+ All Categories
Home > Documents > Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell...

Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell...

Date post: 12-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
26
Data Driven Networking Sachin Katti Platform Lab Review, Feb 2017
Transcript
Page 1: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Data Driven Networking

Sachin KattiPlatform Lab Review, Feb 2017

Sachin R Katti
Stanford University & Uhana
Page 2: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Canwelearnthecontrolplaneofthenetwork?

Control&OrchestrationPlaneautomaticallysynthesizedbylearning fromtelemetrydata

IndustryStandardNorthboundApplication Interfaces

IndustryStandardSouthbound InfrastructureInterfaces

Real-timeNetworkTelemetry

OperatorPolicies,Intent&SLA

EdgeCloud

RAN

InfrastructureControlPoints

VIRTUALREALITY4KVIDEODRONEATC

OperatorPolicies,Intent&SLA

OperatorPolicies&Intents

ApplicationswithAccesstoNetworkControl

Result:Dynamicperuser/flowcontrolimplementedtomeetthepolicyanddeliverontheSLA

Youspecifywhatyouwant,andthenetworkfiguresouthowtodeliverit!

Page 3: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

DataDrivenControlLoop

ServiceKPI

Prediction

WillCurrentControlsMeetKPI?

RecommendCurrentControl

Settings

Y

N

What-IfAdjustControl

Knobs

WillAdjustedControlsMeetKPI?

N

Y RecommendAdjustedControl

Settings

ApplyControls

MeetsOperatorPolicies?

N

Y

OperatorPoliciesIntent&SLAs

Real-timeData

NetworkTelemetry

Page 4: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Twolearningapproaches:

ClassicalMachineLearning DeepReinforcementLearning

NeuralNetworkReinforcementLearning

(Prediction &What-if)

RewardFunction

Requiresextensivedomainknowledge Largelyblind, trulyapproximatesintentbasedsystemdesign

Page 5: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

ThisTalk:ApplyingthisFrameworktoCommercialMobileNetworks

ServiceKPI

Prediction

WillCurrentControlsMeetKPI?

RecommendCurrentControl

Settings

Y

N

What-IfAdjustControl

Knobs

WillAdjustedControlsMeetKPI?

N

Y RecommendAdjustedControl

Settings

ApplyControls

MeetsOperatorPolicies?

N

Y

OperatorPoliciesIntent&SLAs

Real-timeData

NetworkTelemetry

Controlplaneapplication:LoadBalancinginmobilenetworks

Operatorpolicy:Optimizeuserthroughputforthe20%worstaffectedusers

Data:PerflowRecordsfromthemobilenetwork

Page 6: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Mobile traffic demand is skyrocketing

2000 2005 2010 2015 2020 2025

3.7 EB/month

30.6 EB/month

0.4 EB/month

< 1 PB/month

300 EB/mon

th?

Demanding content

New, smarter devicesPhones Smartphones Tablets Wearables

Audio, Text Web Video Virtual Reality

< 10 GB/month

Courtesy: Cisco VNI, 2015-2020

Page 7: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How will mobile networks meet this surging traffic demand?

Densificationwillbringthenextwaveofcapacityscalinginmobileaccessnetworks

Spectral efficiency

Densification

Spectrum

Page 8: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Densification has challenges

Fordensificationtoscale,networksneedtoproactivelymanageload,interferenceandmobilitytooptimizeuserexperience

Load (demand) and other factors (e.g interference, mobility) become highly dynamic

à need to be proactively managed

E.g: Cells can offload users to less-congested neighbors to balance load,

need to know expected user experience

Page 9: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Why is this challenging?

Existing approachesAggregate cell-level counters

blind to dynamism across time and users;reactive

Need to predict user performance every ~1sfor the best load distribution

ChallengeUser performance is hard to predictComplex function of many, potentially unknown and/or dynamic, network variables

Needtopredictuserexperiencesecondsinadvance,hardinpracticalnetworkswithmanyunknown/dynamicvariables

To packet core

13:00 14:00 15:00 16:00

05

1015

TIME

LOA

D (i

n M

B p

er s

econ

d)

13:00 14:00 15:00 16:00

05

1015

TIME

LOA

D (i

n M

B p

er s

econ

d)

0 10 20 30 40

01

23

4

USER #

LOAD

(in

MB)

Dedicatedfiber/micro

wave

PublicInternet

Page 10: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

What do we need today to enable wide-scale densification?

Can we use a data driven approach to tackle this challenge?

without making invasive changes to existing network infrastructure without deploying expensive network infrastructurewithout modifying user devices/cellular standards

Predict user performance every secondto manage load dynamically

Coordinate across cells in realtimeto balance load

Page 11: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

ForeCData-driven control

in dense mobile networks

Page 12: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How to use realtime analytics & learning for network control?

Network effects

Network state

Network actions

change causes

Networksrequiretheabilitytomonitorandforecastnetworkeffectsperuser/cell,persecond,potentiallybasedonnetworkactions

MONITORRight now, what is the

avg throughput of user/cell?resource utilization of user/cell?contention faced by user/cell?

FORECASTIn the next 1s, what will be the:

avg throughput of user/cell?resource utilization of user/cell?contention faced by user/cell?

FORECAST IMPACTIn the next 1s, what if:

handover users?admit/reject new users?

increase/decrease tx power?

throughputresource utilization

contention

handover useradmit/reject userinc/dec tx power

cell: bandwidth, #users, demand etc.user: serving cell, link quality etc.

Page 13: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

ForeC: Analytics on ‘after-the-fact’ logs to monitor & forecast network effects

ForeC

user session logs

queries responses

Network control

Cells already expose usage stats per user session (~10s)

One report per event of the session, logged after the

eventsetup report, release report, traffic report,

radio measurements report, mobility report etc.

Page 14: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

ForeC has been tested in diverse deployments

Football Stadium Metro Area

Page 15: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How does ForeC work?The internals of ForeC

What can ForeC do?and how well?

How can a network use ForeC?Load management in a stadium

Page 16: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How does ForeC work?The internals of ForeC

What can ForeC do?and how well?

How can a network use ForeC?Load management in Levi’s Stadium

Page 17: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

futurepast now

EFFECTEFFECT

ACTION

How does ForeC forecast network effects?

STATE 2STATE 2STATE 1STATE 1

forecast causes predict

effect

ForeC’s approach:Forecastthecauses,predicttheeffectDecouplingsimplifiesdesignandimplementation,alsoworksquitewell!

What will be throughput of user A if handed over from cell 1 to 2

over the next 10 seconds?

forecast effect

decompose

Page 18: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

The internals of ForeC

ANALYTICS LAYER

MODELING ENGINE

DATA LAYER: Data sanitization and organization

QUERY LAYER: Query parsing and response

FORECAST ENGINE

MONITORING ENGINE

PREDICTION ENGINE

Future effects

Future states

Currentstates

Currenteffects

Currentstates

OFFLINEPATH

ONLINEPATH

Current data

Past and current data

user session logs

queries responses

Proposed state change

Page 19: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How do we decompose an effect into its constituent causes?

ANALYTICS LAYER

MODELING ENGINE

DATA LAYER: Data sanitization and organization

QUERY LAYER: Query parsing and response

FORECAST ENGINE

MONITORING ENGINE

PREDICTION ENGINE

Future effect

s

Future states

Currentstates

Current

effectsCurrent

states

OFFLINEPATH

ONLINEPATH

Current data

Past and current data

user session logs

queries responses

Proposed state

change

Usedomainknowledgetoformulate/hypothesizecauses,uselearningtoolstotestsignificanceanddiscoverrelationships

Spectral efficiencybits per resource element

Throughputbits per time

Cellbandwidth

Cell contention

User&totaldemand

Resource allocation rateresource elements per time

?

?Σ Active

users

Σ Pktrate, size

Rank

MCSCQI

X

0 20 40 60 80 100

-6-4

-20

24

6

USER SESSION #0 20 40 60 80 100

-6-4

-20

24

6

USER SESSION #0 20 40 60 80 100

-6-4

-20

24

6

USER SESSION #

58% error 40% error 12% error

Page 20: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

00:00 01:00 02:00 03:00 04:00 05:00

1520

2530

3540

00:00 01:00 02:00 03:00 04:00 05:00

1520

2530

3540

How do we forecast the dynamic causes?

ANALYTICS LAYER

MODELING ENGINE

DATA LAYER: Data sanitization and organization

QUERY LAYER: Query parsing and response

FORECAST ENGINE

MONITORING ENGINE

PREDICTION ENGINE

Future effect

s

Future states

Currentstates

Current

effectsCurrent

states

OFFLINEPATH

ONLINEPATH

Current data

Past and current data

user session logs

queries responses

Proposed state

change

Testforseasonalityandtrend,useappropriateversionofARIMAtime-seriesforecasting

Number of users on a cell

-20

2060

data

-20

2060

seasonal

-20

2060

trend

-20

2060

0 20 40 60 80 100

remainder

time

ActualForecast

4% error6% error with naïve forecasting

Page 21: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How does ForeC work?The internals of ForeC

What can ForeC do?and how well?

How can a network use ForeC?Load management in Levi’s Stadium

Page 22: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

ForeC can forecast network effects per user, per second, aggregates

Primitive Examplequery Medianerror

BasicprimitivesPREDICTeffectperuserbasedon(changesin)networkstate

ThroughputofuserAif itwereoncell2insteadof1? 8.5%

FORECAST effectperuserpersecond Throughputof userAoverthenext1s? 13.0%

Extensionsto aggregatesoverspaceandtime

FORECASTeffect per cell,sector,network… Averagethroughputofcell1inthenext1s? 4.0%

FORECASTeffectper10sof seconds,minutes… Averagethroughputofcell1inthenext5s? 1.7%

Networkeffects:throughput, resourceutilization, contention…&anyfunction ofthemNetworkactions:handoveruser,admitnewuser, increase/decreasetransmitpower

Page 23: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

How does ForeC work?The internals of ForeC

What can ForeC do?and how well?

How can a network use ForeC?Load management in a stadium

Page 24: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

ForeC letsoperatormonitor,forecastandoptimizenetworkKPIs

[SWITCHTOTABLEAU]MONITOR– FORECAST– OPTIMIZE

Dash1:OperatorscanmonitornetworkKPIsatafineresolutioninspaceandtime(show“ACTUAL”KPIforBand700,1900,2100)[canalsodefinenewKPIstomonitor]

Dash2:OperatorscanforecasttheseKPIstomanageloadproactively(show“ACTUAL”KPIand“FORECAST”KPIforacell)

Dash3:OperatorscanchoosethebestloadmanagementtooptimizetheseKPIs(show“ACTUAL”and“OPTIMIZED”KPI)

Page 25: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Canwedothisunsupervised?ClassicalMachineLearning DeepReinforcementLearning

NeuralNetworkReinforcementLearning

(Prediction &What-if)

RewardFunction

• KeyChallenge:DeepRLisverydatahungry,youcannotrunbillionsofA/Btestsonalivenetwork

• Whatweneed:Network/SystemSimulatorswetrust!• Veryhardgiventhecomplexinteractionsinthesesystems

Page 26: Data Driven Networking · bits per resource element. Throughput. bits per time. Cell bandwidth Cell contention User&total demand. Resource allocation rate. resource elements per time??

Summary&Takeaways

• Goal:Buildingaprogrammableconnectivitylayerforfutureapplications– Applicationsprogrammaticallyspecifytheirconnectivityrequirements

– Thenetworkplatformleveragesrealtimestreamingtelemetryandlearningtoautomaticallydeliverthatconnectivity

• Youspecifywhatyouwant,andthenetworkfiguresouthowtodeliverit!


Recommended