+ All Categories
Home > Documents > Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware...

Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware...

Date post: 05-Jan-2016
Category:
Upload: roderick-whitehead
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
18
INTEGRATION OF EXPERIMENTAL PROPULSION SYSTEMS IN MICRO AIR VEHICLES Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus
Transcript
Page 1: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

INTEGRATION OF EXPERIMENTAL

PROPULSION SYSTEMS IN

MICRO AIR VEHICLES

Deliverable: Interim DesignNovember 9, 2010

Team # 3

Erica Cosmutto

Hunter Metzger

Joel Ware

Kristina De Armas

Michael Isaza

Santiago Baus

Page 2: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

OVERVIEW Introduction EDF vs Propeller Final Component Selection IE Update Calculated Values Designs Center of Gravity Cost and Weight Analysis Conclusion Future Work

Page 3: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

INTRODUCTION

Integrate an electric ducted fan into the fuselage of a Micro Air Vehicle (MAV)

Focus on:Fuselage designAir Flow Inlet/Duct design Integrating electronics and fan into the

fuselage Constraints:

10 lb max6 in diameter32 in length

Page 4: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

EDF VS PROPELLER FAN Duct reduces losses in thrust caused by

tip vortices The Ducted fan operated at higher

velocity EDF has a smaller diameter EDFs are quieter and safer

Page 5: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

FINAL COMPONENT SELECTION

76mm ID, 80mm OD22.2V391g55A

$129.50

TP8000-6S4PL22.2V8000mAh16C

$509.99

Smart Guide ESCUp to 44.4V100A

$120.00

Page 6: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

IE UPDATE Lean Six Sigma Methodology

DMAIC process Define Phase Complete Measure Phase due November 30th

Define performance standardsEstablish data collection planValidate the measurement systemCollect necessary data from existing system

Page 7: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

VALUES CALCULATED

Maximum Thrust of 2.2 kg =21.6 N Ideal Inlet Area= 5.643 in2 (FSA, Fan Sweep

Area) Ideal Exit Area=4.3 in2 (75% of FSA) Maximum Velocity Exiting Fan=52.478 m/s

Page 8: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

DESIGN 1

Design specified by sponsor Intake from the bottom of the MAV

Page 9: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

DESIGN 2

Intake on top and bottom Laminar flow off top surface

Page 10: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

DESIGN 3

Maximize flow intake Simple design

Page 11: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

DESIGN 4

Uses two side ducts Smooth intake of air

Page 12: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

CENTER OF GRAVITY

ESC110g Battery

932gFuselage3084g

Fan391g

Desired

CG

CurrentCG

1.92 in

Page 13: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

COST AND WEIGHT ANALYSISComponent Cost Weight

EDF $129.95 .862 lbs

Battery $509.99 2.05 lbs

Battery Charger $109.98

Woodworks LipoSack (Storage)

$34.99

ESC $120.00 .242 lbs

Transmitter/ Receiver

$179.97 .033 lbs

Industrial Strength Velcro

$7.00

TOTAL $1091.88 3.187 lbs

Page 14: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

CONCLUSION Four fuselage designs Initial Calculations and Analysis Calculated Ideal Inlet and Outlet Areas Center of Gravity Analysis Final Component Selection The team has started work at HPMI

Page 15: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

FUTURE WORK Continue work at HPMI Produce the first mold Receive Components Testing in Comsol and wind tunnels Measurement of Existing Model

Page 16: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

REFERENCES Hobbypartz.com Thunderpowerrc.com Hobbytown.com “The Calculation and Design of Ducted

Fans”.Wattflyer.com www2.nlr.nl/public/facilities/AVET-Info/

Content/UK/PropBlades.html www.sterndrive.info/

400_800_cobra_propellers.html

Page 17: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

Calculations:

Given Thrust of 2.2kg

Thrust 2.2kg g

Thrust 21.575N

Power calculations:

I 60A Volt 22.2V Assuming 100% efficient

P I Volt P 1.332 103 W

Velocity Calculations:

Thrust mdot Vel

P Thrust Vel

VelP

Thrust Vel 61.739

m

s Ideal Velocity capable from fan

electric 0.85 electric power to shaft output

Vexit electric Vel

Vexit 52.478m

s Velocity of air leaving fan

Exit Area Calculations:

As a rule when working with EDFs the exit area of the flow needs to be 70-85% of the FanSwept Area(FSA). For these calculation we use 75%.

Dfan 76mm Dhub 33.77mm

Afan

Dfan

2

2

Ahub

Dhub

2

2

FSA Afan Ahub

FSA 3.641 103 m

2 FSA 5.643in2

Aexit FSA 0.75

Aexit 2.731 103 m

2 Aexit 4.232in2

Dexit 4Aexit

Dexit 2.321in

Dexit mm

Calculations:

Page 18: Deliverable: Interim Design November 9, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus.

Inlet Area Calculations:

Ideally the inlet area would equal the Fan swept area. An ellipse would be the best intake areabecause it is very aerodynamic shape.

Aellipse FSA

Aellipse Aw Bl

Bl 2 Aw

Aellipse 2 Aw2

Aw

Aellipse

2

Aw 0.948in Bl 2 Aw Bl 1.895in

need an ellipse with a major axis of 3.79 in and a minor axis of 1.895 in, giving us 99.96% ofFSA for an inlet area.

Velocity Exiting Duct*:

To find the velocity at the end of this duct use mass conservation:

A1=area right after fan A2=exit area

A2 AexitD1 76mm

V1 VexitA1

D1

2

2

A1 7.032in2

A1 4.536 103 m

2

V1 A1 V2 A2

V2

V1 A1

A2

V2 87.185m

s *Velocity of air leaving fuselage with this geometry, if in a vaccum, at full

power, neglecting all friction and resistance.

More Realistically Closer to V.exit.

Vexit 52.478m

s


Recommended