+ All Categories
Home > Documents > Current treatment status and medical costs for hemodialysis … · We performed statistical...

Current treatment status and medical costs for hemodialysis … · We performed statistical...

Date post: 01-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
21
ORIGINAL ARTICLE Copyright © 2018 The Korean Association of Internal Medicine This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. pISSN 1226-3303 eISSN 2005-6648 http://www.kjim.org Korean J Intern Med 2018;33:1160-1168 https://doi.org/10.3904/kjim.2018.170 1 Department of Internal Medicine, Kidney Research Institute, 2 Department of Occupational and Environmental Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea Received : May 12, 2018 Revised : July 2, 2018 Accepted : July 24, 2018 Correspondence to Sung Gyun Kim, M.D. Department of Internal Medicine, Kidney Research Institute, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro 170beon-gil, Don- gan-gu, Anyang 14068, Korea Tel: +82-31-380-1942 Fax: +82-31-386-2269 E-mail: [email protected] Background/Aims: The Republic of Korea is a country where the hemodialysis population is growing rapidly. It is believed that the numbers of treatments related to vascular access-related complications are also increasing. This study investigated the current status of treatment and medical expenses for vascular access in Korean patients on hemodialysis. Methods: This was a descriptive observational study. We inspected the insur- ance claims of patients with chronic kidney disease who underwent hemodialy- sis between January 2008 and December 2016. We calculated descriptive statis- tics of the frequencies and medical expenses of procedures for vascular access. Results: The national medical expenses for access-related treatment were 7.12 billion KRW (equivalent to 6.36 million USD) in 2008, and these expenses in- creased to 42.12 billion KRW (equivalent to 37.67 million USD) in 2016. The population of hemodialysis patients, the annual frequency of access-related procedures, and the total medical cost for access-related procedures increased by 1.6-, 2.6-, and 5.9-fold, respectively, over the past 9 years. The frequency and costs of access care increased as the number of patients on hemodialysis in- creased. The increase in vascular access-related costs has largely been driven by increased numbers of percutaneous angioplasty. Conclusions: The increasing proportion of medical costs for percutaneous an- gioplasty represents a challenge in the management of end-stage renal disease in Korea. It is essential to identify the clinical and physiological aspects as well as anatomical abnormalities before planning angioplasty. A timely surgical correction could be a viable option to control the rapid growth of access-related medical expenses. Keywords: Renal dialysis; Arteriovenous fistula; Endovascular procedures; An- gioplasty; Administrative claims, healthcare Current treatment status and medical costs for hemodialysis vascular access based on analysis of the Korean Health Insurance Database Hyung Seok Lee 1 , Young-Su Ju 2 , Young Rim Song 1 , Jwa Kyung Kim 1 , Sun Ryoung Choi 1 , Narae Joo 1 , Hyung Jik Kim 1 , Pyoungju Park 1 , and Sung Gyun Kim 1 INTRODUCTION The population of patients with end-stage renal disease (ESRD) who need hemodialysis (HD) treatment has in- creased over the past decade. Recently in the Republic of Korea, the proportion of patients with ESRD who re- ceived peritoneal dialysis decreased while that of ESRD patients who receive HD sharply increased [1]. These
Transcript
Page 1: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

ORIGINAL ARTICLE

Copyright © 2018 The Korean Association of Internal MedicineThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN 1226-3303eISSN 2005-6648

http://www.kjim.org

Korean J Intern Med 2018;33:1160-1168https://doi.org/10.3904/kjim.2018.170

1Department of Internal Medicine, Kidney Research Institute, 2Department of Occupational and Environmental Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea

Received : May 12, 2018Revised : July 2, 2018Accepted : July 24, 2018

Correspondence to Sung Gyun Kim, M.D.Department of Internal Medicine, Kidney Research Institute, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro 170beon-gil, Don-gan-gu, Anyang 14068, Korea Tel: +82-31-380-1942Fax: +82-31-386-2269E-mail: [email protected]

Background/Aims: The Republic of Korea is a country where the hemodialysis population is growing rapidly. It is believed that the numbers of treatments related to vascular access-related complications are also increasing. This study investigated the current status of treatment and medical expenses for vascular access in Korean patients on hemodialysis.Methods: This was a descriptive observational study. We inspected the insur-ance claims of patients with chronic kidney disease who underwent hemodialy-sis between January 2008 and December 2016. We calculated descriptive statis-tics of the frequencies and medical expenses of procedures for vascular access.Results: The national medical expenses for access-related treatment were 7.12 billion KRW (equivalent to 6.36 million USD) in 2008, and these expenses in-creased to 42.12 billion KRW (equivalent to 37.67 million USD) in 2016. The population of hemodialysis patients, the annual frequency of access-related procedures, and the total medical cost for access-related procedures increased by 1.6-, 2.6-, and 5.9-fold, respectively, over the past 9 years. The frequency and costs of access care increased as the number of patients on hemodialysis in-creased. The increase in vascular access-related costs has largely been driven by increased numbers of percutaneous angioplasty.Conclusions: The increasing proportion of medical costs for percutaneous an-gioplasty represents a challenge in the management of end-stage renal disease in Korea. It is essential to identify the clinical and physiological aspects as well as anatomical abnormalities before planning angioplasty. A timely surgical correction could be a viable option to control the rapid growth of access-related medical expenses.

Keywords: Renal dialysis; Arteriovenous fistula; Endovascular procedures; An-gioplasty; Administrative claims, healthcare

Current treatment status and medical costs for hemodialysis vascular access based on analysis of the Korean Health Insurance DatabaseHyung Seok Lee1, Young-Su Ju2, Young Rim Song1, Jwa Kyung Kim1, Sun Ryoung Choi1, Narae Joo1, Hyung Jik Kim1, Pyoungju Park1, and Sung Gyun Kim1

INTRODUCTION

The population of patients with end-stage renal disease (ESRD) who need hemodialysis (HD) treatment has in-

creased over the past decade. Recently in the Republic of Korea, the proportion of patients with ESRD who re-ceived peritoneal dialysis decreased while that of ESRD patients who receive HD sharply increased [1]. These

Page 2: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1161

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

changes have resulted in an increased incidence of vas-cular access-related complications and increased med-ical costs for vascular access-related treatments. The Korean Society of Nephrology launched the End-Stage Renal Disease Patient Registry in 1985, but it has not yet provided a report on medical expenses and the trends related to managing the complications of vascular ac-cess.

South Korea has a National Health Insurance (NHI) system, which is a public single-payer system. The Na-tional Health Insurance Corporation (NHIC) is the only public insurance institution operated by the Ministry of Health and Welfare in this country. Healthcare pro-viders are automatically eligible and obliged to treat pa-tients with those services covered by the system. Every Korean resident is eligible regardless of nationality or profession. The coverage provided is comprehensive, including prevention, diagnosis, treatment, surgery, hospitalization, and rehabilitation. Insurance benefits for patients and payments to healthcare providers are supervised by the Health Insurance Review and Assess-ment Service (HIRA), which reviews insurance claims and assesses the healthcare services [2]. These character-istics of the NHI system make the claims data valid for studying medical service use and costs. We analyzed the health insurance claims data from the HIRA to investi-gate the current status of treatments for access-related complications and their associated medical expenses in patients on HD in the Republic of Korea.

METHODS

The Institutional Review Board of the Hallym Universi-ty Sacred Heart Hospital approved this study (IRB num-ber: HUSHHIRB 2017-I079). We analyzed the records of patients with ESRD who underwent HD between Jan-uary 2008 and December 2016 in the health insurance claims database. The diagnosis codes were standardized according to the Korean Classification of Disease, 6th version, which follows the International Classification of Disease, 10th edition (ICD-10) [3]. We defined ESRD patients who underwent HD as those with a diagnosis of chronic kidney disease (CKD) (diagnosis codes: N18 or N19) and HD treatment (procedure codes: O7020 or O9991) or with the “rare/intractable diseases” code for HD (V001) (Fig. 1).

When patients in the NHI system receive health-care, they pay a “co-payment” to the provider. Typical co-payment amounts are 20% for inpatient hospital care and 30% to 50% for outpatient care. The co-payment amount for patients with the rare/intractable diseases code for HD is 10% of inpatient and outpatient medical costs. Patients with ESRD who start HD are eligible for the rare/intractable diseases code if they undergo out-patient treatment on the day of HD or are hospitalized because of the ESRD or the HD. Thus, the rare/intracta-ble diseases code is a useful tool to identify claims data related to examinations or treatments related to ESRD in patients on HD. We identified patients that had any procedure codes related to the following vascular access procedures: venography, fistulography, percutaneous

Database populationn = 176,331 (41.9% females) (mean age, 58.5; SD, 14.6; range, 1–115)

Study populationn = 105,947 (41.6% females) (mean age, 62.3; SD, 14.1; range, 1–105)

Patients with the highest frequencies of PTAsn = 624 (56.0% females) (mean age, 60.9; SD, 12.4; range, 15–96)

ESRD patients who had a diagnosis code of chronic kidney disease with hemodialysis treatment code or with the rare/intractable disease code for hemodialysis between 2008 and 2016

Patients who underwent interventional or surgical procedures (fistulography for an arteriovenous shunt, venography for upper extremity and subclavian vein, percutaneous transluminal angioplasty, percutaneous thrombectomy, percutaneous stent placement, AV fistula and AV graft creation, surgical revision, or removal of infected graft, tunneled dialysis catheter insertion) for vascular access

Patients who underwent more than 11 PTAs during their hemodialysis period

Figure 1. Diagram of the population selection. SD, standard deviation, ESRD, end-stage renal disease; AV, arteriovenous; PTA, percutaneous transluminal angioplasty.

Page 3: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1162 www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

transluminal angioplasty (PTA), percutaneous throm-bectomy, stent placement, surgical revision, arteriove-nous (AV) fistula/graft placement, removal of infected graft, or tunneled dialysis catheter (TDC) placement. After excluding the treatment data not related to the vascular access of HD, such as angioplasty for renal ar-teries and stent placement for iliofemoral arteries, we analyzed the medical cost of each access-related proce-dure. To investigate the number of treatments for the access-related complications, we eliminated duplicated procedural activities. For example, when a fistulography was performed during PTA, it was considered a case of PTA, and when a PTA was performed during percuta-neous thrombectomy, it was considered a case of per-cutaneous thrombectomy. A total of 77% of fistulogra-phy cases were performed during PTA, and 10% of PTA cases were performed during percutaneous thrombec-tomy in this study; however, they were not included in the analysis of the number of treatments. Therefore, the annual frequency of PTA cases analysis included cases where PTA was performed without thrombectomy and stent placement. We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical variables as frequency and percentage and continuous variables as mean and standard deviation (SD).

RESULTS

We identified 176,331 (41.9% female) patients with CKD who underwent HD between January 2006 and Decem-ber 2016. The mean age was 58.5 years (SD, 14.6; median, 60; Q1–Q3, 49 to 70; range, 1 to 115). The annual number of HD patients increased 1.57-fold from 49,403 in 2008 to 77,933 in 2016. The total medical cost of access-relat-ed procedures increased 5.9-fold from 7.12 billion KRW (equivalent to 6.36 million USD) in 2008 to 42.12 billion KRW (equivalent to 37.67 million USD) in 2016. The medical cost of PTA increased 13-fold from 1.29 billion KRW (equivalent to 1.16 million USD) in 2008 to 17.02 billion KRW (equivalent to 15.22 million USD) in 2016. The cost of PTA was the main driver of the increase in HD vascular access-related expenses. The total medi-cal cost for access-related treatment rose more steeply in recent years, reaching 36.10 billion KRW (equivalent

to 32.29 million USD) in 2015 and 42.12 billion KRW (equivalent to 37.67 million USD) in 2016 (Fig. 2, Sup-plementary Table 1). The total number of procedures for vascular access (i.e., venography, fistulography, PTA, percutaneous thrombectomy, stent placement, access creation, surgical revision, removal of infected graft, and TDC placement) increased by more than 2.6-fold over 9 years. As the number of patients on HD increased, the numbers of interventional and surgical procedures re-lated to vascular access increased. The increase in the number of PTA procedures was especially remarkable, leading the growth in the numbers of procedures (Fig. 3, Supplementary Table 2). During the past 9 years, the annual frequency of PTA increased from 14.4% to 26.5% of the total frequency of treatment procedures, whereas the medical cost of PTA increased from 18.2% to 40.4% (Fig. 4).

Based on the annual number of patients on HD in the present study, we analyzed the annual frequency and medical costs of each procedure per patient on HD. This per-patient analysis showed growth in the number of PTAs per patient as well as the growth of the overall size of the population of patients on HD, which increased the annual number of PTAs. The annual frequency of PTA per patient has risen rapidly in recent years, and the frequency per patient per year increased from 0.1715 in 2013 to 0.1946 in 2014, 0.2055 in 2015, and 0.2261 in 2016. However, the frequency per patient per year of sur-gical revision gradually decreased from 0.0871 in 2013 to 0.0864 in 2014, 0.0856 in 2015, and 0.0852 in 2016 (Fig. 5, Supplementary Tables 3 and 4).

Ten percent of the total PTAs (9,110 cases) were per-formed in patients with the highest frequencies of PTAs (n = 624; 56% females; mean age, 60.5 years; range, 13 to 98 years). This patient group accounted for 1.7% of those who underwent PTA. The highest PTA frequency group underwent at least 11 PTAs during their dialysis period and had an average of 14.6 PTA treatments (range, 11 to 85; SD, 5.24; 95% confidence interval, 14.18 to 15.01). The average time from the first PTA to the eleventh PTA was 4.27 years. As the patients underwent repeated PTAs, the interval between procedures decreased and converged on 80 to 90 days. The most common time interval be-tween PTAs was 90 days (Fig. 6 and Supplementary Figs. 1-8).

Page 4: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1163

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

DISCUSSION

Both the overall number and the proportion of pa-tients on HD has increased in the Republic of Korea. Patients on HD comprised over 90% of the patients on dialysis in this country in 2016. The incidence of vas-cular access-related complications and the number of procedures to treat these complications are thought to be increasing; however, there has been little or no inves-tigation into the current treatment status and medical expenses of vascular access-related complications in the Republic of Korea.

According to a report by the National Evidence-based Healthcare Collaborating Agency on dialysis modalities for ESRD, the total medical expenses in the Republic of Korea for HD was seven to nine times higher than that for peritoneal dialysis, and the annual cost per patient on HD was 4,100 to 7,400 USD higher than that per pa-

tient on peritoneal dialysis [4]. This report indicates that vascular access-related expenses could contribute to the relatively high costs associated with HD. According to the NHIC, the medical expenses for CKD was 1.56 tril-lion KRW in 2015 and 1.69 trillion KRW (equivalent to 1.51 billion USD) in 2016 [5]. The medical costs in the Re-public of Korea for HD vascular access-related treatment were 2.3% of the total medical costs for CKD in 2015 and 2.5% of that cost in 2016. The United States Renal Data System statistics showed that yearly vascular access-re-lated medical costs accounted for 1.2% of the total medi-cal cost for CKD. In Japan, yearly vascular access-related medical costs were 1.4% of the total healthcare cost for CKD [6,7]. Our results indicated that the access-related medical expenses in the Republic of Korea accounted for a larger portion of the total CKD medical expenses compared with these other countries. The vascular ac-cess-related medical expenses in the present study re-

18

16

14

12

10

8

6

4

2

02008 2009 2010 2011 2012 2013 2014 2015

Year Year

Med

ical c

ost (

KRW

10

billi

on)

2016

PTAAVF placementFistulographySurgical revisionPercutaneous thrombectomyAVG placementVenographyStent placement TDC placementRemoval of infected graft

45

40

35

30

25

20

15

10

5

0M

edica

l cos

t (KR

W 1

0 bi

llion

)2008 2009 2010 2011 2012 2013 2014 2015 2016

TDC placement

Removal of infected graft

Surgical revision

AVG placement

AVF placement

Percutaneous thrombectomy

Stent placement

PTA

Fistulotraphy

Venography

Figure 2. Annual medical costs of vascular access-related treatments (2008 to 2016). (A) Trend in annual medical costs of ac-cess-related procedures. The annual medical cost of each procedure was the sum of the procedure costs that included the unit cost and the adjusted rate, such as the reoperation discount or holiday surcharge. (B) Trends in the proportion of medical costs of access-related treatments. The expenses for vascular access care increased along with the increase in the number of patients on hemodialysis. The greatest increase was in the costs for percutaneous angioplasty. PTA, percutaneous transluminal angio-plasty; AVF, arteriovenous fistula; AVG, arteriovenous graft; TDC, tunneled dialysis catheter.

A B

Page 5: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1164 www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

flected the procedure cost, and higher costs for vascular access are expected for inpatient services. Furthermore, the data did not include procedures and materials that were not covered by the insurance reimbursement, so the actual medical expenses for vascular access-related treatments are likely greater than the estimates in our study.

The increasing cost of access-related treatment is largely due to a steep increase in the medical costs as-sociated with PTA. The annual frequency of PTAs has increased more rapidly than that of other access-relat-ed procedures. The increase in frequency of PTAs per patient has led the growth of the number of vascular access-related procedures. Patients with the highest fre-quencies of PTAs underwent more than 11 PTA proce-dures during their HD period, and the interval between PTAs shortened and converged on 90 days. The recent growth in the number of PTA cases could be due to an increase in the number of preemptive PTA procedures

performed on a regular schedule as well as the increase in vascular access surveillance, which has been encour-aged through the nationwide dialysis clinic assessment program. Some interventionalists routinely schedule repeat PTAs for patients on HD every 3 months. These regular, preemptive PTAs might explain the peak inter-val of 90 days. The National Kidney Foundation-Kid-ney Disease Outcomes Quality Initiative (NKF-KDOQI) guidelines emphasize that preemptive PTAs should be performed if an anatomical abnormality is associated with clinical or physiological abnormalities, such as decreased access blood flow, elevated venous pressure, decreased dialysis dose, or abnormal physical examina-tions, which should return to within acceptable limits following the intervention [8]. However, this consider-ation of clinical and physiological parameters is often overlooked in clinical practice. Several recent prospec-tive randomized studies suggested that preemptive angioplasty failed to prevent access thrombosis [9,10],

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

70,000

60,000

50,000

40,000

30,000

20,000

10,000

02008 2009 2010 2011 2012 2013 2014 2015

Year

2016 2008 2009 2010 2011 2012 2013 2014 2015

Year

2016

PTATDC placementAVF placementVenographySurgical revisionFistulographyAVG placementPercutaneous thrombectomyStent placementRemoval of infected graft

TDC placement

Removal of infected graft

Surgical revision

AVG placement

AVF placement

Percutaneous thrombectomy

Stent placement

PTA

Fistulography

Venography

Annu

al fr

eque

ncy

Annu

al fr

eque

ncy

Figure 3. Annual frequency of procedures for vascular access-related treatments (2008 to 2016). (A) Trends in annual frequen-cy of access-related procedures. The numbers of interventional or surgical procedures for vascular access increased with the growth of the number of patients on hemodialysis. (B) Trends in the proportion of annual frequency of access-related treat-ments. The increase in the number of percutaneous transluminal angioplasties was remarkable, leading the total growth in the number of procedures. PTA, percutaneous transluminal angioplasty; TDC, tunneled dialysis catheter; AVF, arteriovenous fistula; AVG, arteriovenous graft.

A B

Page 6: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1165

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

and a systematic review by Ravani et al. [11] reported that preemptive angioplasty for stenosis in a functional AV access did not improve the longevity of the access. While preemptive angioplasty could be promising in AV fistu-las, it may also raise the risk of procedure-related adverse events and costs [11]. There is currently insufficient ev-idence to support the practice of performing repeated preemptive angioplasty. Furthermore, the scheduling of regular PTAs every 3 months is not presently supported by any evidence-based data, so the necessity of treatment for stenosis should be decided based on the clinical and physiological aspects of the access.

Clinically, timely surgical correction provides much longer access patency in certain cases, such as the jux-ta-anastomotic stenosis and cephalic arch stenosis with frequent recurrence [12,13], and reduces unnecessary endovascular procedures, including angioplasty and stent deployment. The NKF-KDOQI guidelines recom-mended that patients should be re-evaluated for possi-ble construction of a secondary fistula following each episode of access failure [14], and considered for surgi-

cal revision prior to stent deployment unless they have a surgically inaccessible lesion or contraindications for surgery [8]. In the Republic of Korea, surgical thrombec-tomy, graft interposition, proximal re-anastomosis for juxta-anastomotic stenosis, aneurysmectomy, central transposition for cephalic arch stenosis, bypass proce-dure with a new graft, banding procedure for high flow fistula, and even proximalization of arterial inflow in distal hypoperfusion ischemic syndrome are uniformly classified as the same code of “repair of arteriovenous fistula (O2083).” The reimbursement benefit for repair of AV fistula is 428,010 to 467,670 KRW (equivalent to 382.8 to 418.3 USD), which is only 58% of the reimburse-ment benefit for PTA. This inadequate reimbursement for surgical revision, including the disbursement of in-surance benefits for surgical correction when PTA and surgical correction are performed together as a hybrid operation, could be a barrier to timely surgical revision and might cause healthcare providers to prefer endo-vascular treatment rather than trying surgical salvage of dysfunctional access, especially when surgical revision

100

90

80

70

60

50

40

30

20

10

02008 2009 2010 2011 2012 2013 2014 2015

Year2016

Annu

al fr

eque

ncy (

% o

f tot

al)

100

90

80

70

60

50

40

30

20

10

02008 2009 2010 2011 2012 2013 2014 2015

Year2016

Med

ical c

ost (

% o

f tot

al)

TDC placement

Removal of infected graft

Surgical revision

AVG placement

AVF placement

Percutaneous thrombectomy

Stent placement

PTA

Fistulography

Venography

Figure 4. Trends in the percentage of frequency and medical costs of each procedure relative to total treatment procedures (2008 to 2016). (A) Trends in the percentage of frequency of each procedure relative to total treatment procedures. (B) Trends in the percentage of medical cost of each procedure relative to total treatment procedures. TDC, tunneled dialysis catheter; AVG, arteriovenous graft; AVF, arteriovenous fistula; PTA, percutaneous transluminal angioplasty.

A B

Page 7: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1166 www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

is technically difficult. Rationalizing the reimbursement of surgical revision could therefore be an option to curb the rapid expansion of PTA expenses.

More than ever, endovascular treatment is preferred over surgical treatment, even when a surgical proce-dure is recommended. This trend is also reflected in the result of the present study, which showed the recent decline in the annual frequency of surgical revision in per-patient analysis. Regarding the current situation, the direct involvement of nephrologists in the monitor-ing of vascular access, timely detection of dysfunctional access, a policy for treatment modality, following of the functional aspects of access, and enhancement of inter-departmental cooperation could be important and pro-ductive goals for improving access care.

In the present study, the numbers of access placements included both the primary access creation in incident HD patients and secondary access creation in prevalent HD patients. The results therefore reflected the annual frequency of access creation itself but could not provide

the information about the incidence of the primary ac-cess in incident HD patients or the prevalence of access types in prevalent HD patients. According to the Korean ESRD registry, the prevalence of arteriovenous fistula, arteriovenous graft, and TDC in the prevalent HD pa-tients were 76%, 16%, and 6% in the last years, respec-tively [15]. Because this study investigated ESRD patients on HD treatments, the result of this study could not in-clude data on access creation in predialysis patients. In addition, this study was of a retrospective observational study, and the medical claims data could not provide information about non-benefit items that were not cov-ered by insurance benefits. Thus, the medical expendi-tures in this study were an underestimation of the actual expenses. Because more non-benefit items are currently being incorporated into insurance benefit coverage in the Republic of Korea, our knowledge about the medical expenditures on diagnostic and therapeutic practices for HD vascular access will be more accurate in the future.

0.25

0.2

0.15

0.1

0.05

0

250,000

200,000

150,000

100,000

50,000

02008 2009 2010 2011 2012 2013 2014 2015

Year

2016 2008 2009 2010 2011 2012 2013 2014 2015Year

2016

PTATDC placementAVF placementVenographySurgical revisionFistulographyAVG placementPercutaneous thrombectomyStent placementRemoval of infected graft

Per-

patie

nt fr

eque

ncy

Per-

patie

nt co

st

PTAAVF placementFistulographySurgical revisionPercutaneous thrombectomyAVG placementVenographyStent placementTDC placementRemoval of infected graft

Figure 5. Trends in the per-patient frequency and medical cost of access-related treatment (2008 to 2016). The rapid growth in the number and cost of percutaneous transluminal angioplasties are attributed to the increase in the number of procedures per patient. (A) Trends in the per-patient frequency of access-related procedures. (B) Trends in the per-patient cost of access-re-lated procedures. PTA, percutaneous transluminal angioplasty; TDC, tunneled dialysis catheter; AVF, arteriovenous fistula; AVG, arteriovenous graft.

A B

Page 8: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1167

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

Conflict of interestNo potential conflict of interest relevant to this article was reported.

Acknowledgments This research was supported by the Hallym University Research Fund 2014 (HURF-2014-58).

REFERENCES

1. Jin DC. Current status of dialysis therapy for ESRD pa-tients in Korea. J Korean Med Assoc 2013;56:562-568.

2. National Health Insurance Service. National Health Insurance Program in Korea [Internet]. Wonju (KR): Na-tional Health Insurance Service, c2010 [cited 2018 Sep 6]. Available from: https://www.nhis.or.kr/static/html/wbd/g/a/wbdga0401.html.

3. Statistics Korea. Korean Standard Statistical Classification of Disease [Internet]. Daejeon (KR): Statistics Korea, c1996 [cited 2018 Sep 6]. Available from: https://kssc.kostat.go.kr:8443/ksscNew_web/kssc/main/main.do?gubun=1#.

4. National Evidence-based Healthcare Collaborating Agency. Outcomes research of peritoneal dialysis and hemodialysis for end-stage renal disease [Internet]. Seoul (KR): National Evidence-based Healthcare Collaborating Agency, c2017 [cited 2018 Sep 6]. Available from: https://

250

200

150

100

50

0

40

30

20

10

0

PTA2

PTA3

PTA4

PTA5

PTA6

PTA7

PTA8

PTA9

PTA1

0PT

A11

PTA1

2PT

A13

PTA1

4PT

A15

PTA1

6PT

A17

PTA1

8PT

A19

PTA2

0PT

A21

PTA2

2PT

A23

PTA2

4

Mean

Sequential PTAsPTA9

1 19 33 48 61 73 87 101 113 126 143 157 170 189 212 233 265 301 369 685

Day

inte

rval

bet

ween

PTA

s

Freq

uenc

yFigure 6. The time interval between successive percutaneous transluminal angioplasties (PTAs). (A) The time interval between successive PTAs among the patients who underwent more than 11 PTA procedures. The frequencies of time intervals con-verged on the 90-day interval as the procedure was repeated. The horizontal axis shows sequential PTAs; PTA2= the interval between the first PTA and the second PTA. The vertical axis shows the number of days in the intervals. (B) Frequencies of the time intervals between successive PTAs. This graph shows the frequency of the time intervals between the eighth and ninth percutaneous angioplasty. The most frequent time interval from the eighth PTA to the ninth PTA was 90 days.

A B

KEY MESSAGE

1. The rapid growth in hemodialysis population has dramatically increased the number and medical expenses of access-related procedures.

2. Percutaneous transluminal angioplasty (PTA) was the main driver of the increase in access-re-lated costs, becoming a financial challenge in the medical expenditures of chronic kidney dis-ease management.

3. PTA should be performed when an anatomical abnormality is associated with functional ab-normalities; therefore, active involvement of the dialysis staffs in the monitoring of clinical and physiological aspects of vascular access is im-portant.

Page 9: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

1168 www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

www.neca.re.kr/lay1/program/S1T11C145/report/view.do?seq=223.

5. National Health Insurance Service. National Health In-surance Statistical Yearbook. 13th ed. Wonju (KR): Nation-al Health Insurance Service, 2017.

6. United States Renal Data System. 2017 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda (MD): National Institutes of Health, 2017.

7. Takemoto Y, Naganuma T. The economic issue of vascu-lar access within the Japanese medical reimbursement system. J Vasc Access 2015;16 Suppl 10:S9-S12.

8. National Kidney Foundation. NKF-KDOQI clinical practice guidelines for vascular access. Am J Kidney Dis 2006;48(Suppl 1):S176-S276.

9. Dember LM, Holmberg EF, Kaufman JS. Randomized controlled trial of prophylactic repair of hemodialysis arteriovenous graft stenosis. Kidney Int 2004;66:390-398.

10. Moist LM, Churchill DN, House AA, et al. Regular mon-itoring of access flow compared with monitoring of venous pressure fails to improve graft survival. J Am Soc Nephrol 2003;14:2645-2653.

11. Ravani P, Quinn RR, Oliver MJ, et al. Preemptive correc-tion of arteriovenous access stenosis: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 2016;67:446-460.

12. Argyriou C, Schoretsanitis N, Georgakarakos EI, Geor-giadis GS, Lazarides MK. Preemptive open surgical vs. endovascular repair for juxta-anastomotic stenoses of autogenous AV fistulae: a meta-analysis. J Vasc Access 2015;16:454-458.

13. Sigala F, Saben R, Kontis E, Kiefhaber LD, Forster R, Mickley V. Surgical treatment of cephalic arch stenosis by central transposition of the cephalic vein. J Vasc Access 2014;15:272-277.

14. National Kidney Foundation. NKF-KDOQI clinical prac-tice guidelines for vascular access. Guideline 29: goals of access placement maximizing primary AV fistulae. Am J Kidney Dis 2001;37(Suppl 1):S169.

15. The Korean Society of Nephrology. Korean ESRD Regis-try 2018 [Internet]. Seoul (KR): Korean Society of Nephrol-ogy, c2016 [cited 2018 Sep 6]. Available from: http://www.ksn.or.kr/rang_board/list.html?code=sinchart_eng.

Page 10: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

Supp

lem

enta

ry T

able

1. A

nnua

l med

ical

cos

ts o

f acc

ess-

rela

ted

trea

tmen

ts (2

008

to 2

016)

Year

Veno

grap

hyFi

stul

ogra

-ph

yPT

ASt

ent

plac

emen

t

Perc

utan

eous

thro

mbe

cto-

my

AVF

plac

emen

tAV

Gpl

acem

ent

Surg

ical

revi

sion

Rem

oval

of

infe

cted

gra

ftTD

Cpl

acem

ent

Tota

lH

emod

ialy

sis

patie

nts

2008

522,

935,3

9657

2,91

1,841

1,299

,192,

268

99,70

4,18

926

9,52

2,87

72,

278,

051,1

8783

8,748

,301

976,

201,6

179,

262,

272

254,

331,5

457,1

20,8

61,4

9349

,403

2009

715,0

15,4

8273

4,65

1,737

1,725

,703,2

3419

5,197

,621

421,0

73,9

682,

563,6

02,2

8898

1,407

,077

1,423

,702,

347

44,9

81,0

6636

1,128

,138

9,16

6,46

2,95

853

,320

2010

914,

927,4

751,0

86,75

9,97

72,

678,

060,

261

384,

412,

174

618,

460,

691

3,064

,825

,887

1,290

,403

,807

1,640

,332,

825

70,11

3,602

484,

629,

683

12,2

32,9

26,38

254

,639

2011

1,131

,237

,558

1,714

,987

,211

4,43

2,38

8,67

049

3,395

,529

1,013

,930

,101

3,183

,966

,474

1,292

,724,7

871,6

51,4

71,11

493

,331,3

1167

5,075

,199

15,6

82,50

7,954

59,4

07

2012

1,290

,896

,865

2,36

7,700

,610

6,47

4,15

6,55

575

8,46

0,92

01,3

40,8

42,37

93,2

06,14

9,88

41,2

93,8

58,34

51,9

37,70

2,728

79,79

6,24

177

4,21

1,450

19,52

3,775

,977

63,15

1

2013

1,362

,021

,541

2,89

5,693

,073

8,16

6,93

8,62

065

7,338

,266

1,348

,678

,827

3,410

,929

,755

1,349

,600

,156

2,16

6,89

2,06

694

,312,

612

876,

048,

384

22,32

8,45

3,300

66,6

28

2014

1,565

,656

,847

3,406

,756,

725

11,17

2,85

8,07

585

7,400

,363

1,940

,112,

678

4,07

7,277

,591

1,645

,631

,739

2,776

,136,

577

161,2

24,2

771,0

05,35

7,738

28,6

08,4

12,6

1070

,439

2015

1,569

,444

,627

4,01

1,856

,971

14,30

5,036

,227

1,166

,233

,187

2,54

0,30

5,836

5,371

,920

,157

2,13

9,59

6,38

23,6

16,6

48,52

417

9,64

1,470

1,208

,724,

170

36,10

9,40

7,551

73,18

6

2016

1,727

,769,

674

4,80

7,563

,065

17,0

20,8

67,52

81,5

28,0

89,4

193,2

96,8

37,12

05,6

10,0

11,75

32,

630,

257,9

183,9

05,18

0,86

120

5,245

,897

1,392

,749,

532

42,12

4,57

2,767

77,9

33

PTA

, per

cuta

neou

s tr

ansl

umin

al a

ngio

plas

ty; A

VF,

art

erio

veno

us fi

stul

a; A

VG, a

rter

iove

nous

gra

ft; T

DC

, tun

nele

d di

alys

is c

athe

ter.

Page 11: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

Supp

lem

enta

ry T

able

2. A

nnua

l fre

quen

cy o

f pro

cedu

res

for a

cces

s-re

late

d tr

eatm

ents

(200

8 to

201

6)

Year

Veno

grap

hyFi

stul

ogra

-ph

yPT

ASt

ent

plac

emen

t

Perc

utan

eous

thro

mbe

cto-

my

AVF

plac

emen

tAV

Gpl

acem

ent

Surg

ical

revi

sion

Rem

oval

of

infe

cted

gra

ftTD

Cpl

acem

ent

Tota

lH

emod

ialy

sispa

tient

s

2008

3,621

2,12

33,6

8525

565

77,1

912,

396

3,264

912,

260

25,54

349

,403

2009

3,942

1,893

3,831

380

815

7,057

2,47

94,

179

121

3,135

27,8

3253

,320

2010

4,344

2,21

54,

951

598

980

7,591

2,98

24,

422

190

4,324

32,59

754

,639

2011

4,86

32,

460

7,048

663

1,380

7,854

3,038

4,51

623

66,

012

38,0

7059

,407

2012

5,313

3,027

9,12

386

01,6

278,

082

3,178

5,276

204

7,018

43,70

863

,151

2013

5,776

3,322

11,4

3072

91,6

888,

455

3,250

5,805

227

7,904

48,58

666

,628

2014

6,57

93,5

9313

,713

832

2,07

98,

554

3,273

6,08

930

79,

219

54,2

3870

,439

2015

6,712

4,43

415

,043

980

2,31

19,

197

3,491

6,27

027

210

,813

59,52

373

,186

2016

7,600

5,092

17,6

211,2

632,

948

9,27

44,

169

6,64

431

511

,584

66,51

077

,933

PTA

, per

cuta

neou

s tr

ansl

umin

al a

ngio

plas

ty; A

VF,

art

erio

veno

us fi

stul

a; A

VG, a

rter

iove

nous

gra

ft; T

DC

, tun

nele

d di

alys

is c

athe

ter.

Page 12: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

Supp

lem

enta

ry T

able

3. T

he p

er-p

atie

nt fr

eque

ncy

of a

cces

s-re

late

d pr

oced

ures

(200

8 to

201

6)

Year

Veno

grap

hyFi

stulo

grap

hyPT

ASt

ent

plac

emen

tPe

rcut

aneo

usth

rom

bect

omy

AVF

plac

emen

tAV

Gpl

acem

ent

Surg

ical

revi

sion

Rem

oval

of

infe

cted

gra

ftT

DC

plac

emen

tTo

tal

Hem

odia

lysis

patie

nts

2008

0.07

3295

144

0.04

2973

099

0.07

4590

612

0.00

5161

630.

0132

9878

80.

1455

5796

20.

0484

9907

90.

0660

6886

20.

0018

4199

30.

0457

4621

0.51

7033

379

49,4

03

2009

0.07

3930

983

0.03

5502

626

0.07

1849

212

0.00

7126

782

0.01

5285

071

0.13

2351

838

0.04

6492

873

0.07

8375

844

0.00

2269

317

0.05

8795

949

0.52

1980

495

53,32

0

2010

0.07

9503

651

0.04

0538

809

0.09

0612

932

0.01

0944

563

0.01

7935

907

0.13

8930

068

0.05

4576

401

0.08

0931

203

0.00

3477

370.

0791

3761

20.

5965

8851

754

,639

2011

0.08

1859

040.

0414

0926

20.

1186

3921

80.

0111

6030

10.

0232

2958

60.

1322

0664

20.

0511

3875

50.

0760

1797

80.

0039

7259

60.

1012

0019

50.

6408

3357

259

,407

2012

0.08

4131

684

0.04

7932

733

0.14

4463

271

0.01

3618

153

0.02

5763

646

0.12

7978

971

0.05

0323

827

0.08

3545

787

0.00

3230

353

0.11

1130

465

0.69

2118

8963

,151

2013

0.08

6690

280.

0498

5891

80.

1715

4949

90.

0109

4134

60.

0253

3469

40.

1268

9860

10.

0487

7829

10.

0871

2553

30.

0034

0697

60.

1186

2880

50.

7292

1294

466

,628

2014

0.09

3399

963

0.05

1008

674

0.19

4679

084

0.01

1811

638

0.02

9514

899

0.12

1438

408

0.04

6465

736

0.08

6443

589

0.00

4358

381

0.13

0879

20.

7699

9957

470

,439

2015

0.09

1711

530.

0605

8535

80.

2055

4477

60.

0133

9053

90.

0315

7707

80.

1256

6611

10.

0477

0038

0.08

5672

123

0.00

3716

558

0.14

7746

837

0.81

3311

289

73,18

6

2016

0.09

7519

664

0.06

5338

175

0.22

6104

474

0.01

6206

228

0.03

7827

365

0.11

8999

654

0.05

3494

668

0.08

5252

717

0.00

4041

933

0.14

8640

499

0.85

3425

378

77,9

33

PTA

, per

cuta

neou

s tr

ansl

umin

al a

ngio

plas

ty; A

VF,

art

erio

veno

us fi

stul

a; A

VG, a

rter

iove

nous

gra

ft; T

DC

, tun

nele

d di

alys

is c

athe

ter.

Page 13: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

Supp

lem

enta

ry T

able

4. T

he p

er-p

atie

nt c

ost o

f acc

ess-

rela

ted

proc

edur

es (2

008

to 2

016)

Year

Veno

grap

hyFi

stulo

grap

hyPT

ASt

ent

plac

emen

t

Perc

utan

eous

thro

mbe

cto-

my

AVF

plac

emen

tAV

Gpl

acem

ent

Surg

ical

revi

sion

Rem

oval

of

infe

cted

gra

ftTD

Cpl

acem

ent

Tota

lH

emod

ialy

sispa

tient

s

2008

10,58

5.093

9411

,596.

7014

426

,297

.841

592,

018.

1808

595,

455.5

9737

346

,111.5

962

16,9

77.6

7951

19,75

9.96

634

187.4

8399

895,1

48.0

9920

514

4,13

8.24

0549

,403

2009

13,4

09.8

9276

13,77

8.16

461

32,36

5.026

893,6

60.8

7061

17,8

97.11

1178

48,0

79.56

279

18,4

05.9

8419

26,70

1.094

2884

3.605

889

6,77

2.84

5799

171,9

14.15

953

,320

2010

16,74

4.95

278

19,8

89.8

2187

49,0

13.71

293

7,035

.490

657

11,31

9.03

386

56,0

92.2

7634

23,6

16.9

0014

30,0

21.2

8196

1,283

.215

322

8,86

9.66

6044

223,8

86.35

1954

,639

2011

19,0

42.15

931

28,8

68.4

3656

74,6

10.54

539

8,30

5.343

293

17,0

67.51

953

,595.8

1319

21,76

0.47

919

27,79

9.26

81,5

71.0

4905

111

,363.5

632

263,9

84.17

6259

,407

2012

20,4

41.4

3189

37,4

92.6

8594

102,

518.

6704

12,0

10.2

7569

21,2

32.32

2250

,769.

5821

820

,488

.3271

30,6

83.6

4282

1,263

.5784

2312

,259

.686

3130

9,16

0.20

363

,151

2013

20,4

42.17

958

43,4

60.6

0324

122,

575.1

729

9,86

5.796

152

20,2

41.9

2272

51,19

3.638

6420

,255

.7506

832

,522.

2438

91,

415.5

1017

613

,148.

3518

335,1

21.16

9866

,628

2014

22,2

27.13

052

48,36

4.63

784

158,

617.4

999

12,17

2.23

929

27,54

3.160

4457

,883

.808

5623

,362.

5085

439

,411

.924

892,

288.

8496

14,2

72.74

291

406,

144.

5025

70,4

39

2015

21,4

44.6

018

54,8

17.2

734

195,

461.3

755

15,9

35.19

508

34,71

0.27

022

73,4

00.9

2582

29,2

35.0

5017

49,4

17.2

181

2,45

4.58

7899

16,51

5.784

0349

3,392

.282

73,18

6

2016

22,16

9.93

666

61,6

88.4

1267

218,

403.8

537

19,6

07.73

253

42,30

3.48

017

71,9

85.0

6092

33,75

0.24

595

50,10

9.46

404

2,63

3.619

866

17,8

71.11

406

540,

522.

9205

77,9

33

PTA

, per

cuta

neou

s tr

ansl

umin

al a

ngio

plas

ty; A

VF,

art

erio

veno

us fi

stul

a; A

VG, a

rter

iove

nous

gra

ft; T

DC

, tun

nele

d di

alys

is c

athe

ter.

Page 14: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

10

8

6

4

2

0

Freq

uenc

y

PTA2 Day interval29 56 76 95 115 137 161 187 214 247 278 310 348 416 541 672 1,087

Supplementary Figure 1. Frequencies of the time intervals between the first and second percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 15: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

20

15

10

5

0

Freq

uenc

y

PTA3 Day interval20 39 54 70 85 100 118135 152 174 190 211 231 250 273 309 357 395 464 774

Supplementary Figure 2. Frequencies of the time intervals between the second and third percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 16: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

25

20

15

10

5

0

Freq

uenc

y

PTA4 Day interval192 42 55 69 84 97 111125 140 155 173 189 211 234 259 291 336 426 554 782

Supplementary Figure 3. Frequencies of the time intervals between the third and fourth percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 17: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

25

20

15

10

5

0

Freq

uenc

y

PTA5 Day interval17 40 58 74 88 102 117 132 151 168 190 211 245 275 301 341 378 424 653

Supplementary Figure 4. Frequencies of the time intervals between the fourth and fifth percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 18: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

25

20

15

10

5

0

Freq

uenc

y

PTA6 Day interval261 45 60 73 86 98 111 127 145 159 175 193 220 249 270 310 352 502 786

Supplementary Figure 5. Frequencies of the time intervals between the f ifth and sixth percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 19: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

40

30

20

10

0

Freq

uenc

y

PTA7 Day interval221 43 58 71 84 98 112 127 146 163 186 203 223 247 282 318 362 420 567

Supplementary Figure 6. Frequencies of the time intervals between the sixth and seventh percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 20: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

Lee HS, et al. Current status of vascular access care

www.kjim.orghttps://doi.org/10.3904/kjim.2018.170

40

30

20

10

0

Freq

uenc

y

PTA8 Day interval18 37 52 64 78 91 104 119 133 147 161 174 191 210 235 264 308 345 434 711

Supplementary Figure 7. Frequencies of the time intervals between the seventh and eighth percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.

Page 21: Current treatment status and medical costs for hemodialysis … · We performed statistical analyses us-ing SAS software version 9.4 (SAS Institute, Cary, NC, USA). We presented categorical

www.kjim.org https://doi.org/10.3904/kjim.2018.170

The Korean Journal of Internal Medicine Vol. 33, No. 6, November 2018

40

30

20

10

0

Freq

uenc

y

PTA9 Day interval191 33 48 61 73 87 101 113 126 143 157 170 189 212 233 265 301 369 685

Supplementary Figure 8. Frequencies of the time intervals between the eighth and ninth percutaneous angioplasties. PTA, percutaneous transluminal angioplasty.


Recommended