+ All Categories
Home > Documents > Derivation of the time dependent Hartree (Fock) equation...2.Derivation of Hartree (Fock) equations...

Derivation of the time dependent Hartree (Fock) equation...2.Derivation of Hartree (Fock) equations...

Date post: 20-Feb-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
96
Transcript
  • Derivation of the time dependent Hartree (Fock)equation

    Peter Pickl

    Mathematical Institute

    LMU

    13. April 2016

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Dictionary

    1. �Derivation� means prove of validity

    2. �Hartree (Fock)�: time dependent Hartree (Fock)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Dictionary

    1. �Derivation� means prove of validity

    2. �Hartree (Fock)�: time dependent Hartree (Fock)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Dictionary

    1. �Derivation� means prove of validity

    2. �Hartree (Fock)�: time dependent Hartree (Fock)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Overview

    1. Derivation of Hartree equations for Bosons

    2. Derivation of Hartree (Fock) equations for Fermions

    3. Special case: A tracer particle in the fermi sea

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Overview

    1. Derivation of Hartree equations for Bosons

    2. Derivation of Hartree (Fock) equations for Fermions

    3. Special case: A tracer particle in the fermi sea

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Overview

    1. Derivation of Hartree equations for Bosons

    2. Derivation of Hartree (Fock) equations for Fermions

    3. Special case: A tracer particle in the fermi sea

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Overview

    1. Derivation of Hartree equations for Bosons

    2. Derivation of Hartree (Fock) equations for Fermions

    3. Special case: A tracer particle in the fermi sea

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for the bosons: The Hartree equation

    H =N∑j=1

    −∆j +N∑j=1

    At(xj) + (N − 1)−1∑k

  • Mean �eld for the bosons: The Hartree equation

    H =N∑j=1

    −∆j +N∑j=1

    At(xj) + (N − 1)−1∑k

  • Mean �eld for the bosons: The Hartree equation

    H =N∑j=1

    −∆j +N∑j=1

    At(xj) + (N − 1)−1∑k

  • Mean �eld for the bosons: The Hartree equation

    H =N∑j=1

    −∆j +N∑j=1

    At(xj) + (N − 1)−1∑k

  • Mean �eld for the bosons: The Hartree equation

    H =N∑j=1

    −∆j +N∑j=1

    At(xj) + (N − 1)−1∑k

  • Mean �eld for the bosons: The Hartree equation

    H =N∑j=1

    −∆j +N∑j=1

    At(xj) + (N − 1)−1∑k

  • Mean �eld for the bosons: The Hartree equation

    I Assuming Ψt ≈∏N

    j=1 φt(xj) and �nding φt : easy.

    I Proving Ψt ≈∏N

    j=1 φt(xj): hard.In particular error propagation

    I Example: Gross-Pitaevskii for dilute gases: NOT a mean �eldsituation!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for the bosons: The Hartree equation

    I Assuming Ψt ≈∏N

    j=1 φt(xj) and �nding φt : easy.

    I Proving Ψt ≈∏N

    j=1 φt(xj): hard.In particular error propagation

    I Example: Gross-Pitaevskii for dilute gases: NOT a mean �eldsituation!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for the bosons: The Hartree equation

    I Assuming Ψt ≈∏N

    j=1 φt(xj) and �nding φt : easy.

    I Proving Ψt ≈∏N

    j=1 φt(xj): hard.In particular error propagation

    I Example: Gross-Pitaevskii for dilute gases: NOT a mean �eldsituation!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for the bosons: The Hartree equation

    I Assuming Ψt ≈∏N

    j=1 φt(xj) and �nding φt : easy.

    I Proving Ψt ≈∏N

    j=1 φt(xj): hard.In particular error propagation

    I Example: Gross-Pitaevskii for dilute gases: NOT a mean �eldsituation!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for the bosons: The Hartree equation

    I Assuming Ψt ≈∏N

    j=1 φt(xj) and �nding φt : easy.

    I Proving Ψt ≈∏N

    j=1 φt(xj): hard.In particular error propagation

    I Example: Gross-Pitaevskii for dilute gases: NOT a mean �eldsituation!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for �particle 1�

    V

    x1x x x x x x x x x x23 45 67 89 1011

    W (x1) = (N − 1)−1∑N

    j=2 V (x1 − xj) for �xed, |φ0|2- distributedx2, . . . , xN .Law of large numbers: |φ0|2 close to the empirical density ρ0.W (x1) ≈ V ? |φ0|2(x1) (�Mean �eld�).

    E�ective Dynamics: Hartree equation

    idtφt =(−∆ + At + V ? |φt |2

    )φt .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for �particle 1�

    V

    x1x x x x x x x x x x23 45 67 89 1011

    W (x1) = (N − 1)−1∑N

    j=2 V (x1 − xj) for �xed, |φ0|2- distributedx2, . . . , xN .Law of large numbers: |φ0|2 close to the empirical density ρ0.W (x1) ≈ V ? |φ0|2(x1) (�Mean �eld�).

    E�ective Dynamics: Hartree equation

    idtφt =(−∆ + At + V ? |φt |2

    )φt .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for �particle 1�

    V

    x1x x x x x x x x x x23 45 67 89 1011

    W (x1) = (N − 1)−1∑N

    j=2 V (x1 − xj) for �xed, |φ0|2- distributedx2, . . . , xN .Law of large numbers: |φ0|2 close to the empirical density ρ0.W (x1) ≈ V ? |φ0|2(x1) (�Mean �eld�).

    E�ective Dynamics: Hartree equation

    idtφt =(−∆ + At + V ? |φt |2

    )φt .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Mean �eld for �particle 1�

    V

    x1x x x x x x x x x x23 45 67 89 1011

    W (x1) = (N − 1)−1∑N

    j=2 V (x1 − xj) for �xed, |φ0|2- distributedx2, . . . , xN .Law of large numbers: |φ0|2 close to the empirical density ρ0.W (x1) ≈ V ? |φ0|2(x1) (�Mean �eld�).

    E�ective Dynamics: Hartree equation

    idtφt =(−∆ + At + V ? |φt |2

    )φt .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Grönwall argument

    V

    x1x x x x x x x x x x23 45 67 89 1011 x12,13,14

    Let αt be a measure for the dirt in the condensate:

    dtαt ≤ C (αt + O(1))

    Grönwall: αt stays small if α0 was small (αt ≤ eCtα0 + O(1))

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Grönwall argument

    V

    x1x x x x x x x x x x23 45 67 89 1011 x12,13,14

    Let αt be a measure for the dirt in the condensate:

    dtαt ≤ C (αt + O(1))

    Grönwall: αt stays small if α0 was small (αt ≤ eCtα0 + O(1))

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Grönwall argument

    V

    x1x x x x x x x x x x23 45 67 89 1011 x12,13,14

    Let αt be a measure for the dirt in the condensate:

    dtαt ≤ C (αt + O(1))

    Grönwall: αt stays small if α0 was small (αt ≤ eCtα0 + O(1))

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Usual approach

    Control reduced one particle density matrix µΨt1

    dtµΨt1

    depends on µΨt2

    dtµΨt2

    depends on µΨt3

    ...Technically di�cult (e.g. Erdös, Schlein, Yau (2009)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Usual approach

    Control reduced one particle density matrix µΨt1

    dtµΨt1

    depends on µΨt2

    dtµΨt2

    depends on µΨt3

    ...Technically di�cult (e.g. Erdös, Schlein, Yau (2009)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Usual approach

    Control reduced one particle density matrix µΨt1

    dtµΨt1

    depends on µΨt2

    dtµΨt2

    depends on µΨt3

    ...Technically di�cult (e.g. Erdös, Schlein, Yau (2009)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Usual approach

    Control reduced one particle density matrix µΨt1

    dtµΨt1

    depends on µΨt2

    dtµΨt2

    depends on µΨt3

    ...Technically di�cult (e.g. Erdös, Schlein, Yau (2009)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Usual approach

    Control reduced one particle density matrix µΨt1

    dtµΨt1

    depends on µΨt2

    dtµΨt2

    depends on µΨt3

    ...Technically di�cult (e.g. Erdös, Schlein, Yau (2009)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Usual approach

    Control reduced one particle density matrix µΨt1

    dtµΨt1

    depends on µΨt2

    dtµΨt2

    depends on µΨt3

    ...Technically di�cult (e.g. Erdös, Schlein, Yau (2009)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Introduction of a counting measure:

    For every j = 1, . . . ,N and φ ∈ L2(R3) let pφj be the projector given by

    pφj = |φ〉〈φ|j .

    Let qφj = 1− pφj .

    According to Ψ �expected relative number� of particles not in the state φ

    α(Ψ, φ) = N−1N∑j=1

    〈Ψ, qφj Ψ〉 = 〈Ψ, qφk Ψ〉 = ‖q

    φk Ψ‖

    2 .

    α(Ψ, φ) = 0 ⇔ Ψ =∏N

    j=1 φ(xj).

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Introduction of a counting measure:

    For every j = 1, . . . ,N and φ ∈ L2(R3) let pφj be the projector given by

    pφj = |φ〉〈φ|j .

    Let qφj = 1− pφj .

    According to Ψ �expected relative number� of particles not in the state φ

    α(Ψ, φ) = N−1N∑j=1

    〈Ψ, qφj Ψ〉 = 〈Ψ, qφk Ψ〉 = ‖q

    φk Ψ‖

    2 .

    α(Ψ, φ) = 0 ⇔ Ψ =∏N

    j=1 φ(xj).

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Introduction of a counting measure:

    For every j = 1, . . . ,N and φ ∈ L2(R3) let pφj be the projector given by

    pφj = |φ〉〈φ|j .

    Let qφj = 1− pφj .

    According to Ψ �expected relative number� of particles not in the state φ

    α(Ψ, φ) = N−1N∑j=1

    〈Ψ, qφj Ψ〉 = 〈Ψ, qφk Ψ〉 = ‖q

    φk Ψ‖

    2 .

    α(Ψ, φ) = 0 ⇔ Ψ =∏N

    j=1 φ(xj).

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Introduction of a counting measure:

    For every j = 1, . . . ,N and φ ∈ L2(R3) let pφj be the projector given by

    pφj = |φ〉〈φ|j .

    Let qφj = 1− pφj .

    According to Ψ �expected relative number� of particles not in the state φ

    α(Ψ, φ) = N−1N∑j=1

    〈Ψ, qφj Ψ〉 = 〈Ψ, qφk Ψ〉 = ‖q

    φk Ψ‖

    2 .

    α(Ψ, φ) = 0 ⇔ Ψ =∏N

    j=1 φ(xj).

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Introduction of a counting measure:

    For every j = 1, . . . ,N and φ ∈ L2(R3) let pφj be the projector given by

    pφj = |φ〉〈φ|j .

    Let qφj = 1− pφj .

    According to Ψ �expected relative number� of particles not in the state φ

    α(Ψ, φ) = N−1N∑j=1

    〈Ψ, qφj Ψ〉 = 〈Ψ, qφk Ψ〉 = ‖q

    φk Ψ‖

    2 .

    α(Ψ, φ) = 0 ⇔ Ψ =∏N

    j=1 φ(xj).

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Example:

    Ψ(x1, . . . , xN) =(χ(x1, . . . xk)

    ∏Nj=k+1 φ(xj)

    )sym

    with χ ∈ L2(R3k), pjχ = 0 for all 1 ≤ j ≤ k

    ⇒ α(Ψ, φ) = k/N.

    Lemma: α(Ψt , φt)→ 0 is equivalent to convergence of µt to |φt〉〈φt | inoperator norm.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Example:

    Ψ(x1, . . . , xN) =(χ(x1, . . . xk)

    ∏Nj=k+1 φ(xj)

    )sym

    with χ ∈ L2(R3k), pjχ = 0 for all 1 ≤ j ≤ k

    ⇒ α(Ψ, φ) = k/N.

    Lemma: α(Ψt , φt)→ 0 is equivalent to convergence of µt to |φt〉〈φt | inoperator norm.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Example:

    Ψ(x1, . . . , xN) =(χ(x1, . . . xk)

    ∏Nj=k+1 φ(xj)

    )sym

    with χ ∈ L2(R3k), pjχ = 0 for all 1 ≤ j ≤ k

    ⇒ α(Ψ, φ) = k/N.

    Lemma: α(Ψt , φt)→ 0 is equivalent to convergence of µt to |φt〉〈φt | inoperator norm.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Deriving the mean �eld equation:

    Goal: show that |dtαt | < C (αt + o(1))⇒ αt � 1 by GrönwallLet

    hj := −∆j + A + V ? |φt |2(xj) .

    Sincedtq

    φtj = −i [hj , q

    φtj ]

    dtα(Ψt , φt) = i〈Ψt , [H − h1, qφt1 ]Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Deriving the mean �eld equation:

    Goal: show that |dtαt | < C (αt + o(1))⇒ αt � 1 by GrönwallLet

    hj := −∆j + A + V ? |φt |2(xj) .

    Sincedtq

    φtj = −i [hj , q

    φtj ]

    dtα(Ψt , φt) = i〈Ψt , [H − h1, qφt1 ]Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Deriving the mean �eld equation:

    Goal: show that |dtαt | < C (αt + o(1))⇒ αt � 1 by GrönwallLet

    hj := −∆j + A + V ? |φt |2(xj) .

    Sincedtq

    φtj = −i [hj , q

    φtj ]

    dtα(Ψt , φt) = i〈Ψt , [H − h1, qφt1 ]Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Deriving the mean �eld equation:

    Goal: show that |dtαt | < C (αt + o(1))⇒ αt � 1 by GrönwallLet

    hj := −∆j + A + V ? |φt |2(xj) .

    Sincedtq

    φtj = −i [hj , q

    φtj ]

    dtα(Ψt , φt) = i〈Ψt , [H − h1, qφt1 ]Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Deriving the mean �eld equation:

    Goal: show that |dtαt | < C (αt + o(1))⇒ αt � 1 by GrönwallLet

    hj := −∆j + A + V ? |φt |2(xj) .

    Sincedtq

    φtj = −i [hj , q

    φtj ]

    dtα(Ψt , φt) = i〈Ψt , [H − h1, qφt1 ]Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • dtα(Ψt , φt) = i〈Ψt , [−∆1 + (N − 1)−1N∑j=2

    V (x1 − xj)− h1, qφt1 ]Ψt〉

    = i〈Ψt , [V (x1 − x2)− V ? |φt |2(x1), qφt1 ]Ψt〉

    = i(〈Ψt ,

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    Ψt〉 − c.c.)

    = i(〈Ψt , (pφt1 + q

    φt1

    )(pφt2

    + qφt2

    )(V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    (pφt2

    + qφt2

    )Ψt〉− c.c.

    ).

    All terms 〈Ψt ,A12Ψt〉 where A12 is either selfadjoint or invariant underadjunction plus simultaneous exchange of the variables x1 and x2 cancelout.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • dtα(Ψt , φt) = i〈Ψt , [−∆1 + (N − 1)−1N∑j=2

    V (x1 − xj)− h1, qφt1 ]Ψt〉

    = i〈Ψt , [V (x1 − x2)− V ? |φt |2(x1), qφt1 ]Ψt〉

    = i(〈Ψt ,

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    Ψt〉 − c.c.)

    = i(〈Ψt , (pφt1 + q

    φt1

    )(pφt2

    + qφt2

    )(V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    (pφt2

    + qφt2

    )Ψt〉− c.c.

    ).

    All terms 〈Ψt ,A12Ψt〉 where A12 is either selfadjoint or invariant underadjunction plus simultaneous exchange of the variables x1 and x2 cancelout.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • dtα(Ψt , φt) = i〈Ψt , [−∆1 + (N − 1)−1N∑j=2

    V (x1 − xj)− h1, qφt1 ]Ψt〉

    = i〈Ψt , [V (x1 − x2)− V ? |φt |2(x1), qφt1 ]Ψt〉

    = i(〈Ψt ,

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    Ψt〉 − c.c.)

    = i(〈Ψt , (pφt1 + q

    φt1

    )(pφt2

    + qφt2

    )(V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    (pφt2

    + qφt2

    )Ψt〉− c.c.

    ).

    All terms 〈Ψt ,A12Ψt〉 where A12 is either selfadjoint or invariant underadjunction plus simultaneous exchange of the variables x1 and x2 cancelout.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • dtα(Ψt , φt) = i〈Ψt , [−∆1 + (N − 1)−1N∑j=2

    V (x1 − xj)− h1, qφt1 ]Ψt〉

    = i〈Ψt , [V (x1 − x2)− V ? |φt |2(x1), qφt1 ]Ψt〉

    = i(〈Ψt ,

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    Ψt〉 − c.c.)

    = i(〈Ψt , (pφt1 + q

    φt1

    )(pφt2

    + qφt2

    )(V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    (pφt2

    + qφt2

    )Ψt〉− c.c.

    ).

    All terms 〈Ψt ,A12Ψt〉 where A12 is either selfadjoint or invariant underadjunction plus simultaneous exchange of the variables x1 and x2 cancelout.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • dtα(Ψt , φt) = i〈Ψt , [−∆1 + (N − 1)−1N∑j=2

    V (x1 − xj)− h1, qφt1 ]Ψt〉

    = i〈Ψt , [V (x1 − x2)− V ? |φt |2(x1), qφt1 ]Ψt〉

    = i(〈Ψt ,

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    Ψt〉 − c.c.)

    = i(〈Ψt , (pφt1 + q

    φt1

    )(pφt2

    + qφt2

    )(V (x1 − x2)− V ? |φt |2(x1)

    )qφt1

    (pφt2

    + qφt2

    )Ψt〉− c.c.

    ).

    All terms 〈Ψt ,A12Ψt〉 where A12 is either selfadjoint or invariant underadjunction plus simultaneous exchange of the variables x1 and x2 cancelout.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =|φt(x2)〉〈φt(x2)|V (x1 − x2)|φt(x2)〉〈φt(x2)|

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =|φt(x2)〉〈φt(x2)|V (x1 − x2)|φt(x2)〉〈φt(x2)|

    =|φt(x2)〉V ? |φt |2(x1)〈φt(x2)| = pφt2 V ? |φt |2

    =pφt2V ? |φt |2pφt2

    ⇒ I = 0.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =|φt(x2)〉〈φt(x2)|V (x1 − x2)|φt(x2)〉〈φt(x2)|

    =|φt(x2)〉V ? |φt |2(x1)〈φt(x2)| = pφt2 V ? |φt |2

    =pφt2V ? |φt |2pφt2

    ⇒ I = 0.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =|φt(x2)〉〈φt(x2)|V (x1 − x2)|φt(x2)〉〈φt(x2)|

    =|φt(x2)〉V ? |φt |2(x1)〈φt(x2)| = pφt2 V ? |φt |2

    =pφt2V ? |φt |2pφt2

    ⇒ I = 0.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =|φt(x2)〉〈φt(x2)|V (x1 − x2)|φt(x2)〉〈φt(x2)|

    =|φt(x2)〉V ? |φt |2(x1)〈φt(x2)| = pφt2 V ? |φt |2

    =pφt2V ? |φt |2pφt2

    ⇒ I = 0.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = i〈Ψt , pφt1 pφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1pφt2

    Ψt〉

    = i〈Ψt , pφt1 pφt2V (x1 − x2)pφt2 q

    φt1

    Ψt〉 − i〈Ψt , pφt1 pφt2V ? |φt |2(x1)pφt2 q

    φt1

    Ψt〉

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , pφt1 qφt2

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    I : pφt2V (x1 − x2)pφt2 =|φt(x2)〉〈φt(x2)|V (x1 − x2)|φt(x2)〉〈φt(x2)|

    =|φt(x2)〉V ? |φt |2(x1)〈φt(x2)| = pφt2 V ? |φt |2

    =pφt2V ? |φt |2pφt2

    ⇒ I = 0.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = 0

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , qφt2 pφt1

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    |III | ≤ ‖qφt2

    Ψt‖22‖V ‖∞ = Cα(Ψt , φt)

    dtα(Ψt , φt) ≤ C (α(Ψt , φt) + N−1)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Only three types remain: pp . . . pq, pp . . . qq and pq . . . qq

    I = 0

    II = i〈Ψt , pφt1 pφt2V (x1 − x2)qφt1 q

    φt2

    Ψt〉

    III = i〈Ψt , qφt2 pφt1

    (V (x1 − x2)− V ? |φt |2(x1)

    )qφt1qφt2

    Ψt〉 .

    |III | ≤ ‖qφt2

    Ψt‖22‖V ‖∞ = Cα(Ψt , φt)

    dtα(Ψt , φt) ≤ C (α(Ψt , φt) + N−1)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Fermions

    I Microscopic system: Ψ0 = ΛNj=1φ

    j0

    H =∑N

    j=1−∆j +∑N

    j=1 At(xj) + N−2/3∑

    k

  • Results for Fermions

    I Semiclassical situation: N. Benedikter, M. Porta, B. Schlein (2014)

    I Quantum situation: S. Petrat, P.P. (2015); V. Bach, S. Breteaux, S.Petrat, P. P., T. Tzaneteas (2015)

    I Problem: potential of leading order, force small!

    I Goal: Consider coupling N−1/3.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Results for Fermions

    I Semiclassical situation: N. Benedikter, M. Porta, B. Schlein (2014)

    I Quantum situation: S. Petrat, P.P. (2015); V. Bach, S. Breteaux, S.Petrat, P. P., T. Tzaneteas (2015)

    I Problem: potential of leading order, force small!

    I Goal: Consider coupling N−1/3.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Results for Fermions

    I Semiclassical situation: N. Benedikter, M. Porta, B. Schlein (2014)

    I Quantum situation: S. Petrat, P.P. (2015); V. Bach, S. Breteaux, S.Petrat, P. P., T. Tzaneteas (2015)

    I Problem: potential of leading order, force small!

    I Goal: Consider coupling N−1/3.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Results for Fermions

    I Semiclassical situation: N. Benedikter, M. Porta, B. Schlein (2014)

    I Quantum situation: S. Petrat, P.P. (2015); V. Bach, S. Breteaux, S.Petrat, P. P., T. Tzaneteas (2015)

    I Problem: potential of leading order, force small!

    I Goal: Consider coupling N−1/3.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Results for Fermions

    I Semiclassical situation: N. Benedikter, M. Porta, B. Schlein (2014)

    I Quantum situation: S. Petrat, P.P. (2015); V. Bach, S. Breteaux, S.Petrat, P. P., T. Tzaneteas (2015)

    I Problem: potential of leading order, force small!

    I Goal: Consider coupling N−1/3.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    I Tracer in �lled Fermi sea: Ψ0 = χ(y)∧N

    j=1 φj(xj)

    I Interaction with tracer and gas particles: HI =∑N

    j=1 V (y , xj)

    I Empirics: free evolution of tracer

    I Strong contrast to bosonic case Ψ0 = χ(y)(∏N

    j=1 φj(xj))sym

    Brownian motion.

    I Mean �eld works much better in fermionic case!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    1d: easy: Momentum and energy conservation.

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Special situation

    Higher dimensions

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    I Fluctuation of force is much smaller for fermions, still largeI Correlation due to antisymmetry reduces �uctuations.I Fluctuations caused by particles with high momentum

    Momentum transfer small.Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    I Fluctuation of force is much smaller for fermions, still largeI Correlation due to antisymmetry reduces �uctuations.I Fluctuations caused by particles with high momentum

    Momentum transfer small.Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    I Fluctuation of force is much smaller for fermions, still largeI Correlation due to antisymmetry reduces �uctuations.I Fluctuations caused by particles with high momentum

    Momentum transfer small.Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    I Fluctuation of force is much smaller for fermions, still largeI Correlation due to antisymmetry reduces �uctuations.I Fluctuations caused by particles with high momentum

    Momentum transfer small.Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Estimate of �uctuations

    Variance of force at some position y(fermions: purble, bosons: blue)

    I Fluctuation of force is much smaller for fermions, still largeI Correlation due to antisymmetry reduces �uctuations.I Fluctuations caused by particles with high momentum

    Momentum transfer small.Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation

  • Thank you!

    Peter Pickl Mathematical Institute LMU

    Derivation of the time dependent Hartree (Fock) equation


Recommended