+ All Categories
Home > Documents > Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the...

Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the...

Date post: 19-Aug-2019
Category:
Upload: danghanh
View: 218 times
Download: 0 times
Share this document with a friend
56
1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis, Chwee-Teck Lim
Transcript
Page 1: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

1

Cytoskeleton dynamics simulation of the red blood cell

Ju Li

Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis, Chwee-Teck Lim

Page 2: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

2

Optical tweezers stretching of healthy human red blood cell

Page 3: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

3

Malaria infected human red blood cell (schizont stage)

Page 4: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

4

2µm microfluidic channel (amazing fluidity)

Page 5: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

5

Takeuchi et al., Biophys. J. 74 (1998) 2171.

µm

one segment ~5 nmOne spectrin tetramer has 39 segments, contour length ~200 nm.

Room-temperature length ~80nm due to thermal fluctuations.

Red blood cell wall

200 nm

Page 6: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

6

Dao et al., J. Mech. Phys. Solids 51(2003) 2259; ibid 53 (2004) 493.

Page 7: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

7

Page 8: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

8

Spectrin Elasticity

one segment ~5 nm

One spectrin tetramer has ~40 segments, contour length ~200 nm.Room-temperature length ~80nm due to thermal fluctuations.

Page 9: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

9

Worm-like Chain Coarse-Grained Free Energy

2 3B max

WLCmax

3 2( ) ,4 1

k TL x x LV L xb x L

−= ⋅ ≡

Page 10: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

10

Spectrin-Net Level, Whole Red Blood Cell model (Discher, Boal, Boey, 1998)

total WLCspectrin link

( )ii

V V L∈

= +∑Li

triangle

CAα α∈

+∑Aα

bend, triangle

(1 )K β γβ γ∈

− ⋅∑ n nnβ

+ total area constraint + total volume constraint

Page 11: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

11

Small Cell Simulation (“volume quench” to get discocyte shape)

~ 2

µm

2562 vertices

Page 12: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

12

Lim, Wortis, Mukhopadhyay,PNAS 99 (2002) 16766

Stomatocyte -discocyte -echinocyte Sequence

spontaneous curvatureparameter

Page 13: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

13

Icosahedral network

on a sphere

Page 14: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

14

b b

b

b

b

aa

aaa

72°

Geometrically Necessary DisinclinationsIf each carries disinclination charge 60°, need 12

Page 15: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

15

100% volume

Page 16: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

16

60% volume

Page 17: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

17

To rid of the shape artifacts, melt and quench the network

GBs freely terminate!

Page 18: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

18

Bausch et al., Science 299(2003) 1716.

These GBs should be widespread in nature: large viral protein capsids,giant spherical fullerenes, spherical bacterial surface layers, siliceous skeletons of spherical radiolaria (aulosphaera), etc.

Sites for chemical reactions, initiation points for bacterial cell division,influence the mechanical response.

Page 19: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

19

60% volume: spherical state as stress-free reference.

Material reference statefor the in-plane shear energy Eshear

Page 20: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

20

W/ experimental range of parameters and sphere as stress-free reference state, the biconcave shape is only

metastable at 60% volume.

Page 21: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

21

With bending energy Ebend only

Canham (1970)Helfrich (1973)

Page 22: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

22

Page 23: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

23

Optical Tweezers Stretching Simulation

Page 24: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

24

Cross Sectional View

Page 25: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

25

200pN × 8µm / 2 = 5000eV!

Page 26: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

26

Why is biconcave the stable equilibrium shape?

Ebend ∼ 8πκ: κ ∼ 2×10-19 J → Ebend ∼ 30 eV

Eshear ~ µε2A: µ ∼ 8µN/m, ε ∼ 0.1, A ∼ 140µm2

→ Eshear ~ 70 eV

Page 27: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

27

Material Concept Hypothesis

• In an ideal limit, for any RBC shape, the cytoskeleton will always undergo remodeling in topological connectivity at a slow rate to relax its in-plane shear elastic energy to zero.

“liquefaction”, “slow-flowing glass”

• At the timescale of optical tweezers stretching, the above relaxation is not significant, so large shear energy can be injected temporarily.

Li, Dao, Lim & Suresh, Biophys. J. 88 (2005) 3707.

Page 28: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

28

Stillinger-Weber liquid on curved surface:

no shear energy can survive long!

Page 29: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

29

RBC cytoskeleton at reduced spectrin density

very large holes start to percolate ...

Page 30: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

30

352683718637degree-3

223741621504degree-3.5

114801224372degree-4

85752326880degree-4.5

68171828673normal

largest polygon holespectrin# actin#

Extreme Statistics of Cytoskeletal Defects in RBC

But this is basically from a “geometrical” simulation no biophysical basis, yet.

Page 31: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

31

Intermediate Summary• Spectrin-level and continuum FEM analyses indicate

our optical tweezers experiments give approximately the same in-plane shear modulus as micropipette aspiration experiments: µ = 5 to 10 ×10-6 N/m.

• Stabilization of biconcave equilibrium shape strongly suggests the cytoskeleton undergoes slow but constant remodeling topologically to always relax the in-plane shear elastic energy to zero.

• Connection to single-molecule stretching experiments (“intermolecular potential development”).

Page 32: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

32

A

B

CGMD model with breakable actin-spectrin junction

Page 33: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

33

Page 34: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

34

κbare = 2×10-20 J

FF 2r

2r0

bare

0

, chosen to be 3

Fr

πκα α4= 0.36

Gov & Safran, Biophys. J. 88, 1859

Page 35: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

35

We also put soft (0.1kBB) confinement potential on A and Bin z to mimic interaction with the membrane without

actually simulating the membrane.

Page 36: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

36

Page 37: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

37

temperature system size

pressure

Page 38: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

38

Pure shear deformation at 300K and strain rate 3×105/s

Page 39: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

39

~8µN/m

~30µN/m

Stress-strain curve at 300K and no ATP

Page 40: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

40

Defect statistics at 300K with no ATP

Page 41: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

41

A broken link 5-fold defect

Page 42: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

42Corrugation due to buckling: elevated / depressed in height

Page 43: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

43

Now add ATP (0.5eV random kinetic energy to green ball): hit rate = 100/µs per spectrin end

Page 44: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

44

Defect statistics at 300K, ATP hit rate 100/µs

Page 45: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

45

Now turn off ATP hits, “anneal” at 300K…

Miraculously, the system recovers, within CGMD simulation timescale.

Page 46: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

46

~3.4µN/m

A more reasonable ATP hit rate: 10/µs.Simultaneously, also shear deform.

completelyfluidized

Page 47: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

47

ATP hit rate = 10/µs

Page 48: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

48

plastic displacement

burst

initial slope ~ 8µN/m

ATP hit rate = 1/µs:

Page 49: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

49

ATP hit rate = 1/µs

Page 50: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

50

ATP hit rate = 2/µs: two plastic displacements… also longer

initial slope still 8µN/m!

Page 51: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

51

ATP hit rate = 5/µs: large-strain resistance collapses, manifest global yield

initial slope ~5µN/m

Page 52: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

Schematic Model of the RBC Membrane

4.1

Tse et al. 1999

Mohandas and Evans 1994

Page 53: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

53

Coarse Grain Molecular Dynamic Modeling

Page 54: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

54

Shear Deformation

Page 55: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

55

Shear Deformation and PromotedDimer – Dimer Dissociation

Page 56: Cytoskeleton dynamics simulation of the red blood cell · 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis,

56

Summary• A minimal CGMD model with breakable actin-

spectrin junction has been developed, with physically reasonable parameters and behavior.

• ATP hydrolysis is modeled as stochastic kinetic energy transfer. As ATP hit rate rises, we see initiation of plastic displacement excursions, followed by macroscopic yield, and eventually, complete fluidization.

• Practical timescale of CGMD able to simulate recovery.


Recommended