+ All Categories
Home > Documents > Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim...

Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim...

Date post: 21-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
27
Young Won Lim 2/2/15 Definitions of the Laplace Transform (1A)
Transcript
Page 1: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Young Won Lim2/2/15

Definitions of the Laplace Transform (1A)

Page 2: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Young Won Lim2/2/15

Copyright (c) 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 3 Young Won Lim2/2/15

Improper Integral

limb→+∞

∫a

b

f (x ) dx

lima→−∞

∫a

b

f (x) dx

I = ∫a

b

f ( x) dx limb→+∞

I

I = ∫a

b

f ( x) dx lima→−∞

I

∫a

+∞

f (x ) dx

∫−∞

b

f (x) dx

limc→b−

∫a

c

f (x) dx

limc→a+

∫c

b

f (x) dx

I = ∫a

c

f (x) dx limc→b−

I

I = ∫c

b

f (x) dx limc→a+

I

∫a

b−

f (x) dx

∫a+

b

f (x) dx

Hiding the limiting process

L

converge

diverge

L

converge

diverge

L

converge

diverge

L

converge

diverge

Page 4: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 4 Young Won Lim2/2/15

Improper Integral Examples

limb→+∞

∫a

b

f (x ) dx ∫a

+∞

f (x) dx ∫a

c−

f (x) dxlimb→c−

∫a

b

f (x) dx

http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/

∫1

+∞ 1

x2 dx = limb→∞

∫1

b1

x2 dx = limb→∞ [−1

x ]1

b

= limb→∞

(−1b+

11 ) = 1 converge

∫0

11

√xdx = lim

a→0+∫a

11

√xdx = lim

a→0+

[2√x ]a1

= lima→0+

(2−2√b ) = 2 converge

limx→ 0

f (x ) = limx →0

1

√x= ∞ f (0)

Page 5: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 5 Young Won Lim2/2/15

An Improper Integration

F (s) = ∫0

f (t)e−s t dt

Complex Number Real Number

ℜ{s} ℑ{s}

s = σ + iω t Integration Variable

Real Number Real Number

real part

imag part

The improper integral converges if the limit defining it exists.

Page 6: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 6 Young Won Lim2/2/15

F(s) : a function of s

F (s) = ∫0

f (t)e−s t dt

g(s , t) = f (t )e−st

∂∂ t

G (s , t ) = g(s , t )

∫0

g(s , t)dt = limb→∞

[G (s , t)]0b

During integration, complex variable s is treated as a constant

∫0

g(s , t)dt = F (s)

In the result, the literal t vanishes

a function of s

G: an antiderivative of g with respect to t

For a given function f(t)

= limb→∞

[G (s , b) − G (s , 0)]

Page 7: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 7 Young Won Lim2/2/15

An Integration Function

F (s) = ∫0

f (t)e−s t dt

F (s1) = ∫0

f (t )e−s1t dt

F (s2) = ∫0

f (t )e−s2 t dt

F (s3) = ∫0

f ( t)e−s3 t dt

F (s3)

F (s2)

F (s1)

s3

s2

s1

Complex Numbers Complex Numbers

Complex Number Real Number

s = σ + iωt Real Number

Integration Variable

For a given function f(t)

Page 8: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 8 Young Won Lim2/2/15

F(s) : a Complex Function

F (s1) = ∫0

f (t )e−s1t dtF (s1)s1

Complex Numbers

Complex Numbers

s1 = σ 1 + iω1

F (s1) = ℜ{F (s1)} + iℑ{F (s1)}

Complex Number Real Number

s = σ + iω

For a given function f(t)

σ1

ω1

ℑ{F (s1)}

ℜ{F (s1)}

Complex Function

Page 9: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 9 Young Won Lim2/2/15

f(t) : a real-valued or complex-valued function

t1

f (t 1) = ℜ{f (t 1)} + i ℑ{f (t 1)}

t ℜ{s}

ℑ{s}

t1ℑ{f (t1)}

ℜ{f (t 1)}

f

t1

Real Numbers

Complex Numbers

t1

t

f (t)

t1

f (t1)

f

t1

Real Numbers

Real Numbers

f (t 1)

f (t 1)

Real-valued Function

Complex-valued Function

f (t 1)

Page 10: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 10 Young Won Lim2/2/15

Complex Function Plot

ℜ{F (s1)}

ℑ{F (s1)}

∣F (s1)∣

arg {F (s1)}

s1

s1

s1 = σ 1 + iω1 F (s1) = ℜ{F (s1)} + iℑ{F (s1)}

ℑF

s1 = σ 1 + iω1 F (s1) = ℜ{F (s1)} + iℑ{F (s1)}

ℑF

Page 11: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 11 Young Won Lim2/2/15

Two Functions: f(t) & F(s)

t

f (t)

ℜ{s}

ℑ{s}

ℜ{F (s1)}

ℜ{s}

ℑ{s}

ℑ{F (s1)}

∣F (s1)∣

arg {F (s1)}

s1

s1

Real number domain function f(t) Complex number domain function F(s)

For a given function f(t)

there exits a unique F(s)

t-domain function f(t)

s-domain function F(s)

f (t ) F (s)

Page 12: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 12 Young Won Lim2/2/15

Laplace Transform

Lf a(x ) F A (s)

f b(t ) FB (s)

f c( t) FC (s)

∫0

f 1(t)e−st dt = F1(s)

∫0

f 2(t)e−st dt = F2(s)

∫0

f 3(t)e−st dt = F3(s)

1

e−a t

1s

1s+a

s

s2+k2

L

L

s1 = σ 1 + iω1

F (s1) = ℜ{F (s1)} + iℑ{F (s1)}

σ1

ω1

ℑ{F (s1)}

ℜ{F (s1)}

t1

f (t 1)

t

f (t)

t1

f (t1)

f a(x ) F A(s)Real-valued Function Complex Function

cos(k t)

Page 13: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 13 Young Won Lim2/2/15

Laplace transforms of 1 and exp(–at)

L1

e−a t

1s

1s+a

L

F(s) = ∫0

1⋅e−s t dt = limb→∞ [−1

se−st ]

0

b

= limb→∞ [−1

se−sb

+1se−s 0]

limb→∞

e−s b = 0−s < 0 s > 0 F(s) =1s

F(s) = ∫0

e−a t⋅e−s t dt = limb→∞ [− 1

(s+a)e−(s+a) t ]

0

b

= limb→∞ [− 1

(s+a)e−(s+a)b +

1(s+a)

e−(s+a)0]limb→∞

e−(s+a )b= 0−(s+a) < 0 s >−a F(s) =

1(s+a)

Page 14: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 14 Young Won Lim2/2/15

Laplace transforms of exp(+at) and exp(–at)

e+a t 1s−a

L F (s) = ∫0

e+a t⋅e−s t dt = limb→∞ [− 1

(s−a)e−(s−a )t ]

0

b

= limb→∞ [− 1

(s−a)e−(s−a )b +

1(s−a)

e−(s−a )0]limb→∞

e−(s−a)b= 0−(s−a) < 0 s >+a F (s) =

1(s−a)

e−a t 1s+a

L F(s) = ∫0

e−a t⋅e−s t dt = limb→∞ [− 1

(s+a)e−( s+a) t ]

0

b

= limb→∞ [− 1

(s+a)e−( s+a)b +

1(s+a)

e−(s+a)0]limb→∞

e−(s+a )b= 0−(s+a) < 0 s >−a F(s) =

1(s+a)

Page 15: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 15 Young Won Lim2/2/15

Laplace transforms of cosh(kt) and sinh(kt)

sinh (k t) k

s2−k2L

cosh(k t ) s

s2−k2L F (s) = ∫

0

∞ (e+k t+e−k t )

2⋅e−s t dt

s >−k1

(s+k)cosh(k t ) =

(e+k t + e−k t )

2

sinh (k t ) =(e+k t − e−k t)

2

=12∫0

e+k t⋅e−st dt +

12∫0

e−k t⋅e−s t dt

s >+k1

(s−k)

F (s) =12 ( 1

(s−k)+

1(s+k )) =

s

(s2−k2

)

F (s) = ∫0

∞ (e+k t−e−k t )

2⋅e−s t dt

s >−k1

(s+k)

=12∫0

e+k t⋅e−st dt −

12∫0

e−k t⋅e−s t dt

s >+k1

(s−k)

F (s) =12 ( 1

(s−k)−

1(s+k )) =

k

(s2−k 2

)

Page 16: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 16 Young Won Lim2/2/15

Laplace transforms of cos(kt) and sin(kt)

sin(k t ) k

s2+k2L

cos(k t ) s

s2+k2L F (s) = ∫

0

∞ (e+ j k t+e− j k t)

2⋅e−s t dt

s > 0

cos(k t ) =(e+ jk t + e− j k t)

2

sin(k t ) =(e+ j k t − e− j k t)

2 j

=12∫0

e+ j k t⋅e−s t dt +

12∫0

e− jk t⋅e−s t dt

s > 01

(s− jω)

F (s) =12 ( 1

(s− jω)+

1(s+ jω)) =

s

(s2+k 2

)

F (s) = ∫0

∞ (e+ j k t−e− j k t)

2 j⋅e−s t dt

s > 01

(s+ jω)

=12 j

∫0

e+ j k t⋅e−s t dt −

12 j

∫0

e− j k t⋅e−s t dt

s > 01

(s− jω)

F (s) =12 ( 1

(s− jω)−

1(s+ jω)) =

k

(s2+k2

)

1(s+ jω)

Page 17: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 17 Young Won Lim2/2/15

Laplace transform of cos(kt)

s

s2+k2

cos(k t) L F(s) = ∫0

cos(k t )⋅e−s t dt = limb→∞ {[ 1k sin (k t )e−s t ]

0

b

−∫0

−sk

sin (k t)⋅e−s t dt }sk∫0

sin (k t)⋅e−s t dt = limb→∞

sk {[−1

kcos (k t)e−s t ]

0

b

−∫0

∞ sk

cos (k t)⋅e−s t dt }limb→∞ {[1k sin (k t)e−s t ]

0

b

}

limb→∞ {[−1

kcos (k t )e−s t ]

0

b

} = limb→∞

{−1kcos (k b)e−s b

+1kcos (k 0)e−s0} =

1k

= limb→∞

{1k sin (k b)e−s b−

1k

sin (k 0)e−s0} = 0

F(s) = ∫0

cos(k t )⋅e−s t dt = limb→∞

sk {1k −

sk∫0

cos(k t)⋅e−st dt }

F(s) =s

k 2 −s2

k2 F(s) (1+s2

k 2 )F (s) =s

k 2 ( s2+k2

k 2 )F (s) =s

k 2

F(s) =s

(s2+k2

)

Page 18: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 18 Young Won Lim2/2/15

Laplace transform of sin(kt)

k

s2+k2

sin(k t ) L F (s) = ∫0

sin (k t )⋅e−s t dt = limb→∞ {[−1

kcos (k t)e−s t ]

0

b

−∫0

+skcos (k t )⋅e−st dt }

sk∫0

cos(k t )⋅e−s t dt = limb→∞

sk {[+ 1

ksin (k t)e−s t ]

0

b

−∫0

∞ sk

sin (k t)⋅e−st dt }limb→∞ {[−1

kcos (k t )e−s t ]

0

b

}

limb→∞ {[+ 1

ksin (k t)e−st ]

0

b

} = limb→∞

{+ 1k

sin (k b)e−s b −1ksin (k 0)e−s0} = 0

= limb→∞

{−1k

cos(k b)e−s b +1kcos (k 0)e−s0} =

1k

F (s) = ∫0

sin (k t )⋅e−s t dt = limb→∞ {1k −

s2

k 2∫0

sin (k t )⋅e−s t dt }F (s) =

1k

−s2

k 2 F (s) (1+s2

k2 )F (s) =1k ( s

2+k 2

k 2 )F (s) =1k

F (s) =k

(s2+k 2)

Page 19: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 19 Young Won Lim2/2/15

Integration by parts

f (x)g(x ) f ' (x )g(x ) + f ( x)g ' (x )dd x

ddx

( f g) =d fdx

g + fd gdx

f (x )g(x ) f ' (x )g(x ) + f ( x)g ' (x )

f g = ∫ f ' g dx + ∫ f g ' dx

∫⋅d x

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

Page 20: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 20 Young Won Lim2/2/15

Region of Convergence

L1 1s ∫

0

e−st dt = limb→∞ [−1

se−st ]

0

b

= limb→∞ [−1

se−sb

+1se−s 0]

−s < 0

limb→∞

e−(s+a )b= 0−(s+a) < 0 s >−a F(s) =

1(s+a)

= limb→∞ [−1

se−s b +

1s ]

−(σ+iω) < 0

limb→∞

e−s b= lim

b→∞

e−(σ+iω)b= lim

b→∞

e−bσ e+i bω= 0

−σ < 0

−ℜ{s} < 0

σ > 0t > 0

|e+i bω|= 1

Right-sided function Right-sided ROC

Page 21: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 21 Young Won Lim2/2/15

Laplace Transform

∫t1

t 2

e+k t dt = [ 1k ek t ]t 1

t 2

=1k⋅(ek t 2 − ek t1)

∫0

e+k t dt = [ 1k ek t ]0

=1k⋅(e k⋅∞ − ek⋅0)

ℜ{k } < 0 ek⋅∞→ 0

ℜ{k } = 0 ek⋅∞→ e jω+

1k⋅(e jω − 1)

−1k

k = σ + jω

Page 22: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 22 Young Won Lim2/2/15

Laplace Transform

Right-sided function

Left-sided function

exponential order

exponential order

e−a t u( t)

e+b t u(−t )e−a t u(−t )

e+b t u(t )

a > 0 b > 0

Laplace transform exists

Laplace transform exists

exponential order

exponential order

Laplace transform exists

Laplace transform exists

Page 23: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 23 Young Won Lim2/2/15

Exponential Order

F (s) = ∫0

f (t)e−st d t

Laplace Transform

the growth rate of a function f(t)∣ f (t)∣ ≤ M eα t ,

s > 0 ℜ(s) > 0for the integral converges if f(t) does not grow too rapidly

a function has exponential order

Exponential Order α

there exist constants and such that for some

M > 0 αt > t 0

f α

t > t 0

∫0

∣ f ( t)∣e−σ t d t < ∞ for some σ

∫0

∣ f ( t)e−st ∣ d t = ∫0

∣ f (t)e−x t e−i y t∣ d t = ∫0

∣ f ( t)e−xt∣ d t < ∫0

∣ f (t)∣e−σ t d t < ∞ for

s > σ

ℜ(s) > σ

exponential order σ absolutely converges for f (t ) F (s) = ∫0

f ( t)e−s t d t

s > σ

Page 24: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 24 Young Won Lim2/2/15

Convergence of the Laplace Transform

f(t) continuous on [0, ∞)

f(t) = 0 for t < 0

f(t) has exponential order α

f'(t) piecewise continuous on [0, ∞)

F(s) converges absolutely

for Re(s) > α

= ∫0

∣f ( t)∣ e−xt d t < ∞∫0

∣f (t )e−st∣ d t

x > α

∫0

∣f (t )e−s t∣ d t < ∞

( ∣e−st∣ =∣e−xt ∣∣e−iyt ∣= e−xt )

{f ( t) e−xt } = g( t)

absolutely integrable for

Use Fourier Inversion

F (s) = ∫0

f (t)e−st d t

Laplace Transform

= ∫0

{f (t )e−xt} e−iy t d t

F(s) converges absolutely

for Re(s) > α

∫0

∣f (t )e−s t∣ d t < ∞

Page 25: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 25 Young Won Lim2/2/15

Fourier Transform

F (x , y) = ∫0

{ f (t)e−xt} e−iyt d t

g (t ) = f (t )e−xtFourier Transform

F (x , y) = ∫0

g (t) e−iyt d t

g (t ) =12π

∫−∞

+∞

F (x , y)eiyt d y

f (t) =12π

∫−∞

+ ∞

F ( x , y)e xt eiyt d y

Inverse Fourier Transform

x > αabsolutely integrable forg (t ) = f (t )e−xt

f (t ) =12π

∫−∞

+ ∞

F (x , y)e( x+ iy)t d y

s = x + i y

(x > α)

d s = i d yfixed =

12π i ∫

x−i∞

x+ i∞

F (s)es t d s

s = x + i∞y =+ ∞

s = x − i∞y =−∞

= limy→∞

12π i ∫

x−i y

x+ i y

F (s)es t d s

x − i y

Page 26: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Definitions (1A) 26 Young Won Lim2/2/15

Forward and Inverse Laplace Transform

Forward Laplace Transform

f (t ) F (s)

f (t ) F (s)

F (s) = ∫0

f (t)e−s t dt

f (t) =1

2π j ∫σ− j∞

σ+ j∞

F (s)e+s t ds

Inverse Laplace Transform

Page 27: Definitions of the Laplace Transform (1A)€¦ · 2/2/2015  · Definitions (1A) 5 Young Won Lim 2/2/15 An Improper Integration F(s) = ∫ 0 ∞ f (t)e−st dt Complex Number Real

Young Won Lim2/2/15

References

[1] http://en.wikipedia.org/[2] http://planetmath.org/[3] M.L. Boas, “Mathematical Methods in the Physical Sciences”[4] E. Kreyszig, “Advanced Engineering Mathematics”[5] D. G. Zill, W. S. Wright, “Advanced Engineering Mathematics”[6] T. J. Cavicchi, “Digital Signal Processing”[7] F. Waleffe, Math 321 Notes, UW 2012/12/11[8] J. Nearing, University of Miami[9] http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf


Recommended