+ All Categories
Home > Documents > December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf ·...

December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf ·...

Date post: 29-Aug-2018
Category:
Upload: buikien
View: 213 times
Download: 0 times
Share this document with a friend
113
December 30, 2009 Life Cycle Assessment of U.S. Industry‐Average Corrugated Product Final Report Prepared for: Corrugated Packaging Alliance a joint initiative of the American Forest & Paper Association Fibre Box Association Association of Independent Corrugated Converters Prepared by: PE Americas and Five Winds International
Transcript
Page 1: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

December30,2009

LifeCycleAssessmentof

U.S.Industry‐AverageCorrugatedProduct

FinalReport

Preparedfor:

CorrugatedPackagingAlliance

ajointinitiativeofthe

AmericanForest&PaperAssociation

FibreBoxAssociation

AssociationofIndependentCorrugatedConverters

Preparedby:

PEAmericas

andFiveWindsInternational

Page 2: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page2of113

TABLEOFCONTENTS

TABLEOFCONTENTS ................................................................................................................................2

LISTOFFIGURES .......................................................................................................................................4

LISTOFTABLES .........................................................................................................................................6

ACRONYMS ..............................................................................................................................................7

EXECUTIVESUMMARY..............................................................................................................................9

INTRODUCTION ......................................................................................................................................20

1 GOALOFTHESTUDY..............................................................................................................22

2 SCOPE....................................................................................................................................23

2.1 SYSTEMDESCRIPTIONOVERVIEW............................................................................................................. 23

2.2 FUNCTIONALUNIT ................................................................................................................................. 24

2.3 PRODUCTSYSTEM(S)BOUNDARIES .......................................................................................................... 24

2.3.1 TechnologicalCoverage ................................................................................................................ 27

2.3.2 GeographicalCoverage................................................................................................................. 27

2.3.3 TimeCoverage ............................................................................................................................... 28

2.4 LIFECYCLEIMPACTASSESSMENTMETHODOLOGY&IMPACTCATEGORIESCONSIDERED.................................. 28

2.5 DATACOLLECTIONANDDATASOURCES.................................................................................................... 30

2.5.1 DataSources .................................................................................................................................. 30

2.5.2 DataCollection .............................................................................................................................. 31

2.5.3 Allocation ....................................................................................................................................... 32

2.5.4 Cut‐offCriteria ............................................................................................................................... 32

2.5.5 DataQualityRequirements .......................................................................................................... 33

2.6 CRITICALREVIEW ................................................................................................................................... 34

3 MODELSTRUCTUREANDDATACOLLECTION.........................................................................36

3.1 WOODFIBERPRODUCTION(FORESTRY) ................................................................................................... 36

3.2 OVERVIEWOFCONTAINERBOARDPRODUCTION......................................................................................... 36

3.2.1 Pulpingofprimaryfibers............................................................................................................... 36

3.2.2 Pulpingofrecoveredfibers ........................................................................................................... 37

3.3 CONVERTINGPLANTS ............................................................................................................................. 39

3.4 RECOVERYANDEND‐OF‐LIFE................................................................................................................... 41

3.4.1 Closed‐looprecyclingapproach.................................................................................................... 42

4 RESULTS ................................................................................................................................45

4.1 LIFECYCLEINVENTORY............................................................................................................................ 45

Page 3: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page3of113

4.1.1 Inventoryof1kgaveragecorrugatedproduct ........................................................................... 45

4.1.2 Biogeniccarbonconsiderationsfor1kgcontainerboard........................................................... 48

4.1.3 Energyresourcesusedfor1kgcorrugatedproduct ................................................................... 49

4.2 IMPACTRESULTSANDPRIMARYENERGYDEMAND ...................................................................................... 51

4.2.1 Resultsovertotallifecycle ........................................................................................................... 51

4.2.2 Resultsof1kgofContainerboard................................................................................................ 59

5 SENSITIVITYANALYSIS ...........................................................................................................61

5.1 INFLUENCEOFEOLONLIFE‐CYCLEPERFORMANCE...................................................................................... 61

5.2 INFLUENCEOFTRANSPORTATIONOFFINALPRODUCT .................................................................................. 64

6 CONCLUSIONS .......................................................................................................................70

APPENDIXA:BIOGENICBASEDCARBONBALANCEOFCONTAINERBOARDMILLS...................................72

APPENDIXB:LCARESULTS–CML ...........................................................................................................73

APPENDIXC:GATE‐TO‐GATEINVENTORY ...............................................................................................79

APPENDIXD:CRADLE‐TO‐GATEINVENTORYANDLCIARESULTSOF1KGCORRUGATEDPRODUCT ........80

APPENDIXE:CRADLE‐TO‐CRADLEINVENTORY .......................................................................................93

APPENDIXF:THECRITICALREVIEWPANELREPORT..............................................................................104

APPENDIXG:IMPACTINDICATORS.......................................................................................................110

Page 4: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page4of113

LISTOFFIGURES

Figure1.SystemScopeandLife‐CyclePhasesforU.S.averagecorrugatedproduct .................... 25

Figure2.ContainerboardProductionProcess .................................................................................. 37

Figure3.QualitativemassflowmodelofEoLsituationofoldcorrugatedproducts ..................... 41

Figure4.Exemplarymassflowofclosed‐loopapproach................................................................. 43

Figure5.MassflowofEnd‐of‐Lifemodel.......................................................................................... 44

Figure6.GHGemissions(inCO2‐equiv.)andCO2uptakeof1kgofaveragecontainerboard..... 49

Figure7.Shareoflife‐cyclestagesperimpactcategoryplusPrimaryEnergyDemand(PE)for1kgofcorrugatedproduct ................................................................................................... 52

Figure8.PrimaryEnergyDemand(inMJ)‐non‐renewable(fossil)–1kgproductoverlifecycle......................................................................................................................................... 54

Figure9.GlobalWarmingPotential(inkgCO2‐equiv.)–1kgproductoverlifecycle ................... 55

Figure10.EutrophicationPotential(TRACI,inN‐equiv.)‐1kgproductoverlifecycle................. 56

Figure11.AcidificationPotential(TRACI,inmolH+‐equiv.)‐1kgproductoverlifecycle ........... 57

Figure12.POCP/SmogPotential(TRACI,inkgNOx‐equiv.)‐1kgproductoverlifecycle........... 58

Figure13.PrimaryEnergyDemand(non‐renewable(fossil)energyresources,inMJ)–1kgofpaperinputtoconvertingplant.................................................................................... 60

Figure14.InfluenceofdifferentEoLscenarios–GWP(inkgCO2‐equiv.),absolutevalues.......... 62

Figure15.InfluenceofdifferentEoLscenarios–GWP(inkgCO2‐equiv.),relativegraph ............ 63

Figure16.InfluenceoftransportdistancesonoverallLCIforPE(non‐renewable,inMJ)............ 65

Figure17.InfluenceoftransportdistancesonoverallLCIforGWP(inCO2‐equiv.) ...................... 66

Figure18.InfluenceoftransportdistancesonoverallLCIforPOCP/Smog(TRACI,inNOx‐equiv.)......................................................................................................................................... 67

Figure19.InfluenceoftransportdistancesonoverallLCIforAP(TRACI,inmolH+‐equiv.) ........ 68

Figure20.InfluenceoftransportdistancesonoverallLCIforEP(TRACI,inN‐equiv.) .................. 69

Figure21.Shareofdifferentlife‐cyclestagesperimpactcategoryplusPrimaryEnergyDemand–non‐renewableforof1kgofcorrugatedproduct ...................................................... 74

Figure22.PrimaryEnergyDemand(inMJ)‐non‐renewable(fossil)energyresources–1kgcorrugatedproductoverlifecycle................................................................................ 75

Figure23.CML‐EutrophicationPotential(inkgPhosphate‐equiv.)‐1kgproductoverlifecycle......................................................................................................................................... 76

Figure24.CML‐AcidificationPotential(inkgSO2‐equiv.)‐1kgproductoverlifecycle.............. 77

Figure25.CML‐POCP(inkgEthene‐equiv.)‐1kgproductoverlifecycle.................................... 78

Page 5: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page5of113

Figure26.PrimaryEnergyDemand(inMJ)‐non‐renewable(fossil)energyresources–1kgcradletogatecorrugatedproduct ............................................................................... 80

Figure27.GlobalwarmingPotential(GWP)–1kgcradletogatecorrugatedproduct ................ 81

Figure28.TRACIEutrophicationpotential–1kgcradletogatecorrugatedproduct................... 81

Figure29.TRACIAcidificationpotential–1kgcradletogatecorrugatedproduct ....................... 82

Figure30.TRACI–Smogpotential–1kgcradletogatecorrugatedproduct................................ 82

Figure31.Greenhouseeffect........................................................................................................... 111

Figure32.AcidificationPotential ..................................................................................................... 111

Figure33.EutrophicationPotential ................................................................................................. 112

Figure34.PhotochemicalOzoneCreationPotential...................................................................... 113

Page 6: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page6of113

LISTOFTABLES

Table1.Summaryofsystemboundaries .......................................................................................... 26

Table2.Transportdistancesandmodes........................................................................................... 27

Table3.SelectedImpactCategories.................................................................................................. 29

Table4.Materialinputfor1kgcorrugatedmanufacturing(1.11kgofcontainerboard) ............. 39

Table5.Materialinputformanufacturingof1kgofcorrugatedproductatconvertingplant .... 40

Table6.Inventoryofaveragemillfor1.11kgofcontainerboardproduct(gate‐to‐gate) ............ 46

Table7.Inventoryofaverageconvertingplantfor1kgofcorrugatedproduct(gate‐to‐gate) ... 47

Table8.Energyresourcesusedformanufacturingof1kgcorrugatedproduct............................ 50

Table9.EnvironmentalimpactplusPrimaryEnergyDemand(PE)perspecificlife‐cyclestageof1kgofcorrugatedproduct............................................................................................... 52

Table10.GWPandnonrenewableenergyresourcesusedfor1kgofcontainerboard ............... 59

Table11.Balanceofbiogenicbasedcarbonthroughcontainerboardmill .................................... 72

Table12.EnvironmentalimpactplusPrimaryEnergyDemand(PE)perspecificlife‐cyclestageof1kgofcorrugatedproduct ........................................................................................... 73

Table13.Cradle‐to‐gateinventory–1kgcorrugatedproduct ....................................................... 82

Table14.Cradletocradleinventory–1kgofcorrugatedproduct ................................................ 93

Page 7: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page7of113

ACRONYMS

• AF&PA AmericanForest&PaperAssociation

• AICC AssociationofIndependentCorrugatedConverters

• AP AcidificationPotential

• BOD5 5‐dayBiochemicalOxygenDemand

• CML CentreofEnvironmentalScienceatLeiden

• CORRIM ConsortiumforResearchonRenewableIndustrialMaterials

• CPA CorrugatedPackagingAlliance

• EoL End‐of‐Life

• EP EutrophicationPotential

• EPA UnitedStatesEnvironmentalProtectionAgency

• FBA FibreBoxAssociation

• GaBi GanzheitlicheBilanzierung(Germanforholisticbalancing)

• GHG GreenhouseGas

• GWP GlobalWarmingPotential

• ISO InternationalOrganizationforStandardization

• LCA LifeCycleAssessment

• LCI LifeCycleInventory

• LCIA LifeCycleImpactAssessment

• MJ Megajoule(energyunit)

• mm Millionmetric

• MP MixedPaper

• NCASI NationalCouncilforAirandStreamImprovement,Inc.

• NMVOC Non‐methanevolatileorganiccompound

• OCC OldCorrugatedContainer(s)

Page 8: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page8of113

• ODP OzoneDepletePotential

• ONP OldNewspaper

• PE PrimaryEnergyDemand

• PEA PEAmericas

• PNW PacificNorthwest

• POCP PhotochemicalOzoneCreationPotential

• SE U.S.Southeast

• TRACI ToolsfortheReductionandAssessmentofChemicalandOtherEnvironmentalImpacts

• TSS TotalSuspendedSolids

• USGS UnitedStatesGeologicalSurvey

• VOC Volatileorganiccompound

• WRI WorldResourcesInstitute

• WBCSD WorldBusinessCouncilforSustainableDevelopment

Page 9: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page9of113

EXECUTIVESUMMARY

Thegoalof this studywas toconductaLifeCycleAssessment (LCA) foraU.S. industry‐averagecorru‐

gatedproduct.TheLCAwascompletedto(1)betterunderstandtheenvironmentalperformanceofanaveragecorrugatedproductrelatedtoalllife‐cyclestages;(2)promotecontinuousimprovementoftheenvironmental sustainability performance of corrugated products as packaging material; and (3) re‐

spondtocustomerandpublicrequestsforenvironmentalinformation.

LifeCycleAssessmentisastandardizedscientificmethodforsystematicanalysisofflows(e.g.massandenergy)associatedwiththelifecycleofaspecificproduct,technology,serviceormanufacturingprocesssystem.Inthecaseofaproductsystem,thelifecycleincludesrawmaterialsacquisition,manufacturing,

useandEnd‐of‐Life(EoL)management.AccordingtotheInternationalOrganizationforStandardization(ISO)14040/44standards,anLCAstudyconsistsoffourphases:(1)goalandscope(frameworkandob‐jectiveofthestudy);(2)LifeCycleInventory(input/outputanalysisofmassandenergyflowsfromop‐

erationsalongtheproduct’svaluechain);(3)LifeCycleImpactAssessment(evaluationofenvironmentalrelevance,e.g.globalwarmingpotential);and(4)interpretation(e.g.optimizationpotential).

Thestudyintendstoprovideusefulperspectivefordifferentstakeholdergroups,suchasthecorrugatedindustry, consumers, retailers,packagingspecifiersandbuyers,waste recyclers, governmentagencies,

non‐governmentalorganizations,LCApractitioners,andmedia.Thisstudyisnotacomparativestudyinandof itself;however, itmay enable future comparativestudies.Other studieswillneed toemployafunctionalunitconsistentwiththegoalandscopeofthisstudy,andcanachievespecificresultsbyscal‐

ingtheinputandoutputdataappropriately.

Thescopeofthestudywastodevelopa“cradle‐to‐cradle”LifeCycleAssessmentofthe2006U.S.indus‐try‐averagecorrugatedproduct.

!"#$$#%&$'(%')#*+',)(-*')&.'

$%#/ 0,)$(-1

2),")(-*#)/$+'3%)(#&4$+'

).5-$#6-$

7%.#8"'$8/9)(-+'7%.)+'-(3:

!&-*4;+'98-/$+'-/-3(*#3#(;+'-(3:

<%*-$(*; =%&()#&-*>%)*.

"#//$=%&6-*(#&4

?/)&($

@*)&$?%*('(%'

=8$(%"-*'A 8$-'

?5)$-

!&.'%9'B#9-

2-3;3/#&4

B)&.9#// C

#&3#&-*)(#%&

73%?-'%9'(5-'$(8.;

7;$(-"'>%8&.)*; 9%*'3%**84)(-.?*%.83(")&89)3(8*#&4

SystemScopeandLife‐CyclePhasesforU.S.AverageCorrugatedContainer

Page 10: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page10of113

Thefunctionalunit(basisforcomparison)usedinthisstudyis:OnekilogramofU.S.averagecorrugatedproduct.

ModelingApproach

TheLCAmodelisbrokenintofourprimarylife‐cyclestages:

• Containerboard:Productionofthecontainerboard(linerandmedium).Thisincludesvirginfiber

production, transportationfromforesttomillandmill toconvertingplant,recycledinput,andenergiesandchemicalsneededduringmilloperation.Thefollowingaveragetransportationdis‐tancesforinboundtransportationforvirginfiberareassumed:225milesbytrain,150milesby

shipand50milesbytruck1.

• Convertingplant:Allimpactsassociatedwitheffortsneededforconverting.Thisincludesener‐gies, chemicals, glue, starch, inks, etc., andhandling ofwaste streams. The following averagetransportationdistancesforinboundtransportationforcontainerboardareassumed:850miles

bytrainand500milesbytruck.

• Transportofproduct:Thispart isrepresentativefor the transportationofthefinalcorrugatedproduct(1,000milespertruck).

• EoLproduct:EoLcoverstheeffortsandimpactsfor landfilloperationsandincineration.47.5%oftherecoveredlandfillgas(methane)isflaredonsite.Nocombustionemissionshavebeenas‐

signedtorecoveredlandfillgas,whichisusedasaproduct.

DataSources

• The study used primary data for containerboard mills and converting plants, and existingdatasets to model the environmental emissions of fiber production, transportation, recoveryprocesses,End‐of‐Lifeandancillaryprocesses.Whereverpossible,thisstudyisbasedonprimary

datacollectedfromCorrugatedPackagingAlliance(CPA)membercompaniesand theirrespec‐tiveproductionsites. Incaseswhereprimarydatawasnotavailable, secondarydataobtained

fromliterature,previousLCIstudies,andlife‐cycledatabaseswasusedfortheanalysis.

• FiberproductionprocessesweremodeledaspertheConsortiumforResearchonRenewableIn‐dustrialMaterials’CORRIMIIstudyofU.S.PacificNorthwestandSoutheastforestryoperations.PulpandpaperinputdatawassourcedfromFisherInternational;milloutputdataisbasedona

semi‐annual industry survey conducted by the American Forest & Paper Association (AF&PA)andtheNationalCouncil forAirandStreamImprovement(NCASI).Dataforthisportionofthestudyincludes53containerboardmillsrepresenting29millionmetrictonsperyear,nearly90%

1Informationonaveragetransportdistanceswasprovidedbyanddiscussedwiththeparticipat‐ingmembercompanies.Valuesmentionedareagreednumbers.

Page 11: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page11of113

ofthe2006productionvolume.ConvertingplantsweresurveyedbytheFibreBoxAssociation(FBA).Thestudyincludesdatafrom162convertingplantsrepresenting9.6millionmetric(mm)

tonsperyear,approximately45%ofproductionvolume.Theseplantsincludeasampleofcom‐pletecorrugatingplants, sheet feedersandsheetplantsproducingawidearrayofcorrugatedproducts.Howevertheconsideredconvertingplantsrepresentthecurrentstateoftheartand

thereforecanbe considered representativeof the industry.TheLCAmodelwascreatedusingtheGaBi4softwaresystemforLifeCycleAssessment,developedbyPEINTERNATIONAL.Theda‐tabasescontained intheGaBisoftwareprovidetheLCIdatafortherawandprocessmaterials

usedinthebackgroundsystem.

• End‐of‐LifeismodeledusingAF&PAandU.S.EPAstatistics.It isassumedthat78%ofthe2006corrugatedproductwasrecoveredforadditionalusewhiletheremaining22%wasdisposed inthe2006averageU.S.municipalsolidwastesystem.Thissystemincludes18.5%ofdisposedcor‐

rugated(=approximately4%ofoverall)goingtoincinerationforenergyrecovery.Ofthecorru‐gated containers landfilled, 55% (as measured by carbon content) are sequestered for morethan100years2.Carboncontentthatisnotsequesteredforlongerthan100yearsisassumedto

degradeunderaerobicandanaerobicconditions;thecarbonisconvertedintoCO2andCH4.OftheCH4 from landfill gas, it isassumedthat59% is capturedandcombusted forenergy recov‐ery3.

2The“100year”referenceiscommonlyacceptedpracticebyLCApractitioners.Itisalsousedby

theWRI.3ForamoredetaileddescriptionoftheEoLparameterspleaseseethe2006EPAreport“Solid

WasteManagementandGreenhouseGases–ALife‐CycleAssessmentofEmissionsandSinks”[EPA2006]

Page 12: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page12of113

CriticalReview

ThisstudyhasbeenconductedwiththeparticipationofaCriticalReviewPaneltoensurethatitiscom‐pletedtotherequirementsof ISO14040seriesstandardsandindustrybestpractices.AthenaSustain‐

ableMaterials Institutewascommissionedto leadthecriticalreview inaccordancewithISO14040/44(2006),incollaborationwithco‐reviewers.Thereviewpanelcomprisedthefollowingexperts:Mr.JamieMeil,Athena Institute;Ms.MarthaStevenson,privateconsultant;Dr.MichaelDeru,U.S.National Re‐

newableEnergyLaboratory;Dr.JimWilson,OregonStateUniversity;andDr.LinditaBushi,AthenaInsti‐tute.

ImpactAssessmentResults

LifeCycleImpactAssessment(LCIA)resultswerecalculatedfor1kgoffinalcorrugatedproductfortheGlobalWarming Potential (GWP),Acidification Potential (AP), Eutrophication Potential (EP) and Smog

CreationPotential.PrimaryEnergyDemand(PE) isalsoreportedfornon‐renewableonly.ResultswerecalculatedusingbothCMLandTRACImethods

Asshowninthetablebelow,manufactureofcontainerboardisthedominantlife‐cyclestageforPE,AP,EPandSmog.Approximately35%ofPrimaryEnergyDemandisrelatedtocombustionoffossil fuels in

containerboardmills.EP,APandSmogarealsomainlyinfluencedbytheuseoffossilfuels(manufactur‐ingandtransportationoffinalproduct)andelectricity.

WhilehandlingofthecorrugatedproductatEnd‐of‐Life(EoL)playsaminorroleforPE,AP,EP,andSmogformation,itisasignificantlife‐cyclestageforGWP.Thiseffect ismainlyrelatedtotheconversionofa

shareoftheC‐contentofcorrugatedtomethaneandcarbondioxidewhenitislandfilled.GWPincludesallgreenhousegas‐relevantemissionsstemmingfromthesupplyandcombustionoffossilfuels,aswellas supply of renewable fuels and any other relevant emissions. It represents the net CO2‐equivalent

valueforthematerialsneededforproductionof1kgofcorrugatedproduct.TheCO2uptake4relatedto

virginfiberisaccountedforinthisvalueaswellastheamountof0.418kgofrecycledfiberusedbyU.S.

containerboardmills.

Containerboardproductionischaracterizedbyawaterthroughputof43.2kgper1.11kgofcontainer‐board,butthenetwaterconsumption5onlyaccountsfor~4.9kgper1.11kgofcontainerboard(or1kgofcorrugatedproduct).

4Thecarbonuptakerelatedtotheuseofbiomassasafuelisalsoconsideredinthisstudyby

handlingthecombustionofbiomassascarbonneutral.5Thenetwaterconsumptionisthedifferenceofthewaterenteringthemillsandreleasedei‐

thertowastewatertreatmentplantsordirecttotheenvironment.Itisthesumofwaterretainedincontainerboard,evaporation,andwatercontentofwastestreams.

Page 13: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page13of113

TheoverallnetGWPof1kgU.S.averagecorrugatedproductwithintheassumedboundaryconditions

overthetotallife‐cycleresultsisapproximately1kgofCO2equivalent.

Approximately0.42kgofCO2equivalentsarerelatedtothedisposalof1kgofOCC.Withoutanyrecy‐cling,100%oftheOCCwouldbehandledbyeitherlandfillorincineration,andtheCO2impactswouldbearound2kg.This isbasedon the fact thatapproximately40%of themethaneemissions from landfill

operationsaredirectlyreleasedtotheenvironment.

ThenegativevalueoftheGlobalWarmingPotentialinthefiberproductionresultsfromtheuseofbio‐massasrawmaterial.SincebiomassabsorbsCO2initsgrowthphaseviaphotosynthesis,theproductionofbiomassrepresentsanetCO2sink.

Page 14: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page14of113

Life‐CycleImpactResultsfor1kgofAverageCorrugatedProduct

PrimaryEnergyDemand(MJ)‐non‐renewable(fossil)energyresources–1kgproductoverlifecycle

GlobalWarmingPotential(kgCO2‐equiv.)–1kgproductoverlifecycle

Page 15: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page15of113

EutrophicationPotential(TRACI,N‐equiv.)‐1kgproductoverlifecycle

AcidificationPotential(TRACI,molH+‐equiv.)‐1kgproductoverlifecycle

Page 16: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page16of113

POCP/SmogPotential(TRACI,kgNOx‐equiv.)‐1kgproductoverlifecycle

InfluenceofEoLsituationonLife‐Cycleperformance

Asshowninthefigureabove,theEnd‐of‐Lifestagehasasignificantinfluenceonoverallclimatechange;sodifferentEoLscenarioshavebeensimulatedtoshowtheinfluenceonoverallperformance.Thefol‐

lowingscenarioshavebeenassessed:

• Base:78%recoveryrate/59%oflandfillgasrecovered

• Allrecovered:Allcorrugatedproductrecovered,nothingtolandfill/incineration

• 78%recovered/allincinerated:78%recoveryrate/allnon‐recoveredincinerated

• 78%recovered/allgasrecovered:78%recoveryrate/alllandfillgasrecovered

• 78%recovered/nogasrecovered:78%recoveryrate/nolandfillgasrecovered

ThehandlingofOCChasasignificant influenceonoverallperformance.Forexample, ifnocorrugatedwere incineratedor landfilledattheEnd‐of‐Lifestage,theoverallGWPwoulddecreasebyabout40%.Alsolandfillgasrecoveryhasasignificantinfluence.Pleasenotethat47.5%oftherecoveredlandfillgas

iscombustedon‐site,andnocombustionemissionshavebeenassignedtorecoveredlandfillgas,whichisusedasaproductatthispoint(notflared).Theinfluenceontheenergymixofrecoveredfiber input

Page 17: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page17of113

Examplemassflowofclosed‐loopapproach

into containerboardmillshasnotbeenassessed.Thesensitivityanalysis isbasedon thesameenergymixoffossilandrenewableenergyinputintocontainerboardmills.

Consideringtheseassumptions,theanalysisclearlyindicatesthattheEoLstageisofrelativelyhighim‐

portanceandtheoverallprofilemaybesignificantlyreducedbymanagingtheEnd‐of‐Lifestagesofcor‐rugatedproducts.

InfluenceofdifferentEoLscenarios–absolutevaluesfor1kgcorrugatedproduct

Closed‐LoopRecyclingandProductEnd‐of‐Life

The End‐of‐Life phase is an important part of alife‐cycle study as the handling of products atlife’sendcanhaveasignificantinfluenceonthe

overall profile of the product of interest. In acorrugated product system, End‐of‐Life is addi‐tionally important due to product recovery and

recycling for additional uses. This study applieda closed‐loop approach to modeling recycledfiber flows, thus avoiding allocation as allowed

Page 18: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page18of113

by ISO 14040/ 44, because theU.S. recovery stream is composedof aworld‐wide flowof fiber frompracticallyuntraceablesources.Theclosed‐loopapproachconsidersthattherecoveredmaterialisused

inthesameproductlifecycle.Thisimpliesthatallrecycledfiberinputiscollectedinthesamelifecycle‐‐thatnooldcorrugatedproduct isleavingthesystemandthatnoadditionalcorrugatedproductisen‐teringthesystem.

AspertheAF&PAstatistics,78%oftheU.S.shipments(oldcorrugatedcontainers(OCC))wasrecovered

in2006.Of the fiber recovered,0.418 kg (dryweight)per1kgcorrugatedboardwas recycled incon‐tainerboardmills.Theremainingrecoveredfiberswererecycledinothermills,goingintoproductsotherthancorrugated,withtheremainderofthefiberbeingexported.Thispreventscorrugatedmaterialfrom

goingto landfilloperationsor incineration.Therefore,noenvironmentaleffect isrelatedto therecov‐eredOCCandassuchit ismodeledas“recycledinothersystem”withnocreditsorburdensassigned.Landfill, incineration and landfill gas capture processes are modeled as per U.S. EPA municipal solid

wastestudies.

BiogenicCarbonHandling

The “carbon neutrality” of renewable or “bio‐based” materials must be considered when discussingGlobalWarmingPotentialorGHGemissionswithinthecorrugatedproductsystem.Thecarboncontentof biomass is basedon carbon‐dioxideuptake from the atmosphere and therefore the CO2 emissions

related to combustion of bio‐based carbonmust be considered as carbon‐neutral. This fact is widelyrecognized in thescientificandpolicycommunities. As such, theGHGemissionsassociatedwith fibermix and biomass supply (as additional energy sources) are related to the use of fossil‐based energy

sources(transportation,sawmills,etc.)orfertilizersusedwhengrowingwood.Sincethisshareisbasedonfossilenergyresources, itcannotbeconsideredcarbon‐neutral.ThesamelogicappliestotheGHG‐

relevant emissions associatedwith combustion of fossil fuels or production of fossil‐based electricityand steam.However, the renewable nature of fiber biomass substantially reduces theoverall carbonfootprintofatypicalcontainerboardmill.Sixty‐fourpercentoftheenergyusedincontainerboardmills

in2006wasgeneratedbybiomasscombustion,thussignificantlyreducingthemillCO2emissionsfromwhattheywouldhavebeenif100%fossilfuelshadbeenusedtogeneratethatpower.

Conclusions

Thefollowingconclusionsmayreasonablybemadebasedontheresultsofthisstudy:

• Papermills drive the life‐cycle profiles – For all impact categories,material and energy flowsfrom paper mills dominate the results. Environmental impacts are dominated by energy de‐

mands at the mill. Bio‐based energy (e.g. hog‐fuel, liquor, etc.) substantially reduces globalwarmingpotentialcontributionfrommills,butdoesnoteliminatemills’GWPcontributionduetotheuseoffossilfuels.Energysourcing isamanagementoptionthatmaybeopentomillop‐

eratorsthatcanhaveasubstantialeffectontheenvironmental impacts. Increaseduseofbio‐basedenergysourceswillfurtherreducetheoveralluseoffossilenergyandGWPimpactsfrommills,althoughtherearenumerousfactorsthatmustbeconsideredinenergysourcingdecisions

(e.g.availabilityandprice).

Page 19: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page19of113

• Transportationoffinalproductdoesnotdefineprofile–Long‐distancetransportationscenarios(basedonnational averages)weremodeled yet still representedaminor influenceonoverall

life‐cycleimpactsforallimpactcategories.

• End‐of‐Lifeisonly importantwithrespecttoGWP–End‐of‐Lifeasmodeled(basedon2006in‐dustryaverage)demonstratesthat it isonly important inrelation toglobalwarmingpotential.Otherlife‐cycleimpactindicatorsshowlittleornoresponsefromtheEnd‐of‐Lifestage.TheEnd‐

of‐LifeeffectonGWPismainlyrelatedtomethanegeneratedbutnotcapturedfromlandfillop‐erations. The sensitivity analysis ondifferent End‐of‐Lifemanagement scenarios clearly showsthatincreasingrecovery,increasingeffortstocapturemethane,orincreasingthepercentageof

disposed corrugatedmaterials that are incinerated for energy recovery have the potential toimproveoverallenvironmentalperformance.

Page 20: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page20of113

INTRODUCTION

Theaimofthestudyistogeneratehigh‐quality,up‐to‐datedataontheenvironmentalimpactsofcorru‐

gatedpackaging.WithsuchanLCAstudy,theCorrugatedPackagingAllianceanditsconstituentassocia‐tions can assist other organizations in understanding and communicating the environmental footprintandenvironmentalbenefitsassociatedwithusingcorrugatedratherthanothermaterials.Atthesame

time, thismodel helps describe the environmental impacts of different life‐cycle stages in relation tooverallenvironmentalperformance,andthepotentialenvironmentalbenefitsofprocessimprovements.Beyondtheoperationsofasinglemanufacturingsite,thestudyevaluatestheenvironmentalperform‐

anceofan industry‐averagecorrugatedcontainerthroughout itsentire lifecycle.Thestudyintendstoprovideuseful perspective for different stakeholder groups, such as primary or secondary producers,consumers,waste recyclers,governmentagencies,non‐governmentalorganizations, LCApractitioners,

andmedia.

Thestudyisbasedoninformationfrom53millsrepresentingnearly90%ofthe2006linerboardproduc‐tionand162convertingfacilitiesrepresentingnearly45%ofoverallproductionvolumefor20066.

Forthisstudy,acoreprojectteamwasestablishedtodirect,review,andcoordinatetheactivitiesasso‐ciatedwiththemethodologicalagreement,datacollection,modeling,presentationanddisseminationof

theLCIdataandcorrespondingLCAresults.Thecoregroupforthisprojectconsistsofatechnicaladvi‐sorygroupwithintheFBASustainabilityCommitteealongwithconsultantsfromPEAmericas.

LifeCycleAssessmentisastandardized,scientificmethodforsystematicanalysisofflows(e.g.massandenergy)associatedwiththelifecycleofaspecificproduct,technology,serviceormanufacturingprocess

system.Theapproachinprincipleaimsataholisticandcomprehensiveanalysisoftheaboveitemsin‐cludingrawmaterialsacquisition,manufacturing,useandEnd‐of‐Life(EoL)management.Accordingtothe InternationalOrganization forStandardization (ISO)14040/44standards7,anLCAstudyconsistsof

four phases: (1) goal and scope (framework and objective of the study); (2) Life Cycle Inventory (in‐put/outputanalysisofmassandenergyflowsfromoperationsalongtheproduct’svaluechain);(3)LifeCycleImpactAssessment(evaluationofenvironmentalrelevance,e.g.globalwarmingpotential);and(4)

interpretation(e.g.optimizationpotential).

Thegoalandscopestageoutlinestherationaleofthestudy,anticipateduseofstudyresults,boundaryconditions,datarequirementsandassumptionstoanalyzetheproductsystemunderconsideration,andothersimilartechnicalspecificationsforthestudy.Thegoalofthestudyisbaseduponspecificquestions

thatthestudyseekstoanswer,thetargetaudienceandstakeholdersinvolved,andtheintendeduseforthestudy’sresults.Thescopeofthestudydefinesthesystemsboundaryintermsoftechnological,geo‐

6Pleasenotethattheconsideredconvertingplantsrepresentthecurrentstateoftheartandthereforecanbeconsideredrepresentativeoftheindustry7ISO14040:2006Environmentalmanagement‐‐LifeCycleAssessment‐‐Principlesandframework;ISO14044:2006 Environmental management ‐‐ Life Cycle Assessment ‐‐ Requirements and guidelines.Availableatwww.iso.ch.

Page 21: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page21of113

graphical,andtemporalcoverageofthestudy,attributesoftheproductsystem,andthelevelofdetailandcomplexityaddressed.

TheLifeCycleInventory(LCI)ismerelyalistofinputandoutputflowswithnoenvironmentalrelevance.

LCA characterizes the flows and describes their potential effects on the environment. The Inventorystagequalitativelyandquantitativelydocumentsthematerialsandenergyused(the“inputs”)aswellastheproducts, by‐products, and environmental releases in termsof emissions to the environment and

wastestobetreated(the“outputs”)fortheproductsystembeingstudied.TheLCIdatacanbeusedonitsowntounderstandtotalemissions,wastesandresourceuseassociatedwiththematerialorproductbeingstudied;to improveproductionorproductperformance;or itcanbefurtheranalyzedandinter‐

pretedtoprovideinsightsintothepotentialenvironmental impactsfromthesystem(LifeCycleImpactAssessmentandinterpretation,LCIA).

Inordertoconformtoincreasingpressurefromproductmanufacturersandconsumerretailmarketstoselectmoresustainablepackagingoptions,theCorrugatedPackagingAlliance(CPA)engagedPEAmeri‐

cas (PEA) to undertake a Life Cycle Assessment study to accurately represent the life‐cycle environ‐mentalimpactsofthecorrugatedproductionchain.

Thestudyhasbenefitedfromthecooperationandsupportofmanymanufacturers inthissector,whocontributedtheirdatatotheNCASIandFBAstudiesthatwereusedasprimarydatasourcesinthisre‐

port.NCASIstaffwasalso instrumental instructuringandinterpretingdatafromthesesurveystosup‐porttheconsultantteam.

Page 22: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page22of113

1 GOALOFTHESTUDY

ThegoalofthisstudyistoconductaLifeCycleAssessment(LCA)foraU.S.industry‐averagecorrugated

productto:

• Better understand the environmental performance of an average corrugated productrelatedtoalllife‐cyclestages,

• Benchmark and demonstrate the environmental sustainability performance of corru‐gatedproductsaspackagingmaterial,and

• Respondtocustomerandpublicdemandsforenvironmentalinformation.

Theintentofthestudyistogenerateresultsthatarecredibleandcanbepubliclycommunicatedinfor‐

mats consistentwith public databases (e.g.U.S. LCI database,maintainedby the National RenewableEnergy Laboratory, NREL) andbest practices of ISO14040/ 44. Results of this study should bewidelyacknowledged as the leading source of LC information relevant to corrugated products. As per ISO

guidelines,thestudyhasbeenreviewedbyathirdpartybeforereleasetoexternalstakeholders.

TheprimaryaudienceforthisstudyisinternaltotheCorrugatedPackagingAlliance(CPA)anditsmem‐bers.Sincethis is thefirstLCAconductedatthe industry level, itsprimarypurpose isto identifyareaswherefocusedimprovementswillyieldmaximumresults.Theinitialpublicreleaseofdataisintendedto

populatetheU.S.LCIdatabase,theEPAandtheGreenBlueCOMPASStool.DecisionstoreleasetootherpartiesmaybeconsideredbytheCPAatalaterdate.

Page 23: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page23of113

2 SCOPE

Thefollowingsectiondescribesthegeneralscopeoftheprojecttoachievethestatedgoal.Thisincludes

identificationoftheaveragecorrugatedproducttobeassessed,theboundaryofthestudy,impactcate‐gories considered, anddata collectionprocedures (cut‐off criteria, backgrounddata, allocationproce‐duresetc.).

2.1 SYSTEMDESCRIPTIONOVERVIEW

The scope of the study is developing a “cradle‐to‐cradle” Life Cycle Assessment of the U.S. industry‐average corrugated product. The average basis weight of the U.S. industry mix8 is 138.6 lb/thousand

squarefeet(msf)9andconsistsof:

• Singlewall 89.2%

• Doublewall 9.0%

• Triplewall 0.8%

• Singleface 1.0%

Theaverage“use”ofanindustry‐averagecorrugatedproductisassecondarypackagingofproductsforshipping.10

Thelife‐cyclephasesoftheproductsystemsstudiedinclude:

• Cradle‐to‐gateproductionof rawandancillarymaterials,energysupplyand electricityneededforthemanufactureofcorrugatedboard,

• Convertingofcorrugatedboardtoafinalproduct(folding,cutting,gluingandprinting),

• Transportationoffinalproducttofinalcustomer(transport‐in‐usephase),

• End‐of‐Lifecoveringrecyclinganddisposal(landfillandincineration).

Thedatasamplingsizemustincludeannualrepresentativedatafortheyear2006orbestavailablewhen

thosedataarenotavailable.

8FBA[2007]‐FibreBoxAssociationIndustryAnnualReport20079138.6lbpermsf=0.677kgperm210Pleasenotethatthestudyisrepresentativeofanykindofcorrugatedproduct.

Page 24: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page24of113

2.2 FUNCTIONALUNIT

Thefunctionalunitusedinthisstudyis:OnekilogramofU.S.averagecorrugatedproduct.

Thiseffort isnot intended tobeacomparativestudyinandof itself,butrathertoenablefuturecom‐parativestudies.Otherstudieswithacomparative intentwillneedtoemployafunctionalunit consis‐tentwiththegoalandscopeofthisstudy,andcanachievespecificresultsbyscalingtheinputandout‐

putdataappropriately.

Amyriadofcorrugatedconstructionsexistthatmeetdifferent,specificapplicationneeds.Thereforethestudy represents the industry average of corrugated products. Specific corrugated products can bemodeledwith theresultsasneeded,butanexhaustivecomparisonofexistingapplications isunneces‐

sary.Toapply the resultsof this study toa specific corrugatedproduct, the inventoryandLCAresultsshouldbescaledaccordingtothemassofthespecificproductofinterest.

2.3 PRODUCTSYSTEM(S)BOUNDARIES

The reference flow for this study is “one kilogram ofU.S. industry‐average corrugatedproduct”.U.S.industry‐averagecorrugatedproductsaremadeupoftheproductionweightedmeanofallcorrugatedproductsproducedfromcontainerboard(liner,unbleachedaswellasbleached,andmedium)intheU.S.

duringthe2006calendaryear.

ThescopeofthestudyisdisplayedinFigure1brokenintothefollowingmajor life‐cyclestagesof theproductsystem:

• Containerboardmills

• Convertingplants

• Logistics(usephase)–transporttocustomer

• End‐of‐Life

Eachofthelife‐cyclestagesaredescribedinmoredetailinSection3.

Transportationpermode(e.g.truck,ship,train)withinthedifferentproductlife‐cyclestagesiscovered

aslistedinTable2.Existingdatawasnotavailabletoprovideacomprehensiveanalysisofactualtrans‐portationdistances.Asaproxy,manufacturingmembersoftheprojectteamwereinformallypolledforaveragedistances. Sensitivity analysis was thenperformed to ensure the estimates shown in Table 2

werenotmajorcontributorstotheoverallindustryfootprint.SeeSection5fordetailsonthesensitivityanalysis.

Page 25: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page25of113

!"#$$#%&$'(%')#*+',)(-*')&.'

$%#/ 0,)$(-1

2),")(-*#)/$+'3%)(#&4$+'

).5-$#6-$

7%.#8"'$8/9)(-+'7%.)+'-(3:

!&-*4;+'98-/$+'-/-3(*#3#(;+'-(3:

<%*-$(*; =%&()#&-*>%)*.

"#//$=%&6-*(#&4

?/)&($

@*)&$?%*('(%'

=8$(%"-*'A 8$-'

?5)$-

!&.'%9'B#9-

2-3;3/#&4

B)&.9#// C

#&3#&-*)(#%&

73%?-'%9'(5-'$(8.;

7;$(-"'>%8&.)*; 9%*'3%**84)(-.?*%.83(")&89)3(8*#&4

Figure1.SystemScopeandLife‐CyclePhasesforU.S.averagecorrugatedproduct

Page 26: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page26of113

Thefollowingtabledescribesinfurtherdetailwhatisincludedinthestudy.

Table1.Summaryofsystemboundaries

Included Excluded

• Rawmaterialsandancillaryinputs;e.g.woodandpaperpulp;pulpingandbleach‐ingchemicals,woodfiberproduction(for‐estry)

• Energy;e.g.extraction,processingandtransportationfuels;purchasedelectricity

• Internalgenerationofelectricityandsteamaswellasco‐generation

• Processingofmaterials

• Operationofprimaryproductionequip‐ment

• Waste

• Transportationofrawandancillarymate‐rials

• Overhead(heating,lighting)ofmanufac‐turingfacilities

• Internaltransportationofmaterials

• Post‐useprocesses(transportation,sort‐ing,baling,etc.)

• Capitalequipmentandmainte‐nance

• Maintenanceandoperationofsupportequipment

• Transportationofemployees

Thefollowingtabledisplaysthetransportdistancesforeachmodeoftransportationallthroughthelifecycle.

Page 27: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page27of113

Table2.Transportdistancesandmodes11

2.3.1 TECHNOLOGICALCOVERAGE

Inthisstudy,site‐specificdatarepresentingthecurrenttechnologymixforforestfiberproduction,con‐tainerboardproduction,and corrugatedproduct convertingwas collected. Containerboardproduction

data(includingpulping,paper‐making,powerproduction/consumption,andwastemanagement)intheUnitedStateswasprovidedbytheAF&PA12viaNCASI13.

Thestudyisbasedoninformationfrom53millsrepresentingnearly90%of2006linerboardproduction.Converting isbasedon162converting facilities,which representnearly45%of theoverallproduction

volumeofcorrugatedproduct.

2.3.2 GEOGRAPHICALCOVERAGE

Primarydatacollectedfromparticipatingcompaniesandassociationsfortheiroperationalactivitiesare

representativefortheU.S.Additionally,U.S.backgrounddataisusedwheneveravailableandtechnicallyrelevant.

Thegeographicalcoverageforthisstudyisasfollows:

• PrimaryForestFiberProduction–UnitedStates

• ContainerboardProduction–UnitedStates

• CorrugatedProductConverting–UnitedStates

Ancillaryandprocessmaterialdata,suchastheproductionofchemicals,fuels,energyandpower,wasadoptedasaverageindustrymixesfromtheGaBi4softwaresystemdatabase(currentreleaseGaBi4.3,

http://www.gabi‐software.com)representativeforUSboundaryconditions.

11 Information on average transport distances was provided by and discussed with the participatingmembercompanies.Valuesshownintableareagreednumbers.12AF&PA=AmericanForest&PaperAssociation13NCASI=NationalCouncilforAirandStreamImprovement;www.ncasi.org

Page 28: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page28of113

2.3.3 TIMECOVERAGE

Primarydatacollectedfromparticipatingcompaniesandassociationsfortheiroperationalactivitiesarerepresentative for theyear2006 (referenceyear). In some cases forconvertingplants,2007datawasreportedandincluded.

Themostup‐to‐dateLCIdatasetsavailableareusedforforestryandconvertingprocesses;CORRIMdata

onforestryimpactscomesfrom200214.

2.4 LIFECYCLEIMPACTASSESSMENTMETHODOLOGY&IMPACTCATEGORIESCONSIDERED

Itwasdeterminedduring thescopedevelopmentprocess thata comprehensivesetof environmentalimpactcategorieswouldbeinvestigated.Forthepurposesofsuccinctcommunicationofstudyresults,thefollowingimpactcategoriesweredeterminedtobestrepresenttheCorrugatedPackagingAlliance’s

prioritiesinissuesrelatedtosustainability.

PrimaryEnergyDemandandGlobalWarmingPotentialareincludedinthestudybecauseoftheirgrow‐ingimportancetotheglobalenvironmentalandpolitical/economicrealm.Acidification,Eutrophication,PhotochemicalOzoneCreationPotential/SmogAirareincludedbecausetheyreflecttheenvironmental

impactofregulatedandadditionalemissionsof interestby industryand thepublic,e.g.SO2,NOX,CO,andhydrocarbons.

In2004agroupofenvironmentalleadersreleasedareport,theApeldoornDeclaration15,describingtheshortcomingsoftoxicityandhazardcharacterizationwithinLCA.Asperthisdeclaration,itistheposition

ofthisstudythat“eventhoughLCIAcanusemodelsandmethodologiesdevelopedforRiskAssessment,LCAisdesignedtocomparedifferentproductsandsystemsandnottopredictthemaximalrisksassoci‐atedwithsinglesubstances.”Humanandeco‐toxicologyresultsarebestsuitedtocase‐andsite‐specific

studiesthataccuratelymodeldispersionpathways,rates,andreceptorconditions.

14Formoreinformation,pleaseseeofficialCORRIMreports[CORRIM2002]15Appeldoorn[2006]‐http://www.leidenuniv.nl/cml/ssp/projects/declaration_of_apeldoorn.pdf

Page 29: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page29of113

Table3.SelectedImpactCategories

CategoryIndicator

Impactcategory Description Unit Reference

EnergyUse16 PrimaryEnergyDemand(PE)

Ameasureofthetotalamountofprimaryenergyextractedfromtheearth.PEisexpressedinenergydemandfromnon‐renewablere‐sources(e.g.petroleum,naturalgas,uranium,etc.)andenergydemandfromrenewableresources(e.g.hydropower,windenergy,solar,etc.).Efficienciesinenergyconversion(e.g.power,heat,steam,etc.)aretakenintoaccount.

MJ

AnoperationalguidetotheISO‐standards(Guinéeetal.)CentreforMilieukunde(CML),Leiden2001.

ClimateChange GlobalWarmingPotential(GWP)17

Ameasureofgreenhousegasemis‐sions,suchasCO2andmethane.Theseemissionsarecausinganincreaseintheabsorptionofradia‐tionemittedbytheearth,magnifyingthenaturalgreenhouseeffect.

kgCO2equivalent IntergovernmentalPanelonCli‐mateChange(IPCC).2006IPCCGuidelinesforNationalGreenhouseGasInventories

Eutrophication EutrophicationPotential(CML)EutrophicationPotential(TRACI)

Ameasureofemissionsthatcauseeutrophyingeffectstotheenviron‐ment.Theeutrophicationpotentialisastoichiometricprocedure,whichidentifiestheequivalencebetweenNandPforbothterrestrialandaquaticsystems

kgPhosphateequivalentkgNitrogenequivalent

AnoperationalguidetotheISO‐standards(Guinéeetal.)CentreforMilieukunde(CML),Leiden2001.Bareetal.,TRACI:theToolfortheReductionandAssessmentofChemicalandOtherEnvironmentalImpactsJIE,MITPress,2002.

Acidification AcidificationPoten‐tial(CML)AcidificationPoten‐tial(TRACI)

Ameasureofemissionsthatcauseacidifyingeffectstotheenvironment.TheacidificationpotentialisassignedbyrelatingtheexistingS‐,N‐,andhalogenatomstothemolecularweight.

kgSO2equivalentkgH+equivalent

AnoperationalguidetotheISO‐standards(Guinéeetal.)CentreforMilieukunde(CML),Leiden2001.Bareetal.,TRACI:theToolfortheReductionandAssessmentofChemicalandOtherEnvironmentalImpactsJIE,MITPress,2002.

Ozonecreationintroposphere

PhotochemicalOxidantPotential(PCOP)

SmogAir

Ameasureofemissionsofprecursorsthatcontributetolowlevelsmog,producedbythereactionofnitrogenoxidesandVOC’sundertheinfluenceofUVlight.

kgEtheneequivalent

kgNOxequivalent

AnoperationalguidetotheISO‐standards(Guinéeetal.)CentreforMilieukunde(CML),Leiden2001.

Bareetal.,TRACI:theToolfortheReductionandAssessmentofChemicalandOtherEnvironmentalImpactsJIE,MITPress,2002.

Themeaningandsignificanceofthese impactcategoriesarediscussedindetail inAppendixG: ImpactIndicators of this report. The impact potentials were calculated using the CML 2001 characterization

16PrimaryEnergyDemandisnotanimpactbutisincludedinthissectionasitisalsoasumvalueindicat‐ing the total amount of energy extracted fromearth or basedon renewable resources. TheCML andTRACI impactmethodologieshavebeenselectedforthisstudy.Astheydonot includeconsumptionofrenewableenergysourcesbutanindexoftheconsumptionoffossil fuels,thefocus inthisstudyisonPrimaryEnergyDemandfromnon‐renewablesources(fossil).17The terminology“potential” isusedbyCMLtoclearly indicate thatLCIAshowspotential impacts inthefuture.Forexampleforclimatechange theGlobalWarmingPotentialrepresents thepotential im‐pactofGHGemissionsrelatedtothereferenceunitCO2.

Page 30: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page30of113

factors (2007update)publishedbyCentre forMilieukunde (Institute ofEnvironmentalSciences),Uni‐versityofLeidenaswellasTRACI(ToolsfortheReductionandAssessmentofChemicalandOtherEnvi‐

ronmentalImpacts)characterizationfactorspublishedbytheU.S.EnvironmentalProtectionAgency.

2.5 DATACOLLECTIONANDDATASOURCES

The studyusedprimary data for containerboardmills and converting plants, and existing datasets to

modeltheenvironmentalemissionsofancillaryprocesses.

Whereverpossible,thisstudyisbasedonprimarydatacollectedfromtheparticipatingcompaniesandtheirrespectiveproductionsites.Incaseswhereprimarydatawasnotavailable,secondarydatareadilyavailable from literature, previous LCI studies, and life‐cycle databaseswas used for the analysis. The

sourcesforsecondarydataaredocumentedinthisstudyreport.

The LCA model was created using the GaBi 4 software system (current release GaBi 4.3,http://www.gabi‐software.com)forLifeCycleAssessment,developedbyPEINTERNATIONAL.Thedata‐basescontainedintheGaBisoftwareprovidetheLCIdataoftherawandprocessmaterialsusedinthe

backgroundsystem.

2.5.1 DATASOURCES

Thefollowingdatasourceshavebeenused:

• CORRIMIIreport18:Virginfibermanufacturing

• Fisherdata19:Fibercompositionandchemicalinputforcontainerboardmanufacturing

• NCASI:Quality‐assuredAF&PAsurveydataonenergyusageandselectedreleasestotheenvi‐ronmentofcontainerboardmills

• AF&PA:surveyonfiberinput

• FBA:Convertingplantinputsandoutputs

• GaBiLCIdatabase20:

o U.S.transportationmodel(basedonthemostrecentU.S.CensusBureauVehicleInven‐toryandUseSurvey(2002)andU.S.EPAemissionsstandardsforheavytrucksin2007)

o U.S.paperEoLmodel(basedon2006U.S.EPALifeCycleAssessmentoflandfillemis‐sions21)

18seewww.corrim.org19seewww.fisheri.com20Formoreinformation,pleasesee:http://documentation.gabi‐software.com21U.S.EnvironmentalProtectionAgency,“SOLIDWASTEMANAGEMENTANDGREENHOUSEGASESA Life‐Cycle Assessment of Emissions and Sinks,” 3rd ed., September 2006. Downloaded fromhttp://www.epa.gov/climatechange/wycd/waste/SWMGHGreport.html

Page 31: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page31of113

o Fuels,energy,andancillarymaterials:RegionalmixesanddatasetsfromtheGaBiLCIdatabase

2.5.2 DATACOLLECTION

Data collection needs throughout the project were coordinated between the PE Americas team andNCASI.PrimarydatawasderivedfromadatabaseofEnvironment,Health&Safety(EH&S)statisticscol‐

lectedbyanAF&PAsurveyof itsmembers(supplementedwithdatafromafewnon‐membercompa‐nies)andFisherdata.Themostrecentdataavailablerepresentsannualfiguresfor2006.Datafor thisdatabasewascollectedbyAF&PAusingadigitalquestionnaireonfacility‐wideenvironmentalemissions

andfuel/energyflows;thisdatawasprocessedandcontrolledforqualitybyNCASIandFBA.

Alldatausedinthisstudyisrepresentativeofannualtotalfor2006,themostrecentperiodsurveyedbyNCASI.Environmentalfactorssurveyedinclude:

• Fuelandenergyuse

• Useofrawmaterialsandancillarymaterials

• Emissionstoair,waterandsoil

• Waste

The survey included results from53 containerboardmills representing 32million short tons per year

(TPY),nearly90%of2006production volume. Becausedata isonlyavailableat the facility‐wide level,mills that also manufacture non‐containerboard products were excluded from the data used in thisstudy,as theenvironmentalprofilesof containerboardandnon‐containerboardpaperproduction can

bedramaticallydifferent.

A second surveywas conductedby FBA to collect primary data for converting plants. For corrugatedconverting, the study included data from 162 plants representing 9.6 millionmetric tons per year ofproductionvolume.Theseplants includedarepresentativesampleofcorrugatingplants,sheetfeeders

andsheetplantsmanufacturingawidevarietyofcorrugatedproducts.TheFBAsurveyincluded:

• Containerboardinput

• Fuelandenergyuse

• Useofrawmaterialsandancillarymaterials

• Emissionstoair,waterandsoil,and

• Waste

Consistencyandqualitychecks formassand energy balance resultswereconductedand resultscom‐pared to published informationdata– particularly process and flowdata in previous LCI studies. Thisqualityassurance(QA)processwasperformedatdifferentstagesoftheproject.TheobjectiveoftheQA

Page 32: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page32of113

processwastoensurethatthedatacollection,developmentoftheLCImodel,andfinalresultsarecon‐sistentwiththescopeofthestudyandthatthestudydeliverstherequiredinformation.

2.5.3 ALLOCATION

Life Cycle Inventory Analysis relies on the ability to link unit processeswithin a product systemusingsimplematerialorenergyflows. Inpractice,fewindustrialprocessesyieldasingleoutputorarebased

onalinearityofrawmaterialinputsandoutputs.Infact,mostindustrialprocessesyieldmorethanoneproduct,andtheyrecycleintermediateordiscardedproductsasrawmaterials.Therefore,thematerialsandenergyflowsandassociatedenvironmentalreleasesareallocatedtothedifferentproductsaccord‐

ing toclearly statedprocedures. The relevantallocationprocedures in theanalyzed lifecyclesarede‐scribedbelow.

In these situations, ISO LCA standards and technical reports provide rules for allocation of environ‐

mentalburdenstoco‐productsandtorecycledandvirginportionsoftheproducts.Becauseofthecostand complexities in obtaining proper inventory data for all affected components in a study, ISO stan‐dards indicateas first rule theavoidanceofallocation, i.e.,expansionof thesystemto includeall ele‐

mentsinquestionisalsoarecommendationandguidance.

Containerboardproduction (mills):Noallocationhasbeennecessaryasonlymillshavebeenincludedthatmanufacturecontainerboard(liner/medium).Systemexpansionhasbeenusedtoavoidallocationtoaddressextra/additionalelectricityproductionandsteam.

Convertingplants:Noallocationhasbeenappliedasnoby‐producthasbeenreportedbyparticipating

convertingplants.

Background data (energy andmaterials):Refinedenergy data (e.g. diesel, gasoline, fuel oil andpro‐pane)areallocatedbymass inrelationtotherefineryemissions.Energydemandsareallocatedbyen‐ergycontentinrelationtocrudeoilconsumption.

If multiple products are manufactured using the same overall process, thematerials and chemicals

neededduringmanufacturingaremodeledusingeconomicallocation.

2.5.4 CUT‐OFFCRITERIA

Thefollowingcut‐offcriteriawereappliedduringdatacollectionandanalysis:

• Mass–Ifaflowislessthan1%ofthecumulativemassofreliableestimatesofinputsintotheLCImodel,itmaybeexcluded,providingitsenvironmentalrelevanceisnotaconcern.

• Energy–Ifaflowislessthan1%ofthecumulativeenergyofreliableestimatesofinputsintotheLCImodel,itmaybeexcluded,providingitsenvironmentalrelevanceisnotaconcern.

• Environmentalrelevance–Ifaflowmeetstheabovecriteriaforexclusion,yetisthoughttopotentiallyhaveasignificantenvironmentalimpact,itwastestedforimportanceusingestimatedflowsandincludedifsignificant.Allmaterialflowsthatleavethesystem(emissions),andwhoseenvironmentalimpactisover1%ofthewholeimpactofanimpactcategoryconsideredintheassessmentmustbecovered.

Page 33: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page33of113

• Thesumoftheneglectedmaterialflowsmustnotexceed5%ofmass,energyorenvironmentalrelevance.

2.5.5 DATAQUALITYREQUIREMENTS

Toaidreviewers,stakeholders,anddecision‐makers intheirevaluationofthisstudy’sresults,wepro‐videanoverallassessmentofourconfidenceinthequalityofthedataused,assigningvaluesof“high”,

“good”,“fair”,and“poor”quality.Dataquality is judgedby itsprecision(measured,calculatedoresti‐mated),completeness(e.g.arethereunreportedemissions?),consistency(degreeofuniformityofthemethodologyappliedona studyservingasadatasource)and representativeness (geographical, time

period,technology).

Precisionandcompleteness

• Precision:Primaryinformationcollectedinthesurveysismeasuredandcalculatedbythere‐portingbusinesses.Sincethecontainerboardmillsaremodeledbasedontwoindependentsur‐veys(fibersurveyandEH&Ssurveyonenergyandemissions),acarbonbalancehasbeenusedtovalidateaccuracyofthedata.

• Completeness:Allrelevant,specificprocessesincludinginputs(rawmaterials,energyandauxil‐iarymaterials)andoutputs(emissionandproductionvolume)areconsideredandmodeledtorepresenteachspecificsituation.AnyrelevantbackgroundprocessesaretakenfromtheGaBidatabases(seeGaBi4documentation).

Consistencyandreproducibility

• Consistency:Toensureconsistency,onlyprimarydataofthesamelevelofdetailandback‐grounddatafromtheGaBidatabasesareused.Cross‐checksconcerningtheplausibilityofmassandenergyflowsarecontinuouslyconducted.Theprovidedprimarydataofcontainerboardproductionandconvertingplantswerechecked.Onlycontainerboardmillsandconvertingplantsshowingnoinconsistencyhavebeenconsideredinthisstudy.

• Reproducibility:Internalreproducibilityispossiblesincethedataandmodelsarestoredandavailableinadatabase(NCASI).Fortheexternalaudienceitispossiblethatnofullreproducibil‐ityinanydegreeofdetailwillbeavailableforconfidentialityreasons.However,theaveragepro‐filecanberecalculatedwithindustrydata.

Representativeness

• Time‐relatedcoverage:

o Fiberproduction:2002

o Containerboardmills:2006

o Convertingplants:2006/07

o Backgrounddata:2002to2007.

• Geographicalcoverage:ThegeographicalcoverageistheU.S.

Page 34: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page34of113

• Technologicalcoverage:Containerboardmills(overallcoveragenearly90%)andconvertingplantsreportingthedatarepresentthecurrentsituationintheU.S.FiberinputismodeledbasedontheU.S.situationaccordingtotheCORRIMreports.Thetransportationmodel(fuelconsumptionandtail‐pipeemissions)andtheEnd‐of‐Lifemodel(emissionsrelatedtopaperinlandfill)arebasedonofficialdocumentspublishedbytheU.S.EPA.Overalltechnicalcoverageishigh.

TheprimarydataonpapermillproductioncollectedbyAF&PAandqualitycheckedbyNCASIisconsid‐

eredtobeof“good”quality.Whileconsistentmeasurementandestimationtechniqueswerenotusedbyeachofthemillssurveyed,NCASIprovidedaqualitychecktoensuretheprecisionandconsistencyofthedatausedbythestudy.ThebroadnatureoftheEH&Ssurveymeansthat itdoesnotprovidegreat

detail on specific emissions, but is complete enough to capture major environmental impacts. Thegreatest strength of this dataset comes from its broad reach (53 containerboard mills representingnearly90%oftheU.S.containerboardproductionvolumein2006).

ThequalityoftheFBAsurveyofcorrugatedproductconvertingplants is judgedtobeof“fair”quality.

Formanyof the companies completing the survey, itwas the first time that they ever reported suchfigures for such a purpose. Larger firms generally hadmore complete datasets. Many smaller plantshaveemissions thatarebelowregulatoryreportingthresholds,hencedataavailability is limited.How‐

ever,thenumberofrespondentsallowedforeffectiveproduction‐weightedmeanstobedevelopedthatarecharacteristicoftheindustryaverage.Futuredatacollectioneffortswillbeimprovedbasedonles‐sonslearnedduringthisstudy.

QualityoftheCORRIM IIand theGaBimodelsfortransportation,End‐of‐Lifeandbackgrounddatasets

usedforthisstudyisconsideredtobe“high.”TheCORRIMdatasetsarepubliclyavailableandhavebeenwidelyusedinassessingtheenvironmentalimpactsofforestryandpaperoperations,makingthemthedefactostandardforLCIprojectsinthissector.

2.6 CRITICALREVIEW

ThisstudyhasbeenconductedwiththesupportofaCriticalReviewPaneltoensureit iscompletedtotherequirementsofISO14040seriesstandardsandindustrybestpractices.Whilethestudyisnotcom‐

parative by nature, it is anticipated that the study resultswill be used for future comparison studies.Hence,itistheinterestofthestudycommissionerstoensurethatthestudyadherestothesestandards.

AthenaSustainableMaterialsInstitutewascommissionedinMay2008to leadthecriticalreviewinac‐cordancewithISO14040/44(2006),incollaborationwithco‐reviewers.Thereviewpanelcomprisedthe

followingexperts:

Mr.JamieMeil,AthenaInstitute‐reviewpanelChairman

Ms.MarthaStevenson,PrivateConsultant

Dr.MichaelDeru,U.S.NationalRenewableEnergyLaboratory

Dr.JimWilson,DepartmentofWoodScienceandEngineering,OregonStateUniversity

Page 35: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page35of113

Dr.LinditaBushi,AthenaInstitute.

Thereviewprocessconsistedofthefollowingsteps:

1. ReviewandcommentonthestudyGoal&Scopedocuments

2. Reviewandcommentoninitialstudyresults

3. Reviewandcommentonthedraftfinalstudyresultsandsupportingreport.

Page 36: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page36of113

3 MODELSTRUCTUREANDDATACOLLECTION

Thefollowingsectiondescribesthecorrugatedproductionsubsystemsandhighlightsimportantdata.

3.1 WOODFIBERPRODUCTION(FORESTRY)

WoodfiberproductiondataforthisstudywasextractedfromtheCORRIM22reports.CORRIMdataaregiven in termsofone thousandboard feet (1MBF)ofplaned,dried lumber.Threeproductsaremod‐

eled:sawdust,woodchipsandlogsfrombothsoftwoodandhardwoodtrees23.

Themodeledsubsystemsincludeseedlingproduction,reforestation,harvesting,andsawmillprocessing.ForallsubsystemstherespectivetransportationisincludedaccordingtotheCORRIMreports.Seedlingproduction and reforestation include fertilizers and transportation. The harvesting step includes ma‐

chineryandfueluseplustransportationofthelogsandbark.Thesawmillhasfuelandenergyinputsanddifferentwoodproductoutputs.Formoreinformationonthewoodfiberproductiondataandsystemboundaries,seetheCORRIMreports.

3.2 OVERVIEWOFCONTAINERBOARDPRODUCTION

3.2.1 PULPINGOFPRIMARYFIBERS

Wooddelivered to thecontainerboardmillas logsgoes throughade‐barkingand chippingprocess toproducewood chips, which are also purchasedby containerboardmills from sawmills and chipmills.

Thesewood chips, processed to a uniform size, form the rawmaterial for productionof virginwoodpulp.Thispulpisused,oftenwithadditionalpulpfromrecoveredfiber,formakingkraftlinerboardandsemichemicalcorrugatingmedium.Linerboardandcorrugatingmediumcanalsobeproducedfromre‐

coveredfiberalone,asdiscussedbelow.

Cookedinahigh‐pressure,high‐temperature(130‐180°C)digester inamixtureof inorganicchemicals(e.g.sodiumhydroxide,sodiumsulfide,sodiumsulfite,sodiumcarbonate,etc.)tailoredforthedesiredpulpproperties,thewoodchipsarebrokendownintowoodpulpandspentpulpingliquor,withapulp

yielddependingonthechemicalsused,desiredcontainerboardproperties,andcookingparameters.

Thespentpulpingliquoriswashedfromthepulp,thenconcentratedandburnedtorecoverthecookingchemicalsandprovideheat required forcontainerboardproduction.Thepulp is refinedbya seriesofseparation,screeningandwashingstepsbeforebeingmovedtothecontainerboard‐makingprocess(i.e.

thepapermachine).Atthepapermachine,pHisadjustedandadditivessuchassizingagentsareintro‐ducedtothepulpslurrytogivethefinalsheetitsdesiredproperties.

22FormoreontheConsortiumforResearchonRenewableIndustrialMaterials(CORRIM)includinglinkstotheirLifeCycleAssessmentreports,seewww.corrim.org.23InventoryinformationofsoftwoodtreeswasusedasasurrogateforhardwoodtreessincetheCOR‐RIMreportonhardwoodshadnotbeenpublishedatthetimeofthestudy.

Page 37: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page37of113

3.2.2 PULPINGOFRECOVEREDFIBERS

The recovered paper delivered to the containerboardmill is controlled for quality and contaminantsbeforebeingre‐pulped.Pulpinginvolvesbreakinganddispersingtherecoveredpaperbalesandloose‐fedmaterial inwarmprocesswaterusingmechanical energy. Largepiecesofplastic,wiresandother

materialscanberemovedwithinthere‐pulpingoperationusingaraggerandotherde‐trashingequip‐ment. The resulting "stock," a suspension of fiber in water, is then screened through progressivelysmallerholesandslotsandsometimescleanedcentrifugallytoremovesand,gritandlightweightcon‐

taminants.Somerecycledcontainerboardmillswillfractionateandpossiblywashthestocktogeneratestreamsenrichedin long/slenderfibers,short/coarse fibersandfines,whichcanthenbeproportioned

todifferentplies inthecontainerboardmachine.Dependingonthecleanlinessoftherecoveredpaperandtheconfigurationoftheparticularstockpreparationsystem,between85%and95%of therecov‐eredpapercanbeusedtoproducerecycledcontainerboard.

Somerecycledcontainerboardmillsutilizeadisperger,adevicethatheatsdewateredstockto80‐110°C

andappliesmechanicalenergytohomogenizethepulpanditsremainingcontaminants.Othermillswilljust dewater the stock before the containerboard machine. All recycled containerboard mills reuseprocesswaterfromthecontainerboardmachineand thestockpreparationdewateringequipment,re‐

sultinginsignificantlylowerfreshwaterusepertonofcontainerboardproducedthantheirvirgincoun‐terparts.

Containerboardproduction

Figure2.ContainerboardProductionProcess

Thepulpslurry, consistingofadesiredblendofvirginandrecycledfibers, isfedintotheheadboxanddistributedevenlyacrossthewidthofthecontainerboard‐makingmachine.Fedoutfromtheheadboxin

ahomogenoussheetonto“thewire,”theslurrydrainsthroughasitmovesalongthismeshbelt,eitherfedbygravityoraidedbyaslightvacuum.

Thepulp is furtherdriedas it ispressed through felt rollersand thenaseriesof steam‐heateddryingrollers;inthisstagethecontainerboardmayalsoreceiveadditionsofstarchorothersurfacecoatingsin

the sizing press or presses, where the containerboardpasses through rollers continually fedwith thedesiredchemicals.

Page 38: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page38of113

Remainingmoistureandanyadditionalmoisturepickedupinthesizingpressisdriedintheafter‐dryersbeforethecontainerboardisslittosizeandrolledfordeliverytofurtherprocessingplants,specifically

theconvertingplants,whichmakecorrugatedboxes.

Informationforthelife‐cyclemodelingofcorrugatedcomponentmanufacturingwasprovidedbyNCASI,and consists of both the AF&PA Environmental Health and Safety Survey data (described in Section2.5.1),andtheFisherLogicCostBenchmarkingdataset24,accessedviathelicenseheldbyNCASI.

Atotalof53millswereidentifiedproducingnearly90%ofthecontainerboardin2006,supplyingdata

on energy andmaterials needed aswell as EH&Sdata.Data reported and integrated in the life‐cyclemodelforthesemillsincludethefollowingparameters:

• Chemicalsandfurnish(fiberinput)

• Production

• BOD5(direct,indirect)

• TSS(direct,indirect)

• WaterFlow(processwater,coolingwater,andotherwater)

• NOxandSO2(fromcombustionandfromprocess,respectively)

• Landfilledresiduals

• Beneficialuseofresiduals

• Fuels(renewableandbiomass,fossilandpurchased)

Process inputsfromFisherweremodeledforthedifferentcontainerboardmills.ThefollowingprocessinputshavebeenreportedbyFisher:

• Virginfibercomposition

• Chemicals,e.g.causticsoda,sodiumsulfate

Thefollowingtableshowsthereportedinputofchemicalsfor1kgof industry‐averagecontainerboardbyFisherandrecovered/virginfiberinputasreportedbyAF&PA.

24FisherInternational;www.fisheri.com

Page 39: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page39of113

Table4.Materialinputfor1kgcorrugatedmanufacturing(1.11kgofcontainerboard)25

TheU.S.averageproductionofcontainerboardconsistsof66%linerand34%medium26.AsalsoshowninTable4,theoverallinputofrecycledfibers(postconsumerpluspostindustrial)is0.464kgper1.11kgcontainerboardbasedonaninternalsurveyconductedbyAF&PA.The0.464kg isbasedon0.418kgof

recoveredfibers(postconsumer)per1kgoffinalcorrugatedproductandinternalrecyclingofproduc‐tionwasteofconvertingfacilities.

3.3 CONVERTINGPLANTS

Therollsofcontainerboardareshippedtoconvertingplants,wheretheyareprocessed(converted)intocorrugatedproducts.

Thecorrugatedmediumissoftenedbyheatandsteamtreatmentbeforereceivingitsdistinctiveflutedshapebyapairofmatingcorrugatedrollers.Starchisappliedtothetipsoftheflutesandtheyareglued

totheinnersurfaceofonepieceof linerboard.Thisinitialboard,withonelayerof linerboardandonelayer of corrugated medium (called singleface board), then passes on to the Double Backer, wherestarchisagainappliedandtheflutesaregluedtothesecondsheetoflinerboard,makingtypicalcorru‐

gatedboard (referred to as singlewall or doubleface). Further processing can add additional layers ofcorrugatedmediumandlinerboard,buildingupdouble‐ortriple‐walledboard.

The corrugatedboard isdried in thehotplatesection, thenslit into the requiredwidthsandcut intosheets,readytobeturnedintoboxes.Thefinalstagesofprocessing(folding,gluing,printing)arecarried

outandthefinishedboxesarestacked,palletized,and/orshipped.

Materialandenergy inputsandoutputsfromconvertingoperationswereidentifiedaspartofasurveyofconvertingoperations.Inputstothesefacilitiesareasfollows:

• Containerboard

• Fossilfuels

• Purchasedelectricity

25Seechapter3.2.1formoreinformationonmaterialefficiency.Chemicalsaremake‐ups.26SeeFBA[2007]

Page 40: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page40of113

• Adhesives

• Borax

• Caustics

• Inks

• Resins

• Starch

• Wax

Outputsfromthesefacilitiesareasfollows:

• Corrugatedproduct(normalizedto1kgU.S.industryaverage)

• Waterdischarges(BOD5,TSS)

• Airreleases

• Residualstreatment(e.g.landfill)

Thefollowingtableshowsthematerialinputfor1kgofaveragecorrugatedproductbasedontheNCASIsurvey.

Table5.Materialinputformanufacturingof1kgofcorrugatedproductatconvertingplant

!"#$%

!"#$%&#'()"%(* +,++ -.

/$%(01 +,234567 -.

8%9 :,;<456: -.

=#- +,+;456: -.

>*1'?&@' +,63456: -.

!%A?$&0? ;,:+456B -.

!"%$&#. B,<B456B -.

C"(%9 :,++456B -.

D'?&# :,E6456< -.

&$%#$%

!"((A.%$'*FG("*A0$ + -.

Alltransportationdistances,vehicletypes,andtransportationcapacityutilizationaretakenfromdataintheappropriatestudies(CORRIM,NREL,FBA,andNCASI).Thetransportationdistanceswithinthediffer‐entlife‐cyclestagesarelistedinTable2.

Where not otherwise specified by other data, this study has modeled vehicle types, fuel usage, and

emissionsusingaGaBimodelbasedonthemostrecentU.S.CensusBureauVehicleInventoryandUseSurvey(VIUS)(2002)andU.S.EPAemissionsstandardsforheavytrucksin2007.The2002VIUSsurveyisthemostrecentavailabledataontransportationuseintheU.S.,andthe2007EPAemissionsstandards

Page 41: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page41of113

areconsideredbythisstudy’sauthorstobethemostrepresentativedataavailableonvehiclefueluseandrelatedemissions.

3.4 RECOVERYANDEND‐OF‐LIFE

TheEnd‐of‐Lifephase isanimportantpartofa life‐cyclestudysinceproducthandlingat life’sendcanhavea significant influenceon theoverallprofileof theproductof interest. In the caseofcorrugated

products,thewholelifecycleofthefibersmustbeconsidereduntiltheyreachtheirfinalendaswaste.

Within life‐cycle studies, recycling can be modeled either according to the closed‐loop or open‐loopapproach. The open‐loop approach reflects products crossing system boundaries between systems,leavingthe initialsystemaswasteforrecoveryandentering theothersystemsasrawmaterial. Inthe

closed‐loopapproach,thecollectedmaterialfromrecyclingisdirectlyusedasinputbackintotheinitialproductionprocess.Iftheopen‐loopapproachisapplied,theassociatedsystemsmustbeanalyzedalso.Thecomplexityofthecorrugatedproductsystemwouldrequirenotonlythemodelingofallproduction

processesandEnd‐of‐Life,butalsotheproductionofcorrugatedproductsenteringtheU.S.fromforeignmarkets.Hence,forthepurposesofthismodelwehaveappliedaclosed‐looprecyclingapproach.Figure3 provides a qualitative overview of corrugated material once it enters the End‐of‐Life stage. While

thereisinformationavailableintheabsolutemasscollected(recycledinU.S.)aswellaswherethecol‐lectedoldcorrugatedproductsare recycled (input tocontainerboardmills, input topaperboardmills,inputtoothermills),thereisnoinformationonhowmuchisenteringtheU.S.(foreignproductioninthe

formofnewand/orfilledcontainersholdingproductsorasOCC),goingto landfill/ incineration(sharedisposed)orleavingtheU.S.(exports).Asthelinkedsystemsareverydifficulttoassess,theopen‐loopapproachisnotfeasibletoapplytotheexistingsituation.

Figure3.QualitativemassflowmodelofEoLsituationofoldcorrugatedproducts

The ISO technical report1404927alsodescribesanopen‐loopapproachonahypotheticalpaperboardsystem.Thisapproachdiscussestheallocationoftheenvironmentalloadbetweenthefirstcycle(virgin

27ISO[14049:2000]Environmentalmanagement‐‐LifeCycleAssessment‐‐ExamplesofapplicationofISO14041togoalandscopedefinitionandinventoryanalysis

Page 42: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page42of113

product)andtheproductscontainingrecycledfibers;itreflectstheenvironmentalloadingfromthefirstproductcycletotheendoftheproduct’slife.Howeverthisapproachwouldrequiretheinformationon

thelinkedsystemsandtheenvironmentalprofilefor100%virginproducttobeavailable.Sincethein‐dustryaverageforcontainerboardproductionreflectsvirginandrecycledfiber input,there isnoenvi‐ronmentalprofileavailablefor100%virgincontainerboard.

3.4.1 CLOSED‐LOOPRECYCLINGAPPROACH

Asdescribedabove,thesituationofcorrugatedproductenteringitsEnd‐of‐Lifestageishighlycomplexanddifficulttoassess.Applyingtheclosed‐loopapproachavoidsallocationasadvisedbyISO14040/44.

Theclosed‐loopapproachconsidersthattherecoveredmaterial isusedinthesameproduct life‐cycle.ThisimpliesthatallrecycledfiberinputiscollectedinthesamelifecycleandthatnoOCCisleavingthe

systemnorisadditionalcorrugatedproductenteringthesystem.

Seventy‐eightpercent (78%, or0.78 kgoutof1 kg) of theU.S. shipmentsare recovered.While 0.418kg28oftherecoveredfiber isrecycledwithincontainerboardmills,theremainingamountisrecycledinnon‐containerboardmills. As thispreventscorrugatedmaterial fromgoing to landfilloperationsor in‐

cineration,andthereforenoenvironmentaleffectisrelatedtothismaterial,itismodeledas“recycledinothersystem”.Nocreditsorburdensareassignedtothisfractionatthispoint.

28The0.418kgrepresents41.8%ofUSshipmentor53.6%oftherecoveredamount.

Page 43: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page43of113

Li feCycleofbox1000mi les truckGaBi4Prozeßplan:Mass[kg]

Corrugatedboard

1kg

Corrugatedboard

1kg

Recoveredfiber(OCC,ONP,MP)

0.418kg

Xp03EoLEPAmodel

p02Transportofproduct‐usephase

p01Averagecorrugatedproduct‐basedonaveragenumbers

Overa l l recoveryrate78%

Figure4.Exemplarymassflowofclosed‐loopapproach

Thecorrugatedproductenteringdisposalismodeledaccordingtothe2006U.S.EPAstatisticsonEnd‐of‐

Lifetreatmentofmunicipalsolidwaste2930.

29 See [EPA2006]:United States Environmental Protection Agency (EPA). 2006. SolidWasteManage‐mentandGreenhouseGases:ALife‐CycleAssessmentofEmissionsandSinks,3rdEdition.Washington,D.C. U.S. EPA Office of Solid Waste and Emergency Response. See Table 6‐2.http://www.epa.gov/climatechange/wycd/waste/SWMGHGreport.html.30SimulationofthedisposalphaseusingPElandfillmodelhandlingoldcorrugatedcontainersandthesamesettingoftechnicalparameters,e.g.carbonsequesteredorlandfillgasrecovered,resultedinsimi‐larGHGnumbers(within10%range).PleasenotethatthePElandfillmodelhasbeendevelopedinde‐pendentlyfromtheEPAmodel.

Page 44: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page44of113

03EoLEPAmodel pGaBi4Pr ozeßplan:Mass [ kg]

0.418kg 0.22kg

1kg

0.0407kg 0.1793kg

0.362kg

pEndofLi fehandl ingofcorrugatedproduct

Corrugatedproductforrecycl ing

pCorrugatedto

landfi l l /incineration

XCorrugatedproduct

enteringEoL

Combustionofcorrugatedproduct

pLandfi l l of

corrugatedaccordingtoEPA

Paperforrecycledinothersystem

Overal l recoveryrate78%

Figure5.MassflowofEnd‐of‐Lifemodel

Of the corrugated landfilled, 55% (asmeasuredby carbon content) is sequestered formore than 100years31.Carboncontentthatisnotsequesteredforlongerthan100years isassumedtodegradeunderaerobicandanaerobicconditions;theCisto40%convertedintoCO2and60%toCH4.While10%ofthe

generatedmethane is converted intoCO2bybacteria, the remaining90%of the landfill gasare eithercollected(59%oftherecoveredmethane)orreleasedtotheenvironment(41%oftherecoveredmethane).Ofthecollectedlandfillgas47.5%isburnedonsitewhile52.5%areusedasaproductinotherapplications.Nocreditsor

emissionsareassignedtothecapturedlandfillgasusedasaproduct.

TheCO2emissionsareemittedto theenvironmentandaccountedasGHGofthe lifecyclemodelalsoincludesCO2uptakeduringforestry.

31Foramoredetaileddescriptionofthemodelpleaseseethe2006EPAreport“SolidWasteManage‐mentandGreenhouseGases–ALife‐CycleAssessmentofEmissionsandSinks”[EPA2006]

Page 45: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page45of113

4 RESULTS

Thefollowingchaptershowsthe inventoryresults,LCAresultsandrelevanceofthedifferent life‐cycle

stages.

Genericcombustionprocessesofspecificenergycarrierscovernon‐reportedcombustion‐relatedemis‐sions.

4.1 LIFECYCLEINVENTORY

Thischapterpresentstheinventorynumbersforproductionof1kgofU.S.industry‐averagecorrugatedproductandadiscussiononbiogeniccarbonof1kgofcontainerboard(cradle‐to‐gate).

4.1.1 INVENTORYOF1KGAVERAGECORRUGATEDPRODUCT

Thefollowingtableslisttheinventoriesforproductionof1kgU.S.industry‐averagecorrugatedproduct.

Table6describesthegate‐to‐gate inventoryofanaveragemill forproductionof1.11kgofcontainer‐boardproduct(enteringtheconvertingstepforproductionof1kgofcorrugatedproduct);Table7rep‐resentstheinventoryofanaverageconvertingplantforproductionof1kgofcorrugatedboard.

Theydonot include inbound transportation tomills andconvertingplants,nor transportationof final

product and End‐of‐Life.While they include the emissions associated with the combustion processeswithinthemillandconvertingplant,theeffortsrelatedtotheproductionofmaterialsandenergycarri‐

ers (fossiland renewable)arenot included.Also the generationofexternallypurchasedend energy isnotincludedinTable6asinventoryemissions,howeveritis includedintheoverallenvironmentalpro‐file.

Page 46: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page46of113

Table6.Inventoryofaveragemillfor1.11kgofcontainerboardproduct(gate‐to‐gate)32

32“Beneficials”–Terminologyindicatingthebeneficialuseofwaste.Forexample,sludgeofwastewatertreatmentinsteadofnewmaterial.

Page 47: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page47of113

Containerboardproductionischaracterizedbyawaterthroughputof43.2kgper1.11kgofcontainer‐board,butthenetwaterconsumption33onlyaccountsfor~4.9kgper1.11kgofcontainerboard(or1kg

ofcorrugatedproduct).Theremainingwateristreatedbyeither internalorexternalwastewatertreat‐mentandfeedsbacktotheenvironment.

Table7.Inventoryofaverageconvertingplantfor1kgofcorrugatedproduct(gate‐to‐gate)

Please note that noproductionwaste is considered for the gate‐to‐gate inventory for the convertingplant,asthereisnowaste.Themajorityofcontainerboardnotendingupincorrugatedproductsisused

33Thenetwaterconsumptionisthedifferenceofthewaterenteringthemillsandreleasedei‐

thertowastewatertreatmentplantsordirecttotheenvironment.Itisthesumofwaterretainedincontainerboard,evaporation,andwatercontentofwastestreams.

Page 48: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page48of113

withintheplantsfordifferentpurposes.Everythingthatisnotusedissentbackforrecycling.Theaver‐age inputofcontainerboardintoconvertingplantsperkgofcorrugatedproduct isapproximately1.11

kg.

4.1.2 BIOGENICCARBONCONSIDERATIONSFOR1KGCONTAINERBOARD

Greenhousegas(GHG)‐relevantemissionsandbiogeniccarbonwarrantspecialattentionforanystudy

ofabio‐basedmaterial.ThefollowingfiguresdisplaytheCO2equivalentoftherelevantGHGemissionsbytheirsource,e.g.productionofvirginfibers,combustion,andelectricityproductionof1kgofaveragecontainerboard going into the converting plants. It shows the specific numbers for carbon dioxide,

methane,andnitrousoxide.AllremainingGHG‐relevantemissionsarecombinedunder“other”.

Whendiscussingbiogeniccarbon,specifically,theCemissionsfrombiomasscombustionoroxidation,itisimportanttoexplaintheconceptofbiomassCO2asbeingneutralorzero.Inthelongrun,CO2emitted

from the oxidation of biomass does not increase atmospheric CO2 concentrations based on the validassumptionthattheatmosphericCO2emittedisoffsetbytheuptakeofCO2thatresultsfromsequestra‐tion of atmospheric CO2 and growth of new biomass. Consequently, the CO2 emissions from biomass

combustionarereportedseparatelyandnettedwiththefossilfuelsGHGemissionsbeforeenteringthecategorization step in the Life Cycle Impact Assessment phase of the LCA. It must be noted that thenumbersshowninFigure6representtheaveragecontainerboardinputinconvertingplantsfortheen‐

tireindustry;thecarbonuptakeofcontainerboardproductionisdirectlyrelatedtothevirginfibercon‐tent.Thisincludesthefactthatanaverageof0.464kgofrecycledfiber,1.16kgvirginfiberand0.154kgofadditionalbiomass forcombustion enters themillsper1 kgofcorrugatedproduct. Itmustalsobe

recognizedthattheCO2uptakerelatedtotherecycledfiberinput isnotdisplayedinthefigure;thus itonlyrepresentsthecradle‐to‐gatesituationforcontainerboardproduction.Itdoesnotreflecttheimpli‐cationsatEnd‐of‐Lifeassociatedwithmethaneemissions from landfill,etc.TheGHGnumber forhan‐

dling22%ofcorrugatedmaterial(whichistheamountrelatedto1.11kgofcontainerboard),basedontheappliedEPAmodel,addsupto0.42kgofCO2‐equivalent.Theinfluenceofhandlingcorrugatedma‐terialatEoLisdiscussedinchapter5.

Assuminganaveragecarboncontentof46%oftherecycledfiber input,therelatedCO2uptakewould

beabout0.78kgofCO234.

AsdemonstratedinFigure6,allstagesaredominatedbycarbondioxideemissions.

The GHG emissions associated with the fiber mix and biomass supply (as additional energy sources)stemfromtheuseoffossil‐basedenergysources(transportation,sawmills,etc.)orfertilizersuseddur‐ingharvestingwood.As thisshareisbasedonfossilenergyresources itcannotbeconsideredcarbon‐

neutral.ThesamelogicappliestotheGHG‐relevantemissionsassociatedwithcombustionoffossilfuelsorproductionoffossil‐basedelectricityandsteam.

340.464kgrecoveredfibers*46%carboncontent=0.213kgC=17.75mol;M(CO2)=44g/mol,thusCO2

uptake=17.75*44E‐3=0.78kg

Page 49: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page49of113

Figure6.GHGemissions(inCO2‐equiv.)andCO2uptakeof1kgofaveragecontainerboard35

Due to the carbon neutrality of carbon dioxide emissions based on biogenic carbon, neither the CO2emissions related tobiomasscombustionnor the respectivecarbonuptake related to thecombusted

biomassaredisplayedinFigure6.ThedisplayedCO2uptakeonlyrepresentstheamountofCO2relatedtothecarboncontentofcontainerboardandminorquantityofcarboninwastestreams.36

4.1.3 ENERGYRESOURCESUSEDFOR1KGCORRUGATEDPRODUCT

Thefollowingtableliststheuseofenergyfromnon‐renewable(fossil)aswellasrenewablesourcesrelatedtothedifferentcategoriesduringcontainerboardmanufacturingaswellasconversion.Theuseofrenewableenergyresourcesduringconversionismainlyrelatedtotheuseofstarch.

35Pleasenotethattheamountofnitrousoxide,methane,andotheristoosmalltobevisibleinfigure.36AmoredetailedC‐balancecanbefoundinAppendixA:BiogenicbasedCarbonbalanceofcontainer‐boardmills

Page 50: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page50of113

Table8.Energyresourcesusedformanufacturingof1kgcorrugatedproduct

Page 51: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page51of113

4.2 IMPACTRESULTSANDPRIMARYENERGYDEMAND

4.2.1 RESULTSOVERTOTALLIFECYCLE

Thischaptershowsresultsof1kgoffinalproductforthefollowingspecificstages:

• Fiberproduction:Thisincludesvirginfiberproduction,transportationfromforesttomill

aswellastherecycledinputtomill.Thefollowingaveragetransportationdistancesforinboundtransportationofvirginfiberareassumed:225milesbytrain,150milesbyship

and50milesbytruck.

• Containerboardproduction:Productionofthecontainerboard(linerandmedium).Thisincludes energies and chemicals needed during mill operation. The following averagetransportation distances for inbound transportation of chemicals are assumed: 225

milesbytrain,150milesbyshipand50milesbytruck;seeTable2.

• Converting plant: All impacts associated with efforts needed for converting. This in‐cludesenergies,chemicals,glue,starch, inks,etc.aswellashandlingofwastestreams.Thefollowingaveragetransportationdistancesfor inboundtransportationforcontain‐

erboardareassumed:850milesbytrainand500milesbytruck;seeTable2.

• TransportationinUsePhase:Thispartisrepresentativeforthetransportationofthefi‐nalproduct:1,000milespertruck.

• EoLproduct:EoLcoverstheeffortsandimpactsforlandfilloperationsandincinerationaswellasthecreditforavoidedproductionofthermalenergyandelectricityrelatedto

energyrecoveryofcollectedlandfillgasandcorrugatedmaterial.

Thefollowingtableshowsabsolutenumbersforthedifferentenvironmentalimpactcategoriesanalyzedin this report, specific to different stages of the life cycle of 1 kg of corrugated product, within theboundaryconditionsdescribedearlierinthereport.Thedifferentlife‐cyclestagesincludefiberproduc‐

tion, containerboard production, converting plant (summarized in the column “Total”), transport andEnd‐of‐Life.

GeneralRemark

Asdescribedinchapter4.1.2carbondioxideemissionsbasedonbiomasscombustion(biogeniccarbondioxideemissions)areconsideredtobecarbonneutral.Thereforetheyarenotdisplayedinthefollow‐

ing tablesandgraphs.As thecarbonneutrality isdirectlyrelatedto thecarbonuptakeofbiomassthecarbonuptakerelatedtothebiomassusedasenergysupplyisalsonotdisplayedinthefollowingtablesandgraphs.Thecarbonuptakeforfiberproductionrepresentsonlythesharethatendsupinpaper.

Page 52: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page52of113

Table9.EnvironmentalimpactplusPrimaryEnergyDemand(PE)perspecificlife‐cyclestageof1kgofcorrugatedproduct37

Figure7.Shareoflife‐cyclestagesperimpactcategoryplusPrimaryEnergyDemand(PE)for1kgofcorrugatedproduct

37Pleasenotethatduetoroundingthesumvaluenotnecessarilymatchthesumofthesinglevalues

Page 53: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page53of113

Asshowninthetableandfigureabove,allconsideredcategoriesaredominatedbycontainerboardpro‐duction.

ThereisanegativevalueintheGlobalWarmingPotentialinthefiberproduction.Thereducedenviron‐

mental impactontheGWPisduetotheuseofbiomassasrawmaterialforthefiberproduction.SincebiomassabsorbsCO2initsgrowthphaseviaphotosynthesis,theproductionofbiomassrepresentsanetCO2sink.

Thehandlingofthecorrugatedproductatitslife‐endplaysaminorroleforPE,AP,andEP(lessthan1%

contributiontotheoverallimpacts).ItismoresignificantforGWP(40%).ThiseffectismainlyrelatedtoconversionofashareoftheC‐contentofpapertomethaneandcarbondioxidewhenitislandfilled.

ThetransportationassociatedwithcollectionofOCCiscoveredbytransportationofinboundmaterialtocontainerboardmillsandconvertingplants.

Overallitisclearthatthecontributiontodifferent impactcategoriesvariesacrossthelife‐cyclestages.

Thisshowstheimportanceofincludingvariousimpactcategoriesandconsideringtheentirelifecycleofacorrugatedproduct.Thefollowingfigurespresentabsolutevaluesforthespecific life‐cyclestagesasdescribedabove.

Figure8shows thePrimary EnergyDemand (fossil)of thedifferent life‐cycle stages: fiberproduction,

containerboardproduction,converting,transportandEnd‐of‐Life.ThePrimaryEnergyDemand(fossil)isdominatedbycontainerboardproduction(approximately60%isrelatedtothecombustionoffossilfuelsand40%relatedtoelectricityconsumption);thecontributionofchemicalsusedduringcontainerboard

production is less than1%.Forconvertingplants, thesituation looksdifferent. About10%of PrimaryEnergyDemand is related to the chemicals used, 25% to the generationof the consumedelectricity,25% to transportationofcontainerboard to theconvertingplant,and the remaining40% is related to

theuseoffossilfuels.AsduringincinerationatEoL,electricityaswellassteamisproduced,acreditisgiven.Thiscreditisdueto“avoidedproduction”ofelectricityaswellassteam.OverallitcanbesaidthatthePrimaryEnergyDemandismainlyinfluencedbytheuseoffossilfuelsandelectricityconsumptionin

containerboardmillsandconvertingplants.

Page 54: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page54of113

Figure8.PrimaryEnergyDemand(inMJ)‐non‐renewable(fossil)–1kgproductoverlifecycle

Page 55: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page55of113

Figure9.GlobalWarmingPotential(inkgCO2‐equiv.)–1kgproductoverlifecycle

GlobalWarmingPotentialasshowninFigure9includesallgreenhousegas‐relevantemissionsstemmingfromthesupplyandcombustionoffossilfuelsaswellassupplyofrenewablefuelsandanyotherrele‐vant emissions. It represents thenet“CO2‐equivalent”value for1kgofcorrugatedproduct related to

thetotallifecycle.Followingtheconceptofcarbonneutralityofbiogeniccarbondioxideemissions,theshownGWP for containerboardproductiondoes not include carbondioxide emissions related to thecombustionofbiogeniccarbon.ConsequentlytheshownCO2uptakeisonlyrelatedtothecarboncon‐

tentofvirginfiberthatisnotcombustedashogfuel(manufacturingresidues)orblackliquor.Thenega‐tivevalueforfiberproductionisduetothefactthatbiomassabsorbsCO2initsgrowthphaseviaphoto‐synthesis.ThecontributionoftheEoLphaseisrelatedtoCO2andmethane,whichisreleasedfromland‐

filloperation.

Theoverall net GWPof 1 kgU.S. industry‐average corrugatedproduct,within the assumedboundaryconditionsoverthetotallife‐cycleresults,isapproximately1.00kgofCO2‐equivalent.

Basedon theboundaryconditionsas shown inFigure5,approximately0.42 kgofCO2 equivalentsare

relatedtoEoL(78%arerecoveredandrecycled,while0.22kgofoldcorrugatedproductaredisposed).

Page 56: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page56of113

Withoutanyrecycling,100%ofthecorrugatedproductswouldbehandledbyeitherlandfillorincinera‐tion,andtheCO2impactswouldbearound1.9kg38.

AsindicatedinFigure9,thehandlingofusedcorrugatedproductatEnd‐of‐LifebasedontheEPAmodel

showsasignificantcontributiontotheoverallGWP.Thisisbasedonthefactthatapproximately40%ofthemethaneemissionsfromlandfilloperationsisdirectlyreleasedtotheenvironment.TheimportanceofEnd‐of‐Lifecorrugatedproductsontheoveralllife‐cycleperformancewillbediscussedinchapter5.1.

.

Figure10.EutrophicationPotential(TRACI,inN‐equiv.)‐1kgproductoverlifecycle

EutrophicationandAcidificationPotential,showninFigure10andFigure11,aredominatedbycombus‐tionoffuels(fossilandnon‐fossilbased)duringcontainerboardproductionandinconvertingfacilities.

Pleasenotethatitisnotpossibletodiscussandanalyzethecontainerboardproductionandconverting

plants inmoredetailbasedonthelevelofaggregationwithwhichdatawascollectedandprovidedbyparticipatingmills.Itisnotpossibletoassignreportedemissionstotheirplaceoforiginmorespecificallythanonthesitelevel.

380.22kgdisposed=0.42kgCO2equiv.1kgdisposed=0.42/0.22kgCO2equiv.(1.9kg)

Page 57: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page57of113

Figure11.AcidificationPotential(TRACI,inmolH+‐equiv.)‐1kgproductoverlifecycle

Page 58: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page58of113

Figure12.POCP/SmogPotential(TRACI,inkgNOx‐equiv.)‐1kgproductoverlifecycle

POCP/SmogPotential,showninFigure12,isdominatedbycombustionoffuels(fossilandnon‐fossilbased)duringcontainerboardproductionandinconvertingfacilities.Transportbetweencontainerboardmillsandconvertingfacilitiesandaswellaselectricityconsumedinconvertingplantsshowasignificantcontributiontotheoverallsmogpotentialofconvertingplants.

Page 59: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page59of113

4.2.2 RESULTSOF1KGOFCONTAINERBOARD

Thissectionshowsthecontribution toPrimaryEnergyDemand–(non‐renewable(fossil)resources)offurnish input intomills, different energysources combustedon‐site,and electricityandsteamboughtfromexternalsources.Adetaileddiscussiononglobalwarmingcanbefoundinchapter4.1.2.

ItisnotpossibletogeneratesimilargraphsforAP,EPandPOCPbecausetheNOxandSO2emissions,as

wellasotherreleasestotheenvironment,wereonlyreportedasoverallvalues.Thereforeitisnotpos‐sibletoassignspecificamountstothedifferentcombustionprocesses.Foranoverallaverageprofilethisisnotnecessaryandthereforesufficientforthepurposeofthisstudy.

ThefollowingtableshowsabsolutequantitiesfortheuseoffossilenergyresourcesandCO2equivalents

asameasureofglobalwarmingfor1kgofaveragecontainerboard.

Table10.GWPandnon‐renewableenergyresourcesusedfor1kgofcontainerboard

Note: For 1 kg of final product 1.11 kg of containerboard is needed. Therefore the share of non‐renewable (fossil) energy resourcesused for1 kgof corrugatedproductamounts to14.78MJ. Please

seeTable8forspecificnumbers.Thesameappliestotheotherindicators.

Page 60: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page60of113

Figure13.PrimaryEnergyDemand(non‐renewable(fossil)energyresources,inMJ)–1kgofpaper

inputtoconvertingplant

Asindicated inFigure13thehighestshareofPrimaryEnergyDemandisrelatedtofossil‐fuelcombus‐tionon‐siteandpurchasedelectricity/steam.Approximately85%ofthePrimaryEnergyDemandfromnon‐renewablesourcesisrelatedtotheelectricityandfossilfuelconsumption.Thecontributionrelated

tofurnish(virginandrecycledfibers)andcombustionofbiomassareduetotheuseoffossilfuels,fertil‐izers,etc.duringforestry.Thecontributionrelatedtotheproductionofthechemicalsusedincontain‐erboardmillsislessthan1%.

Page 61: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page61of113

5 SENSITIVITYANALYSIS

5.1 INFLUENCEOFEOLONLIFE‐CYCLEPERFORMANCE

AsshowninFigure14,theEnd‐of‐LifestagehasasignificantinfluenceonoverallGlobalWarmingPoten‐tial. Different EoL scenarios havebeen simulated to show the influenceonoverall performance. The

followingscenarioshavebeenassessed:

• Base:Asdescribedinmainreport–78%recovered,18%to landfill (59%landfillgascaptured),4%toincineration

• Allrecovered:Allcorrugatedproductrecovered,nothingtolandfill/incineration

• 78%recovered/allincinerated:78%recovered/allnon‐recoveredincinerated

• 78%recovered/allgasrecovered:78%recovered/alllandfillgasrecovered

• 78%recovered/nogasrecovered:78%recovered/nolandfillgasrecovered

Ascanbeseeninthefollowingfigures,thehandlingofoldcorrugatedproductshasasignificant influ‐enceonoverallenvironmentalperformance.Forexample,shouldnocorrugatedproductbeincinerated

orlandfilledatEnd‐of‐Life,theoverallGWPwoulddecreasebyabout40%comparedwiththebasecase.Alsothehandlingoflandfillgashasasignificantinfluence.Forexample,ifnolandfillgaswererecoveredtheoverallGWPwouldincreasebynearly40%,whilearecoveryofalllandfillgaswouldresultinade‐

creaseofabout20%.

Pleasenotethat47.5%oftherecoveredlandfillgasiscombustedon‐siteandthatnocombustionemis‐sionshavebeenassignedtorecoveredlandfillgas,whichisusedasaproductatthispoint.

Page 62: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page62of113

Figure14.InfluenceofdifferentEoLscenarios–GWP(inkgCO2‐equiv.),absolutevalues

Pleasekeepinmindthattheinfluenceontheenergymixofrecoveredfiber input intocontainerboardmillshasnotbeenassessed. Thesensitivityanalysis isbasedon thesameenergymixof fossiland re‐newableenergyinputintocontainerboardmills.

Consideringtheseassumptions,theanalysisclearlyindicatedthattheEoLstage,whichrepresentsland‐

fillandincinerationofthenon‐recoveredOCC,isofrelativelyhighimportanceandthattheoverallpro‐filemaybereducedbymanagingtheEnd‐of‐Lifestagesofcorrugatedproducts.Asclearlyshowninthefigureabove,areductionofabout20%oftheGWPmaybeachievedbycapturingalllandfillgas.

Page 63: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page63of113

Figure15.InfluenceofdifferentEoLscenarios–GWP(inkgCO2‐equiv.),relativegraph

Page 64: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page64of113

5.2 INFLUENCEOFTRANSPORTATIONOFFINALPRODUCT

Thischaptershowstheinfluenceofdifferenttransportdistancesofthefinalcorrugatedproductontheenvironmentalperformanceof1kgoffinalproduct.Thereforethefollowingtwoscenariosaremodeledanddiscussed:

1. 1kgproducttransported1,000milesviatruck

2. 1kgproducttransported1,500milesviatruck

Theanalysisfocusesonthefollowingquestions:

1. Overallshareoftransportation:

For nearly all analyzed impact categories the share of transportation is below10%of the

overallnetimpact.TheonlyexceptionisGWPfortransportationscenario2:shareofthenetimpactis15%.

2. Influenceoftransportationscenariosonresults:

AllanalyzedimpactcategoriesexceptGWPshownorealsensitivitytotheincreaseintrans‐portdistanceofthefinalproduct.Theincreaseof50%distanceonlyresultsinanincreaseof

about1%withrespecttotheoverallnumbers.OnlyforGWPthevariationofthedistanceparametershowsanincreaseof5%.ThereforetheGWPshouldbeconsideredsensitivetothetransportdistance.

Conclusion:

ThetransportdistanceofthefinalproductviatruckisonlyrelevantforGWP.

Page 65: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page65of113

Figure16.InfluenceoftransportdistancesonoverallLCIforPE(non‐renewable,inMJ)

Page 66: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page66of113

Figure17.InfluenceoftransportdistancesonoverallLCIforGWP(inCO2‐equiv.)

Page 67: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page67of113

Figure18.InfluenceoftransportdistancesonoverallLCIforPOCP/Smog(TRACI,inNOx‐equiv.)

Page 68: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page68of113

Figure19.InfluenceoftransportdistancesonoverallLCIforAP(TRACI,inmolH+‐equiv.)

Page 69: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page69of113

Figure20.InfluenceoftransportdistancesonoverallLCIforEP(TRACI,inN‐equiv.)

Page 70: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page70of113

6 CONCLUSIONS

ThisstudyrepresentsacomprehensiveLCAofU.S. industry‐averagecorrugatedproduct.Assuch,con‐

clusionscanbedrawningeneralacrosstheentireindustry.

Ascurrentlyconstituted,thefollowingconclusionsmayreasonablybemadebasedontheresultsofthisstudy:

• Containerboardmillsdrivethelife‐cycleprofiles–Forallimpactcategories,materialandenergy flows frompapermillsdominate the results. Environmental impactsaredomi‐

natedbyenergydemandsatthemill.Bio‐basedenergy(e.g.hog‐fuel, liquor,etc.)sub‐stantiallyreducesglobalwarmingpotentialcontributionfrommills,butdoesnotelimi‐natemills’GWPcontributiondueto theiruseoffossil fuels.Energysourcing isaman‐

agementoptionopen tomilloperators thatcanhavea substantial effecton the envi‐ronmental impacts. Increaseduseofbio‐basedenergysourceswill furtherreducetheoveralluseoffossilenergyandGWP impactsfrommills,althoughtherearenumerous

factorsthatmustbeconsideredinenergysourcingdecisions(e.g.availabilityandprice).

• Transportationof final product does not define profile – Long‐distance transportationscenarios(basedonnationalaverages)weremodeledyetstillrepresentedaninsignifi‐cantchangeinoveralllife‐cycle impactsforall impactcategoriesexceptGWP.It ispos‐

siblethatlongerdistancesanddifferenttransportationmodesoccur,inwhichcaseaddi‐tionalsensitivityscenarioscanbecalculatedtodemonstrateimpact.

• End‐of‐Life isonly importantwith respect toGWP–End‐of‐Lifeasmodeled (basedon2006 industry average) demonstrates that it is only important in relation to global

warmingpotential.Otherlife‐cycleimpactindicatorsshowlittleornoresponsefromtheEnd‐of‐Life stage.TheEnd‐of‐Life effectonGWP ismainly related tomethane genera‐tionfromlandfilloperations,whichisnotcaptured.Thesensitivityanalysisondifferent

End‐of‐Lifemanagementscenariosclearlyshowedthatincreasingtherecoveryrate, in‐creasing efforts to capturemethane, or increasing the percentage of disposed corru‐gatedmaterialsthatareincineratedforenergyrecoveryhavethepotentialto improve

overallenvironmentalperformance.

• Topicsforfurtherinvestigation:

o Relationshipbetweenuseof recovered fibersandwoodasmaterial input intocontainerboardmills

Increasing corrugated recovery (from the 2006 figure of 78% recovery ofU.S.shipmentswith41.8%recyclingwithincontainerboardmillsand36.2%

recycling in other mills) will have a positive influence on reducing theamount of corrugated landfilled and GHG‐relevant emissions associatedwithlandfill.Atthesametimeanincreaseofrecoveredmaterialusewillre‐

sultinadecreaseofwoodfiberinputincontainerboardmills,whichwillde‐

Page 71: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page71of113

crease the CO2 uptake during forestry. As a secondary effect the energysupplymixisinfluencedbytheamountofrecoveredfiberandwoodinput.

Future investigationsmay analyze this effect by adding quantitative infor‐

mationabouttheinfluenceofrecycledcontentonthecarbonfootprintdis‐cussionrelatedtocorrugatedproducts.

o Changetoahighershareofbio‐fuels

Achangetowardsanincreaseduseofbio‐basedenergysupplywouldcertainlyhaveapositiveeffectonreducingthecarbonfootprintofcontainerboardmills

andconvertingplants,butmayresultinanincreaseinotherenvironmentalim‐pacts.

Future investigationsmayanalyzeandoptimize themixofenergysupply fromanenvironmentalperspective.

Page 72: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page72of113

APPENDIXA:BIOGENICBASEDCARBONBALANCEOFCONTAINERBOARDMILLS

Thefollowingtabledisplaysthevirtualpathofthebiogenic‐basedcarbonthroughtheaveragecontain‐erboardmill.TheC‐contentofeachinputandoutputstreamiscalculatedbasedontheoverallmassper

1kgofaveragecontainerboardandanaverageshareofCperstream.The%valuesforbeneficials,landapplication,incinerationgoods,andwastetolandfillareaveragevaluesprovidedbyNCASI.Thesevaluesmust be seen as average values andmay vary frommill tomill. Additional biomass is assumed to be

mainlybone‐drywood.

Table11.Balanceofbiogenicbasedcarbonthroughcontainerboardmill

Basedon theassumptionsandreportedmassflows, theC‐balanceforthe industryaveragecontainer‐boardproductisgivenasshowninTable11.

Thecarbonbalancedoesnotcloseperfectly,butthis isaconservativeassumption takingintoaccountlessbiogeniccarbongoingin(=carbondioxideuptake)thanout.Thedifferenceisduetotheuseofdis‐

creteandindependentdatasets.

Page 73: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page73of113

APPENDIXB:LCARESULTS–CML

ThefollowingappendixshowstheLCAresultsbasedontheCMLmethodologyandthePrimaryEnergy

Demandfromnon‐renewableresources.

Table12.EnvironmentalimpactplusPrimaryEnergyDemand(PE)perspecificlife‐cyclestageof1kgofcorrugatedproduct

Page 74: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page74of113

Figure21.Shareofdifferentlife‐cyclestagesperimpactcategoryplusPrimaryEnergyDemand–non‐renewableforof1kgofcorrugatedproduct

Page 75: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page75of113

Figure22.PrimaryEnergyDemand(inMJ)‐non‐renewable(fossil)energyresources–1kgcorrugatedproductoverlifecycle

Page 76: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page76of113

Figure23.CML‐EutrophicationPotential(inkgPhosphate‐equiv.)‐1kgproductoverlifecycle

Page 77: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page77of113

Figure24.CML‐AcidificationPotential(inkgSO2‐equiv.)‐1kgproductoverlifecycle

Page 78: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page78of113

Figure25.CML‐POCP(inkgEthene‐equiv.)‐1kgproductoverlifecycle

Page 79: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page79of113

APPENDIXC:GATE‐TO‐GATEINVENTORY

Thefollowingtablerepresentstheoverallgate‐to‐gateviewofproductionof1kgcorrugatedproductandcoversallmaterialsandenergyconsumedwithinthemillandconvertingplant,aswellasthere‐latedemissions.Theemissionsofcontainerboardandcorrugatedproductionaresummarizedinthetablebelow.

Page 80: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page80of113

APPENDIXD:CRADLE‐TO‐GATEINVENTORYANDLCIARESULTSOF1KGCORRU‐GATEDPRODUCT

ThefollowinggraphsshowtheLCIAresultsfor1kgofcorrugatedproduct.ThegraphsarefollowedbyaLifeCycleInventory(LCI)tablerepresentingtheoverallcradle‐to‐gateviewofproductionof1kgcorru‐gatedproduct.

Figure26.PrimaryEnergyDemand(inMJ)‐non‐renewable(fossil)energyresources–1kgcradletogatecorrugatedproduct

Page 81: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page81of113

Figure27.GlobalwarmingPotential(GWP)–1kgcradletogatecorrugatedproduct

Figure28.TRACIEutrophicationpotential–1kgcradletogatecorrugatedproduct

Page 82: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page82of113

Figure29.TRACIAcidificationpotential–1kgcradletogatecorrugatedproduct

Figure30.TRACI–Smogpotential–1kgcradletogatecorrugatedproduct

Table13.Cradle‐to‐gateinventory–1kgcorrugatedproduct

Page 83: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page83of113

Page 84: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page84of113

Page 85: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page85of113

Page 86: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page86of113

Page 87: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page87of113

Page 88: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page88of113

Page 89: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page89of113

Page 90: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page90of113

Page 91: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page91of113

Page 92: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page92of113

Page 93: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page93of113

APPENDIXE:CRADLE‐TO‐CRADLEINVENTORY

Table14.Cradletocradleinventory–1kgofcorrugatedproduct

Page 94: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page94of113

Page 95: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page95of113

Page 96: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page96of113

Page 97: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page97of113

Page 98: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page98of113

Page 99: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page99of113

Page 100: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page100of113

Page 101: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page101of113

Page 102: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page102of113

Page 103: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page103of113

Page 104: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page104of113

APPENDIXF:THECRITICALREVIEWPANELREPORT

A panel of LCA practitioners and interested parties completed a critical review of the aforemen-tioned study and jointly developed this report according to Clause 7.3.3 of ISO 140401 (2006) and Clause 6.3 of ISO 140442 (2006) standards.

1 The Review Process Five Winds International and PE-Americas were commissioned by the Corrugated Packaging Alliance (CPA, an alliance between American Forest & Paper Association, the Fibre Box Association and the association of Independent Corrugated Converters) to conduct a “cradle -to-grave” Life Cycle As-sessment of a U.S. industry average corrugated product. As part of the framework for this study, a critical review process was undertaken, intended to ensure consistency between this LCA study and the principles and requirements of the ISO 14040/44 Inter-national Standards on Life Cycle Assessment3. Athena Sustainable Materials Institute was commissioned in May 2008 to lead the critical review in accordance with ISO 14040/44 (2006), in collaboration with co-reviewers of interested parties. The review panel included the following experts: Mr. Jamie Meil, Athena Institute - review panel Chairman; Dr. Lindita Bushi, Athena Institute. Dr. Michael Deru, US National Renewable Energy Laboratory; Ms. Martha Stevenson, Private Consultant; and Dr. Jim Wilson, Department of Wood Science and Engineering, Oregon State University; The review process entailed the following steps: 1. meet, review and comment on the study Goal & Scope document, 2. review and comment on initial study results, and 3. review and comment on the draft final study results and supporting report. At each milestone the review process considered whether the following study elements were met: 1. the methods used to carryout the LCA are consistent with the ISO 14040 series of international

LCA standards; 2. the methods used to carry out the study are scientifically and technically valid; 3. the data used are appropriate and reasonable in relation to the goal of the study; 4. the interpretation(s) reflect the limitations identified and the goal of the study; and 5. the study report is transparent. This document addresses the final element of the review process – review of the final study report dated December 31st, 2009.

Page 105: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page105of113

The panel’s final report review comments and recommendations for future LCA efforts for the in-dustry are presented below.

2 Critical Review Comments on the Final Report “LCA of U.S. Industry Average Corrugated Product” This study provides a “cradle-to-grave” Life Cycle Inventory (LCI) and Life Cycle Impact Assess-ment (LCIA) for 1 kg of corrugated product inclusive of four life cycle stages: container board pro-duction, converting plant, transport in use phase and end-of-life; The “cradle- to grave” LCI profile represents the 2006 US industry-average corrugated product by applying a generic model for the end-of-life phase. This model assumes that for each kg of post consumer corrugated waste that 0.418 kg is recycled within containerboard mills, 0.362 kg is recycled in other paper systems (no burden or credit assigned), 0.0407 kg is incinerated and the remainder (0.1793 kg) is land filled. The review committee followed ISO 14040/44 review guidelines when completing the three- stage review process. During each stage of the study the review committee provided a number of com-ments and recommendations to the LCA practitioners and study commissioner in order to ensure it aligned and appropriately addressed the goal and scope of the study, that it was transparent and that various methodology aspects were handled consistently as per ISO14040/44 requirements. Overall the panel is pleased with this first system (site) level effort to benchmark the US corrugated packag-ing supply (value) chain.

While the study does endure some data quality issues due to the use of aggregated industry survey data to derive primary plant data and relies on a number of secondary data sources, the significant product output representativeness of both container board and conversion industries is laudable. In addition, the consultant conducted a biogenic-based carbon balance for the system to validate the accuracy of the resource input/output data. The study methodology, the resulting LCI data and its interpretation are deemed to be consistent with the guidelines for LCA studies as set down by ISO 14040/44 and properly addresses the goal and scope of the study. The critical review panel has found this LCA study well constructed and adhering to the requirements of the ISO 14040 series of standards and has few reservations. As with any LCA study there is always room for improvement and the critical review committee has made the following recommendations concerning any future iterations of this study: 1. As mentioned in the report, the intent of this LCA study is to generate results that are credible

and can be publicly communicated in formats consistent with public databases. The initial public release of data is intended to populate the US LCI database, the GreenBlue COMPASS tool and support EPA efforts.

To better serve the LCA community, and to increase the applicability of the results of this LCA study, we recommend making the LCI data available in a number of formats: “gate-to-gate”, “cradle-to gate” and “cradle-to grave”; the “cradle-to gate” profile will allow the LCA practitio-ners to use these data in other corrugated product specific LCA studies, where different product

Page 106: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page106of113

specific “transport in use phase” and the “end-of-life” phase can be applied. Further, the LCI datasets provided at the US LCI database are usually “cradle-to-gate” profiles. Other users have already indicated a desire to focus on “gate-to-gate” effects – e.g., papermaking and its conver-sion separately. The provision of a cradle-to-grave profile also limits the possibility of errors when rolling up the LCI data.

CPA Response: All three suggested profiles have been addressed in the full report: “cradle-to-gate” is addressed in Appendix D (page 80), fiber through converting; “gate-to-gate” profiles are addressed in Appendix C, page 79; and the “cradle-to-grave” profile is addressed in Appen-dix E, page 93.

2. The current study relies on LCI input data derived from rolled-up industry statistical data from

various and somewhat disconnected sources affording an analysis at the sub-sector level only (containerboard mill and converting plant). Future updates should be based on more generic, but detailed LCI data availability questionnaires preferably at a “unit process” level for both con-tainer board mills and conversion plants in order to improve data input quality and move the LCA beyond a rolled-up site level analysis. This is a key requirement to provide the industry with more thorough and useful information to help identify “environmental hotspots” within each site and thereby, highlight specific areas for improvement within and across the value chain.

CPA Response: We recognize the need for improved data surveying and are working with NCASI to develop an improved methodology. However, individual mills and companies need a different level of data than LCA practitioners or the public. The level of detail in this study is sufficient to the public needs. Specific plants or companies within the industry should use the LCA to identify “hot spots” and improve their environmental profile. We recognize that most facilities do not have the capability to measure the inputs and outputs at each “unit process”. Mills and convert-ers can decide internally how they wish to use the LCA and if they wish additional detail.

3. Due to a number of factors the current study uses a simplified, however, conservative “closed

loop” recycling methodology. The study assumes that 36.2% of the post consumer waste corru-gated product is recycled in other paper systems with no credits or burdens assigned. The current recycling methodology approach, while instructive and conservative, has been deemed wanting and needs to be improved in future iterations of the study. The 36.2% of post-consumer corru-gated is a considerable quantity and this recycled material is displacing “virgin” paper material in other paper mills. Environmental benefits of displacing virgin paper material and the environ-mental burdens of collecting, cleaning, sorting etc., should also be considered in the future studies by applying a “closed-loop” recycling procedure for this open-loop corrugated product system by expanding the system boundaries of the study.

CPA Response: While recognizing the desirability of using a closed-loop recycling system, ex-panding the system boundaries of the study as suggested would require a global LCA study, since recycled fiber is traded on a global market and 20% of U.S.-generated OCC is exported. There is no existing structure in place that would allow for global data gathering to account for fiber sup-ply and end-use in all markets worldwide.In addition, the question itself incorrectly asserts that the burdens of collecting, cleaning and sorting were not included in the study. In fact, these burdens were included; collection is part of transportation, and cleaning and sorting are included in the mill data.

4. Because certain corrugated products can be made from either 100% virgin fiber or 100% recov-

ered fiber such as linerboard, corrugating medium (see final report, page 35), it is recommended that any future study should provide LCI profiles for both 100% virgin and 100% recovered fiber corrugated products similar to other industry sectors. This would facilitate modeling of a specific corrugated product with different recycled contents. Again a more robust data availability questionnaire would help address this data gap.

Page 107: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page107of113

CPA Response: The purpose of this study was to assess environmental impacts of an industry-average corrugated product. It was deemed inappropriate to analyze various fiber streams inde-pendently because the integrated corrugated industry needs both recycled and virgin fiber for the fiber supply system to work. . This approach was judged the most accurate and appropriate de-piction of the industry as a whole, which was the subject of the study. The present study includes a sensitivity analysis (Section 5.1) showing that recycling is clearly pre-ferred over incineration or landfilling. Mixed mechanical and chemical pulp fibers, inorganic fillers, plastic, glue, and ink ultimately limit the use of recovered paper stocks. To regenerate a reasonably-clean paper furnish from the last fraction of recovered paper, a great amount of energy and chemicals would have to be spent. Furthermore, a voluminous by-product of solid waste would be generated.

In addition, the CPA asked NCASI to run a sensitivity analysis that would illuminate what difference, if any, recycled furnish might have on global warming potential. The NCASI analysis shows that there is no statistically significant relationship between recycled content and GWP resulting from direct and purchased-energy emissions on an industry-wide basis, as shown below. This is because most virgin containerboard mills self-generate steam and electricity from carbon-neutral biomass, while recycled containerboard mills typically purchase fuel and electricity. Other plant-specific character-istics (such as equipment used, energy efficiency and energy sources) far outweigh the impact that variable recycled content has on GWP. As indicated, the NCASI analysis does not include the GWP indirect emissions that are included in the LCA.

5. Toxic Release Inventory (TRI) data were either not reported or reported in an inconsistent man-ner by the participating containerboard mills and conversion plants, and these flows were essen-tially excluded from this study. This is a limitation, which can contribute to unfair future com-

Page 108: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page108of113

parative assertions studies. Therefore, it is strongly recommended that future updates treat these missing data or data gaps as per ISO 14044:2006 recommendations, Clause 4.2.3.6.3.

CPA Response: A decision was reached by the LCA team not to use TRI data because they are derived in a variety of ways, and results in a compiled, reportable form may not meaningfully re-flect actual emissions. Some reportable materials, for example, may not be reported because use of such substances – or their emission – is far below TRI reporting limits. This decision will be revisited in the next LCA process.

6. A total of five impact categories (primary energy, climate change, eutrophication, acidification,

and photochemical smog) are used to characterize and address the environmental issues related to the average corrugated product system. Human health and eco-toxicity impact categories are not included in this study based on the uncertainty associated with these impact categories based on the “Apeldoorn Declaration from 2004”4.

We would like to point out that (a) the Apeldoorn Declaration was specifically focused on the current practices and complications of LCIA methodologies for “non-ferrous metals”; (b) the declaration does not over-rule the ISO 14040: 2006 and ISO 14044:2006 requirements and rec-ommendations in any form - as per ISO 14044: 2006, Clause 4.4.2.2.1, “the selection of impact categories shall reflect a comprehensive set of environmental issues related to the product system being studied, taking the goal and scope into consideration”; and (3) since 2004, work by the LCA community to harmonize and improve these end-point characterization methods has progressed. The Task Force on Toxic Impacts, launched in 2003, under the UNEP/SETAC Life Cycle Initia-tive5 has developed recommendations on characterization models and factors. Characterization factors for thousands of substances for human health and ecotoxic impacts are calculated in the framework of the international consensus model for comparative assessment of chemicals (USE-tox)6,7. In the near future, USEtox characterization factors will be supported by the EPA’s TRACI methodology and these should be considered for inclusion in future iterations of the study.

CPA Response: Human health and ecotoxicity impact categories are not included in this study for several reasons. Data on toxic releases by the mills and converters represented in this study were inadequate in number and quality to enable proper inclusion in the inventory. These facts were the basis of the decision reached by the LCA team to exclude these impact categories. While the Apeldoorn Declaration of 2004 deals specifically with impact assessment of metals in LCA studies, the uncertainty associated with human health and ecotoxicity impact categories noted in this Declaration applies equally well to toxic release data in a study such as this one. Poor and insufficient data coupled with inherent uncertainties in available impact assessment methods support the decision of the project team. The project team recommended that the industry ad-dress toxic releases independently of the LCA through use of toxic risk assessment.

These scoping and data collection recommendations are just that – recommendations. They are not meant to chal lenge the methods or conclusions of this current ISO compli-ant benchmark study. The peer review panel is confident that the adoption of these recommen-dations, however, will advance this LCA initiative and serve the industry well from both an internal improvement and external communication perspective in the future. Sincerely, Jamie Meil The Athena Institute (On behalf of the Critical Review Committee)

Page 109: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page109of113

4 http://www.leidenuniv.nl/cml/ssp/projects/declaration_of_apeldoorn.pdf 5 http://www.estis.net/sites/lciatf3/ 6 http://www.usetox.org/ 7 http://www.springerlink.com/content/8217520256r12w36/fulltext.pdf

Page 110: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page110of113

APPENDIXG:IMPACTINDICATORS

PrimaryEnergyDemand

PrimaryEnergyDemand isoftendifficulttodetermineduetothevarioustypesofenergysources.Pri‐maryEnergyDemandisthequantityofenergydirectlywithdrawnfromthehydrosphere,atmosphereor

geosphere,orenergysourcewithoutanyanthropogenicchange.Forfossilfuelsanduranium,thiswouldbetheamountofresourcewithdrawnexpressedinitsenergyequivalent(i.e.theenergycontentoftherawmaterial).Forrenewableresources,theenergy‐characterizedamountofbiomassconsumedwould

be described. For hydropower, it would be based on the amount of energy that is gained from thechangeinthepotentialenergyofthewater(i.e.fromtheheightdifference).Asaggregatedvalues,thefollowingprimaryenergiesaredesignated:

Thetotal“Primaryenergyconsumptionnon‐renewable”,giveninMJ,essentiallycharacterizesthegain

fromtheenergysourcesnaturalgas,crudeoil, lignite,coalanduranium.Naturalgasandcrudeoilareusedbothforenergyproductionandasmaterialconstituents(e.g.inplastics).Coalisprimarilyusedforenergyproduction.Uraniumisonlyusedforelectricityproductioninnuclearpowerstations.

Thetotal“Primaryenergyconsumptionrenewable”,giveninMJ,isgenerallyaccountedseparatelyand

compriseshydropower,windpower,solarenergyandbiomass.

Itis importantthattheendenergy(e.g.1kWhofelectricity)andtheprimaryenergyusedarenotmis‐calculatedwitheachother;otherwisetheefficiencyforproductionorsupplyoftheendenergywillnotbeaccountedfor.

Theenergycontentofthemanufacturedproductsisconsideredasfeedstockenergycontent.Itischar‐

acterizedbythenetcalorificvalueoftheproduct.Itrepresentsthestill‐usableenergycontent.

GlobalWarmingPotential(GWP)

Themechanismofthegreenhouseeffectcanbeobservedonasmallscale,asthenamesuggests, inagreenhouse.Theseeffectsarealsooccurringonaglobalscale.Theoccurringshort‐waveradiationfrom

thesuncomesintocontactwiththeearth’ssurfaceandispartlyabsorbed(leadingtodirectwarming)andpartlyreflectedasinfraredradiation.Thereflectedpartisabsorbedbyso‐calledgreenhousegasesinthetroposphereandisre‐radiatedinalldirections,includingbacktoearth.Thisresultsinawarming

effectattheearth’ssurface.

Inaddition to thenaturalmechanism, the greenhouse effect isenhancedbyhumanactivities.Green‐housegasesthatareconsideredtobecaused,orincreased,anthropogenicallyare,forexample,carbon

dioxide,methaneandCFCs.Figure31shows themainprocessesof theanthropogenicgreenhouseef‐fect.Ananalysisofthegreenhouseeffectshouldconsiderthepossiblelong‐termglobaleffects.

Page 111: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page111of113

Theglobalwarmingpotential iscalculatedin carbon dioxide equivalents (CO2‐Eq.).

Thismeans that thegreenhousepotentialof an emission is given in relation to CO2.

Since the residence time of the gases in

the atmosphere is incorporated into thecalculation, a time range for the assess‐ment must also be specified. A period of

100yearsiscustomary.

CO2 CH4

CFCs

UV - radiation

AbsorptionReflection

Infraredradiation

Trace gases in th

e a

tmosphere

Figure31.Greenhouseeffect

AcidificationPotential(AP)

Theacidificationofsoilsandwatersoccurspredominantlythroughtransformationofairpollutantsintoacids.This leads toadecrease in thepH‐valueof rainwaterand fog from5.6 to4andbelow.Sulphurdioxide,nitrogenoxideandtheirrespectiveacids(H2SO4undHNO3)producerelevantcontributions.This

damagesecosystems,wherebyforestdiebackisthemostwell‐knownimpact.

Acidificationhasdirectandindirectdamagingeffects(suchasnutrientsbeingwashedoutofsoilsoranincreasedsolubilityofmetalsintosoils).Butevenbuildingsandbuildingmaterialscanbedamaged.Ex‐

amplesincludemetalsandnaturalstoneswhicharecorrodedordisintegratedatanincreasedrate.

Whenanalyzingacidification, itshouldbeconsideredthatalthough it isaglobalproblem, theregionaleffectsofacidificationcouldvary.Figure32displaystheprimaryimpactpathwaysofacidification.

The acidification potential is given in sul‐phur dioxide equivalents (SO2‐Eq.). The

acidification potential is described as theability of certain substances to build andreleaseH+‐ions.Certainemissionscanalso

be considered to have an acidificationpo‐tential, if the given S‐,N‐ andhalogen at‐omsareset inproportiontothemolecular

mass of the emission. The reference sub‐stanceissulphurdioxide.

SO2

NOX

H2SO

44

HNO3

Figure32.AcidificationPotential

Page 112: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page112of113

EutrophicationPotential(EP)

Eutrophicationistheenrichmentofnutrientsinacertainplace.Eutrophicationcanbeaquaticorterres‐trial.Airpollutants,wastewaterandfertilizationinagricultureallcontributetoeutrophication.

Theresultinwaterisacceleratedalgaegrowth,whichinturn,preventssunlightfromreachingthelowerdepths. This leads to a decrease in photosynthesis and less oxygenproduction. In addition, oxygen is

needed fordecompositionofdeadalgae. Both effectscauseadecreasedoxygenconcentration in thewater,whichcaneventuallyleadtofishdyingandtoanaerobicdecomposition(decompositionwithoutthepresenceofoxygen).Hydrogensulphideandmethanearetherebyproduced.

Oneutrophicatedsoils, increasedsusceptibilityofplants todiseasesandpests isoftenobserved,as is

degradationofplantstability.Iftheeutrophicationlevelexceedstheamountsofnitrogennecessaryforamaximumharvest, it can lead toanenrichmentofnitrate.Thiscancause,bymeansof leaching, in‐creasednitratecontentingroundwater.Nitratealsocanendupindrinkingwater.

Nitrate at low levels is harmless from a

toxicological point of view. However, ni‐trite,a reactionproductofnitrate,canbetoxic to humans at excessive doses. The

causes of eutrophication are displayed inFigure 33. The eutrophication potential iscalculated in phosphate equivalents

(PO4‐Eq).Aswithacidificationpotential,it’simportanttorememberthattheeffectsofeutrophication potential differ regionally

andcanvarysignificantlyindifferentwaterbodies.

Waste water

Air pollution

Fertilisation

PO4-3

NO3-

NH4+

NOXN2O

NH3

Waste water

Air pollution

Fertilisation

PO4-3

NO3-

NH4+

NOXN2O

NH3

Figure33.EutrophicationPotential

PhotochemicalOzoneCreationPotential(POCP)

Despiteplayingaprotectiverole inthestratosphere,atground‐levelozoneis classifiedasadamaging

trace gas. Photochemical ozone production in the troposphere, also known as summer smog, is sus‐pectedtodamagevegetationandmaterial.Highconcentrationsofozonearetoxictohumans.

Radiationfromthesunandthepresenceofnitrogenoxidesandhydrocarbons incurcomplexchemicalreactions,producingaggressivereactionproducts,oneofwhichisozone.Nitrogenoxidesalonedonot

causehighozoneconcentrationlevels.

Hydrocarbon emissions occur from incomplete combustion, in conjunctionwith petrol (storage, turn‐over,refuelingetc.)orfromsolvents.Highconcentrationsofozonearisewhenthetemperatureishigh,

humidity is low,whenair is relatively staticandwhen therearehigh concentrationsofhydrocarbons.BecauseCO(mostlyemittedfromvehicles)reducestheaccumulatedozonetoCO2andO2,highconcen‐

Page 113: December 30, 2009 Life Cycle Assessment of U.S. … LCA final report 8-25-10.pdf · gate‐to‐gate inventory.....79 appendix d: cradle‐to‐gate inventory and lcia results of

Page113of113

trationsofozonedonotoftenoccurnearhydrocarbonemissionsources.Higherozoneconcentrationsmorecommonlyariseinareasofcleanair,suchasforests,wherethereislessCO(Figure34).

In Life Cycle Assessments, Photochemical

Ozone Creation Potential (POCP) is re‐ferred to in ethylene‐equivalents (C2H4‐Äq.). When analyzing, it’s important to

remember that the actual ozone concen‐tration is strongly influenced by theweather and by the characteristics of the

localconditions.

HydrocarbonsNitrogen oxides

Dry and warmclimate

Hydrocarbons

Nitrogen oxides

Ozone

HydrocarbonsNitrogen oxides

Dry and warmclimate

Hydrocarbons

Nitrogen oxides

Ozone

Figure34.PhotochemicalOzoneCreationPotential


Recommended