+ All Categories
Home > Documents > Data-Driven Control in Autonomous Energy Systems

Data-Driven Control in Autonomous Energy Systems

Date post: 14-Apr-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
41
Data-Driven Control in Autonomous Energy Systems Florian D ¨ orfler , ETH Z¨ urich 2020 GT Workshop on Energy Systems & Optimization
Transcript
Page 1: Data-Driven Control in Autonomous Energy Systems

Data-Driven Control inAutonomous Energy SystemsFlorian Dorfler , ETH Zurich2020 GT Workshop on Energy Systems & Optimization

Page 2: Data-Driven Control in Autonomous Energy Systems

Acknowledgements

Jeremy Coulson

John Lygeros

Linbin Huang

Ivan Markovsky

Paul Beuchat

Further:Ezzat Elokda,Daniele Alpago,Jianzhe (Trevor) Zhen,Saverio Bolognani,Andrea Favato,Paolo Carlet, &IfA DeePC team

1/31

Page 3: Data-Driven Control in Autonomous Energy Systems

Control in a data-rich world• ever-growing trend in CS & applications:

data-driven control by-passing models• canonical problem: black/gray-box

system control based on I/O samples

Q: Why give up physical modeling &reliable model-based algorithms ?

data-driven

control

u2

u1 y1

y2

Data-driven control is viable alternative when• models are too complex to be useful

e.g., wind farm interactions & building automation

• first-principle models are not conceivablee.g., human-operator-in-the-loop & demand control

• modeling & system ID is too cumbersomee.g., drives & electronics applications

Central promise: Itis often easier to learncontrol policies directlyfrom data, rather thanlearning a model.Example: PID [Astrom, ’73]

2/31

Page 4: Data-Driven Control in Autonomous Energy Systems

Abstraction reveals pros & consindirect (model-based) data-driven control

minimize control cost(x, u

)

subject to(x, u

)satisfy state-space model

where x estimated from(u, y)

& model

where model identified from(ud, yd

)data

→ nested multi-level optimization problem

}outeroptimization

}middle opt.

}inner opt.

separation &certaintyequivalence(→ LQG case)}no separation(→ ID-4-control)

direct (black-box) data-driven control

minimize control cost(u, y)

subject to(u, y)

consistent with(ud, yd

)data

→ trade-offsmodular vs. end-2-end

suboptimal (?) vs. optimalconvex vs. non-convex (?)

Additionally: all above should be min-max or E(·) accounting for uncertainty . . .3/31

Page 5: Data-Driven Control in Autonomous Energy Systems

today: something very different

Page 6: Data-Driven Control in Autonomous Energy Systems

Dictionary learning + predictive control1© trajectory dictionary learning• motion primitives / basis functions• theory: Koopman & Liouville

practice: (E)DMD & particles

2© predictive optimization over dictionary

→ huge theory vs. practice gap→ back to basics: impulse response

y4y2

y1y3 y5

y6

y7

u2 = u3 = · · · = 0

u1 = 1

x0 =0

dynamic matrix control(Shell, 1970s): predictivecontrol from raw data

yfuture(t) =[y1 y2 y3 . . .

ufuture(t)

ufuture(t− 1)ufuture(t− 2)

...

today : arbitrary, finite, & corrupted data, . . . stochastic & nonlinear ?

4/31

Page 7: Data-Driven Control in Autonomous Energy Systems

ContentsI. Data-Enabled Predictive Control (DeePC): Basic Idea

J. Coulson, J. Lygeros, and F. Dorfler. Data-Enabled Predictive Control: In theShallows of the DeePC. [arxiv.org/abs/1811.05890].

II. From Heuristics & Numerical Promises to TheoremsJ. Coulson, J. Lygeros, and F. Dorfler. Distributionally Robust Chance ConstrainedData-enabled Predictive Control. [https://arxiv.org/abs/2006.01702].

I. Markovsky and F. Dorfler. Identifiability in the Behavioral Setting. [link]

III. Application: End-to-End Automation in Energy & Robotics

L. Huang, J. Coulson, J. Lygeros, and F. Dorfler. Decentralized Data-EnabledPredictive Control for Power System Oscillation Damping.[arxiv.org/abs/1911.12151].

E. Elokda, J. Coulson, P. Beuchat, J. Lygeros, and F. Dorfler. Data-EnabledPredictive Control for Quadcopters. [link].

[click here] for related publications

Page 8: Data-Driven Control in Autonomous Energy Systems

Previewcomplex 4-area power system:large (n=208), few sensors (8),nonlinear, noisy, stiff, inputconstraints, & decentralizedcontrol specifications

control objective: oscillationdamping without model(grid has many owners, models areproprietary, operation in flux, . . . )

!"#$

!"#%

!"#&

!"#'

()*+#$ ()*+#%

!"#,

!"#-

!"#.

!"#/

()*+#& ()*+#'

$ ,

% '

&0

/- .

$1

$$

$%

$&

$'

$, $0

$- $. $/

%1

234*#$5,

234*#%5,

234*#,5-

234*#-5.5$

234*#-5.5%

234*#.5/5$

234*#.5/5%

234*#/50

234*#05&

234*#05'

234*#-5$1

234*#$%5%1

234*#/5$/

234*#$$5$,

234*#$%5$,

234*#$,5$-

234*#$-5$.5$

234*#$-5$.5%

234*#$.5$/5$

234*#$.5$/5%

234*#$/5$0

234*#$05$&

234*#$05$'

6!758697!:+:3;4#$

6!758697!:+:3;4#%

7;4:);<#!3=4+<>

7;4:);<#!3=4+<>

!?>:*@A+):3:3;434=

2;+B#$ 2;+B#%

2;+B#& 2;+B#'

control

control

! " #! #" $! $" %!

!&!

!&$

!&'

!&(

10

time (s)

uncontrolled flow (p.u.)

collect data controltie lin

e fl

ow

(p

.u.)

!"#$%&'(! " #! #" $! $" %!

!&!

!&$

!&'

!&( seek a method that worksreliably, can be efficientlyimplemented, & certifiable→ automating ourselves

5/31

Page 9: Data-Driven Control in Autonomous Energy Systems

Reality check: magic or hoax ?surely, nobody would put apply such a shaky data-driven method• on the world’s most complex engineered system (the electric grid),• using the world’s biggest actuators (Gigawatt-sized HVDC links),• and subject to real-time, safety, & stability constraints . . . right?

!"#$%&'()'(%#(*%+,-$'#(.

%

/% 0123% 21)4'5"*% #% 6"$7% 8#6-1$#),"% $"6'"9% -8% 7-1$% :#:"$% ;<=% 9>'?>% /% )",'"6"% ?-1,*% )"% -8%

'4:-$3#(?"%3-%-1$%9-$@%#3%A'3#?>'%B-9"$%C$'*2D%E"%*-%>#6"%%;<=%$"F1'$"%-GH,'("%31('(I%3>#3% %;<=%%

?-4'22'2'-('(I%"(I'(""$%?#(%*-%-(%>'2%-9(%%;<=%%#(%#*#:J6"%#::$-#?>%9-1,*%)"%6"$7%'(3"$"2J(ID

%

/8% :-22'),"% /%9-1,*% ,'@"% 3-% 3$7% 3>"%*"?"(3$#,'K"*%!""BL%#::$-#?>%9'3>%-1$%4-$"%*"3#',"*%AM!L%

2723"4% 4-*",2% -(% 3>"% '(3"$#$"#% -2?',,#J-(% :$-),"4D% L-1,*% 2-% 2-4"% ?-*"% )"% 4#*"% #6#',#),"%%

;<=%%N%E-1,*%7-1%)"%'(3"$"23"*%'(%9-$@'(I%3-I"3>"$%3-%*-%21?>%#%*"4-(23$#J-(%N%%;<=

%/3%9-$@2O%<%"6"(%

-(%#(%"(J$",7%

*'G"$"(3%4-*",%P%

2-Q9#$"%:,#R-$4

<%8"9%*#72%#Q"$%

2"(*'(I%-1$%?-*"

at least someone believes that DeePC is practically useful . . .6/31

Page 10: Data-Driven Control in Autonomous Energy Systems

Behavioral view on LTI systemsDefinition: A discrete-time dynamicalsystem is a 3-tuple (Z≥0,W,B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is a signal space, and

(iii) B ⊆ WZ≥0 is the behavior.

B is the set ofall trajectories

Definition: The dynamical system (Z≥0,W,B) is(i) linear if W is a vector space & B is a subspace of WZ≥0

(ii) and time-invariant if B ⊆ σB, where σwt = wt+1.

LTI system = shift-invariant subspace of trajectory space

y

u

7/31

Page 11: Data-Driven Control in Autonomous Energy Systems

LTI systems and matrix time seriesfoundation of state-space subspace system ID & signal recovery algorithms

u(t)

t

u4

u2

u1 u3

u5u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

(u(t), y(t)

)satisfy recursive

difference equationb0ut+b1ut+1+. . .+bnut+n+

a0yt+a1yt+1+. . .+anyt+n = 0

(ARX / kernel representation)

⇐under assumptions

[ 0 b0 a0 b1 a1 ... bn an 0 ] in left nullspaceof trajectory matrix (collected data)

HT

(ud

yd

)=

(ud1,1

yd1,1

) (ud1,2

yd1,2

) (ud1,3

yd1,3

)...

(ud2,1

yd2,1

) (ud2,2

yd2,2

) (ud2,3

yd2,3

)...

......

......

(udT,1

ydT,1

) (udT,2

ydT,2

) (udT,3

ydT,3

)...

where ydt,i is tth sample from ith experiment

8/31

Page 12: Data-Driven Control in Autonomous Energy Systems

Fundamental Lemma [Willems et al. ’05], [Markovsky & Dorfler ’20]

u(t)

t

u4

u2

u1 u3

u5u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

Given: data(udiydi

)∈ Rm+p & LTI complexity parameters

{lag `order n

set of all T -length trajectories ={

(u, y) ∈ R(m+p)T : ∃x ∈ Rn s.t.

x+ = Ax + Bu , y = Cx + Du}

︸ ︷︷ ︸ ︸ ︷︷ ︸parametric state-space model non-parametric model from raw data

colspan

(ud

1,1

yd1,1

) (ud

1,2

yd1,2

) (ud

1,3

yd1,3

)...

(ud

2,1

yd2,1

) (ud

2,2

yd2,2

) (ud

2,3

yd2,3

)...

......

......

(udT,1

ydT,1

) (udT,2

ydT,2

) (udT,3

ydT,3

)...

if and only if the trajectory matrix has rank m · T + n for all T > `

9/31

Page 13: Data-Driven Control in Autonomous Energy Systems

set of all T -length trajectories ={

(u, y) ∈ R(m+p)T : ∃x ∈ Rn s.t.

x+ = Ax + Bu , y = Cx + Du}

︸ ︷︷ ︸ ︸ ︷︷ ︸parametric state-space model non-parametric model from raw data

colspan

(ud

1,1

yd1,1

) (ud

1,2

yd1,2

) (ud

1,3

yd1,3

)...

(ud

2,1

yd2,1

) (ud

2,2

yd2,2

) (ud

2,3

yd2,3

)...

......

......

(udT,1

ydT,1

) (udT,2

ydT,2

) (udT,3

ydT,3

)...

all trajectories constructible from finitely many previous trajectories

• can also use other matrix data structures: (mosaic) Hankel, Page, . . .

• novelty (?) : motion primitives, DMD, dictionary learning, subspacesystem id, . . . all implicitly rely on this equivalence→ c.f. “fundamental”

• standing on the shoulders of giants:classic Willems’ result was only “if” &required further assumptions: Hankel,persistency of excitation, controllability

10/31

Page 14: Data-Driven Control in Autonomous Energy Systems

Prediction & estimation [Markovsky & Rapisarda ’08]

Problem : predict future output y ∈ Rp·Tfuture based on• initial trajectory col(uini, yini) ∈ R(m+p)·Tini

• input signal u ∈ Rm·Tfuture

• past data col(ud, yd) ∈ BTdata

→ to estimate initial xini

→ to predict forward

→ to form trajectory matrix

Solution: given u & col(uini, yini)→ compute g & y from

ud1,1 ud

2,1 ud3,1 · · ·

.

.

....

.

.

....

ud1,Tini

ud2,Tini

ud3,Tini

· · ·yd

1,1 yd2,1 yd

3,1 · · ·...

.

.

....

.

.

.yd

1,Tiniyd

2,Tiniyd

3,Tini· · ·

ud1,Tini+1

ud2,Tini+1

ud3,Tini+1

· · ·...

.

.

....

.

.

.ud

1,Tini+Tfutureud

2,Tini+Tfutureud

3,Tini+Tfuture· · ·

yd1,Tini+1

yd2,Tini+1

yd3,Tini+1

· · ·...

.

.

....

.

.

.yd

1,Tini+Tfutureyd

2,Tini+Tfutureyd

3,Tini+Tfuture· · ·

g = HTini+Tfuture

(ud

yd

)g =

uiniyiniuy

⇒ observability condition: if Tini ≥ lag of system, then y is unique 11/31

Page 15: Data-Driven Control in Autonomous Energy Systems

Output Model Predictive ControlThe canonical receding-horizon MPC optimization problem :

minimizeu, x, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R

subject to xk+1 = Axk +Buk, ∀k ∈ {0, . . . , Tfuture − 1},yk = Cxk +Duk, ∀k ∈ {0, . . . , Tfuture − 1},xk+1 = Axk +Buk, ∀k ∈ {−Tini − 1, . . . ,−1},yk = Cxk +Duk, ∀k ∈ {−Tini − 1, . . . ,−1},uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

quadratic cost withR � 0, Q � 0 & ref. r

model for predictionover k ∈ [0, Tfuture − 1]

model for estimation(many variations)

hard operational orsafety constraints

For a deterministic LTI plant and an exact model of the plant,MPC is the gold standard of control : safe, optimal, tracking, . . .

12/31

Page 16: Data-Driven Control in Autonomous Energy Systems

Data-Enabled Predictive ControlDeePC uses Hankel matrix for receding-horizon prediction / estimation:

minimizeg, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R

subject to H(ud

yd

)g =

uiniyiniuy

,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

quadratic cost withR � 0, Q � 0 & ref. r

non-parametricmodel for predictionand estimation

hard operational orsafety constraints

• trajectory matrix HTini+Tfuture

(ud

yd

)from past data

• past Tini ≥ lag samples (uini, yini) for xini estimation

collected offline(could be adapted online)

updated online13/31

Page 17: Data-Driven Control in Autonomous Energy Systems

Consistency for LTI SystemsTheorem: Consider DeePC & MPC optimization problems. If therank condition holds (= rich data), then the feasible sets coincide.

Corollary: closed-loop behaviors under DeePC and MPC coincide.

Aerial robotics case study :Thus, most of MPC carries overto DeePC . . . in the nominal casec.f. stability certificate [Berberich et al. ’19]

Beyond LTI: what about noise,corrupted data, & nonlinearities ?

. . . playing certainty-equivalencefails → need robustified approach

14/31

Page 18: Data-Driven Control in Autonomous Energy Systems

Noisy real-time measurements

minimizeg, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λy‖σini‖p

subject to H(ud

yd

)g =

uiniyiniuy

+

0σini00

,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

Solution : add `p-slackσini to ensure feasibility→ receding-horizonleast-square filter→ for λy � 1: constraintis slack only if infeasible

c.f. sensitivity analysisover randomized sims

100

102

104

106

106

108

1010

Co

st

Cost

100

102

104

106

0

5

10

15

20

Du

ratio

n v

iola

tio

ns (

s)

Constraint Violations

15/31

Page 19: Data-Driven Control in Autonomous Energy Systems

Trajectory matrix corrupted by noise

minimizeg, u, y

Tfuture−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λg‖g‖1

subject to H(ud

yd

)g =

uiniyiniuy

,

uk ∈ U , ∀k ∈ {0, . . . , Tfuture − 1},yk ∈ Y, ∀k ∈ {0, . . . , Tfuture − 1}

Solution : add a`1-penalty on g

intuition: `1 sparsely selects{trajectory matrix columns}= {motion primitives}∼ low-order basis

c.f. sensitivity analysisover randomized sims

0 200 400 600 8000

1

2

3

4

5

6

7

Co

st

107 Cost

0 200 400 600 8000

5

10

15

20

Du

ratio

n v

iola

tio

ns (

s)

Constraint Violations

16/31

Page 20: Data-Driven Control in Autonomous Energy Systems

Towards nonlinear systemsIdea : lift nonlinear to large /∞-dimensional bi- / linear system→ Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods→ nonlinear system can be approximated by LTI on finite horizon

regularization singles out relevant features/basis functions in data

17/31

Page 21: Data-Driven Control in Autonomous Energy Systems

Consistent observations acrosscase studies — more than a fluke

18/31

Page 22: Data-Driven Control in Autonomous Energy Systems

let’s try to put some theorybehind all of this . . .

Page 23: Data-Driven Control in Autonomous Energy Systems

Distributional robust formulation [Coulson et al. ’19]

• problem abstraction : minx∈X c(ξ, x)

where ξ is measured data

• distributionally robust formulation −→ “minx∈X maxξ E[c (ξ, x)

]”

where max accounts for all stochastic processes (linear or nonlinear)that could have generated the data . . . more precisely

infx∈X supQ∈Bε(P ) EQ

[c (ξ, x)

]

where Bε(P ) is an ε-Wasserstein ballcentered at empirical sample distribution P :

Bε(P ) =

{P : inf

Π

∫ ∥∥ξ − ξ∥∥pdΠ ≤ ε

}

ξ

ξ

P

P

Π

Theorem : Under minor technical conditions:inf

x∈X supQ∈Bε(P ) EQ[c (ξ, x)

]≡ minx∈X c

(ξ, x)

+ εLip(c) · ‖x‖?p19/31

Page 24: Data-Driven Control in Autonomous Energy Systems

regularization of DeePC⇔

distributional robustificationin trajectory space

Page 25: Data-Driven Control in Autonomous Energy Systems

Further ingredients & improvements• multiple i.i.d. experiments→ sample

average data matrix 1N

∑Ni=1 Hi(y

d)

• measure concentration: Wassersteinball Bε(P ) includes true distribution P

with high confidence if ε ∼ 1/N1/ dim(ξ)

• old online measurements→ Kalmanfiltering with hidden state = explicit g?

N = 1N = 10

• distributionally robust probabilistic constraintssupQ∈Bε(P ) CVaRQ

1−α ⇔ averaging + regularization + tightening

CVaRP1−α(X)

P(X) ≤ 1 − αVarP1−α(X)

20/31

Page 26: Data-Driven Control in Autonomous Energy Systems

All together in action for nonlinear& stochastic quadcoptor setup

control objective+ regularization+ matrix predictor+ averaging+ CVaR constraints+ σini estimation slack

→ DeePC works muchbetter than it should ! 0 2 4 6 8 10

-1

-0.5

0

0.5

1

1.5

2

main catch : optimization problems become large (no-free-lunch)→ models are compressed, de-noised, & tidied-up representations

21/31

Page 27: Data-Driven Control in Autonomous Energy Systems

Power system case study

!"#$

!"#%

!"#&

!"#'

()*+#$ ()*+#%

!"#,

!"#-

!"#.

!"#/

()*+#& ()*+#'

$ ,

% '

&0

/- .

$1

$$

$%

$&

$'

$, $0

$- $. $/

%1

234*#$5,

234*#%5,

234*#,5-

234*#-5.5$

234*#-5.5%

234*#.5/5$

234*#.5/5%

234*#/50

234*#05&

234*#05'

234*#-5$1

234*#$%5%1

234*#/5$/

234*#$$5$,

234*#$%5$,

234*#$,5$-

234*#$-5$.5$

234*#$-5$.5%

234*#$.5$/5$

234*#$.5$/5%

234*#$/5$0

234*#$05$&

234*#$05$'

6!758697!:+:3;4#$

6!758697!:+:3;4#%

7;4:);<#!3=4+<>

7;4:);<#!3=4+<>

!"

!"

#

#

#!"

!"

#

#!"

#$%

!"

?@+>*52;AB*C#2;;D

7E))*4:#7;4:);<#2;;D

97#6;<:+=*#7;4:);<#2;;D

6;<:+=*#7;4:);<#2;;D

!"

#$%

7;4:);<#93+=)+F#;G#6!758697#!:+:3;4#%

!"

!"

#

#

#!"

!"

#

#!"

#$%

!"

?@+>*52;AB*C#2;;D

7E))*4:#7;4:);<#2;;D

?;H*)#7;4:);<#2;;D

6;<:+=*#7;4:);<#2;;D

!"

#$%

7;4:);<#93+=)+F#;G#6!758697#!:+:3;4#$

!I>:*F?+):3:3;434=

2;+C#$ 2;+C#%

2;+C#& 2;+C#'

control

control

! " #! #" $! $" %!

!&!

!&$

!&'

!&(

10

time (s)

uncontrolled flow (p.u.)

• complex 4-area power system: large (n = 208), few measurements (8),nonlinear, noisy, stiff, input constraints, & decentralized control

• control objective: damping of inter-area oscillations via HVDC link• real-time MPC & DeePC prohibitive→ choose T , Tini, & Tfuture wisely 22/31

Page 28: Data-Driven Control in Autonomous Energy Systems

Centralized control

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

time (s)

5

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

time (s)

Fig. 5. Time-domain responses of the four-area system with the practicalsetting. The DeePC (or PEM-MPC) is activated at t = 10s. —– withoutwide-area control; —– with PEM-MPC (s = 60); —– with DeePC (s = 60).

Closed‐loop cost

Num

ber o

f sim

ulations DeePC

PEM‐MPC

Fig. 6. Cost comparison of DeePC and PEM-MPC under the practical setting.

Fig.7 plots the closed-loop cost (from 10s to 30) of thesystem with different DeePC parameters, which shows that a)the closed-loop cost dramatically drops with the increase of theprediction horizon N and then remains within an acceptablerange (here we set k = N

2 ); b) the closed-loop cost dropswhen T is increased from 800 to 1000 and then remains nearlythe same if further increasing T ; c) the closed-loop cost dropswith the increase of Tini from 5 to 40 and remains basically thesame with a larger Tini; and d) the system may have undesiredclosed-loop cost with a relatively small (or with a relativelylarge) �g but presents anticipated performance in between,which coincides with the fact the regularization on g providesrobustness against noisy measurements. Note that setting a toolarge �g (e.g., �g > 104) makes (5) focuses on minimizingkgk2

2 and results in inferior input/output performance. Fig.7also indicates the robustness of the DeePC with regards to thechoices of parameters, that is, the system presents anticipatedperformance with proper regularization on g (�g generally hasa wide admissible range) and sufficiently large N , Tini and T .

IV. MIN-MAX DEEPC

The DeePC algorithm presented above acts as a centralizedwide-area control, which is not resilient to communication fail-ures and less reliable than decentralized approaches especiallywhen more VSC-HVDC stations are considered. To this end,

Closed

‐loop

 cost

Closed

‐loop

 cost

Closed

‐loop

 cost

Closed

‐loop

 cost

Fig. 7. Closed-loop cost of the system with different DeePC parameters.

we present a Min-Max DeePC algorithm which further enablesdecentralized wide-area control.

A. Basic FormulationWe extend the unknown LTI system in (1) by adding a

measurable disturbance vector wt 2 Rq to (1) as⇢

xt+1 = Axt + But + Ewt

yt = Cxt + Dut + Fwt, (9)

where E 2 Rn⇥q and F 2 Rp⇥q .To be specific, the unknown system is subjected to some ex-

ternal disturbances (wt) whose past trajectory can be measuredbut the future trajectory is unknown. Let wd be a disturbancetrajectory of length T (i.e., wd 2 RqT ) measured from theunknown system such that col(ud, wd) is persistently excitingof order Tini + N + n. Note that here wt is regarded as anuncontrollable input vector of the unknown system. Similarto ud and yd, we use wd to construct the Hankel matrixHTini+N (wd), which is further partitioned into two parts as

WP

WF

�:= HTini+N (wd) , (10)

where WP 2 RqTini⇥(T�Tini�N+1) and WF 2RqN⇥(T�Tini�N+1).

Then, similar to (4), col(uini, wini, yini, u, w, y) is a trajec-tory of the unknown system (9) if and only if there existsg 2 RT�Tini�N+1 such that

26666664

UP

WP

YP

UF

WF

YF

37777775

g =

26666664

uini

wini

yini

uwy

37777775

, (11)

where wini 2 RqTini is the most recent measured disturbancetrajectory and w = col(w0, w1, ..., wN�1) 2 RqN is the futuredisturbance trajectory, which is unknown but assumed to bebounded as wt 2 [w, w].

= Prediction ErrorMethod (PEM)System ID + MPC

t < 10 s : open loopdata collection withwhite noise excitat.

t > 10 s : control

23/31

Page 29: Data-Driven Control in Autonomous Energy Systems

Performance: DeePC wins (clearly!)

Closed‐loop cost

Number of simulations

DeePCPEM‐MPC

realized closed-loop cost =∑

k ‖yk − rk‖2Q + ‖uk‖2R

24/31

Page 30: Data-Driven Control in Autonomous Energy Systems

DeePC hyper-parameter tuningClosed‐loop cost

Closed‐loop cost

Closed‐loop cost

Closed‐loop cost

Tfuture

regularizer λg• for distributional robustness≈ radius of Wasserstein ball• wide range of sweet spots

→ choose λg = 20

estimation horizon Tini

• for model complexity ≈ lag• Tini ≥ 50 is sufficient & low

computational complexity

→ choose Tini = 6025/31

Page 31: Data-Driven Control in Autonomous Energy Systems

Closed‐loop cost

Closed‐loop cost

Closed‐loop cost

Closed‐loop cost

Tfuture

prediction horizon Tfuture

• nominal MPC is stable ifhorizon Tfuture long enough

→ choose Tfuture = 120 andapply first 60 input steps

data length T

• long enough for low-rankcondition but card(g) grows

→ choose T = 1500(data matrix ≈ square)

26/31

Page 32: Data-Driven Control in Autonomous Energy Systems

Computational cost

time (s)

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

• T = 1500

• λg = 20

• Tini = 60

• Tfuture = 120 & applyfirst 60 input steps• sampling time = 0.02 s• solver (OSQP) time = 1 s

(on Intel Core i5 7200U)⇒ implementable

27/31

Page 33: Data-Driven Control in Autonomous Energy Systems

Comparison: Hankel & Page matrix

Control Horizon k Control Horizon k

Averaged Closed‐loop Cost

S0=1

� Hankel matrix

� Hankel matrix withSVD (σthreshhold = 1)

� Page matrix

� Page matrix withSVD (σthreshhold = 1)

• comparison baseline: Hankel and Page matrices of same size• perfomance : Page consistency beats Hankel matrix predictors• offline denoising via SVD threshholding works wonderfully for

Page though obviously not for Hankel (entries are constrained)• effects very pronounced for longer horizon (= open-loop time)• price-to-be-paid : Page matrix predictor requires more data

28/31

Page 34: Data-Driven Control in Autonomous Energy Systems

Decentralized implementation

!"#$

!"#%

!"#&

!"#'

()*+#$ ()*+#%

!"#,

!"#-

!"#.

!"#/

()*+#& ()*+#'

$ ,

% '

&0

/- .

$1

$$

$%

$&

$'

$, $0

$- $. $/

%1

234*#$5,

234*#%5,

234*#,5-

234*#-5.5$

234*#-5.5%

234*#.5/5$

234*#.5/5%

234*#/50

234*#05&

234*#05'

234*#-5$1

234*#$%5%1

234*#/5$/

234*#$$5$,

234*#$%5$,

234*#$,5$-

234*#$-5$.5$

234*#$-5$.5%

234*#$.5$/5$

234*#$.5$/5%

234*#$/5$0

234*#$05$&

234*#$05$'

6!758697!:+:3;4#$

6!758697!:+:3;4#%

7;4:);<#!3=4+<>

7;4:);<#!3=4+<>

!"

!"

#

#

#!"

!"

#

#!"

#$%

!"

?@+>*52;AB*C#2;;D

7E))*4:#7;4:);<#2;;D

97#6;<:+=*#7;4:);<#2;;D

6;<:+=*#7;4:);<#2;;D

!"

#$%

7;4:);<#93+=)+F#;G#6!758697#!:+:3;4#%

!"

!"

#

#

#!"

!"

#

#!"

#$%

!"

?@+>*52;AB*C#2;;D

7E))*4:#7;4:);<#2;;D

?;H*)#7;4:);<#2;;D

6;<:+=*#7;4:);<#2;;D

!"

#$%

7;4:);<#93+=)+F#;G#6!758697#!:+:3;4#$

!I>:*F?+):3:3;434=

2;+C#$ 2;+C#%

2;+C#& 2;+C#'

control

control

! " #! #" $! $" %!

!&!

!&$

!&'

!&(

10

time (s)

uncontrolled flow (p.u.)

• plug’n’play MPC: treat interconnection P3 as disturbance variable wwith past disturbance wini measurable & future wfuture ∈ W uncertain• for each controller augment trajectory matrix with disturbance data w• decentralized robust min-max DeePC: ming,u,y maxw∈W 29/31

Page 35: Data-Driven Control in Autonomous Energy Systems

Decentralized control performance

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

time (s)

• colors correspondto different hyper-parameter settings(not discernible)

• ambiguity setWis∞-ball (box)

• for computationalefficiencyW isdownsampled(piece-wise linear)

• solver time ≈ 2.6 s

⇒ implementable

30/31

Page 36: Data-Driven Control in Autonomous Energy Systems

Summary & conclusionsmain take-aways• matrix time series serves as predictive model• data-enabled predictive control (DeePC)

X consistent for deterministic LTI systemsX distributional robustness via regularizations

future work→ tighter certificates for nonlinear systems→ explicit policies & direct adaptive control→ online optimization & real-time iteration

-1.5

1

-1

0.5-0.2

-0.5

00

0

0.2-0.5 0.4

0.5

0.6-1

1

1.5

2

Why have thesepowerful ideasnot been mixedlong before ?

Willems ’07: “[MPC] has perhaps too little systemtheory and too much brute force computation in it.”

The other side often proclaims “behavioral systemstheory is beautiful but did not prove utterly useful.”

31/31

Page 38: Data-Driven Control in Autonomous Energy Systems

appendix

relation to system ID

Page 39: Data-Driven Control in Autonomous Energy Systems

Data-driven control: a classificationindirect data-driven control

minimize control cost(x, u

)

subject to(x, u

)satisfy state-space model

where x estimated from(u, y)

& model

where model identified from(ud, yd

)data

→ nested multi-level optimization problem

}outeroptimization

}middle opt.

}inner opt.

separation &certaintyequivalence(→ LQG case)}no separation(→ ID-4-control)

direct data-driven control

minimize control cost(u, y)

subject to(u, y)

consistent with(ud, yd

)data

→ trade-offsmodular vs. end-2-end

suboptimal (?) vs. optimalconvex vs. non-convex (?)

Additionally: all above should be min-max or E(·) accounting for uncertainty . . .

Page 40: Data-Driven Control in Autonomous Energy Systems

recall the central promise :it is easier to learn controlpolicies directly from data,

rather than learning a model

Page 41: Data-Driven Control in Autonomous Energy Systems

Comparison: DeePC vs. ID + MPCconsistent across all nonlinearcase studies : DeePC always wins

reason (?) : DeePC is robust, whereascertainty-equivalence control is basedon identified model with a bias error

Closed‐loop cost

Number of simulations

DeePCPEM‐MPC

realized closed-loop cost =∑k∥∥yk − rk

∥∥2Q +

∥∥uk∥∥2Rstochastic LTI comparison (no bias)

show certainty-equivalence vs. robustcontrol trade-offs (mean vs. median)

link : DeePC includes implicit sys IDthough 1© biased by control objective,2© data not projected on LTI class, &3© robustified through regularizations

N4SID

+ MPC

DeePC

Open-loop tracking error (% increase wrt optimal)

→ more to be understood . . . ArXiv paper coming


Recommended