+ All Categories
Home > Documents > C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

Date post: 10-Feb-2016
Category:
Upload: glen
View: 32 times
Download: 0 times
Share this document with a friend
Description:
Strategies to Control the Heavy-Ion Beam Line Gas Density and Pressure in the HYLIFE Thick-Liquid Chamber. C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory Department of Nuclear Engineering University of California, Berkeley - PowerPoint PPT Presentation
17
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory Department of Nuclear Engineering University of California, Berkeley (2) Accelerator & Fusion Research Division Lawrence Berkeley National Laboratory Heavy-Ion Inertial Fusion Virtual National Laboratory ARIES Meeting, Madison, April 22, 2002 Strategies to Control the Heavy-Ion Beam Line Gas Density and Pressure in the HYLIFE Thick-Liquid Chamber
Transcript
Page 1: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

C.S. Debonnel1,2, S.S. Yu2, P.F. Peterson1

(1) Thermal Hydraulics LaboratoryDepartment of Nuclear EngineeringUniversity of California, Berkeley

(2) Accelerator & Fusion Research DivisionLawrence Berkeley National Laboratory

Heavy-Ion Inertial Fusion Virtual National Laboratory

ARIES Meeting, Madison, April 22, 2002

Strategies to Control the Heavy-Ion Beam Line Gas Density and Pressure in the HYLIFE Thick-

Liquid Chamber

Page 2: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

9x9-beam Hybrid HYLIFE II configuration

Page 3: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Cut-away view shows beam and target injection paths

Page 4: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Strategies to Prevent Debris Deposition in the Beam Tubes (I)

• Design efficient target chamber structures

• Mass and energy fluxes at the entrance of beam ports should be as low as possible

• Venting in target chamber has been modeled to determine inlet boundary conditions for the beam tubes

Page 5: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

The TSUNAMI 2.8.1 Code

•TranSient Upwind Numerical Analysis Method for Inertial confinement fusion

• Provides estimates of the gas dynamics behavior during the venting process in inertial confinement energy systems

• Ideal gas equation (gives conservative results)

• Solves Euler’s equations for compressible flows

• Two-dimensional, axially symmetric pocket

Page 6: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Axially symmetric 9x9 – Density Contour Plots

Page 7: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Show Time!

Page 8: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Axially symmetric 9x9 – Pressure Contour Plots

Page 9: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Impulse Load on Target-Facing Liquid Structures

Page 10: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Centerline Beam Port: Integrated Mass Flux

Page 11: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Centerline Beam Port: Integrated Energy Flux

Page 12: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Centerline Beam Port: Pressure

Page 13: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Centerline Beam Port: Velocities

Page 14: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Key heavy-ion thick-liquid chambers phenomena include gas dynamics and vapor condensation in the

target chamber and in the beam tubes

Page 15: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Strategies to Prevent Debris Deposition in the Beam Tubes (II)

• Liquid Vortex

• Ablation

• Condensation

• Magnetic sweeper

• Mechanical shutter

Page 16: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Centerline Beam Port: Density

Page 17: C.S. Debonnel 1,2 , S.S. Yu 2 , P.F. Peterson 1 (1) Thermal Hydraulics Laboratory

The Heavy Ion Fusion Virtual National Laboratory

UC Berkeley

Current & Future Work: Gas Transport in Beam Lines

• Detail Geometrical Modeling of Beam Tubes

• Improving the Physics in TSUNAMI:

• Condensation, Evaporation

• Real gas equation

• Radiative Transport


Recommended