+ All Categories
Home > Documents > Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas...

Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas...

Date post: 30-Jun-2018
Category:
Upload: phungdang
View: 227 times
Download: 0 times
Share this document with a friend
63
Current Practices in Oil and Gas Stimulation Enhanced Geothermal Systems
Transcript
Page 1: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Current Practices in Oil and Gas Stimulation

Enhanced Geothermal Systems

Page 2: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Current Techniques Used for Stimulation Oil and Gas Wells

• Hydraulic Fracturing• Acid Fracturing• Propped Fracturing

• Matrix Stimulation• Acidizing (HCl, Acetic, Formic)• Non-reactive Formation Damage Systems

• Cavity Completions

• Mechanical• Under-reaming• Fishbones

• Thermal Shock (Water Injectors)

Page 3: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Question• How do you stimulate a geothermal wells which

consists of a very low permeability, very hard, very hot rock completed with large open holes or slotted liners.Very Low Permeability – We are currently successfully

stimulating naturally fractured shales which have perm’s in the 50 to 300 nanodarcy range.Very Hard – We currently stimulate rock which have

modulus as high at 10e6 psi. I have personally stimulated naturally fractured granite in Vietnam.Large Open Holes or Slotted Liners – We currently

complete wells with 9 inch casing (Bohai Bay) and 10,000 ft slotted liners (Alpine)

The main issue seems to be temperature.

Page 4: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Current Techniques Used for Stimulation Oil and Gas Wells• Hydraulic Fracturing

• Acid Fracturing• Propped Fracturing

• Matrix Stimulation• Acidizing (HCl, Acetic, Formic)• Non-reactive Formation Damage Systems

• Cavity Completions

• Mechanical• Under-reaming• Fishbones

?

Page 5: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Hydraulic Fracturing

Page 6: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Basic Physics – Lumped Pseudo 3D Model

E

HPw Net

2

netP fnH

4/1

2

4

4

4

'

'

O

Ic

O

NetH

K

E

LQ

H

EP

Viscous Tip

HwHSTHC

TQL

PPPP

P

24

HfnH

Page 7: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Basic Frac Fluid Composition

• Water Based• Polymer

• Crosslinker

• pH Buffer

• Clay Control

• Breaker

• Surfactants

• Biocide

• Fluid Loss Control

Gelled Oil

Base Oil

Phosphate Ester Polymer

Crosslinker

Activator

Breaker

Page 8: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Materials -- FluidsFluid “Recipe”

• Base Fluid (Water or Oil) (1 cp)• Clay Control (2% KCl)

• Gelling Agent (10’s of cp)a) Guar Gum b) HPGc) CMHPG d) HEC• Bactericide

(protect fluid, NOT formation)

• pH Buffer (aid in mixing)

• Breaker

Page 9: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Oil Based Frac Fluids

Page 10: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Dimethyldioctadecylammonium chloride

An example of a permanently charged cationic quaternary amine surfactant

-

-

+

+

HydrophilicHead

HydrophobicTail

Non-ionic

Anionic

Cationic

Zwitterion

Aqueoussolution

Hydrophilichead

Hydrophobictail

Micelle

Structure of Visco-Elastic Thickners

Increase ConcentrationAbove CMC

Rod Like Micelle

Increase Concentration

Increase Concentration above C*

Three-dimensional gel microstructure from transmission electron

micrographs.

Nisslert, R. et.al. Journal of Microscopy. (2006)

Page 11: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Friction Reducers (Synthetic Polymers)

Polyacrylic acid(PAAc)

Polyacrylamide(PAAm)

Hydrolyzed Polyacrylamide(PHPA)

AcrylamidoMethylPropaneSulfonate

(AMPS)

Comparison of Friction Pressure for FR, 10# Guar and 2% KCl

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

Fric

tio

n in

psi

/10

0 f

t

Pump Rate in BPM

Poly. (4.5" Tubulars 10#/1000 gal Guar Linear Gel) Poly. (4.5" Tubulars KCl Water)

Poly. (4.5" Tubulars 2gpt FR)

Subject to hydrolysis at high temperatures

Page 12: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Consequence of using straight water

• High Friction

• Small Net Pressure resulting in a Narrow Frac Width

4/1

2

4

4

4

'

'

O

Ic

O

NetH

K

E

LQ

H

EP

Enter 1 to 5 Rate/Pressure Data Pairs

dP

/dL

0.2

01

.05

.02

05

02

00

Rate0.20 1.0 5.0 20 50 200

Choose Friction:

Sea Water 4.778

Enter 1 to 5 Rate/Pressure Data Pairs

Rate

(BPM)

dP/dL

(psi/100ft) a b

5.0 0.41 0.024 1.772

10.0 1.40 0.020 1.838

15.0 2.95 0.027 1.740

100.0 80.00 0.041 1.644

200.0 250.00 0.041 1.644

Slurry Friction Factor 0.50

Overall FluidFriction Factor

1.0000

Fluid Initially in Wellbore

Friction in psi/100 feet of9” casing

E

HPw Net

2

Page 13: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Dimensionless Fracture Conductivity

f

CD

f

k w

k xF

Page 14: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Proppant Types

Ceramic

Resin Coated

Sand

Each of these is available in several sizes and types

Quality and performance are variable

Page 15: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

New “Microsphere” Materials

Softening Point = 1200°CUniaxial Compressive Strength = 60,000 psi

Page 16: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Natural Fractures Outcrops

Ithaca Shale Outcrop showing theGeneseo Gas Shale Eagle Ford Shale Outcrop

West of Del Rio, TXJPT – May 2015 Confidential

Page 17: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Critical Bridging Diameter

Deeprop™ 1000• D50 = 25µ *3 = 75µ = 0.0029 inches

Deeprop™ 200• D50 = 5µ *3 = 15µ = 0.0006 inches

Confidential

Deeprop™ 600• D50 = 10µ *3 = 30µ = 0.0012 inches

Deeprop™ 400• D50 = 8µ *3 = 24µ = 0.0009 inches

100 Mesh• D50 = 177µ *3 = 531µ = 0.02 inches

Silica Flour• D50 = 37µ *3 = 111µ = 0.004 inches

40/60 Mesh• D50 = 297µ *3 = 891µ = 0.035 inches

20/40 Mesh• D50 = 595µ *3 = 1785µ = 0.07 inches

Page 18: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

DP™-1000

Deeprop™ 10000.25 lb/ft2

Confidential

Fayetteville

Page 19: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Conductivity compared to 100 mesh

Confidential

0.01

0.1

1

10

100

1000

2000 3000 4000 5000 6000 7000 8000 9000 10000

Co

nd

uct

ivit

y (m

d/f

t)

Fracture Closure Stress (psi)

2 lb/ft2 White 100 Mesh 2 lb/ft2 Deeproptm 1000 2 lb/ft2 Deeproptm 600 2 lb/ft2 Deeproptm 400 2 lb/ft2 Deeproptm 200

2% KCl Water250 degF

Page 20: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Confidential

Width vs Stress@ 2 lb/ft2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 2000 4000 6000 8000 10000 12000

Frac

ture

wid

th in

inch

es

Fracture Closure Stress

Deeproptm-1000 Deeproptm-600 Deeproptm-400 Deeproptm-200 100 Mesh

Cumulative Weight Percent Larger Than (micron) Uniformity Coefficientd10 d25 d40 d50 d60 d75 d90

Pre-Test 70 43 26 19 13 7 1.6 16.3Post-Test 79 40 24 18 12 7 1.8 13.3

Pre- and Post-Test Deeprop™ 1000 Particle Size

Page 21: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Barnett Shale Example Design

TVDft

7600

7800

8000

8200

8400

GR API0 15075.00

NPOR V/V0.30 -0.100.1000

DPOR V/V0.30 -0.100.1000

Perforations

Confidential

Page 22: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Conductivity at Stress

psi

Reservoir Pressure, Pres 5200

Overburden, OB 8610

Tectonics, T 0

Closure Pressure, _CL 6337

Bottomhole Flowing Pressure, BHFP 1000

Propped Width Stress, _width 200

Proppant Stress, _p 5537

0.01

0.1

1

10

2000 3000 4000 5000 6000 7000 8000 9000 10000

Co

nd

uct

ivit

y (m

d/f

t)

Fracture Closure Stress (psi)

2% KCl Water250 degF

4.5 md/ft

0.08 md/ft

2 lb ft2 Deeprop™ 200 2 lb ft2 Deeprop™ 1000

Confidential

Page 23: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Pump Schedule/Frac Geometry

Well ID: Untitled

Blessed Downhole Pump Schedule Surface Pump Schedule

Wellbore Volume (M-Gal) 8.36 Wellbore Volume to Include As Pad (M-Gal) 0.00 Wellbore Fluid

1 25.000 25.000 0.00 0.00 70.00 0.000000 0.0 8.503 8.5 Slick Water 100 Mesh Sand 250F 80-100

2 25.000 24.446 0.50 0.50 70.00 0.000000 12.2 8.503 17.0 Slick Water 100 Mesh Sand 250F 80-100

3 25.000 23.917 1.00 1.00 70.00 0.000000 23.9 8.503 25.5 Slick Water 100 Mesh Sand 250F 80-100

4 50.000 47.833 1.00 1.00 70.00 0.000000 47.8 17.007 42.5 Slick Water Ottawa Sand, 250 F, Long Term 40-70

5 25.000 23.409 1.50 1.50 70.00 0.000000 35.1 8.503 51.0 Slick Water Ottawa Sand, 250 F, Long Term 40-70

6 25.000 22.923 2.00 2.00 70.00 0.000000 45.8 8.503 59.5 Slick Water Ottawa Sand, 250 F, Long Term 40-70

Stage

SlurryVolume(M-Gal)

FluidVolume(M-Gal) Start End

Rate(BPM)

FinesConc. (Vol

Fraction)Proppant(M-Lbs)

Pump Time(min)

Cum Time(min) Fluid Type Proppant Type

Proppant Conc(PPG)

Flush 50.000 46.819 0.00 0.00 60.00 0.000000 0.0 0.000 59.5 Slick Water

175.000 167.528 Average (PPG) 0.94 164.80 59.522

Schedule

Design_2 w50' frac spacing

Constant PPG Steps

Fluid Ramp

Slurry Ramp

Flow Back Rate (BPM) 0.000

Start Pump Time (YYYY/MM/DD HH:MM:SS

TVDft

7600

7800

8000

8200

8400

GR API0 15075.00

NPOR V/V0.30 -0.100.1000

DPOR V/V0.30 -0.100.1000

951 ft

Confidential

Page 24: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:1.33 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.005

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

0.040

in

Time

1.3300 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 25: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:25.93 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.010

0.018

0.027

0.036

0.045

0.054

0.063

0.072

0.081

0.090

in

Time

25.9300 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 26: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:35.50 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.010

0.018

0.027

0.036

0.045

0.054

0.063

0.072

0.081

0.090

in

Time

35.5000 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 27: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:42.30 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.010

0.018

0.027

0.036

0.045

0.054

0.063

0.072

0.081

0.090

in

Time

42.3000 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 28: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:54.26 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.009

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

0.080

in

Time

54.2600 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 29: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:59.52 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.008

0.014

0.021

0.028

0.035

0.042

0.049

0.056

0.063

0.070

in

Time

59.5200 Play Speed

7500.0

8539.5

8206.8

End of Job

Confidential

Page 30: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:63.21 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.008

0.014

0.021

0.028

0.035

0.042

0.049

0.056

0.063

0.070

in

Time

63.2100 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 31: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:79.68 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.007

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054

0.060

in

Time

79.6800 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 32: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:105.18 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.006

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

in

Time

105.1800 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 33: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:215.38 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.004

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

0.030

in

Time

215.3800 Play Speed

7500.0

8539.5

8206.8

Confidential

Page 34: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:59.52 Depth:8206.84Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.008

0.014

0.021

0.028

0.035

0.042

0.049

0.056

0.063

0.070

in

Time

59.5200 Play Speed

7500.0

8539.5

8206.8

0.06 in

0.05 in

0.07 in

0.03 in

0.04 in

0.02 in

0.01 in

Deeprop™ 200• D95 = 14µ *3 = 42µ = 0.0016 inches• D90 = 12µ *3 = 36µ = 0.0014 inches• D50 = 5µ *3 = 15µ = 0.0006 inches

100 Mesh• D95 = 295µ *3 = 885µ = 0.035 inches• D90 = 275µ *3 = 825µ = 0.032 inches• D50 = 177µ *3 = 531µ = 0.021 inches

End of Job

Deeprop™ 1000• D95 = 120µ *3 = 360µ = 0.014 inches• D90 = 85µ *3 = 255µ = 0.01 inches• D50 = 25µ *3 = 75µ = 0.0029 inches

Confidential

Page 35: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

NATURAL_FRACTURE_WIDTH

NATURAL_FRACTURE_WIDTH Time:59.52 Depth:8206.84

Y

20

40

60

80

10

01

20

X200 400 600 800 1000 1200

0.001

0.008

0.014

0.021

0.028

0.035

0.042

0.049

0.056

0.063

0.070

in

Time

59.5200 Play Speed

7500.0

8539.5

8206.8

End of Job

25’

50’

75’

Confidential

Page 36: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Benefits at a width of 0.06 inches (1.52 mm) and a formation perm of 250 nano-darcies

2 lb ft2 Deeprop™ 200 2 lb ft2 White 100 Mesh2 lb ft2 Deeprop™ 1000

Confidential

Deeproptm 1000

Permeability (md) 0.00025

Conductivity (md-ft) 1.14

Re (ft) 100.000

Rw (ft) 0.35

Xf (ft) FCD Rw'/Xf Rw' FOI

25 182.400 0.5 13 2.72

50 91.200 0.5 25 4.08

75 60.800 0.5 38 5.77

Deeproptm 200

Permeability (md) 0.00025

Conductivity (md-ft) 0.022

Re (ft) 100.000

Rw (ft) 0.350

Xf (ft) FCD Rw'/Xf Rw' FOI

25 3.520 0.35 9 2.32

50 1.760 0.28 14 2.88

75 1.173 0.2 15 2.98

100 mesh

Permeability (md) 0.00025

Conductivity (md-ft) 22.060

Re (ft) 100.000

Rw (ft) 0.350

Xf (ft) FCD Rw'/Xf Rw' FOI

25 3529.600 0.5 13 2.72

50 1764.800 0.5 25 4.08

75 1176.533 0.5 38 5.77

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 20 40 60 80

Fold

s-o

f-In

cre

ase

Xf

Page 37: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Deeprop 1000 Expected Folds of Increase vs Kf and Natural Fracture Xf

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

Fold

s o

f In

crea

se

Natural Fracture Length (ft)

Kf in Nano-Darcies = 50 Kf in Nano-Darcies = 200 Kf in Nano-Darcies = 500

Kf in Nano-Darcies = 1000 Kf in Nano-Darcies = 1500 Kf in Nano-Darcies = 2000

Limit of 100 Mesh PenetrationIn this case

Limit of DP 1000 PenetrationIn this case

Page 38: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Stokes Law Settling Velocity

)(

)()(1064.6)/(

2

5

cp

SGSGftrXsftV FPP

S

Description Vs (ft/sec)

20/40 Sand 4.28

40/70 Sand 1.07

80/140 0.22

Deeprop™ -1000 (D95) 0.26

Deeprop™-1000 (D50) 0.029

Deeprop™-200 (D95) 0.0022

Deeprop™-200 (D50) 0.00029

(cps) = 1

SG of Fluid = 1

SG of Proppant = 2.6

Confidential

Page 39: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Completion Strategies

Page 40: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Re-Fracs w/DiversionTreating Long Intervals

ExampleData

Page 41: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Ekofisk X-04 Field ObservationBullhead acid jobs may be sub-optimal – 4 zones near heel producing 75%

Page 42: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Breakdown Pressures of 15 Zones

Page 43: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Real Time Fluid Placement Monitoring

Page 44: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Particulate DivertersPotential Problems

After I. Abou-Sayed, SPE Web Event“Shale Formation Re-Fracturing ……”

Page 45: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Diverters – ball sealers

Re-Frac Design Elements

Page 46: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Ball Sealers

Page 47: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Mechanical Diversion

Page 48: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Frac Sleeves

Page 49: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Positive DiversionExpandable Liner• +

• Positive Diversion• Allows Use of

Standard CompletionProcedures

• -• Time Consuming

Costs • Operationally Complex,

Risky?• Destroys Existing

Production

Page 50: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Positive DiversionExpandable Liner• +

• Positive Diversion• Allows Use of

Standard CompletionProcedures

• -• Time Consuming

Costs • Operationally Complex,

Risky?• Destroys Existing

Production

Page 51: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

MT

WY

SD

ND

MBSKAB

MT ND

Williston Basin

Page 52: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

perfs

MGS (1990)

Post-frac temperature survey

Bakken Strata

Page 53: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Preliminary Micro Seismic Results

6,0

00

fe

et

10,000 feet

Well headToe

N

E

1000’

1000’

500’

500’

185° -1200’317° -1900’

60° -950’

195° -1200’

Max Stress N 65 E

Video

Page 54: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

1

1 2 3 4

2

3

Stre

ss C

on

cen

trat

ion

Wellbore Radius

Wellbore

Figure 1 - Stress Concentration for a circular hole in a biaxial stress field

v

h

Virgin StressCondition

Stress Condition at open hole wall

Page 55: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

1

1 2 3 4

2

3

Stre

ss C

on

cen

trat

ion

Wellbore Radius

Figure 2 - Cross sectional view of the stress concentration for a circular holein a biaxial stress field with a packer set at a pressure

equal to ½ the stress concentration created by the open hole

SetPacker

Packer Setting Pressure(Pp)

(Pp)

(Pp)

(Pp)

(Pp)

(Pp)

(Pp)

(Pp)

Virgin StressCondition

Stress Condition at open hole wall

Stress Condition With Set Packer

Page 56: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Ball ActivatedSlidingSleeve

Swell or MechanicalPacker

InducedHydraulicFracture

Open hole

Figure 4 – Longitudinal view of a wellbore containing multiple packer systems

with ball activated sliding sleeves with induced propped fracture treatments.

Page 57: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Colter 44-14H Fracture Mapping ProjectHybrid Liner Design

7" Shoe

11,805' Swell Pkr

12,436-452'

Swell Pkr

13,438-454'

Swell Pkr

14,144-160'

Swell Pkr

15,149-164'

Swell Pkr

16,143-159'

Hydraulic Pkr

17,653'

Pinned at 1,900 psi

Over Hydrostatic

Swell Pkr

17,150-165'

Hydraulic Pkr

18,669'

Pinned at 1,900 psi

Over Hydrostatic

TD

20,335'

4-1/2"

Shoe

19,974'

Press

Operated

Vent 19,700'

Pinned at

3,950 psi

Over

Hydrostatic

Sliding

Sleeve

19,156'

2.5" Ball

Sliding

Sleeve

18,180'

2.75" Ball

Sliding

Sleeve

17,425'

3.0" Ball

Encore's Branvic 11-1

Rigged with Pinnacle Technologies Seismic

Equipment

~900' to the Colter

Seismic View Window

~15,000' to 19,000'

4-1/2", 11.6#/ft, P-110 Liner w/4.0" ID

Six Perf & Plug Intervals

From 7" shoe to 17,150'

Separated with swell packers

Limestone sections

within seismic window

16,350' - 16,800'

17,010' - 17,100'

18,150' - 18,450'

18,550' - 18,820'

19,020' - 19,750'

Colter 44-14HBakken Horizontal Well Play

Fracture Mapping Project

7/10/2008

Robert Clark & Clyde Findlay II

Bakken Completions Team

500' Sleeve interval 1,000' Sleeve interval

Hydraulic Pkr

19,642'

Pinned at 2,500 psi

Over Hydrostatic

6" Hole

Page 58: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Sleeve Interval 1Map View

Treatment Curve Information:▬ Treating Pressure▬ Slurry Rate▬ BH Proppant Concentration

1234

Sleeve Interval

2000ft x 2000ft

Time Interval Highlighted

Events sized and colored by energy

Page 59: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix
Page 60: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Bottom Hole Assembly

Connector Knuckle Joint & Shear Disconnect

CentralizerBall Sub

Jet Sub

Page 61: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Jetting Tools

• Many different types & styles of housings and jets

• Replaceable nozzles

• Typical flowrate of 1 bbl/min per 3/16” nozzle or 0.6 bbl/min per 1/8” nozzle

• Typical sand concentration of 1ppg (100 mesh) if only hydrajetting - or just use the frac sand that is on location

Page 62: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Kiel’s Process

Page 63: Current Practices in Oil and Gas Stimulation · Current Techniques Used for Stimulation Oil and Gas Wells •Hydraulic Fracturing •Acid Fracturing •Propped Fracturing •Matrix

Post Frac


Recommended