+ All Categories
Home > Documents > CVEN9822 Design Assignment

CVEN9822 Design Assignment

Date post: 17-Aug-2015
Category:
Upload: zhichao-zhang
View: 53 times
Download: 6 times
Share this document with a friend
Popular Tags:
80
CVEN 9822 Steel & Composite Structure Design Assignment By ZHANG Zhichao Student ID: 3389001 WANG Liang Student ID: 3367075 Submit to Dr. Ehab Hamed 25/09/2012
Transcript
Page 1: CVEN9822 Design Assignment

CVEN 9822 Steel & Composite Structure

Design Assignment

By

ZHANG Zhichao

Student ID: 3389001

WANG Liang

Student ID: 3367075

Submit to

Dr. Ehab Hamed

25/09/2012

Page 2: CVEN9822 Design Assignment

Contents

1. Introduction ..................................................................................................................................... 1

2. Relevant Australia Standard ........................................................................................................... 2

3. Preliminary Calculations for Section Definition .......................................................................... 3

4. Load Case Analysis ........................................................................................................................ 5

4.1 Dead Load ............................................................................................................................... 5

4.2 Live Load ................................................................................................................................ 5

4.3 Wind Load .............................................................................................................................. 6

4.3.1 Site Wind Speed ........................................................................................................... 6

4.3.2 Design Wind Speed...................................................................................................... 6

4.3.3 Design Wind Pressure .................................................................................................. 6

4.4 Load Combination .................................................................................................................. 9

5. Internal Force ................................................................................................................................ 10

5.1 Ultimate Limit State ............................................................................................................. 10

5.2 Service Limit State ............................................................................................................... 11

Appendix 1 Space Gass Input (Ultimate Limit State) ........................................................................ 12

1. Dead Load ............................................................................................................................. 12

2. Live Load .............................................................................................................................. 13

3. CW 1 ..................................................................................................................................... 13

4. CW2 ...................................................................................................................................... 14

5. WW ....................................................................................................................................... 14

6. LW ......................................................................................................................................... 15

7. PIP ......................................................................................................................................... 15

8. NIP ........................................................................................................................................ 16

9. LC1 ........................................................................................................................................ 16

10. LC2 ........................................................................................................................................ 17

11. LC3 ........................................................................................................................................ 17

12. LC4 ........................................................................................................................................ 18

13. LC5 ........................................................................................................................................ 18

Appendix 2 Space Gass Input (Serviceability Limit State) ................................................................ 23

1. CW1 ...................................................................................................................................... 23

2. CW2 ...................................................................................................................................... 24

3. WW ....................................................................................................................................... 24

4. LW ......................................................................................................................................... 25

5. PIP ......................................................................................................................................... 25

6. NIP ........................................................................................................................................ 26

7. LC1 - G ................................................................................................................................. 26

8. LC1 – Q................................................................................................................................. 27

9. LC2 ........................................................................................................................................ 27

10. LC3 ........................................................................................................................................ 28

11. LC4 ........................................................................................................................................ 28

12. LC5 ........................................................................................................................................ 29

Appendix 3 Space Gass Graphic Output (Ultimate Limit State) ....................................................... 34

Page 3: CVEN9822 Design Assignment

1. Bending Moment .................................................................................................................. 34

1.1 LC1 ............................................................................................................................... 34

1.2 LC2 ............................................................................................................................... 35

1.3 LC3 ............................................................................................................................... 35

1.4 LC4 ............................................................................................................................... 36

1.5 LC5 ............................................................................................................................... 36

2. Axial Force ........................................................................................................................... 37

2.1 LC1 ............................................................................................................................... 37

2.2 LC2 ............................................................................................................................... 38

2.3 LC3 ............................................................................................................................... 38

2.4 LC4 ............................................................................................................................... 39

2.5 LC5 ............................................................................................................................... 39

3. Shear ...................................................................................................................................... 40

3.1 LC1 ............................................................................................................................... 40

3.2 LC2 ............................................................................................................................... 41

3.3 LC3 ............................................................................................................................... 41

3.4 LC4 ............................................................................................................................... 42

3.5 LC5 ............................................................................................................................... 42

Appendix 4 Space Gass Data Output (Ultimate Limit State)............................................................. 43

6. Strength Limit State .......................................................................................................................... 52

6.1. Tension Capacity ................................................................................................................... 52

6.2. Compression Capacity .......................................................................................................... 52

6.2.1. In-Plane Analysis ....................................................................................................... 52

6.2.2. Out of Plane Analysis ................................................................................................ 56

6.3. Bending Moment Capacity ................................................................................................... 58

6.3.1. Top Flange Subjected to Compression ..................................................................... 58

6.3.2. Bottom Flange Subjected to Compression ............................................................... 59

6.4. Combined Actions ................................................................................................................. 60

6.4.1. In-Plane Analysis ....................................................................................................... 61

6.4.2. Out of Plane Analysis ................................................................................................ 62

6.5. Shear Capacity ....................................................................................................................... 63

Appendix 5 Space Gass Graphic Output (Service Limit State) ......................................................... 65

1. Deflection.............................................................................................................................. 65

1.1 Dead Load Alone ......................................................................................................... 65

1.2 Live Load Alone........................................................................................................... 66

1.3 CW1 Alone ................................................................................................................... 66

1.4 CW2 Alone ................................................................................................................... 67

1.5 WW Alone .................................................................................................................... 67

1.6 LW Alone ...................................................................................................................... 68

1.7 PIP Alone ...................................................................................................................... 68

1.8 NIP Alone ..................................................................................................................... 69

Appendix 6 Space Gass Data Output (Service Limit State) ............................................................... 70

7. Serviceability Limit State ................................................................................................................. 75

7.1. Column ................................................................................................................................... 75

Page 4: CVEN9822 Design Assignment

7.2. Rafter ...................................................................................................................................... 75

8. Conclusion ......................................................................................................................................... 76

Page 5: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

1

1. Introduction

As a major assignment of Steel and Composite Structure, we design a steel frame of

an industrial building to be constructed in Canberra. It is a single storey single bay

portal frame structure (with portal frames spaced at a). The size of the bay is 19.2m

clear span, 89m long and 8.2m high. The building will be located on a leveled area

consisting of firm clay.

a = 4+0.15n2 = 4.45m

b = 22-0.4n3 = 19.2m

h = 7+0.15n4 = 8.2m

Student 1 No. 3367075

Student 1 No. 3389001

Where n2 is the average of the second digit in the student numbers of the team.

n3 is the average of the third digit in the student numbers of the team.

n4 is the average of the fourth digit in the student numbers of the team.

All dimension are given in meters.

Page 6: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

2

2. Relevant Australia Standard

This assignment uses the follow code of standard to check the load case, ultimate limit

state and serviceability limit state.

AS1170.1 Dead and Live Loads

AS1170.2 Wind Actions

AS4100 Steel Structure

Woolcock, Kitipornchai & Bradford, 1999

Page 7: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

3

3. Preliminary Calculations for Section Definition

Section capacity is significant for the portal frame design, it influents self-weight and

deflection. We choose the Combinded Action as the critical criteria for section

definition, because Combined Action reveals the effect of axial force as well as

bending moment.

Trial section: For Rafter 460 UB 67.1 G350 HR

For Column 250 UC 89.5 G350 HR

Section Capacity for Combined Action:

Uniaxial bending about the major principal x-axis

*

x rxM M

For tension *

= 1-rx sx

s

NM M

N

For compression ( 1fK ) *

=1.88 1-rx sx sx

s

NM M M

N

For compression ( 1fK ) * (82 )

1- 1 0.18(82- )

wrx sx sx

s wy

NM M M

N

Member Capacity for Combined Action:

In-Plane Capacity

Compression member: *

iM M *

= 1-i s

c

NM M

N

Tension member: A member subject to a design axial tensile force (*N ) and a design

bending moment shall satisfy section capacity.

Out-of-Plane Capacity

Compression member: *

x oxM M

*

= 1-ox bx

cy

NM M

N

Page 8: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

4

Tension member: *

x oxM M *

= 1+ox bx

t

NM M

The trial results are listed as follow table

In Plane rxM

iM

*M

Rafter Tension 299.55 99.94

Rafter Compression 299.87 99.94

Column Tension 293.35 99.94

Column Compression 290.80 99.94

Unit: kNm

In Plane bxM

oxM

*M

Rafter Tension 212.86 215.27 99.94

Rafter Compression 212.86 210.47 99.94

Column Tension 297.60 301.84 99.94

Column Compression 297.60 292.74 99.94

Unit: kNm

Therefore, it is obvious that the moment capacity is more tremendous than actual

force. This phenomenon will result in the waste of steel material so that we must

reduce the section area for rafters and columns as well as the strength capacity for

steel.

Ultimate Section Definition :

For Rafter 360 UB 56.7 G300 HR

For Column 250 UC 72.9 G300 HR

Page 9: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

5

4. Load Case Analysis

Analysis:

Dead, live and wind loads are determined from AS1170.1 and AS1170.2.

These are converted into a number of basic load cases.

A number of critical load combinations of the basic load cases are determined.

Trial rafter and column sections are selected.

A second order elastic analysis is carried out. Commercial software packages are

available for second order analysis (Microstran, Spacegass, etc.).

Design:

The adequacy of the trial member sizes is assessed based on AS4100.

If necessary, modifications are made and the analysis is repeated.

4.1 Dead Load

DL = self-weight of rafter + 0.1kPa (roof sheeting and purlins)

cos +0.1 a

= 78.5 cos3 +0.1 4.45

=78.39 +0.455 kN/m

R R

R

R

DL A

A

A

=78.5 kN/m

C C

C

DL A

A

4.2 Live Load

LL usually arises from maintenance loads.

LL = QW (the distributed vertical live load on the rafters)+1.4 kN (a

concentrated LL)

QW =1.8

0.12 0.25 akPA

Note that for A >14 m2, QW will always be 0.25 kPa. This is the case in this

design assignment as b*a >> 14m2.

Page 10: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

6

=0.25 4.45

=1.113 kN/m

QLL W a

4.3 Wind Load

Wind loads are the major influence in the design of industrial buildings in

Australia. They must be determined based on AS1170.2.

4.3.1 Site Wind Speed

, ,=sit R d z cat s tV V M M M M

RV is taken as 41 m/s in this design assignment for ultimate limit state, and

as 37 m/s for the serviceability limit state (tables 3.3 and F2 in AS 1170.0).

dM is the wind direction multiplier, taken as 1.0 in this design assignment.

, = 1.12-1.05 (h-5)/(10-5)+1.05=1.098z catM , the terrain and height multiplier

is found from Table 4.1(a) in AS1170.2 (z=h=average height=8.45 m, cat =

category 1).

sM the shielding multiplier is conservatively taken as 1.0 in this design

assignment.

The topographic multiplier Mt should be taken as 1.0 because the structure is

to be built on leveled area.

, ,=

=41 1 1.098 1 1

=45.03 m/s

sit R d z cat s tV V M M M M

4.3.2 Design Wind Speed

For this design assignment, it should be taken as the site wind speed.

4.3.3 Design Wind Pressure

2

,0.5 air sit fig dymP V C C

air is the density of air that is taken as 1.2 kg/m3

Page 11: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

7

22

, = 45.03 =2027.7sitV

dymC is the dynamic response factor taken as 1.0

figC is the aerodynamic shape factor given in AS1170.2, and is determined

as follows.

External Pressure

, , ,=fig e p e a c e l pC C K K K K

For this design assignment 1a l pK K K , whilecK is determined from

Table 5.5 appears below. , ,i= =0.8c e cK K .

,p eC for Roofs:

Two sets of pressure coefficients must be considered for the distribution of

the wind load along the roof as shown below for maximum uplift and

minimum uplift. The pressure is uniformly distributed along h, h to 2 h, 2h to

3h, beyond 3h, where h is the average height of the frame.

Page 12: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

8

=8.45h m , =19.2b m

Maximum uplift: 0-h , =-0.9p eC , h-2h

, =-0.5p eC , 2h-b , =-0.3p eC

Minimum uplift: 0-h , =-0.4p eC , h-2h

, =0p eC , 2h-b , =0.1p eC

,p eC for Walls:

For windward walls , =0.7p eC

For leewardward walls , =-0.5p eC

Internal Pressure

It is assumed that only one wall is permeable (i.e. it has openings area greater

than the sum of all the others).

For positive internal pressure ,i =0.6pC

For positive negative pressure ,i =-0.3pC

Therefore

2

,

2

,

0.5

=0.5 ( )

=0.5 1.2 2027.7 ( )

=1216.62

air sit fig dym

air sit p a c l p dym

p c

p c

P V C C

V C K K K K C

C K

C K

pC

cK figC P kPa W kN/m

CW1 0-h -0.9 0.8 -0.72 -0.876 -3.898

CW1 h-2h -0.5 0.8 -0.40 -0.487 -2.166

CW1 3h-b -0.3 0.8 -0.24 -0.292 -1.299

CW2 0-h -0.4 0.8 -0.32 -0.389 -1.732

CW2 h-2h 0 0.8 0.00 0.000 0.000

CW2 3h-b 0.1 0.8 0.08 0.097 0.433

WW 0.7 0.8 0.56 0.681 3.032

LW -0.5 0.8 -0.40 -0.487 -2.166

Page 13: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

9

PIP 0.6 0.8 0.48 0.584 2.599

NIP -0.3 0.8 -0.24 -0.292 -1.299

Unit: kPa, kN/m

4.4 Load Combination

Strength LSD to AS1170.2 requires combinations of the most adverse effects of:

Dead load G;

Live load Q

(ultimate) Wind load Wu

These primary loads are combined to produce the following LOAD

COMBINATIONS for ultimate limit state (strength):

LC1: 1.2G + 1.5Q

LC2: 0.9G + Load case (a) in table 5.5 = 0.9G + 0.8CW1 + 0.8WW + 0.8LW

LC3: 0.9G + Load case (b) in table 5.5 = 0.9G + 0.8CW1 + 0.8WW + 0.8LW +

0.8PIP

LC4: 1.2G + Load case (c) in table 5.5 = 1.2G + 0.8CW2 - 0.8WW + 0.8LW

LC5: 1.2G + Load case (d) in table 5.5 = 1.2G + 0.8CW2 - 0.8WW + 0.8LW +

0.8NIP

Note: Surface loads must be transferred to line loads

a (a=4.45 m)

=4.45P kN/m

W P

Roof 0-h Roof h-2h Roof 2h-b WW LW

LC1 2.88 2.88 2.88 Self-weight Self-weight

LC2 -2.21 -0.82 -0.13 2.43 -1.73

LC3 -4.29 -2.9 -2.2 0.35 -3.81

LC4 -0.17 1.22 1.56 -2.43 -1.73

LC5 0.87 2.25 2.6 -1.39 -0.69

Unit: kN/m

Page 14: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

10

5. Internal Force

5.1 Ultimate Limit State

A second order elastic analysis is carried out by using the computer program

“Space Gass”.

Based on the model of this steel frame, Moment& Axial Force & Shear can be

compared in different load cases.

Load Case 1

Moment + Moment - Tension Compression Shear

Rafter 65.13 -70.56 14.78 27.97

Column 38.42 -70.56 35.9 13.3

Load Case 2

Moment + Moment - Tension Compression Shear

Rafter 50.4 -28.28 5.55 18.65

Column 50.4 -68.16 18.91 24.42

Load Case 3

Moment + Moment - Tension Compression Shear

Rafter 99.94 -66.47 22.24 37.77

Column 99.94 -77.23 38.87 23.04

Load Case 4

Moment + Moment - Tension Compression Shear

Rafter 22.37 -16.33 3.54 9.75

Column 37.52 -18.7 16.77 16.53

Load Case 5

Moment + Moment - Tension Compression Shear

Rafter 40.66 -41.11 5.1 19.31

Column 42.06 -41.11 26.75 15.84

Unit: kNm, kN

Page 15: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

11

After the analysis of Load Case Tables, the critical state can be identified easily

for each design criteria.

For Moment Capacity: Load Case 3 is the most critical state for rafter and column

For Tension Capacity: Load Case 3 is the most critical state for rafter and column

For Compression Capacity: Load Case 1 is the most critical state for rafter and

column

For Shear Capacity: Load Case 3 is the most critical state for rafter and column

Therefore, Load Case 3 is the critical load combination for this steel frame.

However, the design criteria (force capacity) must be analyzed separately in

corresponding load case.

The critical force values are then used to design the member size of rafter and

column according to AS4100-Steel Structure.

5.2 Service Limit State

The deflections of the portal frame are analyzed by SpaceGass. These deflections

must be acceptable based on the proposed limits (Woolcock, Kitipornchai &

Bradford, 1999).

Dead load alone: span/360

Live load alone: span/240

Service wind load alone: span/150

The three loads are checked separately with unfactored loads. The wind speed for

this check is reduced to 37 m/s. For checking the service wind alone, the four load

cases described in Table 5.5 are considered with the appropriate combination

factors.

Page 16: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

12

Appendix 1 Space Gass Input (Ultimate Limit State)

1. Dead Load

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:10 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION G

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.107374, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-0.73kN/m

-0.73kN/m

-1.01kN/m-1.01kN/m -1.01kN/m

-1.01kN/m

-0.73kN/m

-0.73kN/m

-1.01kN/m

-1.01kN/m-1.01kN/m

-1.01kN/m

Page 17: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

13

2. Live Load

3. CW 1

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:13 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION Q

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.167772, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-1.4kN

-1.11kN/m-1.11kN/m -1.11kN/m

-1.11kN/m-1.11kN/m

-1.11kN/m-1.11kN/m

-1.11kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:09 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION CW1

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.085899, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

3.89kN/m3.89kN/m

2.17kN/m2.17kN/m

2.17kN/m

2.17kN/m

1.29kN/m

1.29kN/m

Page 18: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

14

4. CW2

5. WW

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:09 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION CW2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.054976, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

1.73kN/m1.73kN/m

-0.43kN/m

-0.43kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:14 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION WW

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.262144, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

Page 19: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

15

6. LW

7. PIP

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:11 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION LW

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.167772, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

2.17kN/m

2.17kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:12 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION PIP

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.134218, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-2.59kN/m

-2.59kN/m

2.59kN/m2.59kN/m 2.59kN/m

2.59kN/m

2.59kN/m

2.59kN/m

2.59kN/m

2.59kN/m2.59kN/m

2.59kN/m

Page 20: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

16

8. NIP

9. LC1

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:12 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\SEPERATE\DEFLECTION NIP

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.134218, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-1.29kN/m-1.29kN/m -1.29kN/m

-1.29kN/m-1.29kN/m

-1.29kN/m-1.29kN/m

-1.29kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:17 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC1

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.3625, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

-2.1kN

-0.88kN/m

-0.88kN/m

-2.88kN/m -2.88kN/m -2.88kN/m -2.88kN/m

-0.88kN/m

-0.88kN/m

Page 21: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

17

10. LC2

11. LC3

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:22 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.1536 , Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-0.66kN/m

-0.66kN/m

2.21kN/m2.21kN/m

0.82kN/m0.82kN/m

1.73kN/m

1.73kN/m

-0.66kN/m

-0.66kN/m0.82kN/m

0.82kN/m0.13kN/m

0.13kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:24 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC3 - 2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.134218, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

0.35kN/m

0.35kN/m

-0.66kN/m

-0.66kN/m

4.29kN/m4.29kN/m

2.9kN/m2.9kN/m

3.81kN/m

3.81kN/m

-0.66kN/m

-0.66kN/m

2.9kN/m

2.9kN/m2.21kN/m

2.21kN/m

Page 22: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

18

12. LC4

13. LC5

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:28 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC4

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.12288, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-2.43kN/m

-2.43kN/m

-0.88kN/m

-0.88kN/m

0.17kN/m0.17kN/m

-1.21kN/m-1.21kN/m

1.73kN/m

1.73kN/m

-0.88kN/m

-0.88kN/m

-1.21kN/m

-1.21kN/m -1.56kN/m

-1.56kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:31 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC5

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.26, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-1.39kN/m

-1.39kN/m

-0.88kN/m

-0.88kN/m

-0.87kN/m-0.87kN/m

-2.25kN/m-2.25kN/m

0.69kN/m

0.69kN/m

-0.88kN/m

-0.88kN/m

-2.25kN/m

-2.25kN/m -2.6kN/m

-2.6kN/m

Page 23: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

19

ANALYSIS STATUS REPORT

----------------------

NODE COORDINATES (m)

----------------

X Y Z

Node Coord Coord Coord

1 0.000 0.000 0.000

2 0.000 8.200 0.000

3 9.600 8.700 0.000

4 19.200 8.200 0.000

5 19.200 0.000 0.000

MEMBER DATA (deg,kNm/rad,m)

----------- (F=Fixed, R=Released) (*=Cable length)

Dir Dir Dir Memb Node A Node B

Memb Angle Node Axis Type Node A Node B Sec Mat Fixity Fixity Length

1 0.00 Norm 1 2 2 1 FFFFFF FFFFFF 8.200

2 0.00 Norm 2 3 1 1 FFFFFF FFFFFF 9.613

3 0.00 Norm 3 4 1 1 FFFFFF FFFFFF 9.613

4 0.00 Norm 5 4 2 1 FFFFFF FFFFFF 8.200

NODE RESTRAINTS (kN/m,kNm/rad)

--------------- (F=Fixed, R=Released, S=Spring, *=General)

Rest X Axial Y Axial Z Axial X Rotation Y Rotation Z Rotation

Node Code Stiffness Stiffness Stiffness Stiffness Stiffness Stiffness

1 FFFFFF

2 RRFRRR

3 RRFRRR

4 RRFRRR

5 FFFFFF

SECTION PROPERTIES (mm,mm^2,mm^4,deg)

------------------

Page 24: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

20

Sect Section Name Mark Angle Type Flipped Source

1 360 UB 56.7 R1 Not applicable No Aust300

2 250 UC 72.9 C1 Not applicable No Aust300

Area of Torsion Y-Axis Z-Axis Y-Axis Z-Axis Princ

Sect Section Constant Mom of In Mom of In Shr Area Shr Area Angle

1 7.2400E+03 3.3800E+05 1.1000E+07 1.6100E+08 INFINITE INFINITE 0.00

2 9.3200E+03 5.8600E+05 3.8800E+07 1.1400E+08 INFINITE INFINITE 0.00

MATERIAL PROPERTIES (MPa,T/m^3,strain/degC)

-------------------

Young's Poisson's Mass Coeff of Concrete

Matl Material Name Modulus Ratio Density Expansion Strength

1 STEEL 2.0000E+05 0.25 7.8500E+00 1.170E-05

NODE LOADS (kN,kNm)

----------

Load X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Case Node Force Force Force Moment Moment Moment

1 3 0.000 -2.100 0.000 0.000 0.000 0.000

MEMBER DISTRIBUTED FORCES (m,kN/m)

-------------------------

Load Sub Axes Start Finish X Start/ Y Start/ Z Start/

Case Memb Load Sys Position Position Finish Finish Finish

1 1 1 GI 0.000% 100.000% 0.000 -0.878 0.000

0.000 -0.878 0.000

2 1 L 0.000% 100.000% 0.000 -2.880 0.000

0.000 -2.880 0.000

3 1 L 0.000% 100.000% 0.000 -2.880 0.000

0.000 -2.880 0.000

4 1 GI 0.000% 100.000% 0.000 -0.878 0.000

Page 25: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

21

0.000 -0.878 0.000

2 1 1 GI 0.000% 100.000% 2.430 -0.658 0.000

2.430 -0.658 0.000

2 1 L 0.000% 100.000% 0.000 2.210 0.000

0.000 2.210 0.000

3 1 L 0.000% 100.000% 0.000 0.820 0.000

0.000 0.820 0.000

4 1 GI 0.000% 100.000% 1.730 -0.658 0.000

1.730 -0.658 0.000

5 1 L 0.000% 100.000% 0.000 0.820 0.000

0.000 0.820 0.000

6 1 L 0.000% 100.000% 0.000 0.130 0.000

0.000 0.130 0.000

3 1 1 GI 0.000% 100.000% 0.350 -0.660 0.000

0.350 -0.660 0.000

2 1 L 0.000% 100.000% 0.000 4.290 0.000

0.000 4.290 0.000

3 1 L 0.000% 100.000% 0.000 2.900 0.000

0.000 2.900 0.000

4 1 GI 0.000% 100.000% 3.810 -0.660 0.000

3.810 -0.660 0.000

5 1 L 0.000% 100.000% 0.000 2.900 0.000

0.000 2.900 0.000

6 1 L 0.000% 100.000% 0.000 2.210 0.000

0.000 2.210 0.000

4 1 1 GI 0.000% 100.000% -2.430 -0.880 0.000

-2.430 -0.880 0.000

2 1 L 0.000% 100.000% 0.000 0.170 0.000

0.000 0.170 0.000

3 1 L 0.000% 100.000% 0.000 -1.210 0.000

0.000 -1.210 0.000

Page 26: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

22

4 1 GI 0.000% 100.000% 1.730 -0.880 0.000

1.730 -0.880 0.000

5 1 L 0.000% 100.000% 0.000 -1.210 0.000

0.000 -1.210 0.000

6 1 L 0.000% 100.000% 0.000 -1.560 0.000

0.000 -1.560 0.000

5 1 1 GI 0.000% 100.000% -1.390 -0.880 0.000

-1.390 -0.880 0.000

2 1 L 0.000% 100.000% 0.000 -0.870 0.000

0.000 -0.870 0.000

3 1 L 0.000% 100.000% 0.000 -2.250 0.000

0.000 -2.250 0.000

4 1 GI 0.000% 100.000% 0.690 -0.880 0.000

0.690 -0.880 0.000

5 1 L 0.000% 100.000% 0.000 -2.250 0.000

0.000 -2.250 0.000

6 1 L 0.000% 100.000% 0.000 -2.600 0.000

0.000 -2.600 0.000

Page 27: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

23

Appendix 2 Space Gass Input (Serviceability Limit State)

The dead load and live load is the same as ultimate limit state

1. CW1

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:33 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\SEPERATE\DEFLECTION CW1

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.085899, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

3.18kN/m3.18kN/m

1.76kN/m1.76kN/m

1.76kN/m

1.76kN/m

1.06kN/m

1.06kN/m

Page 28: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

24

2. CW2

3. WW

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:34 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\SEPERATE\DEFLECTION CW2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.04398, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

1.41kN/m1.41kN/m

-0.35kN/m

-0.35kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:38 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\SEPERATE\DEFLECTION WW

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.262144, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

Page 29: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

25

4. LW

5. PIP

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:35 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\SEPERATE\DEFLECTION LW

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.107374, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

1.76kN/m

1.76kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:37 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\SEPERATE\DEFLECTION PIP

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.107374, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-2.12kN/m

-2.12kN/m

2.12kN/m2.12kN/m 2.12kN/m

2.12kN/m

2.12kN/m

2.12kN/m

2.12kN/m

2.12kN/m2.12kN/m

2.12kN/m

Page 30: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

26

6. NIP

7. LC1 - G

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:36 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\SEPERATE\DEFLECTION NIP

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.107374, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-1.06kN/m-1.06kN/m -1.06kN/m

-1.06kN/m-1.06kN/m

-1.06kN/m-1.06kN/m

-1.06kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:39 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC1 - G

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.118784, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

-0.73kN/m

-0.73kN/m

-1.01kN/m -1.01kN/m -1.01kN/m -1.01kN/m

-0.73kN/m

-0.73kN/m

Page 31: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

27

8. LC1 – Q

9. LC2

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:42 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC1 - Q

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.14848, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

-1.4kN

-1.11kN/m -1.11kN/m -1.11kN/m -1.11kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:45 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.1536 , Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

3.18kN/m3.18kN/m

1.76kN/m1.76kN/m

1.76kN/m

1.76kN/m

1.76kN/m

1.76kN/m1.06kN/m

1.06kN/m

Page 32: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

28

10. LC3

11. LC4

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:47 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC3 - 2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.134218, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

0.35kN/m

0.35kN/m

5.29kN/m5.29kN/m

3.88kN/m3.88kN/m

3.88kN/m

3.88kN/m

3.88kN/m

3.88kN/m3.18kN/m

3.18kN/m

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:49 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC4

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.050332, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-2.47kN/m

-2.47kN/m

1.41kN/m1.41kN/m

1.76kN/m

1.76kN/m

-0.35kN/m

-0.35kN/m

Page 33: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

29

12. LC5

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:52 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC5

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: 0.106496, Disp: None, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-1.41kN/m

-1.41kN/m0.35kN/m0.35kN/m

-1.06kN/m-1.06kN/m

0.71kN/m

0.71kN/m

-1.06kN/m

-1.06kN/m -1.41kN/m

-1.41kN/m

Page 34: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

30

ANALYSIS STATUS REPORT

----------------------

NODE COORDINATES (m)

----------------

X Y Z

Node Coord Coord Coord

1 0.000 0.000 0.000

2 0.000 8.200 0.000

3 9.600 8.700 0.000

4 19.200 8.200 0.000

5 19.200 0.000 0.000

MEMBER DATA (deg,kNm/rad,m)

----------- (F=Fixed, R=Released) (*=Cable length)

Dir Dir Dir Memb Node A Node B

Memb Angle Node Axis Type Node A Node B Sec Mat Fixity Fixity Length

1 0.00 Norm 1 2 2 1 FFFFFF FFFFFF 8.200

2 0.00 Norm 2 3 1 1 FFFFFF FFFFFF 9.613

3 0.00 Norm 3 4 1 1 FFFFFF FFFFFF 9.613

4 0.00 Norm 5 4 2 1 FFFFFF FFFFFF 8.200

NODE RESTRAINTS (kN/m,kNm/rad)

--------------- (F=Fixed, R=Released, S=Spring, *=General)

Rest X Axial Y Axial Z Axial X Rotation Y Rotation Z Rotation

Node Code Stiffness Stiffness Stiffness Stiffness Stiffness Stiffness

1 FFFFFF

2 RRFRRR

3 RRFRRR

4 RRFRRR

5 FFFFFF

SECTION PROPERTIES (mm,mm^2,mm^4,deg)

------------------

Page 35: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

31

Sect Section Name Mark Angle Type Flipped Source

1 360 UB 56.7 R1 Not applicable No Aust300

2 250 UC 72.9 C1 Not applicable No Aust300

Area of Torsion Y-Axis Z-Axis Y-Axis Z-Axis Princ

Sect Section Constant Mom of In Mom of In Shr Area Shr Area Angle

1 7.2400E+03 3.3800E+05 1.1000E+07 1.6100E+08 INFINITE INFINITE 0.00

2 9.3200E+03 5.8600E+05 3.8800E+07 1.1400E+08 INFINITE INFINITE 0.00

MATERIAL PROPERTIES (MPa,T/m^3,strain/degC)

-------------------

Young's Poisson's Mass Coeff of Concrete

Matl Material Name Modulus Ratio Density Expansion Strength

1 STEEL 2.0000E+05 0.25 7.8500E+00 1.170E-05

NODE LOADS (kN,kNm)

----------

Load X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Case Node Force Force Force Moment Moment Moment

1 3 0.000 -1.400 0.000 0.000 0.000 0.000

MEMBER DISTRIBUTED FORCES (m,kN/m)

-------------------------

Load Sub Axes Start Finish X Start/ Y Start/ Z Start/

Case Memb Load Sys Position Position Finish Finish Finish

1 2 1 L 0.000% 100.000% 0.000 -1.110 0.000

0.000 -1.110 0.000

3 1 L 0.000% 100.000% 0.000 -1.110 0.000

0.000 -1.110 0.000

1 1 1 GI 0.000% 100.000% 0.000 -0.730 0.000

0.000 -0.730 0.000

2 1 L 0.000% 100.000% 0.000 -1.010 0.000

0.000 -1.010 0.000

Page 36: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

32

3 1 L 0.000% 100.000% 0.000 -1.010 0.000

0.000 -1.010 0.000

4 1 GI 0.000% 100.000% 0.000 -0.730 0.000

0.000 -0.730 0.000

2 1 1 GI 0.000% 100.000% 2.470 0.000 0.000

2.470 0.000 0.000

2 1 L 0.000% 100.000% 0.000 3.180 0.000

0.000 3.180 0.000

3 1 L 0.000% 100.000% 0.000 1.760 0.000

0.000 1.760 0.000

4 1 GI 0.000% 100.000% 1.760 0.000 0.000

1.760 0.000 0.000

5 1 L 0.000% 100.000% 0.000 1.760 0.000

0.000 1.760 0.000

6 1 L 0.000% 100.000% 0.000 1.060 0.000

0.000 1.060 0.000

3 1 1 GI 0.000% 100.000% 0.353 0.000 0.000

0.353 0.000 0.000

2 1 L 0.000% 100.000% 0.000 5.290 0.000

0.000 5.290 0.000

3 1 L 0.000% 100.000% 0.000 3.880 0.000

0.000 3.880 0.000

4 1 GI 0.000% 100.000% 3.880 0.000 0.000

3.880 0.000 0.000

5 1 L 0.000% 100.000% 0.000 3.880 0.000

0.000 3.880 0.000

6 1 L 0.000% 100.000% 0.000 3.180 0.000

0.000 3.180 0.000

4 1 1 GI 0.000% 100.000% -2.470 0.000 0.000

-2.470 0.000 0.000

2 1 L 0.000% 100.000% 0.000 1.410 0.000

0.000 1.410 0.000

Page 37: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

33

4 1 GI 0.000% 100.000% 1.760 0.000 0.000

1.760 0.000 0.000

6 1 L 0.000% 100.000% 0.000 -0.350 0.000

0.000 -0.350 0.000

5 1 1 GI 0.000% 100.000% -1.410 0.000 0.000

-1.410 0.000 0.000

2 1 L 0.000% 100.000% 0.000 0.350 0.000

0.000 0.350 0.000

3 1 L 0.000% 100.000% 0.000 -1.060 0.000

0.000 -1.060 0.000

4 1 GI 0.000% 100.000% 0.710 0.000 0.000

0.710 0.000 0.000

5 1 L 0.000% 100.000% 0.000 -1.060 0.000

0.000 -1.060 0.000

6 1 L 0.000% 100.000% 0.000 -1.410 0.000

0.000 -1.410 0.000

Page 38: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

34

Appendix 3 Space Gass Graphic Output (Ultimate Limit

State)

1. Bending Moment

1.1 LC1

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:36 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC1

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: 11.5625, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

38.42kNm

-70.65kNm

-70.65kNm

65.13kNm 65.13kNm

-70.65kNm

-38.42kNm

70.65kNm

Page 39: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

35

1.2 LC2

1.3 LC3

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:38 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: 10 , Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-68.16kNm

50.4kNm50.4kNm

-28.28kNm -27.68kNm -2.69kNm

-28.04kNm

-12.43kNm

-4.65kNm

-28.28kNm

-27.68kNm

-2.69kNm12.43kNm

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:42 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC3 - 2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: 12.375, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-77.24kNm

99.95kNm

99.95kNm

-66.1kNm -65.87kNm

8.33kNm

-65.88kNm

-18.96kNm

-61.99kNm

-4.86kNm

-66.1kNm

-65.87kNm

-66.47kNm

8.33kNm61.99kNm

Page 40: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

36

1.4 LC4

1.5 LC5

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:44 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC4

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: 2.368 , Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

37.52kNm

-16.33kNm

-18.7kNm

-16.33kNm

15.1kNm19.4kNm

6.71kNm

22.37kNm

-13.39kNm

11.61kNm

16.34kNm

15.1kNm

19.4kNm6.71kNm

-11.61kNm

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:45 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC5

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: 5.75, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

42.06kNm

-41.11kNm

-41.11kNm

34kNm 38.5kNm

1.2kNm

40.66kNm

-17.93kNm

36.39kNm34kNm

38.5kNm

1.2kNm

-36.39kNm

Page 41: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

37

2. Axial Force

2.1 LC1

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:36 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC1

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: None, Axial: 3.12, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

35.9kN

28.7kN

14.78kN 14.78kN 14.78kN 14.78kN

35.9kN

28.7kN

Page 42: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

38

2.2 LC2

2.3 LC3

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:52 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: None, Axial: 0.589824, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-13.51kN

-18.91kN

-5.47kN-5.47kN -5.55kN

-5.55kN

-1.6kN

-5.47kN

-5.47kN-5.55kN

-5.55kN

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:26 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC3 - 2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: None, Axial: 2.496, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-33.46kN

-38.88kN

-22.17kN-22.17kN -22.24kN

-22.24kN

-21.55kN

-22.17kN

-22.17kN-22.24kN

-22.24kN

Page 43: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

39

2.4 LC4

2.5 LC5

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:54 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC4

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: None, Axial: 1.024, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

10.04kN

2.82kN-3.24kN

-3.24kN -3.54kN-3.54kN

16.77kN

9.55kN

-3.24kN

-3.24kN-3.54kN

-3.54kN

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:45 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC5

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: None, Axial: 2.32, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

20.02kN

12.81kN

5.1kN5.1kN 4.81kN

4.81kN

26.75kN

19.54kN

5.1kN

5.1kN4.81kN

4.81kN

Page 44: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

40

3. Shear

3.1 LC1

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:18 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC1

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: 2.32, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

-13.3kN

-13.3kN

27.97kN

0.28kN -0.28kN

-27.97kN

13.3kN

13.3kN

Page 45: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

41

3.2 LC2

3.3 LC3

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 23 Sep 2012, 12:39 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: 3, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

24.42kN

4.5kN-18.65kN

0.05kN 0.42kN

6.42kN

9kN

-5.19kN

0.05kN

1kN 6.42kN

6.72kN

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:26 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC3 - 2

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: 2.432, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

23.04kN

20.17kN

-37.77kN

-1.47kN -0.45kN

20.75kN

10.37kN

-20.87kN

-1.47kN1.87kN

20.75kN

25.84kN

Page 46: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

42

3.4 LC4

3.5 LC5

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:29 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC4

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: 0.445645, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-16.53kN

3.4kN

3kN4.43kN

2.69kN

-6.16kN

10.14kN

-4.04kN

4.43kN

3.04kN

-6.16kN

-9.75kN

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:31 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\ULTIMATE STRENGTH\MODEL LC5

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: None, Moment: None, Shear: 1.0752, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

67

No general restraint

1

2 3

4

56

All load cases:

1 1

-15.84kN

-4.44kN

12.56kN

5.2kN3.12kN

-13.33kN

9.45kN

3.79kN

5.2kN

2.61kN

-13.33kN-19.31kN

Page 47: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

43

Appendix 4 Space Gass Data Output (Ultimate Limit State)

ANALYSIS STATUS REPORT

----------------------

NODE COORDINATES (m)

----------------

X Y Z

Node Coord Coord Coord

1 0.000 0.000 0.000

2 0.000 8.200 0.000

3 9.600 8.700 0.000

4 19.200 8.200 0.000

5 19.200 0.000 0.000

MEMBER DATA (deg,kNm/rad,m)

----------- (F=Fixed, R=Released) (*=Cable length)

Dir Dir Dir Memb Node A Node B

Memb Angle Node Axis Type Node A Node B Sec Mat Fixity Fixity Length

1 0.00 Norm 1 2 2 1 FFFFFF FFFFFF 8.200

2 0.00 Norm 2 3 1 1 FFFFFF FFFFFF 9.613

3 0.00 Norm 3 4 1 1 FFFFFF FFFFFF 9.613

4 0.00 Norm 5 4 2 1 FFFFFF FFFFFF 8.200

NODE RESTRAINTS (kN/m,kNm/rad)

--------------- (F=Fixed, R=Released, S=Spring, *=General)

Rest X Axial Y Axial Z Axial X Rotation Y Rotation Z Rotation

Node Code Stiffness Stiffness Stiffness Stiffness Stiffness Stiffness

1 FFFFFF

2 RRFRRR

3 RRFRRR

4 RRFRRR

5 FFFFFF

SECTION PROPERTIES (mm,mm^2,mm^4,deg)

------------------

Page 48: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

44

Sect Section Name Mark Angle Type Flipped Source

1 360 UB 56.7 R1 Not applicable No Aust300

2 250 UC 72.9 C1 Not applicable No Aust300

Area of Torsion Y-Axis Z-Axis Y-Axis Z-Axis Princ

Sect Section Constant Mom of In Mom of In Shr Area Shr Area Angle

1 7.2400E+03 3.3800E+05 1.1000E+07 1.6100E+08 INFINITE INFINITE 0.00

2 9.3200E+03 5.8600E+05 3.8800E+07 1.1400E+08 INFINITE INFINITE 0.00

MATERIAL PROPERTIES (MPa,T/m^3,strain/degC)

-------------------

Young's Poisson's Mass Coeff of Concrete

Matl Material Name Modulus Ratio Density Expansion Strength

1 STEEL 2.0000E+05 0.25 7.8500E+00 1.170E-05

LOAD CASE TITLES

----------------

Load

Case Title

1 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case 1: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -3.040 -0.142 0.000 0.000 0.000 -0.006

3 0.000 -60.399 0.000 0.000 0.000 0.000

4 3.040 -0.142 0.000 0.000 0.000 0.006

5 0.000 0.000 0.000 0.000 0.000 0.000

MEMBER FORCES AND MOMENTS (kN,kNm)

-------------------------

Page 49: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

45

Load case 1: 1

Axial Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Memb Node Force Shear Shear Torsion Moment Moment

1 1 35.897 -13.301 0.000 0.000 0.000 38.419

2 28.698 -13.301 0.000 0.000 0.000 -70.652

2 2 14.776 27.967 0.000 0.000 0.000 -70.652

3 14.776 0.282 0.000 0.000 0.000 65.127

3 3 14.776 -0.282 0.000 0.000 0.000 65.127

4 14.776 -27.967 0.000 0.000 0.000 -70.652

4 5 35.897 13.301 0.000 0.000 0.000 -38.419

4 28.698 13.301 0.000 0.000 0.000 70.652

NODE REACTIONS (kN,kNm)

--------------

Load case 1: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Force Force Force Moment Moment Moment

1 13.301 35.897 0.000 0.000 0.000 -38.419

5 -13.301 35.897 0.000 0.000 0.000 38.419

Load 0.000 -71.794 0.000 0.000 0.000 0.000

Reac 0.000 71.794 0.000 0.000 0.000 0.000

Frame -2.853E-14 0.000E+00 0.000E+00

Nodes 1.084E-13 8.882E-15 0.000E+00 0.000E+00 0.000E+00 1.421E-14

LOAD CASE TITLES

----------------

Load

Case Title

2 1

Page 50: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

46

NODE DISPLACEMENTS (mm,rad)

------------------

Load case 2: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 22.158 0.071 0.000 0.000 0.000 0.002

3 20.771 27.388 0.000 0.000 0.000 0.000

4 19.383 0.019 0.000 0.000 0.000 -0.004

5 0.000 0.000 0.000 0.000 0.000 0.000

6 20.805 26.653 0.000 0.000 0.000 0.001

7 19.860 9.345 0.000 0.000 0.000 -0.004

MEMBER FORCES AND MOMENTS (kN,kNm)

-------------------------

Load case 2: 1

Axial Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Memb Node Force Shear Shear Torsion Moment Moment

1 1 -13.509 24.421 0.000 0.000 0.000 -68.162

2 -18.908 4.495 0.000 0.000 0.000 50.396

2 2 -5.473 -18.648 0.000 0.000 0.000 50.396

6 -5.473 0.051 0.000 0.000 0.000 -28.282

3 3 -5.547 0.422 0.000 0.000 0.000 -27.679

7 -5.547 6.416 0.000 0.000 0.000 -2.687

4 5 -1.596 8.996 0.000 0.000 0.000 -28.041

4 -6.995 -5.190 0.000 0.000 0.000 -12.434

5 6 -5.473 0.051 0.000 0.000 0.000 -28.282

3 -5.473 0.996 0.000 0.000 0.000 -27.679

6 7 -5.547 6.416 0.000 0.000 0.000 -2.687

4 -5.547 6.715 0.000 0.000 0.000 12.434

Page 51: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

47

NODE REACTIONS (kN,kNm)

--------------

Load case 2: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Force Force Force Moment Moment Moment

1 -24.421 -13.509 0.000 0.000 0.000 68.162

5 -8.996 -1.596 0.000 0.000 0.000 28.041

Load 33.418 15.105 0.000 0.000 0.000 0.000

Reac -33.418 -15.105 0.000 0.000 0.000 96.203

Frame 0.000E+00 0.000E+00 0.000E+00

Nodes 9.406E-13 6.093E-13 0.000E+00 0.000E+00 0.000E+00 6.111E-13

LOAD CASE TITLES

----------------

Load

Case Title

3 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case 3: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 23.910 0.159 0.000 0.000 0.000 0.005

3 20.771 63.255 0.000 0.000 0.000 0.000

4 17.630 0.107 0.000 0.000 0.000 -0.007

5 0.000 0.000 0.000 0.000 0.000 0.000

6 20.833 61.732 0.000 0.000 0.000 0.003

7 18.604 19.477 0.000 0.000 0.000 -0.009

MEMBER FORCES AND MOMENTS (kN,kNm)

-------------------------

Page 52: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

48

Load case 3: 1

Axial Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Memb Node Force Shear Shear Torsion Moment Moment

1 1 -33.464 23.043 0.000 0.000 0.000 -77.239

2 -38.876 20.173 0.000 0.000 0.000 99.948

2 2 -22.168 -37.774 0.000 0.000 0.000 99.948

6 -22.168 -1.474 0.000 0.000 0.000 -66.100

3 3 -22.242 -0.448 0.000 0.000 0.000 -65.874

7 -22.242 20.751 0.000 0.000 0.000 8.333

4 5 -21.551 10.374 0.000 0.000 0.000 -18.964

4 -26.963 -20.868 0.000 0.000 0.000 -61.986

5 6 -22.168 -1.474 0.000 0.000 0.000 -66.100

3 -22.168 1.865 0.000 0.000 0.000 -65.874

6 7 -22.242 20.751 0.000 0.000 0.000 8.333

4 -22.242 25.841 0.000 0.000 0.000 61.986

NODE REACTIONS (kN,kNm)

--------------

Load case 3: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Force Force Force Moment Moment Moment

1 -23.043 -33.464 0.000 0.000 0.000 77.239

5 -10.374 -21.551 0.000 0.000 0.000 18.964

Load 33.418 55.014 0.000 0.000 0.000 0.000

Reac -33.418 -55.014 0.000 0.000 0.000 96.203

Frame 0.000E+00 0.000E+00 0.000E+00

Nodes 7.741E-12 2.084E-12 0.000E+00 0.000E+00 0.000E+00 6.963E-13

LOAD CASE TITLES

Page 53: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

49

----------------

Load

Case Title

4 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case 4: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -8.780 -0.028 0.000 0.000 0.000 -0.001

3 -7.810 -18.240 0.000 0.000 0.000 -0.001

4 -6.839 -0.058 0.000 0.000 0.000 0.003

5 0.000 0.000 0.000 0.000 0.000 0.000

6 -7.885 -16.840 0.000 0.000 0.000 -0.002

7 -7.245 -7.736 0.000 0.000 0.000 0.003

MEMBER FORCES AND MOMENTS (kN,kNm)

-------------------------

Load case 4: 1

Axial Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Memb Node Force Shear Shear Torsion Moment Moment

1 1 10.038 -16.531 0.000 0.000 0.000 37.522

2 2.822 3.395 0.000 0.000 0.000 -16.334

2 2 -3.244 2.995 0.000 0.000 0.000 -16.334

6 -3.244 4.434 0.000 0.000 0.000 15.095

3 3 -3.542 2.687 0.000 0.000 0.000 19.399

7 -3.542 -6.158 0.000 0.000 0.000 6.711

4 5 16.770 10.142 0.000 0.000 0.000 -13.388

4 9.554 -4.044 0.000 0.000 0.000 11.610

5 6 -3.244 4.434 0.000 0.000 0.000 15.095

Page 54: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

50

3 -3.244 3.040 0.000 0.000 0.000 19.399

6 7 -3.542 -6.158 0.000 0.000 0.000 6.711

4 -3.542 -9.751 0.000 0.000 0.000 -11.610

NODE REACTIONS (kN,kNm)

--------------

Load case 4: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Force Force Force Moment Moment Moment

1 16.531 10.038 0.000 0.000 0.000 -37.522

5 -10.142 16.770 0.000 0.000 0.000 13.388

Load -6.389 -26.808 0.000 0.000 0.000 0.000

Reac 6.389 26.808 0.000 0.000 0.000 -24.134

Frame 0.000E+00 0.000E+00 0.000E+00

Nodes 3.709E-12 8.389E-13 0.000E+00 0.000E+00 0.000E+00 7.319E-13

LOAD CASE TITLES

----------------

Load

Case Title

5 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case 5: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -9.656 -0.072 0.000 0.000 0.000 -0.003

3 -7.810 -36.174 0.000 0.000 0.000 -0.001

4 -5.963 -0.102 0.000 0.000 0.000 0.005

5 0.000 0.000 0.000 0.000 0.000 0.000

Page 55: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

51

6 -7.899 -34.379 0.000 0.000 0.000 -0.002

7 -6.617 -12.803 0.000 0.000 0.000 0.006

MEMBER FORCES AND MOMENTS (kN,kNm)

-------------------------

Load case 5: 1

Axial Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Memb Node Force Shear Shear Torsion Moment Moment

1 1 20.022 -15.842 0.000 0.000 0.000 42.060

2 12.806 -4.444 0.000 0.000 0.000 -41.110

2 2 5.104 12.558 0.000 0.000 0.000 -41.110

6 5.104 5.196 0.000 0.000 0.000 34.004

3 3 4.805 3.122 0.000 0.000 0.000 38.497

7 4.805 -13.326 0.000 0.000 0.000 1.201

4 5 26.754 9.452 0.000 0.000 0.000 -17.926

4 19.538 3.794 0.000 0.000 0.000 36.385

5 6 5.104 5.196 0.000 0.000 0.000 34.004

3 5.104 2.605 0.000 0.000 0.000 38.497

6 7 4.805 -13.326 0.000 0.000 0.000 1.201

4 4.805 -19.314 0.000 0.000 0.000 -36.385

NODE REACTIONS (kN,kNm)

--------------

Load case 5: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Force Force Force Moment Moment Moment

1 15.842 20.022 0.000 0.000 0.000 -42.060

5 -9.452 26.754 0.000 0.000 0.000 17.926

Load -6.389 -46.776 0.000 0.000 0.000 0.000

Reac 6.389 46.776 0.000 0.000 0.000 -24.134

Frame 0.000E+00 0.000E+00 0.000E+00

Nodes 2.008E-12 8.784E-13 0.000E+00 0.000E+00 0.000E+00 4.690E-13

Page 56: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

52

6. Strength Limit State

6.1. Tension Capacity

The nominal capacity of a tension member shall be taken as the lesser of:

1t g yN A f

2 0.85t t n uN k A f

The critical load combination in this case is LC3 which includes the maximum

tension of 38.88kN for column, and 22.2kN for rafter.

In this design, the axial forces of rafters are uniformly distributed along the member,

so kt is taken as 1. However, the axial forces of columns are not uniformly

distributed, so the built-up column of solid section’s kt can be taken as 0.85.

The connection is not considered in this design, so the gross area equals to the net

area. Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is

taken as 360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel).

Tension LC3

Column HR kt Nt1 (kN) Nt2 (kN) N* (kN) φ Check

0.85 2796 2962.828 38.88 0.9 OK

Rafter HR kt Nt1 (kN) Nt2 (kN) N* (kN) φ Check

1 2172 2707.76 22.2 0.9 OK

6.2. Compression Capacity

In this case, the compression capacity needs to be done by two different analyses

including in-plane analysis and out of plane analysis. In-plane analysis is done in

order to make sure the member is stable in X-direction. Oppositely, out of plane

analysis is done for Y-direction stability. Both of section capacity and member

capacity are calculated in-plane and out of plane.

The critical load combination is LC1 which includes the maximum compression of

35.91kN for column, and 14.78kN for rafter.

Section Limit State: * cN N , Member Limit State: * sN N

6.2.1. In-Plane Analysis

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel).

Page 57: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

53

a) Section Capacity

The nominal section capacity of concentrically loaded compression member shall be

calculated as:

s f n yN k A f

The form factor kf is taken as:

ef

g

Ak

A

where Ae is the effective area of section. In order to determine Ae, the effective width

of both flange and web need to be determined firstly.

The effective width is calculated as:

( )ey

e

e

b b b

where the slenderness is calculated as:

250

y

e

fb

t

For Columns

Flange Web

Width (mm) Thickness (mm) Width (mm) Thickness (mm)

254 14.2 225 8.6

λe λey λe λey

9.465571522 16 28.6599013 45

Flange: 16

( ) 254 429.3 2549.466

ey

e

e

b b

, so take 254mm.

Web: 45

( ) 225 353.3 22528.66

ey

e

e

b b

, so take 225mm.

There is no change for the width both for flange and web, so effective area equals to

the gross area. Therefore kf takes as 1 for columns.

So, 9320 0.3 0.9 2516.4 35.91sN kN kN , OK!

For Rafters

Flange Web

Width (mm) Thickness (mm) Width (mm) Thickness (mm)

172 13 333 8

λe λey λe λey

6.909730725 16 45.5979029 45

Page 58: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

54

Flange: 16

( ) 172 398.8 1726.9

ey

e

e

b b

, so take 172mm.

Web: 45

( ) 333 328.62 33345.6

ey

e

e

b b

. The slenderness of web is slightly

more than yield slenderness, so it can be ignored. The section is assumed as

compact section, so take effective width as 333mm.

There is no change for the width both for flange and web, so effective area

equals to the gross area. Therefore kf takes as 1 for rafters.

So, 7240 0.3 0.9 1954.8 14.78sN kN kN , OK!

b) Member Capacity

The nominal capacity of a member of constant cross-section shall be determined as:

c c s sN N N

where c is the member slenderness reduction factor,

2901 1 ( )c

2

2

( ) 190

2( )90

n a b

0.00326( 13.5) 0

250

yen f

flk

r

2

2100( 13.5)

15.3 2050

na

n n

b is taken based on Table 6.3.3, AS4100.

kf is zero for both column and rafter, so b is taken as zero for hot-rolled UB and

UC sections (flange thickness up to 40mm).

Page 59: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

55

In order to determinen , the effective length needs to be calculated as follow:

e eL Lk

where ek is effective length factor which can be determined by the ratios of the

compression member stiffness to the end restraint stiffness. 1 and

2 are the

ratios which can be calculated as:

c c

b b

I L

I L

where Ic and Lc is the moment of inertia and length of columns which are connected

to the end. Ib and Lb are the attributes of beams which are rafters in this design.

The stiffness ratio of an end which is a steel member connected to a fixed end

can be taken as 0.6. In this design, we assume the two 9.6m long rafters with an

angle of 3 degrees as a flat 19.2m long beam to determine the stiffness ratio for

both top ends. The calculation for in-plane is done as following.

moment of inertia Length (mm) γx

Column Rafter Column Rafter 1.1707317

Ix (mm4) Ix (mm4) 8200 19200

2.77E+08 5.54E+08

After the calculation of end stiffness ratio, ek can be determined by Figure 4.6.3.3,

AS4100 for sway members as in this design.

Therefore, the member capacity can be determined as following.

For Columns

L (mm) ke Le (mm) λn αa αb

8200 1.33 10906 107.6299498 16.48996243 0

λ η ξ αc Nc (kN) N* (kN) Check

107.6299498 0.306863636 0.956897753 0.4916823 1374.743711 35.91 OK

For Rafters

L (mm) ke Le (mm) λn αa αb

9610 1.47 14126.7 102.8578964 16.97279535 0

λ η ξ αc Nc (kN) N* (kN) Check

102.8578964 0.291306742 0.994321119 0.522028089 1112.087131 14.78 OK

Page 60: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

56

6.2.2. Out of Plane Analysis

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel).

For out of plane calculation based on Y-axial, the basic calculation process is same

with the one of in-plane analysis. However, because of the consideration of lateral

buckling, the length of member cannot be the whole span, instead, the length

between purlins and girts are evaluated for this case. The length between

purlins and girts is usually taken as 1m. At the same time, the section properties

we used for out of plane analysis are also different with the in-plane calculation.

a) Section Capacity

For Columns

Flange: 16

( ) 254 429.3 2549.466

ey

e

e

b b

, so take 254mm.

Web: 45

( ) 225 353.3 22528.66

ey

e

e

b b

, so take 225mm.

There is no change for the width both for flange and web, so effective area equals to

the gross area. Therefore kf takes as 1 for columns.

So, 9320 0.3 0.9 2516.4 35.91sN kN kN , OK!

Page 61: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

57

For Rafters

Flange: 16

( ) 172 398.8 1726.9

ey

e

e

b b

, so take 172mm.

Web: 45

( ) 333 328.62 33345.6

ey

e

e

b b

. The slenderness of web is slightly

more than yield slenderness, so it can be ignored. The section is assumed as compact

section, so take effective width as 333mm.

There is no change for the width both for flange and web, so effective area equals to

the gross area. Therefore kf takes as 1 for rafters.

So, 7240 0.3 0.9 1954.8 14.78sN kN kN , OK!

b) Member Capacity

The stiffness ratio of the ends by Y-axial section properties is determined as below.

moment of inertia Length (mm) γy

Column Rafter

Iy (mm4) Iy (mm4) Column Rafter 8.8739496

9.02E+07 2.38E+07 8200 19200

The member capacities are calculated as following.

For Columns

L (mm) ke Le (mm) λn aa ab

1000 1.67 1670 28.36268747 12.89474694 0

λ η ξ αc Nc (kN) N* (kN) Check

28.36268747 0.048452361 5.778481044 0.949221027 2654.021991 35.91 OK

For Rafters

L (mm) ke Le (mm) λn aa ab

1000 2.65 2650 73.71645654 19.89450943 0

λ η ξ αc Nc (kN) N* (kN) Check

73.71645654 0.196305648 1.391596335 0.723795826 1541.917073 14.78 OK

Hence, the compression limit states both for in-plane and out of plane are

sufficiently satisfied.

Page 62: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

58

6.3. Bending Moment Capacity

In this section, the limit state is divided into two parts including top flange subjected

to compression, and bottom flange in compression. For portal frame, lateral

restraints are provided by purlins and girts, so the end conditions in this design are

all assumed as full restraints. At the same time, the effective lengths of member

which is calculated to evaluate lateral buckling, are determined by multiplying the

factors and the spaces between the purlins and girts on the compressive side.

The critical load combination is LC3 which includes the maximum bending moment

of 99.95kN.m for columns and rafters when top flange in compression. Meanwhile,

there are 77.24kN.m for columns, and 66.47kN.m for rafters when bottom flange in

compression.

6.3.1. Top Flange Subjected to Compression

In regions of the rafter/column where the top flange is subjected to compression:

kl = 1.0 (not 1.4 as per AS4100) as the point of application of the load (purlins) is

not free to move.

kt = 1.0 fully restrained.

kr = 0.85 (recommended).

Therefore: Le = 0.85Sp

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel). Because both of

the sections are compact, so the section bending capacity should be:

Column:

s min( , 1.5 ) min(0.9 0.3 992,0.9 1.5 0.3 897) 267.84 .y yM f S f Z kN m

Rafter:

s min( , 1.5 ) min(0.9 0.3 1010,0.9 1.5 0.3 899) 272.7 .y yM f S f Z kN m

Section bending capacity can satisfy the bending moments applied on the members.

In another hand, the bending moment capacity caused by lateral buckling should also

be considered, and then the total bending capacity should be:

b m s s sM M M

*

* 2 * 2 * 2

2 3 4

1.72.5

( ) ( ) ( )

mm

M

M M M

Page 63: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

59

12 2

0 0

0.6 3s ss

M M

M M

2 2

0 2 2

w w

e e

EI EIM GJ

L L

In this case, the effective length equals to 0.85Sp = 0.85×1000=850mm

Hence, the bending moment capacities due to lateral buckling are calculated as

below:

a) Columns

M*m (kN.m) M*2 (kN.m) M*3 (kN.m) M*4 (kN.m) αm

99.95 -30.74 14.3 57.86 2.5

L (mm) Sp (mm) Le (mm) M0 (kN.m) αs Mb (kN.m) Check

8200 1000 850 12895.07529 1.025475586 297.6 OK

b) Rafters

M*m (kN.m) M*2 (kN.m) M*3 (kN.m) M*4 (kN.m) αm

99.95 21.56 -32.06 -60.89 2.356236084

L (mm) Sp (mm) Le (mm) M0 (kN.m) αs Mb (kN.m) Check

9610 1000 850 5282.774183 1.005386391 303 OK

The maximum bending moment of 99.95kN.m is compared with the bending

moment capacities both for column and rafter in the calculations above. The results

are OK.

6.3.2. Bottom Flange Subjected to Compression

In regions of the rafter/column where the bottom flange is subjected to compression:

Le = (full portal span) if there is no fly bracing.

kl = 1.0 to AS4100

kt = 1.0 as before;

kr = 0.85

Therefore: Le = 0.85Sf

However, there is no fly bracing in this design, so we assume the space between fly

bracing as the whole segment lengths of the members.

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel). Because both of

the sections are compact, so the section bending capacity should be:

Page 64: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

60

Column:

s min( , 1.5 ) min(0.9 0.3 992,0.9 1.5 0.3 897) 267.84 .y yM f S f Z kN m

Rafter:

s min( , 1.5 ) min(0.9 0.3 1010,0.9 1.5 0.3 899) 272.7 .y yM f S f Z kN m

The bending moment capacities due to lateral buckling are calculated as below:

a) Columns

M*m (kN.m) M*2 (kN.m) M*3 (kN.m) M*4 (kN.m) αm M* (kN.m)

99.95 -30.74 14.3 57.86 2.5 77.24

L (mm) Sp (mm) Le (mm) M0 (kN.m) αs Mb (kN.m) Check

8200 1000 6970 331.0375498 0.631479444 297.6 OK

b) Rafters

M*m (kN.m) M*2 (kN.m) M*3 (kN.m) M*4 (kN.m) αm M* (kN.m)

99.95 21.56 -32.06 -60.89 2.356236084 66.47

L (mm) Sp (mm) Le (mm) M0 (kN.m) αs Mb (kN.m) Check

9610 1000 8168.5 109.4352632 0.298277473 212.9520796 OK

In this part, different bending moments are applied under bottom compression

condition, so there is 77.24kN.m for columns and 66.47kN.m for rafters. The check

results are OK.

6.4. Combined Actions

Although, the steel members have enough capacity to satisfy the load combinations

under single effect, but the condition under multiple effects should also be evaluated

to ensure the section chose is adequate for the whole structure.

In order to satisfy the multiple conditions, bending moment, compression and

tension should be considered together. Hence, the check steps should be consisted by

in-plane checking and out of plane checking.

The critical load combination is also LC3 in this case, because it is the most critical

one for bending moment, and bending capacity is the most influential strength limit

state.

Page 65: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

61

6.4.1. In-Plane Analysis

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel).

a) Compression

When compression is being checked, both section capacity and member capacity

need to be checked. In this design, the form factor kf is 1, so the section capacity is

determined as following:

*

1.18 (1 )rx sx sx

s

NM M M

N

Limit State: *

x rxM M

The member capacity is determined as following:

*

(1 )i s

c

NM M

N

Limit State: *

iM M

Choose the small one from section capacity and member capacity to compare with

the real bending moment. Therefore, the calculation is as following:

For Columns

Column HR

Section

Capacity

N* (kN) M* (kN.m) φ Ns (kN) Ms (kN.m) Mr (kN.m)

35.91 99.95 0.9 2796 297.6 346.156697

Member

Capacity

Nc (kN) Mi (kN.m) Check

1885.12 291.3010694 OK

For Rafters

Rafter HR

Section

Capacity

N* (kN) M* (kN.m) φ Ns (kN) Ms (kN.m) Mr (kN.m)

14.78 99.95 0.9 2130.320483 303 354.783794

Member

Capacity

Nc (kN) Mi (kN.m) Check

1594.35 299.8790207 OK

The Nc in these two tables above is different with the Nc that calculated in the section

of compression capacity. It is determined with the effective factor ke taken as 1 for

members.

b) Tension

For tension check, the member only needs to satisfy the section capacity which is

Page 66: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

62

calculated as:

*

(1 )rx sx

s

NM M

N

Limit State: *

x rxM M

Hence, the calculations are as below:

For Columns

Column HR

Section

Capacity

N* (kN) M* (kN.m) φ Nt (kN) Ms (kN.m) Mr (kN.m) Check

38.88 99.95 0.9 2516.4 297.6 292.490987 OK

For Rafters

Rafter HR

Section

Capacity

N* (kN) M* (kN.m) φ Nt (kN) Ms (kN.m) Mr (kN.m) Check

22.2 99.95 0.9 1954.8 303 299.176591 OK

6.4.2. Out of Plane Analysis

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel).

The out of plane analysis is based on the member subject to a design axial

compressive force and a design bending moment about its major principal

X-axial.

a) Compression

The section capacity is same with in-plane analysis. Member capacity is determined

as following:

*

1ox bx

cy

NM M

N

Limit State: *

x oxM M

Hence, the calculations are as below:

For Columns

Column HR

Member

Capacity

N* (kN) M* (kN.m) φ Nc (kN) Mb (kN.m) Mox (kN.m) Check

35.91 99.95 0.9 2654.021991 297.6 293.125945 OK

For Rafters

Page 67: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

63

Rafter HR

Member

Capacity

N* (kN) M* (kN.m) φ Nc (kN) Mb (kN.m) Mox (kN.m) Check

14.78 99.95 0.9 1541.917073 212.9520796 210.684029 OK

b) Tension

The section capacity is same with in-plane analysis. Member capacity is determined

as following:

*

1ox bx rx

t

NM M M

N

Limit State: *

x oxM M

Hence, the calculations are as below:

For Columns

Column HR

Member

Capacity

N* (kN) M* (kN.m) φ Nt (kN) Mb (kN.m) Mox (kN.m) Check

38.88 99.95 0.9 2516.4 297.6 302.709013 OK

For Rafters

Rafter HR

Member

Capacity

N* (kN) M* (kN.m) φ Nt (kN) Mb (kN.m) Mox (kN.m) Check

22.2 99.95 0.9 1954.8 212.9520796 215.639218 OK

Therefore, the combination actions both subjected to principle axial and lateral

buckling are satisfied.

6.5. Shear Capacity

Using G300 steel with fy= 300MPa, fu= 440MPa. The section of column is taken as

360UB 56.7, and rafter is taken as 250UC 72.9 (Hot-Rolled Steel). Shear force is

normally carried by web, so the shear capacity is strongly influenced by web

properties.

The critical load combination is still LC3 which have maximum shear force of

23.04kN for column, and 37.77kN for rafter.

In this design, there is no stiffener applied on the web no matter for columns or

rafters, so the shear capacity should be calculated as following:

u v d w wV V V

Page 68: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

64

Limit State: *

uV V

2

821

250

v

yww

w

fd

t

2

11

1.15 1

vd

v

w

s

d

0.6w w ywV A f

Hence, the calculations are as below:

For Columns

2

828.2 1

225 300

8.6 250

v

, so take 1. d equals to 1.

0.9 0.6 225 8.6 0.3 0.9 348.3 313.47 23.04u wV V kN kN kN , OK!

For Rafters

2

823.23 1

333 300

8 250

v

, so take 1. d equals to 1.

0.9 0.6 333 8 0.3 0.9 479.52 431.568 37.77u wV V kN kN kN , OK!

Combination of shear and bending:

For Columns

Because * 99.95 . 0.75 0.75 0.9 297.6 200.88sM kN m M kN , so um uV V ,

there is no change.

For Rafters

Because * 99.95 . 0.75 0.75 0.9 303 204.525sM kN m M kN , so um uV V ,

there is no change.

Page 69: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

65

Consequently, all the limit states due to ultimate capacity are satisfied. The

cross-section and steel grade chose is adequate for the portal frame.

Appendix 5 Space Gass Graphic Output (Service Limit

State)

1. Deflection

1.1 Dead Load Alone

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:41 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC1 - G

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: 181.1981, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

X:-1mmY:-0.06mm

X:-3.1mmY:-0.04mm

y:3.1mm

X:-1mmY:-0.06mm

Y:-19.85mmY:-19.85mm

X:1mmY:-0.06mmX:1mmY:-0.06mm

X:3.1mmY:-0.04mmy:-3.1mm

Page 70: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

66

1.2 Live Load Alone

1.3 CW1 Alone

SPACE GASS 10.72a - THE UNIVERSITY OF NEW SOUTH WALES-FOR TEACHING USE 22 Sep 2012, 6:44 pm

Job: D:\USERS\Z3367075\DESKTOP\MODEL\SERVICE ABILITY\MODEL LC1 - Q

Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m^3, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa

Scales - Frame: 1:150, Load: None, Disp: 144.9585, Moment: None, Shear: None, Axial: None, Torsion: None

X

Y

(0,0)

X

Y

Sections:

1 360 UB 56.7

2 250 UC 72.9

Materials:

1 STEEL

1

2

3

4

5

No general restraint

1

2 3

4

All load cases:

1 1

X:-1.23mmY:-0.05mm

X:-3.75mmY:-0.04mmy:3.75mm

X:-1.23mmY:-0.05mm

Y:-24.34mmY:-24.34mm

X:1.23mmY:-0.05mmX:1.23mmY:-0.05mm

X:3.75mmY:-0.04mmy:-3.75mm

Page 71: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

67

1.4 CW2 Alone

1.5 WW Alone

Page 72: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

68

1.6 LW Alone

1.7 PIP Alone

Page 73: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

69

1.8 NIP Alone

Page 74: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

70

Appendix 6 Space Gass Data Output (Service Limit State)

ANALYSIS STATUS REPORT

----------------------

LOAD CASE TITLES

----------------

Load

Case Title

G 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case G: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -0.999 -0.056 0.000 0.000 0.000 -0.002

3 0.000 -19.854 0.000 0.000 0.000 0.000

4 0.999 -0.056 0.000 0.000 0.000 0.002

5 0.000 0.000 0.000 0.000 0.000 0.000

6 -0.018 -19.427 0.000 0.000 0.000 -0.001

7 0.705 -5.850 0.000 0.000 0.000 0.003

LOAD CASE TITLES

----------------

Load

Case Title

Q 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case Q: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

Page 75: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

71

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -1.226 -0.050 0.000 0.000 0.000 -0.002

3 0.000 -24.343 0.000 0.000 0.000 0.000

4 1.226 -0.050 0.000 0.000 0.000 0.002

5 0.000 0.000 0.000 0.000 0.000 0.000

6 -0.024 -23.798 0.000 0.000 0.000 -0.001

7 0.870 -7.058 0.000 0.000 0.000 0.004

LOAD CASE TITLES

----------------

Load

Case Title

CW1 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case CW1: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -1.672 0.115 0.000 0.000 0.000 0.005

3 -3.949 45.253 0.000 0.000 0.000 -0.001

4 -6.226 0.079 0.000 0.000 0.000 -0.004

5 0.000 0.000 0.000 0.000 0.000 0.000

6 -3.954 45.178 0.000 0.000 0.000 0.001

7 -5.638 11.715 0.000 0.000 0.000 -0.006

LOAD CASE TITLES

----------------

Load

Case Title

CW2 1

NODE DISPLACEMENTS (mm,rad)

------------------

Page 76: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

72

Load case CW2: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -3.198 0.041 0.000 0.000 0.000 0.002

3 -3.739 10.770 0.000 0.000 0.000 -0.001

4 -4.281 0.008 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000

6 -3.775 11.408 0.000 0.000 0.000 0.000

7 -4.199 1.668 0.000 0.000 0.000 -0.001

LOAD CASE TITLES

----------------

Load

Case Title

WW 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case WW: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 14.809 0.005 0.000 0.000 0.000 -0.001

3 14.630 2.964 0.000 0.000 0.000 0.001

4 14.448 -0.005 0.000 0.000 0.000 -0.002

5 0.000 0.000 0.000 0.000 0.000 0.000

6 14.667 2.299 0.000 0.000 0.000 0.001

7 14.600 2.778 0.000 0.000 0.000 -0.001

LOAD CASE TITLES

----------------

Load

Case Title

LW 1

Page 77: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

73

NODE DISPLACEMENTS (mm,rad)

------------------

Load case LW: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 10.295 0.004 0.000 0.000 0.000 -0.001

3 10.424 -2.112 0.000 0.000 0.000 0.000

4 10.552 -0.004 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000

6 10.443 -2.509 0.000 0.000 0.000 0.000

7 10.568 0.382 0.000 0.000 0.000 0.000

LOAD CASE TITLES

----------------

Load

Case Title

PIP 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case PIP: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 1.786 0.090 0.000 0.000 0.000 0.003

3 0.000 36.557 0.000 0.000 0.000 0.000

4 -1.786 0.090 0.000 0.000 0.000 -0.003

5 0.000 0.000 0.000 0.000 0.000 0.000

6 0.028 35.754 0.000 0.000 0.000 0.001

7 -1.280 10.328 0.000 0.000 0.000 -0.005

LOAD CASE TITLES

----------------

Page 78: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

74

Load

Case Title

NIP 1

NODE DISPLACEMENTS (mm,rad)

------------------

Load case NIP: 1

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Node Transl'n Transl'n Transl'n Rotation Rotation Rotation

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -0.893 -0.045 0.000 0.000 0.000 -0.002

3 0.000 -18.279 0.000 0.000 0.000 0.000

4 0.893 -0.045 0.000 0.000 0.000 0.002

5 0.000 0.000 0.000 0.000 0.000 0.000

6 -0.014 -17.877 0.000 0.000 0.000 -0.001

7 0.640 -5.164 0.000 0.000 0.000 0.003

Page 79: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

75

7. Serviceability Limit State

Proposed deflection limits based on (Woolcock, Kitipornchai & Bradford, 1999) are:

Dead load alone: span/360

Live load alone: span/240

Service wind load alone: span/150

Thus, based on these recommendations, there is no need for load combination in the

serviceability limit state, and the three loads are checked separately with unfactored

loads. The deflection results are determined by Spacegass.

7.1. Column

Lc = 8200mm

Load Case Max Deflection (mm) Deflection Limit

(mm)

Check

Left Right

Dead Load 3.1 3.1 22.78 OK

Live Load 3.75 3.75 34.17 OK

Max Roof Uplift 5.11 9.44 54.67 OK

Min Roof Uplift 3.2 4.39 54.67 OK

Pressure on Windward Wall 14.81 14.45 54.67 OK

Pressure on Leeward Wall 10.3 10.55 54.67 OK

Positive Internal Pressure 4.52 4.52 54.67 OK

Negative Internal Pressure 2.26 2.26 54.67 OK

7.2. Rafter

Lr = 9613.17mm

Load Case Max Deflection (mm) Deflection Limit

(mm)

Check

Left Right

Dead Load 19.85 19.85 26.67 OK

Live Load 24.34 24.34 40 OK

Max Roof Uplift 45.61 45.25 64 OK

Min Roof Uplift 3.78 3.74 64 OK

Pressure on Windward Wall 14.67 14.68 64 OK

Pressure on Leeward Wall 10.46 10.57 64 OK

Positive Internal Pressure 36.56 36.56 64 OK

Negative Internal Pressure 18.28 18.28 64 OK

Page 80: CVEN9822 Design Assignment

ZHANG Zhichao 3389001, WANG Liang 3367075

76

8. Conclusion

In this steel portal frame design, the whole procedure can be divided into four main

parts including load combination, cross-section definition, ultimate (strength) limit

state check and serviceability limit state check.

Firstly, the load combination was done mainly by three aspects constituted of dead

load, live load and wind load. Dead load is determined based on the choice of

cross-section. A concentrated force of 1.4kN should be act on the frame when

determine the live load. Wind load includes cross-wind load, external wind pressure

and internal wind pressure. It is important to pay attention on the symbol of wind

load when combining the loads, because the sign conventions of external and

internal pressure are different.

In addition, the cross-section and steel grade for both of column and rafter should be

defined. In this case, we tried different sections and check them by combined action,

because combined action is an integrated check step which includes considerations

of compression, tension and bending moment both for in-plane bending and out of

plane buckling. Lateral buckling is the most influential strength limit state in the

design of steel member, so we tried several sections and finally chose G300

hot-rolled steel with fy= 300MPa, fu= 440MPa. The sections are selected as 360UB

56.7 for columns, and 250UC 72.9 for rafters.

Moreover, the ultimate limit states of axial forces, bending moment, combined action

and shear should be checked separately. After the calculation, the bending moment

capacity can be found as the most critical limit state which only about 50% excess.

Axial forces capacity is significantly sufficient.

Lastly, every load case is checked separately to satisfy the serviceability limit state.

For dead load alone, the limit is span/360. Limit of span/240 and span/150 for live

load and service wind load respectively.

All the results we calculated are satisfied for the steel structural design. Although,

the cross-section selection is a little bit conservative, but it must also be adequate if

we roundly consider about the connections, sheetings, purlins and girts which should

also be considered in a real design.


Recommended