20.0 22.0 23.1 26.1 28.2 31.3 0.32 0.34 0.38 0.39 0.45 0.48 0.53WT_ 500/152x13 1.72 1.72 1.72 1.72 1.72 1.71 1.71 21.9 22.9 25.1 26.1 29.3 31.5 34.7 0.37 0.39 0.43 0.45 0.50 0.54 0.59WT_ 500/178x13 1.80 1.80 1.79 1.79 1.79 1.79 1.79 23.8 24.8 26.8 27.8 30.9 33.0 36.0 0.40 0.42 0.46 0.47 0.53 0.56 0.61WT_ 500/203x13 1.87 1.87 1.87 1.87 1.87 1.87 1.86 25.5 26.5 28.4 29.4 32.4 34.3 37.3 0.43 0.45 0.48 0.50 0.55 0.58 0.63WT_ 500/152x19 1.75 1.75 1.74 1.74 1.74 1.74 1.74 30.3 31.3 33.4 34.5 37.6 39.7 42.9 0.52 0.53 0.57 0.59 0.64 0.68 0.73WT_ 500/203x16 1.89 1.89 1.88 1.88 1.88 1.88 1.88 30.7 31.7 33.6 34.6 37.5 39.5 42.4 0.52 0.54 0.57 0.59 0.64 0.67 0.72WT_ 500/203x19 1.90 1.90 1.90 1.90 1.89 1.89 1.89 35.8 36.8 38.7 39.7 42.6 44.6 47.5 0.61 0.63 0.66 0.68 0.73 0.76 0.81WT_ 500/254x19 2.05 2.05 2.05 2.05 2.05 2.04 2.04 40.6 41.5 43.3 44.2 46.9 48.7 51.4 0.69 0.71 0.74 0.75 0.80 0.83 0.88WT_ 500/203x25 1.92 1.92 1.92 1.92 1.92 1.92 1.92 45.9 46.8 48.8 49.7 52.6 54.5 57.4 0.78 0.80 0.83 0.85 0.90 0.93 0.98WT_ 500/254x25 2.08 2.08 2.07 2.07 2.07 2.07 2.07 52.3 53.2 54.9 55.8 58.5 60.3 63.0 0.89 0.91 0.94 0.95 1.00 1.03 1.07WT_ 500/279x25 2.15 2.15 2.15 2.15 2.15 2.15 2.14 55.1 56.0 57.7 58.6 61.2 62.9 65.5 0.94 0.95 0.98 1.00 1.04 1.07 1.12WT_ 500/305x25 2.23 2.23 2.23 2.23 2.22 2.22 2.22 57.8 58.6 60.3 61.1 63.6 65.3 67.8 0.98 1.00 1.03 1.04 1.08 1.11 1.15WT_ 500/254x32 2.10 2.10 2.10 2.10 2.10 2.10 2.09 63.7 64.6 66.3 67.2 69.9 71.7 74.3 1.08 1.10 1.13 1.15 1.19 1.22 1.27WT_ 500/330x25 2.31 2.30 2.30 2.30 2.30 2.30 2.30 60.3 61.1 62.7 63.5 65.9 67.5 70.0 1.03 1.04 1.07 1.08 1.12 1.15 1.19WT_ 500/356x25 2.38 2.38 2.38 2.38 2.38 2.37 2.37 62.6 63.4 64.9 65.7 68.1 69.6 72.0 1.07 1.08 1.11 1.12 1.16 1.19 1.23WT_ 500/305x32 2.25 2.25 2.25 2.25 2.25 2.25 2.25 70.6 71.4 73.1 73.9 76.4 78.1 80.6 1.20 1.22 1.24 1.26 1.30 1.33 1.37WT_ 500/406x25 2.53 2.53 2.53 2.53 2.53 2.53 2.52 66.8 67.6 69.0 69.8 72.0 73.5 75.7 1.14 1.15 1.18 1.19 1.23 1.25 1.29WT_ 500/356x32 2.41 2.41 2.40 2.40 2.40 2.40 2.40 76.7 77.4 79.0 79.8 82.1 83.7 86.0 1.31 1.32 1.35 1.36 1.40 1.43 1.47WT_ 500/406x32 2.56 2.56 2.56 2.56 2.55 2.55 2.55 82.0 82.7 84.2 84.9 87.1 88.6 90.8 1.40 1.41 1.43 1.45 1.48 1.51 1.55WT_ 500/450x32 2.69 2.69 2.69 2.69 2.68 2.68 2.68 86.1 86.8 88.2 88.9 91.0 92.4 94.5 1.47 1.48 1.50 1.51 1.55 1.57 1.61

SIN Properties - v13 | 2019-08-27

Page 88: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 610/127x6 1.89 1.89 1.88 1.88 1.88 1.88 1.88 11.4 12.6 14.9 16.1 19.7 22.0 25.6 0.19 0.21 0.25 0.27 0.33 0.38 0.44WT_ 610/152x6 1.96 1.96 1.96 1.96 1.96 1.96 1.95 12.2 13.4 15.6 16.8 20.2 22.5 25.9 0.21 0.23 0.27 0.29 0.34 0.38 0.44WT_ 610/152x8 1.97 1.97 1.97 1.97 1.96 1.96 1.96 14.1 15.3 17.5 18.7 22.1 24.3 27.7 0.24 0.26 0.30 0.32 0.38 0.41 0.47

WT_ 610/152x10 1.97 1.97 1.97 1.97 1.97 1.97 1.97 16.0 17.1 19.4 20.5 23.9 26.2 29.6 0.27 0.29 0.33 0.35 0.41 0.45 0.50WT_ 610/178x10 2.05 2.05 2.05 2.05 2.05 2.04 2.04 17.3 18.4 20.5 21.6 24.9 27.1 30.3 0.29 0.31 0.35 0.37 0.42 0.46 0.52WT_ 610/152x13 1.99 1.99 1.99 1.98 1.98 1.98 1.98 19.7 20.9 23.1 24.2 27.6 29.8 33.2 0.34 0.36 0.39 0.41 0.47 0.51 0.57WT_ 610/178x13 2.06 2.06 2.06 2.06 2.06 2.06 2.05 21.5 22.5 24.7 25.8 29.0 31.2 34.5 0.37 0.38 0.42 0.44 0.49 0.53 0.59WT_ 610/203x13 2.14 2.14 2.14 2.14 2.13 2.13 2.13 23.1 24.1 26.2 27.2 30.4 32.5 35.6 0.39 0.41 0.45 0.46 0.52 0.55 0.61WT_ 610/152x19 2.01 2.01 2.01 2.01 2.01 2.01 2.00 27.0 28.1 30.4 31.5 34.8 37.0 40.4 0.46 0.48 0.52 0.54 0.59 0.63 0.69WT_ 610/203x16 2.15 2.15 2.15 2.15 2.15 2.15 2.14 27.6 28.7 30.7 31.8 34.9 37.0 40.1 0.47 0.49 0.52 0.54 0.59 0.63 0.68WT_ 610/203x19 2.17 2.16 2.16 2.16 2.16 2.16 2.16 32.1 33.2 35.2 36.3 39.4 41.5 44.6 0.55 0.57 0.60 0.62 0.67 0.71 0.76WT_ 610/254x19 2.32 2.32 2.32 2.31 2.31 2.31 2.31 36.6 37.6 39.5 40.5 43.4 45.3 48.2 0.62 0.64 0.67 0.69 0.74 0.77 0.82WT_ 610/203x25 2.19 2.19 2.19 2.19 2.19 2.18 2.18 41.0 42.0 44.1 45.1 48.2 50.3 53.3 0.70 0.72 0.75 0.77 0.82 0.86 0.91WT_ 610/254x25 2.34 2.34 2.34 2.34 2.34 2.34 2.33 47.0 48.0 49.9 50.8 53.7 55.6 58.5 0.80 0.82 0.85 0.87 0.91 0.95 1.00WT_ 610/279x25 2.42 2.42 2.42 2.42 2.41 2.41 2.41 49.7 50.6 52.5 53.4 56.2 58.1 60.9 0.85 0.86 0.89 0.91 0.96 0.99 1.04WT_ 610/305x25 2.50 2.49 2.49 2.49 2.49 2.49 2.49 52.2 53.1 55.0 55.9 58.6 60.4 63.1 0.89 0.91 0.94 0.95 1.00 1.03 1.07WT_ 610/254x32 2.37 2.37 2.37 2.37 2.36 2.36 2.36 57.2 58.1 60.0 61.0 63.9 65.8 68.6 0.97 0.99 1.02 1.04 1.09 1.12 1.17WT_ 610/330x25 2.57 2.57 2.57 2.57 2.57 2.56 2.56 54.6 55.5 57.3 58.1 60.8 62.5 65.2 0.93 0.95 0.98 0.99 1.04 1.07 1.11WT_ 610/356x25 2.65 2.65 2.65 2.64 2.64 2.64 2.64 56.9 57.7 59.4 60.3 62.9 64.6 67.1 0.97 0.98 1.01 1.03 1.07 1.10 1.14WT_ 610/305x32 2.52 2.52 2.52 2.52 2.52 2.51 2.51 63.8 64.7 66.5 67.4 70.1 71.9 74.6 1.09 1.10 1.13 1.15 1.19 1.22 1.27WT_ 610/406x25 2.80 2.80 2.80 2.80 2.79 2.79 2.79 61.0 61.8 63.4 64.3 66.7 68.3 70.7 1.04 1.05 1.08 1.09 1.14 1.16 1.20WT_ 610/356x32 2.67 2.67 2.67 2.67 2.67 2.67 2.66 69.6 70.5 72.2 73.0 75.5 77.2 79.8 1.19 1.20 1.23 1.24 1.29 1.32 1.36WT_ 610/406x32 2.83 2.82 2.82 2.82 2.82 2.82 2.82 74.8 75.6 77.2 78.0 80.4 82.1 84.5 1.27 1.29 1.32 1.33 1.37 1.40 1.44WT_ 610/450x32 2.96 2.96 2.95 2.95 2.95 2.95 2.95 78.9 79.6 81.2 81.9 84.2 85.8 88.1 1.34 1.36 1.38 1.40 1.43 1.46 1.50

SIN Properties - v13 | 2019-08-27

Page 89: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 750/127x6 2.23 2.23 2.23 2.22 2.22 2.22 2.22 10.6 11.8 14.2 15.5 19.2 21.6 25.3 0.18 0.20 0.24 0.26 0.33 0.37 0.43WT_ 750/152x6 2.30 2.30 2.30 2.30 2.30 2.30 2.29 11.3 12.5 14.9 16.1 19.6 22.0 25.6 0.19 0.21 0.25 0.27 0.33 0.37 0.44WT_ 750/152x8 2.31 2.31 2.31 2.31 2.30 2.30 2.30 12.9 14.1 16.5 17.7 21.2 23.6 27.2 0.22 0.24 0.28 0.30 0.36 0.40 0.46

WT_ 750/152x10 2.32 2.32 2.31 2.31 2.31 2.31 2.31 14.5 15.7 18.1 19.3 22.8 25.2 28.7 0.25 0.27 0.31 0.33 0.39 0.43 0.49WT_ 750/178x10 2.39 2.39 2.39 2.39 2.39 2.39 2.38 15.7 16.8 19.1 20.2 23.7 26.0 29.4 0.27 0.29 0.33 0.34 0.40 0.44 0.50WT_ 750/152x13 2.33 2.33 2.33 2.33 2.32 2.32 2.32 17.7 18.9 21.2 22.4 25.9 28.3 31.8 0.30 0.32 0.36 0.38 0.44 0.48 0.54WT_ 750/178x13 2.41 2.40 2.40 2.40 2.40 2.40 2.40 19.3 20.4 22.7 23.8 27.2 29.5 32.9 0.33 0.35 0.39 0.41 0.46 0.50 0.56WT_ 750/203x13 2.48 2.48 2.48 2.48 2.48 2.47 2.47 20.7 21.8 24.0 25.1 28.4 30.7 34.0 0.35 0.37 0.41 0.43 0.48 0.52 0.58WT_ 750/152x19 2.35 2.35 2.35 2.35 2.35 2.35 2.35 24.0 25.1 27.5 28.6 32.1 34.5 38.0 0.41 0.43 0.47 0.49 0.55 0.59 0.65WT_ 750/203x16 2.49 2.49 2.49 2.49 2.49 2.49 2.48 24.7 25.8 28.0 29.1 32.4 34.6 37.9 0.42 0.44 0.48 0.49 0.55 0.59 0.65WT_ 750/203x19 2.51 2.51 2.50 2.50 2.50 2.50 2.50 28.6 29.7 31.9 33.0 36.2 38.4 41.7 0.49 0.51 0.54 0.56 0.62 0.65 0.71WT_ 750/254x19 2.66 2.66 2.66 2.66 2.65 2.65 2.65 32.7 33.7 35.8 36.8 39.9 42.0 45.1 0.56 0.57 0.61 0.63 0.68 0.71 0.77WT_ 750/203x25 2.53 2.53 2.53 2.53 2.53 2.53 2.52 36.3 37.4 39.5 40.6 43.9 46.1 49.3 0.62 0.64 0.67 0.69 0.75 0.78 0.84WT_ 750/254x25 2.68 2.68 2.68 2.68 2.68 2.68 2.68 41.8 42.8 44.9 45.9 49.0 51.0 54.1 0.71 0.73 0.76 0.78 0.83 0.87 0.92WT_ 750/279x25 2.76 2.76 2.76 2.76 2.76 2.75 2.75 44.3 45.3 47.3 48.3 51.3 53.3 56.3 0.75 0.77 0.81 0.82 0.87 0.91 0.96WT_ 750/305x25 2.84 2.84 2.83 2.83 2.83 2.83 2.83 46.7 47.6 49.6 50.6 53.5 55.4 58.4 0.80 0.81 0.84 0.86 0.91 0.94 0.99WT_ 750/254x32 2.71 2.71 2.71 2.71 2.70 2.70 2.70 50.7 51.7 53.8 54.8 57.9 59.9 63.0 0.86 0.88 0.92 0.93 0.99 1.02 1.07WT_ 750/330x25 2.91 2.91 2.91 2.91 2.91 2.91 2.90 48.9 49.9 51.8 52.7 55.6 57.5 60.3 0.83 0.85 0.88 0.90 0.95 0.98 1.03WT_ 750/356x25 2.99 2.99 2.99 2.99 2.98 2.98 2.98 51.1 52.0 53.8 54.8 57.5 59.4 62.2 0.87 0.89 0.92 0.93 0.98 1.01 1.06WT_ 750/305x32 2.86 2.86 2.86 2.86 2.86 2.86 2.85 56.9 57.8 59.8 60.7 63.6 65.6 68.5 0.97 0.99 1.02 1.03 1.08 1.12 1.17WT_ 750/406x25 3.14 3.14 3.14 3.14 3.14 3.13 3.13 55.0 55.9 57.7 58.6 61.2 63.0 65.6 0.94 0.95 0.98 1.00 1.04 1.07 1.12WT_ 750/356x32 3.01 3.01 3.01 3.01 3.01 3.01 3.01 62.4 63.3 65.2 66.1 68.8 70.7 73.4 1.06 1.08 1.11 1.13 1.17 1.20 1.25WT_ 750/406x32 3.17 3.17 3.16 3.16 3.16 3.16 3.16 67.4 68.3 70.0 70.9 73.5 75.3 77.9 1.15 1.16 1.19 1.21 1.25 1.28 1.33WT_ 750/450x32 3.30 3.30 3.30 3.29 3.29 3.29 3.29 71.3 72.2 73.8 74.7 77.2 78.9 81.4 1.21 1.23 1.26 1.27 1.31 1.34 1.39

SIN Properties - v13 | 2019-08-27

Page 90: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 900/127x6 2.59 2.59 2.59 2.59 2.59 2.59 2.58 9.9 11.2 13.7 15.0 18.8 21.3 25.1 0.17 0.19 0.23 0.25 0.32 0.36 0.43WT_ 900/152x6 2.67 2.67 2.67 2.67 2.66 2.66 2.66 10.6 11.8 14.3 15.5 19.2 21.6 25.3 0.18 0.20 0.24 0.26 0.33 0.37 0.43WT_ 900/152x8 2.67 2.67 2.67 2.67 2.67 2.67 2.67 12.0 13.2 15.6 16.9 20.6 23.0 26.7 0.20 0.22 0.27 0.29 0.35 0.39 0.45

WT_ 900/152x10 2.68 2.68 2.68 2.68 2.68 2.67 2.67 13.4 14.6 17.0 18.3 21.9 24.4 28.1 0.23 0.25 0.29 0.31 0.37 0.42 0.48WT_ 900/178x10 2.76 2.76 2.75 2.75 2.75 2.75 2.75 14.4 15.6 17.9 19.1 22.7 25.1 28.7 0.24 0.27 0.31 0.33 0.39 0.43 0.49WT_ 900/152x13 2.69 2.69 2.69 2.69 2.69 2.69 2.68 16.1 17.3 19.8 21.0 24.6 27.1 30.8 0.27 0.30 0.34 0.36 0.42 0.46 0.52WT_ 900/178x13 2.77 2.77 2.77 2.77 2.76 2.76 2.76 17.5 18.7 21.1 22.2 25.8 28.2 31.7 0.30 0.32 0.36 0.38 0.44 0.48 0.54WT_ 900/203x13 2.85 2.85 2.84 2.84 2.84 2.84 2.84 18.8 20.0 22.3 23.4 26.9 29.2 32.7 0.32 0.34 0.38 0.40 0.46 0.50 0.56WT_ 900/152x19 2.72 2.72 2.72 2.72 2.71 2.71 2.71 21.6 22.8 25.2 26.4 30.0 32.4 36.1 0.37 0.39 0.43 0.45 0.51 0.55 0.61WT_ 900/203x16 2.86 2.86 2.86 2.86 2.85 2.85 2.85 22.3 23.4 25.7 26.9 30.3 32.6 36.1 0.38 0.40 0.44 0.46 0.52 0.56 0.61WT_ 900/203x19 2.87 2.87 2.87 2.87 2.87 2.86 2.86 25.7 26.8 29.1 30.3 33.7 36.0 39.5 0.44 0.46 0.50 0.52 0.57 0.61 0.67WT_ 900/254x19 3.02 3.02 3.02 3.02 3.02 3.02 3.01 29.4 30.5 32.7 33.8 37.1 39.2 42.5 0.50 0.52 0.56 0.58 0.63 0.67 0.72WT_ 900/203x25 2.90 2.90 2.89 2.89 2.89 2.89 2.89 32.5 33.6 35.9 37.0 40.4 42.7 46.1 0.55 0.57 0.61 0.63 0.69 0.73 0.79WT_ 900/254x25 3.05 3.05 3.05 3.05 3.04 3.04 3.04 37.5 38.6 40.7 41.8 45.1 47.2 50.5 0.64 0.66 0.69 0.71 0.77 0.80 0.86WT_ 900/279x25 3.13 3.12 3.12 3.12 3.12 3.12 3.12 39.8 40.9 43.0 44.0 47.2 49.3 52.5 0.68 0.70 0.73 0.75 0.80 0.84 0.89WT_ 900/305x25 3.20 3.20 3.20 3.20 3.20 3.19 3.19 42.0 43.1 45.1 46.2 49.2 51.3 54.4 0.72 0.73 0.77 0.79 0.84 0.87 0.93WT_ 900/254x32 3.07 3.07 3.07 3.07 3.07 3.07 3.07 45.4 46.5 48.6 49.7 52.9 55.1 58.3 0.77 0.79 0.83 0.85 0.90 0.94 0.99WT_ 900/330x25 3.28 3.28 3.28 3.27 3.27 3.27 3.27 44.2 45.2 47.2 48.2 51.2 53.2 56.2 0.75 0.77 0.80 0.82 0.87 0.91 0.96WT_ 900/356x25 3.35 3.35 3.35 3.35 3.35 3.35 3.35 46.2 47.1 49.1 50.1 53.1 55.0 58.0 0.79 0.80 0.84 0.85 0.90 0.94 0.99WT_ 900/305x32 3.23 3.23 3.22 3.22 3.22 3.22 3.22 51.1 52.1 54.2 55.2 58.3 60.3 63.4 0.87 0.89 0.92 0.94 0.99 1.03 1.08WT_ 900/406x25 3.51 3.51 3.50 3.50 3.50 3.50 3.50 49.9 50.9 52.8 53.7 56.5 58.4 61.3 0.85 0.87 0.90 0.91 0.96 1.00 1.04WT_ 900/356x32 3.38 3.38 3.38 3.38 3.37 3.37 3.37 56.3 57.3 59.2 60.2 63.2 65.1 68.1 0.96 0.98 1.01 1.03 1.08 1.11 1.16WT_ 900/406x32 3.53 3.53 3.53 3.53 3.53 3.53 3.52 61.1 62.0 63.9 64.8 67.6 69.5 72.3 1.04 1.06 1.09 1.10 1.15 1.18 1.23WT_ 900/450x32 3.66 3.66 3.66 3.66 3.66 3.66 3.65 64.8 65.7 67.5 68.4 71.1 73.0 75.7 1.10 1.12 1.15 1.17 1.21 1.24 1.29

SIN Properties - v13 | 2019-08-27

Page 91: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 1000/127x6 2.84 2.83 2.83 2.83 2.83 2.83 2.83 9.6 10.9 13.4 14.7 18.6 21.1 25.0 0.16 0.18 0.23 0.25 0.32 0.36 0.43WT_ 1000/152x6 2.91 2.91 2.91 2.91 2.91 2.90 2.90 10.2 11.4 13.9 15.2 18.9 21.4 25.2 0.17 0.19 0.24 0.26 0.32 0.37 0.43WT_ 1000/152x8 2.92 2.92 2.92 2.91 2.91 2.91 2.91 11.5 12.7 15.2 16.5 20.2 22.7 26.5 0.20 0.22 0.26 0.28 0.34 0.39 0.45

WT_ 1000/152x10 2.92 2.92 2.92 2.92 2.92 2.92 2.92 12.8 14.0 16.5 17.7 21.5 24.0 27.7 0.22 0.24 0.28 0.30 0.37 0.41 0.47WT_ 1000/178x10 3.00 3.00 3.00 3.00 3.00 2.99 2.99 13.7 14.9 17.3 18.5 22.2 24.6 28.3 0.23 0.25 0.30 0.32 0.38 0.42 0.48WT_ 1000/152x13 2.94 2.94 2.93 2.93 2.93 2.93 2.93 15.3 16.5 19.0 20.2 24.0 26.4 30.2 0.26 0.28 0.32 0.34 0.41 0.45 0.51WT_ 1000/178x13 3.01 3.01 3.01 3.01 3.01 3.01 3.00 16.6 17.8 20.2 21.4 25.0 27.5 31.1 0.28 0.30 0.34 0.36 0.43 0.47 0.53WT_ 1000/203x13 3.09 3.09 3.09 3.09 3.08 3.08 3.08 17.8 19.0 21.3 22.5 26.1 28.4 32.0 0.30 0.32 0.36 0.38 0.44 0.48 0.54WT_ 1000/152x19 2.96 2.96 2.96 2.96 2.96 2.96 2.95 20.3 21.5 24.0 25.2 28.9 31.4 35.1 0.35 0.37 0.41 0.43 0.49 0.53 0.60WT_ 1000/203x16 3.10 3.10 3.10 3.10 3.10 3.10 3.09 21.0 22.2 24.5 25.7 29.2 31.6 35.1 0.36 0.38 0.42 0.44 0.50 0.54 0.60WT_ 1000/203x19 3.11 3.11 3.11 3.11 3.11 3.11 3.11 24.2 25.3 27.7 28.8 32.4 34.7 38.2 0.41 0.43 0.47 0.49 0.55 0.59 0.65WT_ 1000/254x19 3.27 3.27 3.26 3.26 3.26 3.26 3.26 27.7 28.8 31.0 32.2 35.5 37.7 41.1 0.47 0.49 0.53 0.55 0.60 0.64 0.70WT_ 1000/203x25 3.14 3.14 3.14 3.14 3.13 3.13 3.13 30.4 31.6 33.9 35.1 38.6 40.9 44.4 0.52 0.54 0.58 0.60 0.66 0.70 0.76WT_ 1000/254x25 3.29 3.29 3.29 3.29 3.29 3.29 3.28 35.2 36.3 38.5 39.6 42.9 45.2 48.5 0.60 0.62 0.66 0.67 0.73 0.77 0.83WT_ 1000/279x25 3.37 3.37 3.37 3.37 3.36 3.36 3.36 37.4 38.5 40.6 41.7 45.0 47.2 50.4 0.64 0.66 0.69 0.71 0.77 0.80 0.86WT_ 1000/305x25 3.44 3.44 3.44 3.44 3.44 3.44 3.44 39.5 40.5 42.7 43.7 46.9 49.1 52.2 0.67 0.69 0.73 0.74 0.80 0.84 0.89WT_ 1000/254x32 3.32 3.32 3.32 3.31 3.31 3.31 3.31 42.5 43.6 45.8 46.9 50.3 52.5 55.8 0.72 0.74 0.78 0.80 0.86 0.89 0.95WT_ 1000/330x25 3.52 3.52 3.52 3.52 3.52 3.51 3.51 41.5 42.5 44.6 45.7 48.8 50.9 54.0 0.71 0.72 0.76 0.78 0.83 0.87 0.92WT_ 1000/356x25 3.60 3.60 3.60 3.59 3.59 3.59 3.59 43.4 44.5 46.5 47.5 50.6 52.6 55.7 0.74 0.76 0.79 0.81 0.86 0.90 0.95WT_ 1000/305x32 3.47 3.47 3.47 3.47 3.47 3.46 3.46 48.0 49.0 51.1 52.2 55.4 57.5 60.6 0.82 0.83 0.87 0.89 0.94 0.98 1.03WT_ 1000/406x25 3.75 3.75 3.75 3.75 3.74 3.74 3.74 47.1 48.1 50.0 51.0 53.9 55.9 58.8 0.80 0.82 0.85 0.87 0.92 0.95 1.00WT_ 1000/356x32 3.62 3.62 3.62 3.62 3.62 3.62 3.61 52.9 53.9 56.0 57.0 60.0 62.0 65.1 0.90 0.92 0.95 0.97 1.02 1.06 1.11WT_ 1000/406x32 3.78 3.77 3.77 3.77 3.77 3.77 3.77 57.5 58.5 60.4 61.4 64.3 66.3 69.2 0.98 1.00 1.03 1.05 1.10 1.13 1.18WT_ 1000/450x32 3.91 3.91 3.90 3.90 3.90 3.90 3.90 61.1 62.1 64.0 64.9 67.7 69.6 72.4 1.04 1.06 1.09 1.11 1.15 1.19 1.23

SIN Properties - v13 | 2019-08-27

Page 92: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 1219/127x6 3.37 3.37 3.37 3.37 3.36 3.36 3.36 9.0 10.3 12.9 14.3 18.2 20.9 24.8 0.15 0.18 0.22 0.24 0.31 0.36 0.42WT_ 1219/152x6 3.44 3.44 3.44 3.44 3.44 3.44 3.44 9.5 10.8 13.4 14.7 18.5 21.1 25.0 0.16 0.18 0.23 0.25 0.32 0.36 0.43WT_ 1219/152x8 3.45 3.45 3.45 3.45 3.45 3.44 3.44 10.6 11.9 14.5 15.8 19.6 22.2 26.1 0.18 0.20 0.25 0.27 0.33 0.38 0.44

WT_ 1219/152x10 3.46 3.46 3.46 3.45 3.45 3.45 3.45 11.7 13.0 15.5 16.8 20.7 23.3 27.1 0.20 0.22 0.26 0.29 0.35 0.40 0.46WT_ 1219/178x10 3.53 3.53 3.53 3.53 3.53 3.53 3.52 12.5 13.8 16.3 17.5 21.3 23.8 27.6 0.21 0.23 0.28 0.30 0.36 0.41 0.47WT_ 1219/152x13 3.47 3.47 3.47 3.47 3.46 3.46 3.46 13.9 15.1 17.7 19.0 22.8 25.4 29.2 0.24 0.26 0.30 0.32 0.39 0.43 0.50WT_ 1219/178x13 3.55 3.55 3.54 3.54 3.54 3.54 3.54 15.0 16.2 18.7 20.0 23.7 26.2 30.0 0.26 0.28 0.32 0.34 0.40 0.45 0.51WT_ 1219/203x13 3.62 3.62 3.62 3.62 3.62 3.62 3.61 16.1 17.3 19.7 21.0 24.6 27.1 30.8 0.27 0.29 0.34 0.36 0.42 0.46 0.52WT_ 1219/152x19 3.50 3.49 3.49 3.49 3.49 3.49 3.49 18.1 19.4 21.9 23.2 27.0 29.5 33.3 0.31 0.33 0.37 0.39 0.46 0.50 0.57WT_ 1219/203x16 3.64 3.63 3.63 3.63 3.63 3.63 3.63 18.8 20.0 22.5 23.7 27.3 29.8 33.5 0.32 0.34 0.38 0.40 0.47 0.51 0.57WT_ 1219/203x19 3.65 3.65 3.65 3.64 3.64 3.64 3.64 21.5 22.7 25.2 26.4 30.0 32.5 36.1 0.37 0.39 0.43 0.45 0.51 0.55 0.62WT_ 1219/254x19 3.80 3.80 3.80 3.80 3.79 3.79 3.79 24.6 25.8 28.1 29.3 32.8 35.2 38.7 0.42 0.44 0.48 0.50 0.56 0.60 0.66WT_ 1219/203x25 3.67 3.67 3.67 3.67 3.67 3.67 3.66 26.9 28.1 30.5 31.7 35.3 37.8 41.4 0.46 0.48 0.52 0.54 0.60 0.64 0.71WT_ 1219/254x25 3.83 3.82 3.82 3.82 3.82 3.82 3.82 31.1 32.3 34.6 35.7 39.2 41.6 45.1 0.53 0.55 0.59 0.61 0.67 0.71 0.77WT_ 1219/279x25 3.90 3.90 3.90 3.90 3.90 3.90 3.89 33.1 34.2 36.5 37.6 41.1 43.4 46.8 0.56 0.58 0.62 0.64 0.70 0.74 0.80WT_ 1219/305x25 3.98 3.98 3.98 3.98 3.97 3.97 3.97 35.0 36.1 38.3 39.5 42.8 45.1 48.4 0.60 0.62 0.65 0.67 0.73 0.77 0.82WT_ 1219/254x32 3.85 3.85 3.85 3.85 3.85 3.84 3.84 37.5 38.6 40.9 42.1 45.6 47.9 51.4 0.64 0.66 0.70 0.72 0.78 0.82 0.87WT_ 1219/330x25 4.05 4.05 4.05 4.05 4.05 4.05 4.05 36.8 37.9 40.1 41.2 44.5 46.7 50.0 0.63 0.65 0.68 0.70 0.76 0.80 0.85WT_ 1219/356x25 4.13 4.13 4.13 4.13 4.13 4.12 4.12 38.6 39.7 41.8 42.9 46.2 48.3 51.6 0.66 0.68 0.71 0.73 0.79 0.82 0.88WT_ 1219/305x32 4.00 4.00 4.00 4.00 4.00 4.00 3.99 42.4 43.5 45.7 46.8 50.2 52.4 55.7 0.72 0.74 0.78 0.80 0.85 0.89 0.95WT_ 1219/406x25 4.28 4.28 4.28 4.28 4.28 4.28 4.27 42.0 43.0 45.1 46.1 49.2 51.3 54.5 0.71 0.73 0.77 0.79 0.84 0.87 0.93WT_ 1219/356x32 4.16 4.16 4.15 4.15 4.15 4.15 4.15 46.9 48.0 50.1 51.2 54.4 56.6 59.8 0.80 0.82 0.85 0.87 0.93 0.96 1.02WT_ 1219/406x32 4.31 4.31 4.31 4.31 4.30 4.30 4.30 51.1 52.2 54.2 55.3 58.4 60.4 63.6 0.87 0.89 0.92 0.94 0.99 1.03 1.08WT_ 1219/450x32 4.44 4.44 4.44 4.44 4.43 4.43 4.43 54.5 55.5 57.5 58.5 61.6 63.6 66.6 0.93 0.95 0.98 1.00 1.05 1.08 1.13

SIN Properties - v13 | 2019-08-27

Page 93: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Table 3.7

Highlight W/D < 0.37 lb/ft / in Surf Area = 3 * WFlange + 4 * TFlange + 2 * DWeb * 1.216 - 2 * Tweb

Highlight M/D < 23.00 kg/m / m The 1.216 factor is to account for the sinusoidal shape of the web

Designation

WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK WT0 WTA WTB WTC WTF WTH WTK

a b c d e Column1 Column2 Column3 f g h i Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12 s

Surface Area (m2) per metrelength less top flange

Metric M/D Ratio (kg/m / m) Imperial W/D Ratio (lb/ft / in)

SIN Beam M/D for ULC

WT_ 1500/127x6 4.05 4.05 4.05 4.05 4.05 4.04 4.04 8.5 9.8 12.5 13.9 17.9 20.6 24.6 0.14 0.17 0.21 0.24 0.30 0.35 0.42WT_ 1500/152x6 4.13 4.13 4.13 4.12 4.12 4.12 4.12 9.0 10.3 12.9 14.2 18.2 20.8 24.8 0.15 0.17 0.22 0.24 0.31 0.35 0.42WT_ 1500/152x8 4.13 4.13 4.13 4.13 4.13 4.13 4.12 9.9 11.2 13.8 15.1 19.1 21.7 25.7 0.17 0.19 0.24 0.26 0.33 0.37 0.44

WT_ 1500/152x10 4.14 4.14 4.14 4.14 4.13 4.13 4.13 10.8 12.1 14.7 16.0 20.0 22.6 26.6 0.18 0.21 0.25 0.27 0.34 0.39 0.45WT_ 1500/178x10 4.22 4.22 4.21 4.21 4.21 4.21 4.21 11.5 12.8 15.3 16.6 20.5 23.1 27.0 0.20 0.22 0.26 0.28 0.35 0.39 0.46WT_ 1500/152x13 4.15 4.15 4.15 4.15 4.15 4.15 4.14 12.6 13.9 16.5 17.8 21.7 24.4 28.3 0.21 0.24 0.28 0.30 0.37 0.42 0.48WT_ 1500/178x13 4.23 4.23 4.23 4.23 4.22 4.22 4.22 13.5 14.8 17.4 18.7 22.5 25.1 29.0 0.23 0.25 0.30 0.32 0.38 0.43 0.49WT_ 1500/203x13 4.31 4.30 4.30 4.30 4.30 4.30 4.30 14.5 15.7 18.3 19.5 23.3 25.9 29.7 0.25 0.27 0.31 0.33 0.40 0.44 0.51WT_ 1500/152x19 4.18 4.18 4.18 4.18 4.17 4.17 4.17 16.1 17.4 20.0 21.3 25.3 27.9 31.8 0.27 0.30 0.34 0.36 0.43 0.47 0.54WT_ 1500/203x16 4.32 4.32 4.32 4.32 4.31 4.31 4.31 16.8 18.0 20.5 21.8 25.6 28.1 31.9 0.29 0.31 0.35 0.37 0.44 0.48 0.54WT_ 1500/203x19 4.33 4.33 4.33 4.33 4.33 4.32 4.32 19.1 20.3 22.8 24.1 27.9 30.4 34.2 0.32 0.35 0.39 0.41 0.47 0.52 0.58WT_ 1500/254x19 4.48 4.48 4.48 4.48 4.48 4.48 4.47 21.8 23.0 25.4 26.7 30.3 32.8 36.4 0.37 0.39 0.43 0.45 0.52 0.56 0.62WT_ 1500/203x25 4.36 4.36 4.35 4.35 4.35 4.35 4.35 23.6 24.8 27.3 28.6 32.4 34.9 38.6 0.40 0.42 0.47 0.49 0.55 0.59 0.66WT_ 1500/254x25 4.51 4.51 4.51 4.51 4.50 4.50 4.50 27.3 28.5 30.9 32.1 35.8 38.2 41.8 0.46 0.49 0.53 0.55 0.61 0.65 0.71WT_ 1500/279x25 4.58 4.58 4.58 4.58 4.58 4.58 4.58 29.0 30.2 32.6 33.8 37.4 39.8 43.4 0.49 0.51 0.56 0.58 0.64 0.68 0.74WT_ 1500/305x25 4.66 4.66 4.66 4.66 4.66 4.65 4.65 30.7 31.9 34.3 35.4 39.0 41.3 44.8 0.52 0.54 0.58 0.60 0.66 0.70 0.76WT_ 1500/254x32 4.53 4.53 4.53 4.53 4.53 4.53 4.52 32.7 33.9 36.3 37.5 41.2 43.6 47.2 0.56 0.58 0.62 0.64 0.70 0.74 0.80WT_ 1500/330x25 4.74 4.74 4.73 4.73 4.73 4.73 4.73 32.4 33.5 35.8 37.0 40.5 42.8 46.2 0.55 0.57 0.61 0.63 0.69 0.73 0.79WT_ 1500/356x25 4.81 4.81 4.81 4.81 4.81 4.81 4.80 34.0 35.1 37.4 38.5 41.9 44.2 47.6 0.58 0.60 0.64 0.66 0.71 0.75 0.81WT_ 1500/305x32 4.69 4.69 4.68 4.68 4.68 4.68 4.68 37.1 38.2 40.6 41.7 45.2 47.6 51.1 0.63 0.65 0.69 0.71 0.77 0.81 0.87WT_ 1500/406x25 4.97 4.97 4.96 4.96 4.96 4.96 4.96 37.0 38.1 40.3 41.4 44.7 46.9 50.2 0.63 0.65 0.69 0.71 0.76 0.80 0.86WT_ 1500/356x32 4.84 4.84 4.84 4.84 4.83 4.83 4.83 41.1 42.3 44.5 45.7 49.0 51.3 54.7 0.70 0.72 0.76 0.78 0.84 0.87 0.93WT_ 1500/406x32 4.99 4.99 4.99 4.99 4.99 4.98 4.98 44.9 46.0 48.2 49.3 52.6 54.8 58.1 0.77 0.78 0.82 0.84 0.90 0.93 0.99WT_ 1500/450x32 5.12 5.12 5.12 5.12 5.12 5.12 5.11 48.0 49.1 51.2 52.3 55.5 57.7 60.9 0.82 0.84 0.87 0.89 0.95 0.98 1.04

SIN Properties - v13 | 2019-08-27

Page 94: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

4 SAMPLE DETAILS

4.1 Shear Connections

• SK-1.01 – SIN Beam to HSS Column

• SK-1.02 – SIN Beam to Wide Flange Column

• SK-1.03 – SIN Beam to SIN Beam

4.2 Moment Connections

• SK-2.01 – SIN Beam to Wide Flange Column

• SK-2.02 – SIN Beam to SIN Beam

• SK-2.03 – SIN Beam splice

4.3 Miscellaneous Details

• SK-3.01 – Web Openings

TECHNICAL GUIDE

SIN Beam to HSS Column

SIN Beam to Wide Flange Column

SIN Beam to SIN Beam

Moment Connections

SIN Beam to Wide Flange Column

m to SIN Beam

SIN Beam splice

Miscellaneous Details

Web Openings

PAGE 4-1

Page 95: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

WT_333

3 BOLTS

WT_610

5 BOLTS

WT_1500

10 BOLTS

38

[1

1

/2

"]

76

[3

"]

61

0

[2

']

76

[3

"]

15

00

[4

'-1

1"]

76

[3

"]

L89x64 WELDED

TO COLUMN

PL 10x76 WELD TO SIN

WEB & T&B FLANGE

PL10x89

WELD TO PLATE

HSS COLUMN

NUMBER OF BOLTS

SIN BEAM DEPTH # BOLTS

(mm) (in) 19mm (

3

4

") Ø

333 13.11 3

500 19.69 4

610 24.00 5

750 29.53 6

1000 39.37 8

1219 48.00 10

1500 59.06 10

JOB: SIN BEAM DATE: 2015-12-10

TITLE: SHEAR CONNECTION TO HSS

SK-1.01

SHEET:

SIN BEAM TO HSS COLUMN

SHEAR CONNECTION

38

[1

1

/2

"]

38

[1

1

/2

"]

38

[1

1

/2

"]

38

[1

1

/2

"]

38

[1

1

/2

"]

PL 76 [3"]

x web depth + 32 [1

1

4

"]

x 10 [

3

8

"]

Page 96: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

WT_330

4 BOLTS

WT_610

6 BOLTS

WT_1016

8 BOLTS

33

0

[1

'-1

"]

61

0

[2

']

10

16

[3

'-4

"]

JOB: SIN BEAM DATE: 2018-08-24

TITLE: SHEAR CONNECTION TO WF

OR CANTILEVER BEAMS

SK-1.02

SHEET:

SIN BEAM TO WF COLUMN WEB

SHEAR CONNECTION

SIN BEAM TO WF COLUMN FLANGE

SHEAR CONNECTION

38

[1

1

/2

"]

76

[3

"]

76

[3

"]

38

[1

1

/2

"]

38

[1

1

/2

"]

38

[1

1

/2

"]

PL 76 [3"]

x web depth + 32 [1

1

4

"]

x 10 [

3

8

"]

NUMBER OF BOLTS

SIN BEAM DEPTH # BOLTS

(mm) (in) 19mm (

3

4

") Ø

333 13.11 3

500 19.69 4

610 24.00 5

750 29.53 6

1000 39.37 8

1219 48.00 10

1500 59.06 10

76

[3

"]

38

[1

1

/2

"]

38

[1

1

/2

"]

SHEAR TAB WELDED

TO COLUMN

PL 10x76 WELD TO SIN

WEB & T&B FLANGE

PL10x89

WELD TO PLATE

WF COLUMN

EXTENDED SHEAR

TAB WELDED TO

COLUMN

PL 10x76 WELD TO SIN

WEB & T&B FLANGE

PL10x89

WELD TO PLATE

WF COLUMN

STIFFENER PLATES

AS REQURED

Page 97: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

JOB: SIN BEAM DATE: 2015-12-10

TITLE: SIN BEAM TO SIN BEAM

SHEAR CONNECTION

SK-1.03

SHEET:

PLAN

SIN BEAM TO SIN BEAM

SHEAR CONNECTION

SECTION

SIN BEAM TO SIN BEAM

SHEAR CONNECTION

SIN BEAM GIRDER

SIN BEAM

SECONDARY BEAM

76x10 END PLATE

WELD TO SIN WEB &

T&B FLANGE

FULL HEIGHT / WIDTH

STIFFENER

WELD TO TOP AND

BOTTOM FLANGE AND

WEB BOTH SIDES

89x10 PLATE WELD

TO END PLATE

AND BOLT TO

STIFFENER

SIN BEAM GIRDER

FULL HEIGHT / WIDTH

STIFFENER

WELD TO TOP AND

BOTTOM FLANGE AND

WEB BOTH SIDES

89x10 PLATE WELD

TO END PLATE

AND BOLT TO

STIFFENER

SIN BEAM

SECONDARY BEAM

76x10 END PLATE

WELD TO SIN WEB &

T&B FLANGE

FOR NUMBER OF

BOLTS REFER TO SIN

BEAM TO HSS COLUMN

BOLTING TABLE USING

THE DEPTH OF THE

SECONDARY BEAM

Page 98: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

JOB: SIN BEAM DATE: 2015-09-24

TITLE: MOMENT CONNECTION TO

WIDE FLANGE COLUMN

SK-2.01

SHEET:

SIN BEAM TO WF COLUMN

MOMENT CONNECTION

END PLATE BOLTED TO

COLUMN FLANGE AS PER

SHEAR CONNECTION

TOP PLATE WELDED TO

COLUMN AND BOLTED TO

TOP FLANGE OF SIN BEAM

PLATE WELDED TO COLUMN

AND BOLTED TO SIN BEAM

BOTTOM FLANGE

COLUMN STIFFENER

AS REQUIRED

PLATE WELDED TO COLUMN

AND BOLTED TO SIN BEAM

BOTTOM FLANGE

COLUMN STIFFENER

AS REQUIRED

Page 99: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

JOB: SIN BEAM DATE: 2015-09-24

TITLE: SIN BEAM TO SIN BEAM

MOMENT CONNECTION

SK-2.02

SHEET:

PLAN

SIN BEAM TO SIN BEAM

MOMENT CONNECTION

SECTION

SIN BEAM TO SIN BEAM

MOMENT CONNECTION

SIN BEAM MEMBERS

SHOULD HAVE SAME

WEB DEPTH, SHIM

PLATES REQUIRED TO

MAKE UP DIFFERENCE

IN FLANGE THICKNESS

SHEAR CONNECTION

PER SIN TO SIN SHEAR

CONNECTION

TOP PLATE BOLTED FOR

MOMENT CONNECTION

AND WELDED TO

CONTINUOUS BEAM

BOTTOM PLATE BOLTED FOR

MOMENT CONNECTION AND

WELDED TO CONTINUOUS BEAM

SHIM PLATES

AS REQUIRED

CONTINUOUS SIN BEAM

MEMBER

TOP AND BOTTOM

MOMENT PLATE

Page 100: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

JOB: SIN BEAM DATE: 2015-09-24

TITLE: SIN BEAM SPLICE DETAIL

SK-2.03

SHEET:

BEAM SPLICE

SIN BEAM SPLICE MOMENT CONNECTION

SHEAR CONNECTION

PER SIN BEAM END

PLATE SHEAR

CONNECTION SHAPE

END PLATES AS

REQUIRED FOR

MOMENT PLATES

TOP PLATE BOLTED

FOR MOMENT

CONNECTION

BOTTOM PLATE

BOLTED FOR

MOMENT

CONNECTION

TOP FLANGE

SPLICE PLATES

SIN BEAM

TOP FLANGE

SIN BEAM

BOT FLANGE

BOTTOM FLANGE

SPLICE PLATES

10mm END

PLATES SHAPE

AS REQ'D TO

AVOID FLANGE

SPLICE PLATES

5

Page 101: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

JOB: SIN BEAM DATE: 2015-09-24

TITLE: WEB OPENINGS

SK-3.01

SHEET:1

80

[7

1

/8

"] m

m

7"

18

0

[7

1

/8

"] m

m

7"

1

4

T

O

1

2

h

w

1

1

0

T

O

1

4

h

w

<

1

1

0

h

w

MAY BE

UNREINFORCED

REINFORCE WITH

STEEL PIPE

WELDED TO WEB

REINFORCE WITH

STIFFENERS

WEB OPENING NOTES:

OPENINGS SHOULD BE LOCATED NEAR MID

DEPTH OF THE BEAM

OPENINGS ARE TYPICALLY ONLY POSSIBLE

WHEN V

F

<

2

3

V

R

Page 102: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

AUGUST 2018 (V11)

5 REFERENCES / CERTIFICATION

5.1 CWB Certification for Steelcon

5.2 European Code 1993

Corrugated Webs

5.3 Annex D – Commenta

5.4 Flange Buckling Behavior of H

Webs - 2008

5.5 Plate Girders with Corrugated Webs from the Journal for Civil

Engineering and Management

5.6 Pages from CAN S136 Cold Formed Steel Me

5.7 Shear Load Testing Results

TECHNICAL GUIDE

ERTIFICATION

CWB Certification for Steelcon - SIN Beam Welding

European Code 1993-1-5:2005 Annex D Plate Girders with

Commentary

Flange Buckling Behavior of H-Shaped Member with Sinusoidal

Plate Girders with Corrugated Webs from the Journal for Civil

Engineering and Management – 2010

Pages from CAN S136 – North American Specification for Design of Steel Members

Shear Load Testing Results - Professor R.M. Schuster -

PAGE 5-1

Plate Girders with

Shaped Member with Sinusoidal

Plate Girders with Corrugated Webs from the Journal for Civil

North American Specification for Design of

Nov 2016

Page 103: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

*

*

, CSA G40.21 44W, 50W

May 27, 2016

Page 104: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

*

* CSA G40.21 44W, 50W

May 27, 2016

Page 105: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

prEN 1993-1-5 : 2005 (E)

50

Annex D [informative] – Plate girders with corrugated webs D.1 General (1) Annex D covers design rules for I-girders with trapezoidally or sinusoidally corrugated webs, see Figure D.1.

x

z

α>30°

a3

2w

2s

Figure D.1: Geometric notations D.2 Ultimate limit state D.2.1 Moment of resistance (1) The moment of resistance MRd due to bending should be taken as the minimum of the following:

+

χ

+

+

=4444 34444 214444 34444 214444 34444 21

flangencompressio

21w

1M

yw11

flangencompressio

21w

0M

r,yw11

flangetension

21w

0M

r,yw22Rd 2

tthftb

;2

tthftb

;2

tthftb

minM (D.1)

where fyw,,r is the value of yield stress reduced due to transverse moments in the flanges fy,w,r = fyw fT

( )

0M

yf

zxT f

M4,01f

γ

σ−=

σx(Mz) is the stress due to the transverse moment in the flange

χ is the reduction factor for out of plane buckling according to 6.3 of EN 1993-1-1

NOTE 1 The transverse moment Mz results from the shear flow in flanges as indicated in Figure D.2.

Page 106: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

prEN 1993-1-5 : 2005 (E)

51

NOTE 2 For sinusoidally corrugated webs fT is 1,0.

Figure D.2: Transverse moments Mz due to shear flow introduction into the

flange (2) The effective area of the compression flange should be determined from 4.4(1) and (2) using the larger value of the slenderness parameter pλ defined in 4.4(2) and the buckling factor kσ taken as:

a) 2

ab43,0k

+=σ (D.2)

where b is the maximum width of the outstand from the toe of the weld to the free edge

41 a2aa += b) 60,0k =σ (D.3)

where 2b

b 1=

D.2.2 Shear resistance (1) The shear resistance VRd should be taken as:

ww1M

ywcRd th

3

fV

γχ= (D.4)

where cχ is the lesser of the values of reduction factors for local buckling l,cχ and global buckling g,cχ obtained from (2) and (3)

(2) The reduction factor l,cχ for local buckling should be calculated from:

0,19,0

15,1,c

,c ≤λ+

=χl

l (D.5)

where 3

f

,cr

y,c

l

l

τ=λ (D.6)

2

max

w,cr a

tE83,4

=τ l (D.7)

amax should be taken as the greater of a1 and a2.

Page 107: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

prEN 1993-1-5 : 2005 (E)

52

For sinusoidally corrugated webs l,crτ may be obtained from

2

w2

2

ww

3l,cr s

t)1(12

Ethsa

34,5

ν−π

+=τ (D.8)

where w length of one half wave, see Figure D.1, s unfolded length of one half wave, see Figure D.1. (3) The reduction factor g,cχ for global buckling should be taken as

0,15,0

5,12

g,cg,c ≤

λ+=χ (D.9)

where 3

f

g,cr

yg,c

τ=λ (D.10)

4 3zx2

wwg,cr DD

ht4,32

=τ (D.11)

( ) sw

112tED 2

3

x ν−=

wIE

D zz =

Iz second moment of area of one corrugation of length w, see Figure D.1

NOTE 1 s and Iz are related to the actual shape of the corrugation. NOTE 2 Equation (D.11) is valid for plates that are assumed to be hinged at the edges.

D.2.3 Requirements for end stiffeners (1) Bearing stiffeners should be designed according to section 9.

Page 108: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

152

13 Annex D to EN 1993-1-5 – Plate girders with corrugated webs

Bernt Johansson, Division of Steel Structures, Luleå University of Technology

13.1 Background

This section will give background and justification of the design rules for girders

with corrugated webs. The rules have been developed during the drafting of

EN 1993-1-5 and the background has not been published. For this reason this

section will be quite detailed giving the reasoning behind the choice of design

rules for shear resistance.

Girders with corrugated webs are marketed as a product from specialised

fabricators or as one-off structures. One example of the former is Ranabalken,

which has been on the Swedish market for about 40 years [1]. Its main use is as

roof girder. It has a web geometry that is fixed because of the production

restraints. A vertical section through the web is shown in Figure 13.1. The

thickness of the web is minimum 2 mm, which is governed by the welding

procedure. The welding is single sided, which is important for the

competitiveness. The maximum depth is 3 m.

In Austria the company Zeman & Co is producing similar beams named Sin-beam

but with sinusoidally corrugated webs with the web geometry also shown in

Figure 13.1. The web depth is limited to 1500 mm and the web thickness is from 2

to 3 mm. The web has single sided welds.

140 50 50

380

70 70

50 40-43

155

Figure 13.1: Geometry of web plate of Ranabalken, Sweden and Sin-beam, Austria

Corrugated webs have been used for bridges in several countries, including

France, Germany and Japan. In France at least three composite bridges have been

built of which one was doubly composite with box section. The corrugated steel

web was provided with very small flanges, just enough for fixing the shear

connectors. The concrete slabs were post-tensioned and when it is important that

the steel flanges do not offer too much resistance to the imposed strains. A similar

but larger bridge has been built at Altwipfergrund in Germany. It is a three span

bridge built by cantilevering with a central span of 115 m and the depth varies

from 2,8 m in the span to 6 m at the intermediate supports. The use of single sided

welds is not recommended for bridges as it would cause problems with the

corrosion protection and the fatigue resistance is not documented.

Page 109: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

153

13.2 Bending moment resistance

As the web is corrugated it has no ability to sustain longitudinal stresses. The

conventional assumption is to ignore its contribution to the bending moment

resistance. This is the basis for the rules in D.2.1. For a simply supported girder

supporting a uniformly distributed load the bending resistance is simply the

smallest axial resistances of the flanges times the distance between the centroids

of the flanges. This axial resistance may be influenced by lateral torsional

buckling if the compression flange is not braced closely enough. Reference is

given to the rules in 6.3 of EN 1993-1-1. There may be a positive influence of the

corrugated web on the lateral bucking resistance compared to a flat web as the

corrugation gives the web a substantial transverse bending stiffness. This should

reduce the influence of cross sectional distortion but this influence has not been

studied in detail and there is no basis for giving rules. There is also an increase in

warping stiffness that may be utilized.

!"#$%

a4

Figure 13.2: Geometry and notations for girders with corrugated webs

If there is a substantial shear force in the cross section of maximum bending

moment there may be an influence of the flange axial resistance from lateral

bending. Rules for this have been included in the German design rules [2]. A

model for calculating these secondary bending moments is shown in Figure 13.3.

The shear flow in the web will be constant V/hw and its effect can be modelled as

shown in the lower part of Figure 13.3. The maximum transverse bending moment

Mz,max occurs where the inclined part of the web intersects the centreline of the

flange. It becomes:

3,max 1 4(2 )

4z

w

VaM a a

h& ' ( 13.1)

where V is the coexisting shear force and other notations are according to Figure

13.2.

EN 1993-1-5, D.2.1

Page 110: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

154

a3

z z

x

y

2

31

3

aa

h

VM

ah

VF

w

z

w

y

&

&

Figure 13.3: Action model for calculating secondary lateral bending moments in a flange caused by a corrugated web

In [2] the reduction of the bending resistance is expressed by the factor:

,max 0

2

61 0,4

z M

T

yf f f

Mf

f b t

(& ) ( 13.2)

This reduction is not large and actually it has not been considered in the Austrian

and Swedish design rules. From a theoretical point of view these bending

moments are required for reasons of equilibrium. However, it is questionable how

important they actually are in real life. They have been included just as a

precaution but for sinusoidially corrugated webs the factor is put to 1,0.

In case yielding of the flange governs the bending resistance becomes:

*+

,-.

/ ''

(&

2

tth

tbffM 21

w

0M

ffTyf

Rd ( 13.3)

where bftf should be taken as the smaller of b1t1 and b2t2.

Local flange buckling is of importance for the bending resistance. It will

obviously be influenced by the geometry of the web. The question is to define the

flange outstand c to be used for calculating the slenderness. There is little

information on this question in the literature. One of few published studies is by

Johnson & Cafolla [3] who suggested that the average outstand could be used if:

14,0)2(

)(

141

341 0'

'

baa

aaa ( 13.4)

where b1 is the width of the compression flange and other notations are according

to Figure 13.2. It is not stated what to do if this criterion is not fulfilled but

presumably the idea is to use the larger outstand. The average outstand was

defined as the average of the smaller and the larger outstand each calculated from

free edge to the toe of the weld.

EN 1993-1-5, D.2.1(2)

Page 111: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

155

b1 c

a

Figure 13.4: Notations for flange geometry

The design rules for Ranabalken states that the outstand should be taken as half

the flange width minus 30 mm. This is actually smaller than the smallest outstand,

which seems quite optimistic. The corresponding rule for the Sin-beam is half the

flange width minus 11 mm.

The flange buckling may in general take place in two different modes. One

possibility is a plate type buckling of the larger outstand and another is a torsional

buckling where the flange rotates around the centreline of the web. General rules

without restrictions on the geometry have to consider both possibilities. The first

mode may be relevant for a long corrugation in combination with a narrow flange

for which the larger outstand will govern the buckling. However, the flange will

be supported by the inclined parts of the web. Assuming an equivalent rectangular

plate supported along three edges a safe approximation of the relevant length

should be a = a1 + 2a4, see Figure 13.2 and Figure 13.4. The buckling coefficient

of such a plate assuming conservatively a hinged support along the web is

approximately [4]:

k1 = 0,43 + (c/a)2 ( 13.5)

with:

c = largest outstand from weld to free edge

a = a1 + 2a4

For a geometry with small corrugations compared to the flange width the flange

will buckle in a mode of rotation around the centreline of the web. Then c is taken

to 0,5b. A corrugated web will however give a stronger restraint than a flat web.

The buckling coefficient ranges from 0,43 for simple support to 1,3 for fixed. A

solution for elastic rotational restraint is given in [4] but it is not easy to use. A

simplification in form of a reasonably conservative value is instead suggested, which is also used in [2]:

k1 = 0,60 ( 13.6)

The rules for flange buckling in 4.4 (1) and (2) of EN 1993-1-5 are used with the

buckling coefficients given above together with the relevant outstand c. In

general, both (13.5) and (13.6) have to be checked and the most unfavourable case

governs.

Page 112: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

156

13.3 Shear resistance

13.3.1 Introduction

The shear resistance of corrugated webs has attracted interest from many

researcher. Accordingly, there are several proposals for the shear resistance e. g.

Leiva [5], Lindner [6], Höglund [7] and Johnson & Cafolla [8]. These will be

compared with 70 test results presented in Table 13.1. The formulae for the shear

resistance actually used in EN 1993-1-5 were developed during the evaluation.

This work was done in close co-operation with Professor Torsten Höglund of the Royal Institute of Technology, Stockholm. He was in charge of the corresponding

rules in EN 1999-1-1, which are now harmonized with EN 1993-1-5.

Notations for the corrugated web are shown in Figure 13.2. For the sinusoidally

corrugated web the measures a3 and 2w are relevant and the developed length of

one full wave is denoted 2s. For the trapezoidal web the following relations and

definitions apply.

a2 = a3/sin %

a4 = a3cot

w = a1 + a4

s = a1 + a2

tw = thickness of web

hw = depth of web

amax = max(a1,a2)

There are two shear buckling modes; one local governed by the largest flat panel

and one global involving one or more corrugations. The critical stress for local

buckling is taken as that for a long plate, which can be written as:

2

max

w,cr

a

tE83,4 2

3

456

7&8

( 13.7)

For a sinusoidally corrugated web the local buckling is less likely to occur. A

formula for critical shear stress for local buckling of webs with dimension as

given in Figure 13.1 can be found in [19] and reads:

22

3, 2

5,3412(1 )

wcr l

w w

a s tE

h t s

98

:/ , / ,& '- * - *) . +. +

( 13.8)

This formula was developed for the type of corrugation used in an Austrian girder

but it has turned out that the formula is not general enough and the formula may

give large errors if the dimensions are different to those given in Figure 13.1. For

this reason sinusoidially corrugated webs have to be designed by testing with

regard to local shear buckling where dimensions other than those given in Figure

13.1 are used. There is also a possibility to calculate the critical shear stresses for

local buckling with FEM and to use it in the design rules given here.

The critical stress for global buckling is given by [9]:

4 3

zx2

ww

g,cr DDht

4,32&8 ( 13.9)

EN 1993-1-5, D.2.2

Page 113: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

157

where:

21

41

2

3

2

3

)1(12)1(12 aa

aaEt

s

wEtD ww

x '

'

)&

)&

:: ( 13.10)

41

21

2

3 3

12 aa

aaaEt

w

EID wz

z ''

&& ( 13.11)

The first versions of the formulae (13.10) and (13.11) are relevant for sinusoidally

corrugated webs where Iz is the second moment of area of one half wave. The

second versions are relevant for trapezoidally corrugated webs.

Both critical stresses are valid for simply supported long plates. The global

buckling stress is derived from orthotropic plate theory, see e. g. [9]. Some

authors have defined Dx without the factor (1-:2) in the denominator. It is

theoretically more correct to include it as in (13.10). In [9] there is also a solution

for restrained rotation along the edge. For fully clamped edges the coefficient 32,4

in (13.9) increases to 60,4. This has been used for evaluating tests e. g. in [5] but it

is hard to believe that this corresponds to the actual conditions at tests. The

flanges are not likely to be rigid enough to provide a rotational restraint for such a

stiff plate as a corrugated web. In this evaluation (13.9) will be used throughout.

Table 13.1: Data for test girders and test results (The shading shows the governing model and VR1 and VR2 are according to the

EN 1993-1-5 as described in 13.3.6)

Test

No original ref9

hw

mm

tw

mm

fyw

MPa

% a1

mm

a3

mm

Vu

kN

;u <1 <2 Vu/VR1 Vu/VR2%

0 L1A 5 994 1,94 292 45 140 48 280 0,860 0,931 0,558 1,370 0,860

1 L1B 5 994 2,59 335 45 140 48 502 1,007 0,747 0,556 1,442 1,007

2 L2A 5 1445 1,94 282 45 140 50 337 0,737 0,915 0,774 1,164 0,737

3 L2B 5 1445 2,54 317 45 140 50 564 0,839 0,741 0,768 1,197 0,839

4 L3A 5 2005 2,01 280 45 140 48 450 0,690 0,880 1,092 1,068 0,778

5 L3B 5 2005 2,53 300 45 140 48 775 0,881 0,724 1,067 1,244 0,962

6 B1 10 600 2,1 341 45 140 50 208 0,837 0,929 0,347 1,332 0,837

7 B2 10 600 2,62 315 45 140 50 273 0,954 0,716 0,315 1,340 0,954

8 B3 10 600 2,62 317 45 140 50 246 0,854 0,718 0,316 1,202 0,854

9 B4b 10 600 2,11 364 45 140 50 217 0,815 0,956 0,358 1,315 0,815

10 M101 10 600 0,99 189 45 70 15 53 0,817 0,734 0,750 1,160 0,817

11 M102 10 800 0,99 190 45 70 15 79 0,908 0,736 1,003 1,292 0,912

12 M103 10 1000 0,95 213 45 70 15 84 0,718 0,812 1,342 1,069 1,101

13 M104 10 1200 0,99 189 45 70 15 101 0,778 0,734 1,501 1,106 1,428

14 L1 11 1000 2,1 410 30 106 50 380 0,764 0,772 0,616 1,110 0,764

15 L1 11 1000 3 450 30 106 50 610 0,782 0,566 0,590 0,996 0,782

16 L2 11 1498 2 376 30 106 50 600 0,921 0,776 0,894 1,343 0,921

17 L2 11 1498 3 402 30 106 50 905 0,867 0,535 0,836 1,081 0,867

18 1 12 850 2 355 33 102 56 275 0,788 0,731 0,459 1,118 0,788

19 2 12 850 2 349 38 91 56 265 0,773 0,642 0,466 1,036 0,773

9 ref = bibliographical reference where the test results can be found

Page 114: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

158

Test

No original ref9

hw

mm

tw

mm

fyw

MPa

% a1

mm

a3

mm

Vu

kN

;u <1 <2 Vu/VR1 Vu/VR2%

20 V1/1 13 298 2,05 298 45 144 102 68 0,646 0,917 0,099 1,021 0,646

21 V1/2 13 298 2,1 283 45 144 102 70 0,684 0,872 0,096 1,054 0,684

22 V1/3 13 298 2 298 45 144 102 81 0,789 0,940 0,100 1,262 0,789

23 V2/3 13 600 3 279 45 144 102 235 0,810 0,606 0,175 1,060 0,810

24 CW3 8 440 3,26 284 45 250 45 171 0,726 0,976 0,218 1,184 0,726

25 CW4 8 440 2,97 222 45 250 45 154 0,918 0,947 0,198 1,475 0,918

26 CW5 8 440 2,97 222 45 250 63 141 0,841 0,947 0,156 1,350 0,841

27 I/5 14 1270 2 331 62 171 24 260 0,535 1,223 1,483 0,987 0,963

28 II/11 14 1270 2 225 62 171 24 220 0,666 0,974 1,267 1,085 0,935

29 121216A 15 305 0,64 676 45 38 25 50 0,656 1,165 0,583 1,177 0,656

30 121221A 15 305 0,63 665 55 42 33 46 0,623 1,298 0,501 1,190 0,623

31 121221B 15 305 0,78 665 55 42 33 73 0,798 1,048 0,475 1,352 0,798

32 121232A 15 305 0,64 665 63 50 51 41 0,546 1,741 0,391 1,255 0,546

33 121232B 15 305 0,78 641 63 50 51 61 0,692 1,403 0,365 1,386 0,692

34 121809A 15 305 0,71 572 50 20 14 63 0,880 0,509 0,829 1,078 0,880

35 121809C 15 305 0,63 669 50 20 14 55 0,740 0,620 0,924 0,978 0,740

36 121832B 15 305 0,92 562 63 50 51 53 0,581 1,113 0,328 1,018 0,581

37 122409A 15 305 0,71 586 50 20 14 58 0,791 0,515 0,839 0,973 0,791

38 122409C 15 305 0,66 621 50 20 14 58 0,803 0,570 0,880 1,026 0,803

39 122421A 15 305 0,68 621 55 42 33 43 0,578 1,162 0,475 1,036 0,578

40 122421B 15 305 0,78 638 55 42 33 61 0,695 1,027 0,466 1,165 0,695

41 122432B 15 305 0,78 634 63 50 51 49 0,562 1,395 0,363 1,122 0,562

42 181209A 15 457 0,56 689 50 20 14 81 0,795 0,708 1,446 1,111 1,373

43 181209C 15 457 0,61 592 50 20 14 89 0,933 0,602 1,312 1,219 1,382

44 181216C 15 457 0,76 679 45 38 25 119 0,873 0,984 0,839 1,430 0,873

45 181221A 15 457 0,61 578 55 42 33 62 0,666 1,250 0,706 1,244 0,666

46 181221B 15 457 0,76 606 55 42 33 98 0,806 1,027 0,684 1,350 0,806

47 181232A 15 457 0,6 552 63 50 51 52 0,594 1,692 0,542 1,340 0,594

48 181232B 15 457 0,75 602 63 50 51 80 0,671 1,414 0,535 1,349 0,671

49 181809A 15 457 0,61 618 50 20 14 82 0,823 0,615 1,341 1,085 1,262

50 181809C 15 457 0,62 559 50 20 14 78 0,852 0,576 1,270 1,093 1,200

51 181816A 15 457 0,63 592 45 38 25 75 0,761 1,108 0,821 1,329 0,761

52 181816C 15 457 0,74 614 45 38 25 96 0,800 0,961 0,803 1,294 0,800

53 181821A 15 457 0,63 552 55 42 33 56 0,610 1,182 0,684 1,104 0,610

54 181821B 15 457 0,74 596 55 42 33 93 0,798 1,046 0,683 1,351 0,798

55 181832A 15 457 0,61 689 63 50 51 53 0,477 1,859 0,603 1,145 0,477

56 181832B 15 457 0,75 580 63 50 51 79 0,687 1,388 0,525 1,368 0,687

57 241209A 15 610 0,62 606 50 20 14 71 0,536 0,599 1,765 0,699 1,292

58 241209C 15 610 0,63 621 50 20 14 79 0,573 0,597 1,780 0,746 1,400

59 241216A 15 610 0,63 592 45 38 25 76 0,578 1,108 1,096 1,009 0,656

60 241216B 15 610 0,79 587 45 38 25 133 0,813 0,880 1,032 1,259 0,848

61 241221A 15 610 0,61 610 55 42 33 77 0,587 1,284 0,968 1,114 0,587

62 241221B 15 610 0,76 639 55 42 33 127 0,742 1,055 0,938 1,261 0,742

63 241232A 15 610 0,62 673 63 50 51 69 0,469 1,808 0,792 1,104 0,469

64 241232B 15 610 0,76 584 63 50 51 101 0,645 1,374 0,701 1,276 0,645

Page 115: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

159

Test

No original ref9

hw

mm

tw

mm

fyw

MPa

% a1

mm

a3

mm

Vu

kN

;u <1 <2 Vu/VR1 Vu/VR2%

65 Gauche 16 460 2 254 30,5 0 126 139 1,029 1,494 0,121 2,142 1,029

66 Droit 16 550 2 254 30,5 0 126 109 0,675 1,494 0,145 1,405 0,675

67 Sin 1 17 1502 2,1 225 2w=155 40 370 0,902 0,433 1,108 1,046 1,038

68 Sin 2 17 1501 2,1 225 2w=155 40 365 0,890 0,433 1,108 1,032 1,025

69 Sin 3 17 1505 2,1 225 2w=155 40 353 0,859 0,433 1,108 0,996 0,989

Slenderness parameters are defined by:

3

yw

i

cri

f<

8& ( 13.12)

for i = 1,2,3 there 1 and 2 refers to equations (13.8) and (13.9) and 3 to equation

(13.14) below.

Values for the slenderness parameters <1 and <2 for the test girders are given in Table 13.1. The characteristic shear resistance is represented by:

ww

yw

R th3

fV ;& ( 13.13)

where ; is the minimum of the reduction values ;i determined for <1 and <2.

The ultimate shear resistance Vu in the tests can be transformed to the non-

dimensional parameter ;u by equation (13.13) and it is also given in Table 13.1.

The parameters defined above are general and will be used throughout the

analysis. The features of the different models will now be described briefly and

evaluated.

13.3.2 Model according to Leiva [5]

Leiva does not fully develop a design model but his main concern is the

interaction between local and global buckling, which is based on observations

from tests. His idea is to consider this interaction by defining a combined critical

stress 8cr3 as:

3 1 2

1 1 1n n n

cr cr cr8 8 8& ' ( 13.14)

Leiva discussed only in case n=1 but the equation has been written more general

for later use. He also considered yielding as a limit for the component critical

stresses in an attempt to make a design formula. The idea of Leiva will not be

evaluated but it will form the basis for a model that will be presented later called

"Combined model".

13.3.3 Model according to Lindner [6]

Lindner made an evaluation of test results 0 to 23 in Table 13.1. He discussed

different options for taking the interaction between local and global buckling into

account, including using (13.14) with n=2. His conclusions were however that the

Page 116: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

160

interaction could be taken into account implicitly by correcting <2. Lindner’s model has been introduced in German recommendations [2]. The reduction factor

for the resistance:

,

0.588i L

i

;<

& ( 13.15)

is used for both local and global buckling. <1 is as defined in (13.12) but <2 is changed according to:

2

2

2

3

y

cr

f<

8& if 0.5< 8cr1/8cr2 < 2 ( 13.16)

The model has been evaluated with results shown in Figure 13.5 and in Table 13.2

where ;L is the smallest of ;=L and ;>L according to (13.15). The right hand

diagram in Figure 13.5 shows that the model has a slight bias with respect to <2. It is an under-prediction of the resistance that increases with the slenderness for

global buckling. Further the model includes discontinuities in the prediction

because of the stepwise correction in (13.15).

Figure 13.5: Test over prediction as function of <1 and <2 according to Lindner’s model

13.3.4 Model according to Johnson [8]

The model according to Johnson involves three separate checks; one for local

buckling, one for global buckling and one for combined local and global buckling.

The check for local buckling is done with the post-buckling resistance predicted

by:

1

1

0,84J;

<& < 1,0 ( 13.17)

For the global buckling the critical stress (13.9) is used but with a coefficient 36

instead of 32,4 and without (1-:2) in the denominator of Dx which gives more or

less the same results. The design strength is taken as 0,5 times the critical stress,

which includes a partial safety factor of 1,1. Considering theses differences the

characteristic reduction factor becomes:

Page 117: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

161

2

2

2

61,0

<; &J ( 13.18)

if <2 is defined by (13.12) and (13.9).

Finally, the interaction between local and global buckling is considered with the

critical stress 8cr3 according to (13.14) with n=1. The resistance is taken as the

critical stress with a reduction factor 0,67?1,1, which leads to the reduction factor:

2

3

3

74,0

<; &J ( 13.19)

where <3 is defined by (13.12) and (13.14) with n=1.

The evaluation is shown in Figure 13.6 and Table 13.2. ;J is taken as the lowest value from the three separate checks. The right hand diagram depicting the

combined check shows a clear bias for under-prediction for high slenderness

values, which is caused by the use of reduced critical stresses as design strength.

The scatter in the quotient test over prediction shown in Table 13.2 is also fairly

high.

Figure 13.6: Test over prediction as function of <1 and <3 according to Johnson’s model

13.3.5 Combined model

The basic idea of this model was to define the resistance by a single reduction

factor. A reduced critical stress will be defined by (13.14) in order to take the

interaction between local and global buckling into account. This critical stress is

used to calculate the slenderness parameter <3 from (13.12). It is used in combination with the strength function:

3

1.2

0.9C; <&

'<1,0 ( 13.20)

The results for n=2 are shown in Table 13.2 and in Figure 13.7. Also n=4 has been

checked and the result is quite similar considering the statistical parameters. Both

alternatives represent a quite weak interaction and the interaction becomes weaker

the higher value of n is used. It can be seen that this model improves the

prediction. However, the model is symmetrical in the influence of local and global

buckling. It could be expected on theoretical grounds that the post-critical

resistance is more pronounced for local buckling than for global. In the latter case

Page 118: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

162

it is questionable if there is any at all. On the other hand the influence of

imperfections in the range of medium slenderness can be expected to be smaller

than for local buckling. This became clear when the tests with sinusoidialy

corrugated webs were included in the comparisons, which was done quite late in

the work. This reasoning led to the model described in the next section.

Figure 13.7: Test over prediction as function of <" according to model Combined check, n=2

13.3.6 Model according to EN 1993-1-5

The model is based on the one proposed by Höglund [7]. It has two separate

checks, one for local and one for global buckling. It has been modified in [18] and

further modification has been done here as will be discussed below. The reduction

factors for local and global buckling, respectively, is given by:

0.19.0

15.1

1,1 0

'&

<; EN ( 13.21)

0.15.0

5.122

,2 @'

&<

; EN ( 13.22)

The reasoning behind the two checks is that the local buckling is expected to show

a post-critical strength, which should not be present in the global buckling. This is

reflected by <1 appearing linear and <2 is squared in the reduction factor. In [18] the reduction factor for local buckling has no plateau but the global buckling has

the same reduction factor as (13.17). There is however one more difference. The

restraint from the flanges to the global buckling is included in [18] and an increase

of the buckling coefficient to 40 is suggested if a certain stiffness criterion is met.

The predictions were compared with the test results in Table 13.1 and also with

some tests on aluminium girders. The prediction is marginally better than the one

using (13.21) and (13.22). The idea of increasing the global buckling coefficient

has also been discussed by Leiva and it may very well be true. It has however not

been included in the model in EN 1993-1-5 for simplicity and as an additional

safety measure. The reduction factors (13.21) and (13.22) are shown in Figure

13.9 together with the Euler curve and the von Karman curve.

There are no test results that make it possible to evaluate the length of the plateau

length for local buckling. Equation (13.21) has a plateau until <1 = 0.25, which is

Page 119: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

163

very small compared to other buckling problems. For instance the design rules for

flat webs give < = 0.83 for the plateau length with A = 1. This question will remain unsettled until further experiments are available. It is believed that (13.21)

is conservative enough.

The evaluation results are found in Figure 13.8 and Table 13.2. The notation ;EN is the minimum of (13.21) and (13.22). The prediction is quite good with all the

results between 1 and 1,5, except for test 65, which stick out in all the evaluations.

Figure 13.8: Test over prediction according to the model in EN 1993-1-5

Figure 13.9: Reduction factors according to EN 1993-1-5; global buckling solid and local buckling dashed. As reference the Euler

curve 1/<> is shown as dash-dots and the von Karman curve 1/< as dots

Figure 13.10 shows the test results for which local buckling is supposed to govern

and Figure 13.11 there global buckling is supposed to govern. The predictions gives almost the same statistical characteristics, mean 1,22 and 1,23 with

coefficient of variation 0,15 and 0,14 for local and global buckling, respectively.

Page 120: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

164

Figure 13.10: Reduction factor for local buckling together with 59 test results where local buckling is supposed to govern

Figure 13.11: Reduction factor for global buckling together with 11 test result where global buckling is supposed to govern

Table 13.2: Evaluation of design models showing mean value, standard deviation and coefficient of variation of the quotient

;u/;prediction

Model nLindner Johnson Combined

n=2

EN1993-1-5

Mean 1.48 1.62 1.26 1.22

Stand dev 0.34 0.65 0.19 0.18

Coeff of var 0.23 0.39 0.15 0.15

Page 121: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

165

13.3.7 Discussion

The test data base is quite large and covers a range of parameters for instance:

190 < fy < 690 Mpa

140 < hw/tw <1200

30o < < 63

o

Most of the tests are normal I-girders tested in three or four point bending. The

exceptions are test 27 and 28, which were racking tests on container walls with an

unsymmetrical corrugation. The report included one more shear test that has been

discarded because the web was not continuously welded. Test 65 and 66 had a

triangular corrugation (a1 in Figure 13.2 equal to zero) and the girder had flanges of cold-formed channels. Test 65 showed a very high resistance compared to

prediction, which to some extent may have been influenced by the flanges

carrying some shear. However, it is not the whole truth as test 66 does not stick

out. The tests by Hamilton [15] included four more tests with the remark “support

induced failure”, which are not included in Table 13.1.

The normal procedure for dealing with buckling problems is to use the critical

stress for defining a slenderness parameter as in (13.12) and to find a reduction

factor that depends on this slenderness parameter. In all the models studied here a

post critical strength is recognized for the local buckling. It is however less

pronounced than for a flat web. This is likely to be so because the folds of the web

are less efficient in supporting tension fields than the flanges of a girder with a flat

web. One question is how small the angle between adjacent panels can be made before the fold becomes insufficient as a support for the panels. The smallest

angle in the tests is 30o. This has been taken as lower limit until further evidence

is available.

The next question is interaction between the two buckling modes. This has been

considered by most of the authors except Höglund. His reasoning is that the

interaction, if any, is so weak that two separate checks are sufficient. The

evaluation in Table 13.2 supports this opinion as the EN 1993-1-5 model based on

Höglund’s ideas, shows the lowest scatter. The suggestion of Lindner to increase

the slenderness parameter for global buckling if the critical stresses for local and

global buckling are close to each other is hard to justify and it creates an unnatural

discontinuity. Using (13.14) for defining a reduced critical stress would give a

continuous procedure that gives the highest interaction when the two critical

stresses are equal. This seems intuitively reasonable. It will however be

symmetrical in 8cr1 and 8cr2, which is not likely to be true as indicated in the discussion in 13.3.5. Because of this theoretical objection and that the prediction

of the test results is as good with the separate checks this was chosen.

For some low value of the slenderness the shear yield resistance of the web should

be reached. The test results do not indicate at which slenderness this will be safely

met. From Figure 13.10 it can be seen that the lowest slenderness there local

failure was governing is <==0.5. Judging from experiences of other plate buckling

phenomena (13.21) will be very safe with <=%= 0.25 for reaching the yield resistance as discussed in 13.3.6.

The design model presented in EN 1993-1-5 has been shown to be a step forward

compared to other existing or possible design models. It is certainly not the final

Page 122: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

166

answer to the question of shear resistance of corrugated webs and future research

will hopefully improve the model.

13.4 Patch loading

No rules for patch loading resistance are given in EN 1993-1-5. The rules for flat

webs may be used but this is in most cases quite conservative, especially if the

loaded length is larger than one half corrugation w. The patch loading resistance

has been studied by several authors [10], [20], [21]. The results have however not

been collated and merged into a design model. In [1] the design rule for patch

loading includes only a check of the yield resistance. For sinusoidally corrugated

webs for the patch loading resistance has been studied in [22] and [23].

13.5 References

[1] Ranabalk. Produktbeskrivning och dimensioneringsregler (Specification and

design rules for Rana girder), Ranaverken AB, 2000

[2] DASt Richtlinien 015, Träger mit schlanken Stege, Stahlbau-Verlag, Köln,

1990

[3] Johnson, R., Cafolla, J., Local flange buckling in plate girders with

corrugated webs, Proceedings of the Institution of Civil Engineers

Structures & Buildings May 1997 pp 148-156.

[4] Timoshenko, S. P., Gere, J. M., Theory of elastic stability, Mc Graw-Hill,

Second edition New York 1961.

[5] Leiva, L., Skjuvbuckling av plåtbalkar med trapetsprofilerat liv. Delrapport

1. (Shear buckling of trapezoidally corrugated girder webs. Report Part 1.), Chalmers Univ. of Technology, Div. of Steel and Timber Structures Publ. S

83:3, Göteborg 1983 (In Swedish)

[6] Lindner, J:, Grenzschubtragfähigkeit von I-Trägern mit trapezförmig

profilierten Steg, Stahlbau 57 (1988) Heft 12 pp 377-380.

[7] Höglund, T., Shear Buckling Resistance of Steel and Aluminium Plate

Girders, Thin-walled Structures Vol. 29, Nos. 1-4, pp 13-30, 1997

[8] Johnson, R., Cafolla, J., Corrugated webs in plate girders for bridges,

Proceedings of the Institution of Civil Engineers Structures & Buildings

May 1997 pp 157-164.

[9] Peterson, J. M., Card, M. F., Investigation of the Buckling Strength of

Corrugated Webs in Shear, NASA Technical Note D-424, Washington 1960

(referred in [5])

[10] Bergfelt, A. , Edlund, B. & Leiva, L. , Trapezoidally corrugated girder

webs. Ing. et Architects Suisses, No.1-2, Januar 1985 pp 65-69

[11] Report No. RAT 3846 Technical Research Centre of Finland, Espoo 1983

[12] Kähönen, A., About the calculation procedure of steel I-beam with

corrugated webs. Master Thesis Lappeenranta University of Technology,

1983 (In Finnish)

Page 123: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Commentary to EN 1993-1-5 First edition 2007

167

[13] Scheer, J., Versuche an Trägern mit Trapezblechstegen, Bericht Nr. 8127,

Technische Univ. Braunschweig, Inst. für Stahlbau, Dezember 1984

[14] Leiva-Aravena, L., Trapezoidal corrugated panels, Chalmers Univ. of

Technology, Div. of Steel and Timber Structures Publ. S 87:1, Göteborg

1987

[15] Elgaaly, M., Hamilton, R., Seshadri, A., Shear strength of beams with

corrugated webs, Journal of the Structural Division, ASCE, 1996 122(4),

390-398

[16] Frey, F., Essai d´une poutre a ame plisse, Rapport interne No 64, Nov 1975,

Laboratoire de Mechanique des Materiaux et Statique de Constructions,

Université de Liège

[17] Pasternak, H., Branka, P., Zum Tragverhalten von Wellstegträgern,

Bauingenieur 73 (1988) Nr. 10, pp 437-444

[18] Ullman, R., Shear Buckling of Aluminium Girders with Corrugated Webs,

Royal Inst of Technology, Structural Engineering, TRITA-BKN Bulletin,

2002

[19] Pasternak H., Hannebauer D.: Träger mit profilierten Stegen,

Stahlbaukalender 2004, Berlin, Verlag Ernst & Sohn

[20] Leiva-Aravena, L.,Edlund, B., Buckling of Trapezoidally Corrugated Webs,

ECCS Colloqium on Stability of Plate and Shell Structures , Ghent

University, 1987.

[21] Elgaaly, M., Seshadri, A., Depicting the behaviour of girders with

corrugated webs up to failure using non-linear finite element analysis,

Advances in Engineering Software, Vol 29, No. 3-6, pp 195-208, 1998.

[22] Pasternak H., Branka P.: Zum Tragverhalten von Wellstegträgern unter

lokaler Lasteinleitung, Bauingenieur 74(1999) 219-224

[23] Novák, R., Machá ek, J., Design Resistance of Undulating Webs under

Patch loading, Proceedings of the third International Conference Coupled

Instability in Metal Stuctures CIMS´2000, Lisbon, Imperial College Press,

pp 371-378.

Page 124: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Fifth International Conference on Thin-Walled Structures Brisbane, Australia, 2008

FLANGE BUCKLING BEHAVIOR OF THE H-SHAPED MEMBER WITH SINUSOIDAL WEBS

Guo Yan-lin1, Zhang Qing-lin1, Walter Siokola2, Hofer Andreas2

1 Tsinghua University, Beijing, 100084, China 2Zeman GmbH, A-8811, Austrian

Abstract: This paper will present a study for structural behavior of corrugated web members in two aspects. One is to develop a computational model for sectional carrying capacity, and another is trying to find a rational limit of flange width-to-thickness ratios, which is different from H-shaped member with a flat web. Based on the sectional stress distribution obtained from FEM, it is concluded that the flanges will almost carry 100% sectional normal stresses resulting from axial forces and moments and web will almost carry 100% sectional shear force. Based on two different flange buckling modes observed from FE numerical studies in this paper, the flange buckling is also studied and a rational limit of flange width-to-thickness ratio is conducted. Finally the comparison between the results obtained from the FE analysis and the test carried out recently in Tsinghua University are given, and it is shown that both reach a good agreement.

Keywords: sinusoidal web beams, sectional stress distribution, flange buckling

1. INTRODUCTION

Corrugated web members, which are composed with flat flanges and corrugated webs through continuous welding, have shown their outstanding advantages, and they were used in civil buildings in the past years. As the corrugated web has a high critical load under shear force, even though very thin web is adopted, the H-shaped member with sinusoidal webs will still result in a significant increment of web height without local buckling. Therefore, their sectional capacity to resist moment will be increased greatly. Meanwhile, the web corrugation can greatly increase the out-of-plane stiffness of webs, which means the members have a higher out-of-plane stiffness to keep their shape unchanged during transporting and hoisting. All of these reasons come to the wide application of corrugated web members in portal frames, tier buildings and bridges, etc. H-shaped members with sinusoidal webs, the most frequently used types, considered to be more aesthetical and resistive to fatigue failure, will be introduced and studied in this paper.

Most of the scholars working on this area have laid their focus on the shear load carrying capacity of web, including Peterson and Cord(1960), Rothwell(1968), Sherman and Fisher(1971), Easley(1975), Libove(1977), Lindner(1988), Elgaaly(1990), Abbas(2006),etc. Some theoretical or semiempirical formulas were given to determine the elastic shear buckling load of the web. According to these formulas, the authors adopt some special configurations and section sizes used above, and the stress distribution on the sections will be studied. A simple approach to calculate the sectional strength of corrugated web members will be present here. Furthermore, the flange stability will be studied by finite element method and a rational limit value of flange width-to-thickness ratio will be conducted.

2. STRESS DISTRIBUTION AND SECTIONAL LOAD-CARRYING CAPACITY

2.1 Finite Element Simulations and Analysis

A finite element model of sinusoidal web member was developed by using the general purpose program ANSYS to investigate sectional stress distribution and load carrying capacity. The sectional model was used

Page 125: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

to perform an elasto-plastic analysis. Reduced integration thin shell elements were used for the web and flanges. To exclude the effect of global member buckling, a short member, with slenderness less than 5 around the strong axis and 30 around the weak axis, was chosen. As can be noted from Fig. 1, the web configuration is sinusoidal with a half wave length l=155mm, wave magnitude f=20mm and the web thickness tw=2.5mm. The flanges are both 200mm wide by 10mm thick. The material is considered as elastic-perfectly plastic with initial elastic modulus (E) of 206,000MPa, Poisson’s ratio (v) of 0.3, and the yield stress (fy) of 300MPa. Different boundary conditions and load cases were considered to study the stress distribution.

Compared with the conventional flat web beam, H-shaped sinusoidal web members have shown distinct characteristic in stress distribution. Subjected to axial compression or bending, the sinusoidal web has a negligible longitudinal stress across the web section while the flat thin web will result in a significant stress distribution on the section, as shown in Fig. 2.

a-(I) b-(II) c -(I) d-(II) e-(I) f-(II)

longitudinal stress

under axial compression

longitudinal stress under bending

shear stress under shearing

Figure 1 Geometry of sinusoidal web beam Figure 2 stress distribution of sinusoidal web beam (I)

and conventional flat web beam (II) For the sinusoidal web member subjected to an axial compression or bending, the flanges carry over 99%

of the total load, which means the contribution of the corrugated web can be ignored. This is the most important character of stress distribution of corrugated web members. The main reason for that is due to the much smaller longitudinal stiffness of sinusoidal web compared with that of flanges. Subjected to axial forces, the sinusoidal web will produce a considerable moment at the transition part, and the rigid-body motion caused by the rotation of transition part makes the longitudinal deformation develop easily. The sinusoidal web, with the geometry as shown in Fig. 1, takes a longitudinal stiffness of only 1% of the flanges’, which can be obtained easily from FE numerical analysis.

For the flat web beam subjected to an axial compression or bending, the load carried by flanges accounts for 75% to 85% of the total, which is higher than the percentage of the flange area, 68%. Although the local buckling of the flat web occurs, it has still played a considerable part to take applied load.

When subjected to shear forces, the shear stress on the sinusoidal web is distributed uniformly, as shown in Fig. 2. e. It is much different from the flat web beam, which is as shown in Fig. 2. f. This distinct difference can be consulted as the second character of stress distribution of sinusoidal web members.

In order to determine stress distribution across the section easily, a computational model is developed as following:

When subjected to axial forces or bending moments, the sinusoidal web member can be treated as a lattice girder, in which only the flanges are available and the web can be ignored; when subjected to shear forces, only the web is available and the shear stress is distributed uniformly.

Page 126: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

2.2 Test Investigation

A test program has been carried out, in which 6 series of total 18 tests have been finished in Tsinghua University recently. They include the axial compression tests, the eccentric compression tests, the bending tests and the shearing tests. All of these specimens were fabricated by Zeman GmbH in Austrian and transported to China by air or ship. The materials for the web and flanges are S235JR in accordance with EN 10 025 with a yield strength of 300MPa. The profiling of the web generally avoids the web failure due to loss of its stability before the plastic limit-loading is reached. All of the webs were connected to the flanges on one side of the web with continuous 3mm fillet welds automatically by robot. The designation of specimens followed the following rules:

Since the out-of-plane buckling of sinusoidal web members has been avoided by lateral braces, the

sectional ultimate strength only is considered in the analysis by using FE analysis. The applied loads listed in the Table 1 as Pcal are obtained directly from the most simplified calculated model mentioned above. Meanwhile, based on FE models with the same parameters of the test specimens, the more accurate results (PFE) will be obtained by using general purpose program ANSYS to perform a nonlinear finite element analysis. All of these results, including test results (Ptest), are listed below in Table 1, and all comparison reaches a good agreement between them.

Table 1 Comparison between tests, the simplified models and FE analysis

Load case section Length/m Ptest/kN PFE/kN Pcal/kN

1-1 WTA500-200×10 2 995a 1174 1200 Axial compression 1-2 WTA500-200×10 5 1132 1139 1200

2-1 WTA500-200×10 5 841 809 857 2-2 WTA500-200×10 5 588 577 600

Eccentric compression

2-3 WTA500-200×10 5 372 387 400 3-1 WTC500-200×10 5 165 170 172 3-point

bending 3-2 WTC750-250×12 7 248 255 259 4-1 WTA500-200×10 1.5 381 343 346 4-2 WTB500-200×10 1.5 477 431 433 4-3 WTB 750-250×12 1.5 648 643 649 4-4 WTC 750-250×12 1.5 777 766 779 4-5 WTB1000-300×12 2 857 841 866

shearing

4-6 WTC1000-300×12 2 988 1008 1039 a• the test loading head failed when the flanges still were kept perfect

As depicted in the simplified model, subjected to bending, the flexural modulus EIb of H-shaped members with sinusoidal webs can be calculated through assuming flanges to be the only effective parts. However, it must be noted that the shear stiffness of the sinusoidal web is not very high due to very thin web, therefore the effect of shearing deformation must be taken into consideration. The deflection of beam includes two parts: one deformation (b) caused by bending effects and another deformation (s) caused by shearing effects. A total elastic stiffness K0 based on a simplified calculation model reflecting both bending effect and shearing effect could be expressed by the applied load divided

0 10 20 30 40 50 60 70 800

40

80

120

160

200

Loa

d/kN

disp/mm

Test FEA total elastic stiffness K

0

bending stiffness Kb

yield

flange buckled

Figure 3: load versus deflection response.

Page 127: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

by the total deformation value defined by b+s. The detail derivation of K0 is found in the reference [Driver(2006)].

The applied loads versus deflection curves are shown in Fig.3 where both the test results and the FEA results are included. The total elastic stiffness K0 and bending stiffness Kb are depicted in Fig.3 as slopes, too. The total elastic stiffness resulting from test and FEA results agree very well with K0 and varies a lot from bending stiffness Kb. This means that the shearing deformation could not be ignored even for long members when estimating beam deflection. The test setups and failure modes are as shown in Figure 4.

(c) bending test

(a) axial compression test (b) eccentric compression test (d) shearing test

Figure 4 test setups

2.3 Summary of Sectional Load Carrying Capacity

Many theoretical and experimental works have been done on the sectional load carrying capacity of H-shaped sinusoidal web members. The computational model proposed above is proved to be rational. Ostensibly, ignoring the web contribution to normal stress makes direct load carrying capacity of sinusoidal web beams lower than conventional flat web beams in the case of the same section sizes, but the benefit is that the sinusoidal web can make the section profile more efficient for carrying moments, namely by increasing web height even though using less web thickness. Although the theoretical comparison of sectional load carrying capacity in the case of the same section sizes between flat web and sinusoidal web can’t show the advantages of sinusoidal web members directly, the facts that such thin sinusoidal web beams can be transported and erected safely, and loaded to failure due to flanges yielding instead of web failure, can strongly prove them to be economical and efficient members.

3. STABILITY OF FLANGE

In conventional flat web beams, the flange stability can be assessed by assuming the flange to be plates simply supported on three sides. For a sinusoidal web beams, the boundary condition can not be simplified in this way. Many research works have been down on this topic these years. In BS EN 1993-1-5:2006, for trapezoidal web girders, a simple approach is proposed to determine the effective area of flange, which regards the buckling factor as the larger of 0.6 and 0.43+(b/a)2, where b is the maximum width of the outstand from the toe of the weld to the free edge and a is the distance between two adjacent peaks of corrugation. This approach certainly considers the flange stability in sinusoidal web girders to be much better than conventional flat web girders. However, Johnson (1997) has found that the critical load of flanges in trapezoidal web members may be lower than flat web member, and a function R is proposed to judge whether it is conservative to use the average outstand (the same with flat web members) to determine the critical loads.

Page 128: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

All of these works mentioned above are based on the trapezoidal corrugated web members, and the obtained results can not be proved to be suitable for sinusoidal web beams. In this paper a simple model to investigate flange stability of sinusoidal web beams will be proposed and some suggestion about the maximum flange width-to-thickness ratio will be given.

3.1 Simplified Computational Model for Flange Buckling

Although the stiffness of sinusoidal web is neglectable in the action of longitudinal stress, the web can offer a strong support to flanges in the web depth direction, the flange can be treated as a plate simply supported on two loaded sides, only constrained at the web-flange joint in out-of-plane direction. This simplified computational model is depicted as follow in Fig. 5.

Figure 5: the simplified computational model for flange buckling

Two geometric coefficients are defined to describe the web profile, that is a coefficient of web amplitude

=f/b1, and other coefficient of web wavelength =l/b1. The general purpose program ANSYS is used to perform a parameter study of the critical load versus , and width-to-thickness ratio b1/t.

3.2 Critical Loads of Simplified Flange Model

Many numerical results reveal that whatever the web profile is, the critical loads decrease proportionally to the square of b1/t. Denoting the critical load of a plate simply supported on three sides as cr,1, and the critical load of a plate supported by the corrugated web shown in Fig. 5, as cr, the normalized critical loads cr=cr/cr,1 almost hardly change when b1/t varies alone. Because the influences of web profile and the influence b1/t to flange buckling are independent, so the effect of b1/t can be excluded when the influence of the web profile to flange buckling is only considered. This paper attempt to develop the relationship between , and cr , assuming b1/t always a constant.

(a) flange buckling mode I (b) sketch of flange buckling mode I

(c) flange buckling mode II (d) sketch of flange buckling mode II Figure 6 Two buckling modes of flanges

Two different buckling modes are observed as the web corrugation size changed. Buckling mode I is

found as shown in Fig. 6(a)(b) and described as: each longitudinal side of the flange deflects towards different directions and the deformed flange rim is like a single half-wave superimposing several small waves, which is dependant on the web corrugation size. Buckling mode II as shown in Fig. 6(c)(d) also may occur and it is similar to the buckling mode of a plate longitudinally clamped on one side. The deformed flange rim is a multi-wave profiling, generally not necessarily the same as the web corrugation wave shape.

It can be noted that for buckling mode I, the critical load decreases when the wave length of corrugation increases, regardless of the amplitude of corrugation or the whole length of the flange. The flange can be treated as a plate supported at the wave crests. The out-of-plane constrains between two adjacent wave crests

Page 129: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

could not efficiently prevent the trend of a sinusoidal shape plate from buckling. It is to mean that, as the amplitude of corrugation increases, the flange plate loses the constrain provided by half a sinusoidal web at the other point of corrugation except two adjacent wave crest points. The flange buckles as a plate clamped at two wave crest points and free at other points, and its critical load could be calculated as:

2 2

2

12 2/

30.5

fcr

f

EI Et b

l A

(1)

In which EIf is the out-of-plane bending stiffness of the flange plate as a plate-column and Af is the area of flange.

The equation (1) is compared with the FE numerical results when =0.5, as shown in Fig. 7. When buckling mode I occurs, the results from equation (1) are quite close to the FE numerical results and a little lower. Therefore, the equation (1) could be able to evaluate the critical load of buckling mode I.

0 2 4 6 8 10 12 14 160

500

1000

1500

2000

2500

cr

numerical results results from eq.(1)

buckling mode I

buckling mode I

Figure 7 comparison between Equation (1)

and FE numerical results Figure 8 comparison between Equation (3)

and FE numerical results

For buckling mode II, the flange could be equivalent to a plate supported at flange-web jointing line with a flexible rotational constrain, with the loaded sides simply supported and the other side free. The flexible constrain extent depends on web corrugation size, namely, l/f. The larger l/f, the weaker such constrain. On the other hand, comparing the critical loads of flange plates in the case of the same l/f and different , it can be noted that when l/f is big enough, the critical load is in inverse proportion to (1+)3. This is because the chosen calculation width should be taken as the maximum width of the outstand from the toe of the weld to the free edge, namely, b1(1+a), and the rotational constrain stiffness is a bit weaker. When l/f is smaller, the part of the flange width is constrained too firmly to take part in the buckling deformation, so the chosen calculation width should be taken as a smaller number, as b1(1+ a), where is a reduction factor to describe the decrease of the chosen calculation width. The value of was listed in table 2.

Table 2 value of

l/f 5 6 7 8 9 11 • 13 0 1/6 1/3 1/2 0.6 0.8 1.0

Denoting the critical load of a plate clamped on one side as cr,2, the critical load of buckling mode II is between cr,1 and cr,2, depending on the value of l/f. Considering the change of effective flange width, a fitting equation is proposed:

3 3,2 ,1 ,2 ,1

,1 ,12 2/ 1 / 11 / 1 /

cr cr cr cr

cr cr crc l f c

(2)

In which c is a constant of 0.0035. When the flange buckles, the buckling mode could be either mode I or mode II, depending on which one

has a lower corresponding critical load. Finally, the normalized critical load is

Page 130: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

3

2

2

2.0121 / 1

min 1 /

8.56 /

cr c

(3)

The equation (3) is compared with FEA results, as shown in Fig. 8. The differences between them are less than 10% and the equation (3) is a little lower. Equation (3) is available when <=0.25 and l/f>=5, and it can be used to determine which buckling mode would occur.

3.3 Limit Ratio of Flange Width to Thickness in a Sinusoidal Web Member

As in the simplified computational model as shown in Fig.5 that is only a part of a sinusoidal web member, in reality, the boundary condition of flange is a little different from. First of all, the out-of-plane flexural rigidity of webs could offer flanges some extra rotational constrain. This may cause the flange critical load calculated by using the simplified computational model a little higher. Secondly, the web in the overall model is compressible in the direction of depth. The out-of-plane constrain offered by web is not perfectly rigid, which may cause the critical load a little lower. Finite element models of seven H-shaped members including two flanges and sinusoidal web with different web corrugations, were modeled using thin shell elements. Performing a linear buckling analysis by the program ANSYS, the critical load of these overall models were obtained and compared with the three-side simply supported plates in the case of the same b1/t, as cr,o. The normalized critical loads of the simplified models as shown in Fig.5, were obtained by FE analysis, denoted as cr,s. All of these results, together with the results from Equation (3), are listed in Table 3. These members are divided into 3 series, designated as A-*(buckling mode I controls), B-* (buckling mode II controls) and C-*(flat web).

Table 3 Comparison between equation (3) and FE numerical results

designation A-1 A-2 A-3 B-2 B-3 B-4 C-0 0.4 0.4 0.2 0.1 0.2 0.2 6 3 3 1.5 1.5 1

flat web

cr of equation (3) 0.238 0.951 0.951 1.597 2.109 2.85 1

cr,s 0.256 1.027 1.029 1.652 2.257 3.012 1

cr,o 0.6886 1.32 1.57 1.63 2.09 2.58 0.12*

—buckling mode I€ —buckling mode II€ *the flat web buckled

8 10 12 14 16 18 20 22 24 26

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fu/A

ff y

b1/t

A-1 A-2 A-3 B-1 B-2 B-3 C-0

Figure 9 Relationship of ultimate strength ratios versus b1/t

Furthermore, both geometric and material nonlinear analysis was performed and the ultimate strengths Fu

of these overall models were obtained. Setting b1/t as a variable, the ultimate strength ratio Fu/Af fy versus b1/t curves are depicted in Fig.9. When b1/t is small, the ultimate strength ratios of series A, whose buckling loads are controlled by buckling mode I, are obviously lower than others. It is recommended to adopt suitable web profiling to avoid buckling mode I, namely, to satisfy equation (4):

32

2

2.0128.56 / 1 / 1

1 /c

(4)

Page 131: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

In Euro Code EN1993-1-1 and Chinese Code GB50017-2003, the maximum width-to-thickness ratios of flanges in flat web beams are limited to 15 to ensure the flange stability, in which

235 / yf (5) The maximum flange width-to-thickness ratios of sinusoidal web beams could be expressed as

1 / (max) 15b t (6) Where means the increase factor of b1/t in sinusoidal web members compared with flat web members,

based on the same critical load.

3

2

2.0121 / 1

1 /c

(7)

However, when cr of equation (3) is very high, the actual critical load of overall model may be lower than cr because of the compressibility of web in the depth direction. A square root is taken to to consider a reduction in equation (6). Usually the value of is between 1.00~1.75, so the maximum width-to-thickness ratio could be up to 20 . When a proper web profiling is adopted, the flange stability could be significantly increased due to the effect of the sinusoidal web.

4. CONCLUSION

A computational model for sectional load carrying capacity of a sinusoidal web member was proposed and was proved to be rational by both FE numerical analysis and test investigation. The sectional load carrying capacity and the deflection of beams could be easily obtained through this sectional model. Further more, based on two different flange buckling modes observed from numerical studies, the flange buckling was also studied and a rational limit of width-to-thickness ratios of flange was conducted. The research works are still on going in Tsinghua University and further research conclusions on the overall instability of a sinusoidal web member will be obtained recently.

REFERENCES

Corrugated Web Beam, Technical Documentation. Zeman & Co Gesellschaft mbH, 1999. Vienna, Austria

Driver, R.G. Abbas, H.H., and Sause, R., Shear Behavior of Corrugated Web Bridge Girders. Journal of Structure Engneering, ASCE. February 2006

Elgaaly, M. and Dagher, H. Beams and girders with corrugated webs. Proc., The Annual Technical Session, Structural Stability Res. Council (SSRC). Lehigh Univ., Bethlehem, Pa., 37-53

Elgaaly,M., Hamilton,R.W., Seshadri, Anand. Shear Strength of Beams with Corrugated Webs. Journal of Structural Engineering. April 1996

Eurocode 3–Design of steel structures–Part 1-5: Plated structural elements. BSEN 1993-1-5:2006

GUO Yan-lin, Zhang Qing-lin. Design Method of Section Bearing Capacity of H-Type Member of Corrugated Web. Journal of Architecture and Civil Engineering. 2006, 23(4) :58-63(in Chinese)

J. T. Easley, Buckling Formulas for Corrugated Metal Shear Diaphragms. Journal of the Structural Division, ASCE, No.ST7, July 1975: 1403–1417

Johnson, R.P. and Cafolla J. Local flange buckling in plate girders with corrugated webs. Proc. Instn Civ. Engrs Sructs & Bldgs, 1997, 122, May, 148-156

Smith, D. “Behavior of corrugated plates subjected to shear.” MSc thesis, Dept. of Cive Engr. Univ. of Maine, Orono, Minnesota, 1992.

Page 132: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 2010

16(2): 166–171

PLATE GIRDERS WITH CORRUGATED WEBS

Hartmut Pasternak1, Gabriel Kubieniec2

1, 2Brandenburg University of Technology, Konrad-Wachsmann-Allee 2, 03046 Cottbus, Germany E-mail: [email protected]; [email protected]

Received 25 Sept. 2009; accepted 20 Jan. 2010

Abstract. Especially for the main frames of single-storey steel buildings the use of corrugated web beams, mainly with sinusoidal corrugation, has been increased very much during the last years. Due to the thin web of 1,5 mm to 3 mm corru-gated web beams afford a significant weight reduction compared with hot rolled profiles or welded I-sections. Buckling failure of the web is prevented by the corrugation. The buckling resistance of presently used sinusoidal corrugated webs is comparable with plane webs of 12 mm thickness or more. Due to improvements of the automatic fabrication process cor-rugated webs up to 6 mm thickness became possible. Therefore the field of application of this beam type has been ex-tended considerable. Even short span bridges are possible now. The dimensioning of corrugated web beams is ruled by the EN 1993-1-5 Annex D – it covers only web thicknesses up to 3 mm. In the last years many tests and finite element simu-lations have been carried out. Regarding this background, these EN rules will be discussed and extended. Furthermore, additional proposals for patch loading and lateral-torsional buckling of girders with sinussoidal webs will be given. Keywords: plate girder, sinusoidal corrugated web, stability.

1. Introduction

Especially for the main frames of single-storey steel buildings the use of corrugated web beams, mainly with sinusoidal corrugation, has been increased very much during the last years (Fig. 1). Due to the thin web of 2 or 3 mm, corrugated web beams afford a significant weight reduction compared with hot rolled profiles or welded I-sections. Buckling failure of the web is prevented by the corrugation. The buckling resistance of presently used sinusoidal corrugated webs is comparable with plane webs of 12 mm thickness or more.

Fig. 1. Single-storey building

When corrugated web beam have been developed during the 60ies of last century, especially the profiling of the web and the welding was hand work. Due to the pro-gress of welding technology an automatic fabrication process became possible.

Since the end of the 80ies of last century corrugated web beams with sinusoidal corrugated webs are produced by an automated production process. In 1988 the first machine for the production SIN-beams were developed by ZEMAN, Austria. These semi-automatic machines of the first generation were able to produce SIN-beams with parallel flanges and a web thickness of 2.0 mm, 2.5 mm or 3.0 mm (Siokola 1997).

2. Automatic fabrication process

The machines of latest generation are able to produce SIN-beams by a fully automated process (Pasternak et al. 2008). A more variable design of cross sections, a variety of web thickness, lower beam heights and smaller flange dimensions became possible. Furthermore tapered beams and machine-made web openings can be produced.

Actually there are around 10 production lines around the world. The automatic production (Fig. 2) of the following beam dimensions is possible:

− Web height 333, 500, 625, 750, 1000, 1250 and 1500 [mm]

− Web thickness 1.5, 2, 2.5, 3, 4, 5, 6 [mm] − Flange thickness from 6 to 30 [mm] − Flange width from 120 to 450 [mm]

The maximum beam length of 16 m corresponds to the maximum range of welding robots. Usually beam are shorter because of the limits for the transport, galvanizing etc. For tapered beams the maximum length is 12 m. Due to improvements corrugated webs up to 6 mm thickness became possible. Therefore the field of application of this beam type has been extended considerable. Even short span bridges are possible now. The web material comes

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT ISSN 1392–3730 print / ISSN 1822–3605 online http:/www.jcem.vgtu.lt doi:10.3846/jcem.2010.17 166

Page 133: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Journal of Civil Engineering and Management, 2010, 16(2): 166–171 167

from a coil. It is unrolled and cut to length automatically by the machine. A so called “corrugator” forms the sheet to a corrugated web. The flanges has been already pre-pared and stored in special flange baskets. After the run-ning-in of the web and flanges into the welding station all members are moved to the correct position, are pushed together and are welded by the welding robots.

Fig. 2. Automatic production process

3. Application examples

The basic areas of use of girders with sinusoidally corru-gated web are main single- or multi-span frames consisting of columns and rafters. In addition, there are also applica-tions in heavy industrial buildings. Fig. 3 shows a crane way column and Fig. 4 a Gerber hinge, used in a multi-span frame in a mill at Katowice, Poland (Pasternak, 2004). In the Innsbruck Stadium, Austria, extended for Euro 2008, 16 m long SIN beams are used as purlins (Fig. 5). Thanks to good distribution of mass within the cross-section, those girders can be characterised by high

Fig. 3. Crane way column

Fig. 4. Gerber hinge

Fig. 5. Roof structure of Innsbruck Stadium (Wimmer 2008)

bending capacity with relatively low self weight. In com-parison with traditional hot-rolled profiles, the reduction of self weight amounts even up to 40%.

4. Present state of codes

4.1. General

Actually beams with corrugated webs are ruled by the Euro-code EN 1993-1-5, Annex D (EC-3 2006). There used to be older standards as well, e.g. the German DASt-Ri 015 from 1990. But these standards deal about beams with trapezoidal corrugated webs only (EC-3 2006). Only by consideration of additional papers (Pasternak et al. 1998) and expert opinions (Pasternak et al. 1998, 2008), it became possible to use this document for the calculation of sinusoidal corrugated webs. The EN 1993-1-5 gives rules for both trapezoidal corruga-tion and sinusoidal corrugation. Whereas the dimensioning procedure for trapezoidal corrugated webs bases on the tests results for sinusoidal corrugated webs, the latest test results are not considered by the given rules. Therefore the calcula-tion procedure according to EN is comparatively conservati-ve. The bearing behaviour of a beam with corrugated web is comparable with a lattice girder. Normal force and bending moment are carried by the flanges only. Due to the corruga-tion the web is not able to carry any normal stresses in the longitudinal direction of the beam. Therefore the web is loaded by shear force only.

Page 134: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

H. Pasternak, G. Kubieniec. Plate girders with corrugated webs 168

4.2. Bending moment resistance of flanges

To verify the bending moment capacity of a beam, the resistance of flanges against yielding and global and local buckling for the compression flange has to be taken into account. Lateral-torsional buckling of beam is verified by global out-of-plane buckling of the compression flange. The verification is a conservative assumption because the torsional stiffness is neglected. Local buckling of the flange (cross section class 4) is considered by the determi-nation of a reduced flange width. A reduced yield strength fyf.r considers the influence of transverse bending moments. These moments are caused by the shear flow longitudinal to the joint of flange / corrugated web. It has to be taken into account for trapezoidal corrugated webs. Actually produced sinusoidal corrugated webs have a small corruga-tion height compared with the width of flanges. Therefore the influence of transverse bending moments is negligible.

4.3. Shear force resistance of web

The web loaded by shear force can fail due to yielding, local buckling and global buckling. The EN 1993-1-5 defines the reduction factor for global web buckling as follows (Fig. 6):

12,5,0

5,1, ≤

λ+=χ

gcgc , (1)

where: is the reduction factor and gc,χ gc,λ the refer-ence slenderness for global web buckling.

Fig. 6. Global buckling curve: a – test, b – curve and results according to (Pasternak et al. 1996, 1998, 2008)

For local buckling the following reduction factor is defined:

1,9,0

15,1, ≤

λ+=χ

lclc , (2)

where: lc,χ is the reduction factor and lc,λ the reference slenderness for local web buckling.

5. Global and local buckling of web

For global web buckling the given rule matches the test results very well (Fig. 6). It was found by testing and FEM (e.g. Pasternak et al. 1998) that no local buckling occurs for all actually produced beams with sinusoidal corrugated webs. That means any reduction should be necessary for a reference slenderness smaller than 0,74 (area I of Fig. 7). A second reason for further research is the probably to large reduction factors for a reference slenderness greater than 1,5 (area II of Fig. 7). The reduc-tion curve shows overcritical reserves of bearing capac-ity. This behaviour is typical for plate buckling and there-fore understandable for trapezoidal corrugated webs that consist of plate elements. However, a sinusoidal corru-gated web is mainly a shell structure. The overcritical reserve of the reduction curve of EN 1993-1-5 has to be proved.

Fig. 7. Reduction curve for local buckling EN 1993-1-5

6. Lateral-torsional buckling

Concerning lateral-torsional buckling four tests and a large amount of FE simulations have been carried out (Hannebauer 2008). Tests and FE results in comparison with European buckling curves are given in Fig. 8.

7. Patch loading

In the parameter study girders with various forms of cor-rugation the patch load was investigated, the length and the amplitude of the wave were varied (Pasternak et al. 1989, 2004) (Fig. 9). From many series of FE simulations a simple approach of the ultimate load was developed

dyel

ult ftftI

WF ,

4,02

/10 ⋅⋅⋅⎟

⎠⎞

⎜⎝⎛= ⋅ , (3)

Page 135: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Journal of Civil Engineering and Management, 2010, 16(2): 166–171 169

Fig. 8. Lateral-torsional buckling: a – test girder V6c, b – test and FEM in comparison with European buckling curves

where: Wel – effective section modulus of the flange; I – moment of inertia of a full wave about the horizontal axis of symmetry; t – web thickness; 2f, q– amplitude and length of the wave

12,2

3 2158,0 ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅=

qfqtI . (4)

The domain of definition is limited to 3 mm web thick-ness and 100 mm load distribution length. Analyzing a failure state (Kozlowski 2007), this formula gives reason-able ultimate loads. An extension of this formula to web thicknesses of 6 mm is necessary. 8. Interaction

First interaction diagrams between the bending moment and shear force resp. patch load are given in (Pasternak et al. 2004). 9. Present research

At the Universities of Technology in Cottbus and Braun-schweig there is carried out a research programme within the frame work of a national research project (AIF 2008). The main aim of the study is to describe influence of weld-ing process on carrying capacity of girder with sinusoidally corrugated web. The analysed girder was 7 m long beam

Fig. 9. Patch loading: a – test, b – FEM

Fig. 10. Welding simulation with flanges 25×200 [mm] and webs 3×500 [mm] (Fig. 10), loaded by two concentrated forces, each placed in distance 465 mm from a vertical axis of symmetry of girder. Two areas of investigations are distinguished i.e. local focused on welding simulations and global designed to describe behaviour of whole girder. The welding simu-lations showed that the average thickness of weld joining web and flange is about 2.8 mm and is accompanied by penetration of thermal source at width about 4 mm in every direction (Fig. 11). The residual stresses coming from wel-ding process are important parameter especially in nonlin-ear analysis that is why it should be carefully analysed. Strain gauge measurements (Fig. 12) showed highly non-linear normal stress distribution across the cross-section of flange especially in area of welding zone. This nonlinearity is much more visible in tension flange than in compression one, and can be an evidence of existing residual stresses coming from welding process which are superimposed with those from bending (Fig. 13 and 14). The comparison of diagrams representing dependence of normal stresses on

a) a)

b)

b)

Page 136: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

H. Pasternak, G. Kubieniec. Plate girders with corrugated webs 170

Fig. 11. Test specimen

Fig. 12. Layout of gauges on flange (a) and web (b)

Fig. 13. Normal stress distribution in top flange

load for example in points 1 and 3 (Fig. 15) showed that in case of point 1 the curves run together parallel while in point 3 are clearly diverse. This can be a result of influ-ence of thermal residual stresses. Moreover there was described the width of web along which exist high normal stresses coming from bending. This width was estimated at 5 cm below the connection of the web and the flange (Fig. 16). That means that in very close vicinity of weld i.e. 50 mm there can be a superposition of normal stresses caused by welding and bending. The resultant normal stresses interact with those caused by shear force and there is a suggestion to subtract this area from shear area in design calculations. Additionally it has to be underli-ned that two effects i.e. increase of yield strength of ma-terial of web due to cold-forming process and existence of high normal stresses in mentioned above areas of web are not considered in actual design.

Fig. 14. Normal stress distribution in bottom flange

Fig. 15. Comparison of load-normal stress curve

Page 137: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

Journal of Civil Engineering and Management, 2010, 16(2): 166–171 171

Hannebauer, D. 2008. Zur Querschnitts- und Stabtragfähigkeit von Trägern mit profilierten Stegen. Dissertation, BTU Cottbus.

Kozlowski, A. 2007. Failure state of roof structure with corru-gated web´s girders. Awarie budowlane, Szczecin (in Po-lish).

Pasternak, H. 1996. Gutachterliche Stellungnahme zur Quer-krafttragfähigkeit von Wellstegträgern. Braunschweig/ Cottbus.

Pasternak, H.; Branka, P. 1998. Zum Tragverhalten von Wellstegträgern, Bauingenieur 73: 437–444.

Pasternak, H.; Branka, P. 1999. Tragverhalten von Wellsteg-trägern unter lokaler Last einleitung, Bauingenieur 74: 219–224.

Fig. 16. Normal stress in web Pasternak, H; Hannebauer, D. 2004. Träger mit profilierten Stegen, Stahlbau-Kalender 2004. Berlin, Verlag Ernst & Sohn, 449–492.

10. Conclusion

Pasternak, H.; Robra, J.; Bachmann, V. 2008a. Corrugated web beams with increased web thickness, in Proceedings 5thEuropea Conference on Steel and Composite Struc-tures, Graz, Austria 2008, 1161–1166.

EN 1993-1-5 Annex D rules have been discussed for actu-ally produced sinusiodal girders. For those girders do not appear local buckling effects before the web reaches its yielding shear capacity. The buckling curve should be improved. Furthermore, additional proposals for patch loading and lateral-torsional buckling of girders with si-nussoidal webs were given. Moreover tests showed nonlin-ear stress-strain relationship. This is a consequence of exis-tence of thermal fields and initial stresses coming from welding of web to flanges and also from cold-forming process of web. These aspects are studied in a national research project, carried out in Cottbus and Braunschweig.

Pasternak, H. 2008b. 2nd expert opinion on the shear capacity of girders with sinusoidally corrugated web. Braunschweig/ Cottbus 2008.

Siokola, W. 1997. Wellstegträger. Herstellung und Anwendung von Trägern mit profiliertem Steg, Stahlbau 66: 595–605.

Wimmer, A., et al. 2008. Stadion Innsbruck „Tivoli neu“ für Euro 2008 erweitert, Bauingenieur 83: 405–409.

Yan-lin, G.; Qing-lin, Z.; Siokola, W.; Hofer, A. 2008. Flange buckling behaviour of the H-shaped member with sinu-soidal webs, in Fifth International Conference on Thin-Walled Structures, Brisbane, Australia, 2008.

References

Eurocode 3 – Design of steel structures – Part 1–5: Plated structural elements, Annex D, European committee for standardisation (CEN): 2006.

AIF Einsatz der Schweißsimulation zur systematischen Entwicklung verbesserter Modelle für die Berechnung der Tragfähigkeit komplexer Stahlleichtbaustrukturen P 785/ 08/2008 / IGF-Nr. 287 ZBG.

SUDĖTINĖS SIJOS SU GOFRUOTĄJA SIENELE

H. Pasternak, G. Kubienec

S a n t r a u k a

Pastaruoju metu ypač vienaukščių pastatų plieniniams rėmams imtos plačiai naudoti sijos su pagal sinusoidę banguota sie-nele. Dėl plonų 1,5–3,0 mm storio gofruotųjų sijų sienelių jų masė gerokai sumažėja, palyginti su karštai valcuotomis arba virintinėmis dvitėjo skerspjūvio sijomis. Sijos sienelės klumpamosios irties išvengiama dėl sienelės bangavimo. Šiuo metu naudojamų pagal sinusoidę subanguotų sienelių klumpamoji galia yra lygintina su 12 mm arba didesnio storio plokščių sienelių galia. Patobulinus automatinį gaminimo procesą gofruotąją sienelę galima padaryti iki 6 mm storio. Todėl labai išsiplečia šių sijų naudojimo sritys. Sijos gali būti naudojamos nedidelio tarpatramio tiltams. Banguotasienių sijų projek-tavimo metodika aprašyta EN 1993-1-5 D priede, tačiau ji galioja tik sijoms, kurių sienelės storis neviršija 3 mm. Pastarai-siais metais atlikta daug bandymų ir skaitinių eksperimentų baigtinių elementų metodu. Todėl šios EN projektavimo nuo-statos bus aptariamos ir išplėstos. Be to, straipsnyje pateiktos papildomos rekomendacijos, kaip vertinti sijų su pagal sinusoidę banguota sienele uždėtąją apkrovą ir lenkiamąjį sukamąjį klupumą.

Reikšminiai žodžiai: sudėtinės sijos, pagal sinusoidę banguota sienelė, pastovumas.

Prof. Hartmut PASTERNAK is involved in teaching, research and design of steel structures for more than 20 years. He is member in several National and International Committees (e.g.full member of the ECCS Technical Committee 8 “Structural Stability”, member of German subcommittee DASt-Ri015 “Girders with thin webs”, member of COST C25 action “Sustainability of Constructions”, member of the working group Eurocode 3 “Cranesupporting structures”). He has participated in numerous research projects (e.g. on thin-walled members and sheeting). Under his supervision 8 PhD´s were completed. He has several publications in Journals and at Conferences (more than 100) and is co-author of books in German (4) and English (1) on steel structures. Moreover he is the editor of the journal “Bauingenieur” for steel structures.

Gabriel KUBIENIEC is a scientific assistant at the Brandenburg University of Technology Cottbus in Germany since 2009. He got PhD in 2009. His research interests include the behavior of thin-walled steel structures. He has 12 publica-tions in Journals and at Conferences.

Page 138: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 139: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 140: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 141: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 142: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 143: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 144: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 145: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 146: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 147: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from
Page 148: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

SHEAR TESTING

OF THE SIN BEAM

FINAL

For

Steelcon Fabrication Inc.

Head Office

62 Progress Court

Brampton, Ontario L6S 5X2

By

Dr. Reinhold M. Schuster, P. Eng.

Distinguished Professor Emeritus

University of Waterloo

President

RM Schuster Structural Engineering

Date: December 4, 2016 Report No. STC 4-12-16

Page 149: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

2

INTRODUCTION

The SIN Beam

The SIN Beam is a unique steel structural member with a cold formed steel corrugated steel web

element welded to two hot-rolled steel flange plates, resulting in a typical wide flange type section.

The only difference being that the web is not a linear equal thickness steel plate but a sinusoidal

corrugated cold formed steel section. SIN Beams can be used as flexural members such as roof or

floor beams, as compression members such as columns, or as members subjected to combined

bending and axial loading such as in moment frames. Shown in Figure 1 is a schematic diagram of

the SIN Beam section that is manufactured by Steelcon Fabrication Inc. (Steelcon) in Brampton,

Ontario.

Corrugated web steel beams have been researched since the 1960’s and have been used in Europe

for over 30 years. In fact, Annex D (Steel Plated Structural Elements) of Euro Code EN1993-1-

5:2006 [1] contains structural design information for such members. The SIN Beam is made using

the same equipment and processes that ZEMAN of Austria has been using in Europe for the past 20

years.

Figure 1 – Schematic Diagram of SIN Beam Section

Governing Canadian Standards

Since the SIN Beam is made of two different steel materials, 1) flanges that are hot-rolled steel

plates, CSA S16-14 [2] applies and 2) CSA S136-12 [3] is the Standard that applies for the cold

formed steel corrugated web section. In the case of the shear resistance of the SIN Beam, a direct

calculation cannot be made based on Section C3.2 of CSA S136-12 [3], however, Section A1.2 does

Page 150: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

3

permit the use of a “Rational Engineering Analysis” based on appropriate theory and engineering

judgement.

Objective

The primary objective of this report was to establish an appropriate rational engineering analysis for

the shear resistance of the SIN Beam and to substantiate this analysis with verification testing.

SHEAR RESISTANCE ANALYSIS

Since Euro Code EN1993-1-5:2006 [1] contains a proven analysis for the shear resistance of

corrugated steel web members, it was chosen herein as the most appropriate Rational Analysis

available in the design Code literature. The nominal shear resistance is computed as follows. As can

be observed, the theoretical base of this Equation is von Mises yield theory with a shear buckling

coefficient relating to the corrugated web of the member.

),(min;AFV g,cl,ccwycn 3

1

The value of is taken as the lesser value of Local or Global buckling or .

Local Buckling

0190

151.

.

.

l,cl,c

3l,cr

y

l,c

F

2

2

2

3

112345 )

s

t()(

E}

th

sa.{ w

ww

l,cr

Global Buckling

0150

512.

)(.

.

g,cg,c

3g,cr

yg,c

F

4 3

2

432)D(D

)h(t

.zx

ww

g,cr

s

w

)(

)t(ED wx 2

3

112

w

EID zz

Page 151: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

4

Where,

Fy - yield stress of corrugated web

a3 - amplitude of corrugated web

s - unfolded length of one half corrugation wave

E - modulus of elasticity of corrugated web

- poisson’s ratio = 0.3

hw - clear web height of corrugated web

tw - web thickness of corrugated web

w - length of one half corrugation wave

These buckling coefficients have been developed for steel beams with either trapezoidal or

sinusoidal corrugated web configurations. Available research indicates that these coefficients are

conservative when applied to steel beams with sinusoidal/corrugated webs such as with the SIN

Beam [4], [5]. Extensive testing has been done in Europe to verify the design approach for shear

that is contained in Euro Code EN1993-1-5:2006 [1], however, the Steelcon company decided to also carry

out such shear tests on its Canadian SIN Beam product.

SHEAR TESTING

General

Steelcon retained “exp Brampton Laboratory” (eBL) to carry out the shear tests of the SIN Beam.

Since eBL did not have a structural test frame in their facility with the required capacity, it was

decided that Steelcon erect such a test frame in their facility to carry out these tests. All test

specimens were fabricated/assembled in the Steelcon plant and actual testing/supervision was

performed by the eBL staff. Shown in Figure 2 is a schematic diagram of the shear test set up,

where a = 5 ft and b = 4 ft.

Pt

a b a

CELL 1 CELL 2

Figure 2 - Schematic Diagram of Shear Test Set up

Page 152: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

5

Three shear tests were carried out in each case for the SIN WTB500/178x16 and the SIN

WTA1000/178x10 beams. Two load cells were used to apply the load, CELL 1 and CELL 2. Shown

in Figure 3 is a typical shear failure, which I personally witnessed.

Figure 3 – Typical Shear Failure

TEST RESULTS AND COMPARISONS

The test data from Reference 6 is contained in Appendix A of this report. More specifically, Table

A1 contains the mechanical properties of the steel. Summarized in Table A2 are the shear test

results and the respective calculated values with comparisons. The lesser load of load CELL 1 and

load CELL 2 was used as the test shear value, Vt. As can be observed from Table A2, the average

shear test ratio, Vt/Vn, in each case is equal to or greater than 1. This indicates that the shear

prediction method selected from Reference 1 is an appropriate Rational Analysis method. The

calculated nominal shear values are presented in Tables B1 and B2 of Appendix B.

CONCLUSIONS

Based on the information presented herein, the EN1993-1-5:2006 [1] design method satisfies the

requirements of CSA S136-12 [3] and can be used for computing the nominal shear resistance of

the SIN Beam. The factored shear resistance, Vr, can then be computed as follows

Vr = ϕv Vn,

where ϕv = 0.75 based on Section A1.2(c) [3].

Page 153: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

6

REFERENCES

1) EuroCode EN1993-1-5: 2006 “Design of Steel Structures – Plated Structural Elements”, 2006.

2) CANCSA S16-14, “Limit States Design of Steel Structures”, Mississauga, Ontario, Canada,

Mississauga, Ontario, Canada, October 2012.

3) CSA S136-12, “North American Specification for the Design of Cold-formed Steel Structural

Members”, Mississauga, Ontario, Canada, October 2012.

4) Hannebauer, D; (2008) “Zur Querschnitts- und Stabtragfähigkeit von Trägern mit profilierten

Stegen” - “For cross-sectional and moment carrying capacity of beams with profiled webs”,

2008.

5) Pasternak, H; Kubieniec, G (2010) “Plate Girders with Corrugated Webs” Journal of Civil

Engineering and Management, 2010.

6) “Witnessing Load Tests on Metal Beams”, exp Brampton Laboratory, 1595 Clark Boulevard,

Brampton, Ontario, October 19, 2016.

Page 154: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

7

APPENDIX A

Table A1 – Mechanical Properties [6]

Test Type

t (in.)

Fy (ksi)

Fu (ksi)

% Elong.

SIN WTB500/178x16 0.100 56.5 70.9 27.5

SIN WTA1000/178x10 0.0750 60.7 70.9 27.2

Table A2 – Test Data and Comparisons [6]

CELL 1 CELL 2 Vn Vt/Vn t Fy

SPECIMEN (lb) (lb) (lb) (kip) (kip) (in.) (ksi)

SB1-A 64,900 69,000 64,900 64.9

SB1-B 75,830 71,067 71,067 71.1 0.100 56.5

SB1-C 75,972 70,149 70,149 70.1

Average 68.7 55.5 1.24

SB4-A 81,529 77,664 77,664 77.7

SB4-B 86,964 82,407 82,407 82.4 0.075 60.7

SB4-C 80,974 79,806 79,806 79.8

Average 80.0 78.6 1.02

Vt = Test shear value taken as the lowest of Cell 1 and Cell 2.

Vn = Nominal calculated shear value.

Vt

SIN WTB500/178X16

SIN WTA1000/178X10

Page 155: Corrugated Web Steel Beam · 5.4 Flange Buckling Behavior of H 5.5 Plate Girders with Corrugated Webs from the Journal for Civil Engineering and Management – 2010 5.6 Pages from

8

APPENDIX B

Table B1 – SIN WTB500/178x16

IMPERIAL UNITS - INPUT DATA AND DETAILED CALCULATIONS - IMPERIAL UNITS * STEELCON SIN BEAM *

----------------------------------------------------------------------

INPUT DATA

HWB= 19.7IN TWB= 0.100IN BFL= 7.01IN TFL= 0.630IN A3= 1.57IN

S= 3.50IN W= 3.05IN FYWB= 56.5KSI EWB= 29500.KSI IZ= 0.0992IN4

CALCULATED VALUES

TCRL= 176.8KSI LAMCL= 0.429 XCL= 0.865 DZ= 959.3K-IN DX= 2.352K-IN

TCRG= 178.5KSI LAMCG= 0.427 XCG= 1.000 XC= 0.865

VN= 55.5KIP PHIV= 0.75 VR= 41.7KIP ----------------------------------------------------------------------

DR. SCHUSTER – RM SCHUSTER STRUCTURAL ENGINEERING December 4, 2016

Table B2 – SIN WTA1000/178x10

IMPERIAL UNITS - INPUT DATA AND DETAILED CALCULATIONS - IMPERIAL UNITS

* STEELCON SIN BEAM *

----------------------------------------------------------------------

INPUT DATA

HWB= 39.4IN TWB= 0.075IN BFL= 7.01IN TFL= 0.394IN A3= 1.57IN

S= 3.50IN W= 3.05IN FYWB= 60.7KSI EWB= 31200.KSI IZ= 0.0709IN4

CALCULATED VALUES

TCRL= 93.1KSI LAMCL= 0.613 XCL= 0.760 DZ= 724.7K-IN DX= 1.050K-IN

TCRG= 39.4KSI LAMCG= 0.943 XCG= 1.000 XC= 0.760

VN= 78.6KIP PHIV= 0.75 VR= 59.0KIP ----------------------------------------------------------------------

DR. SCHUSTER – RM SCHUSTER STRUCTURAL ENGINEERING December 4, 2016


Recommended